File size: 16,492 Bytes
861a266
 
 
 
 
 
 
be73b15
 
861a266
 
 
 
 
 
 
 
 
 
2b3ee70
53c3c73
65f8795
53c3c73
d3c4bfa
9c68ef7
d3c4bfa
 
9c68ef7
d3c4bfa
 
53c3c73
 
2fb0dab
be73b15
2b3ee70
be73b15
 
53c3c73
 
 
 
 
 
 
ee94a8c
53c3c73
be73b15
53c3c73
2eae6d7
53c3c73
31db0f5
 
2b3ee70
31db0f5
be73b15
730abb3
be73b15
730abb3
be73b15
730abb3
be73b15
730abb3
be73b15
730abb3
be73b15
31db0f5
2b3ee70
31db0f5
 
53c3c73
 
 
 
 
be73b15
53c3c73
 
 
 
be73b15
 
53c3c73
31db0f5
53c3c73
be73b15
 
 
 
 
 
 
53c3c73
31db0f5
53c3c73
01a69a6
bae016e
 
2248e3c
bae016e
 
2b3ee70
53c3c73
 
f3dd06b
 
53c3c73
f3dd06b
 
53c3c73
2b3ee70
b795416
53c3c73
 
bae016e
53c3c73
 
 
 
 
 
 
 
 
 
d301133
 
53c3c73
 
 
 
 
 
 
 
 
 
 
 
 
80567f0
 
53c3c73
 
2b3ee70
53c3c73
 
 
 
 
 
 
 
 
 
bae016e
53c3c73
d3cc664
 
31db0f5
53c3c73
df125e5
53c3c73
494b673
53c3c73
494b673
53c3c73
 
 
be73b15
 
53c3c73
31db0f5
53c3c73
e687c70
 
2b3ee70
831a704
b93a5f6
831a704
64a951c
831a704
64a951c
831a704
b93a5f6
831a704
 
 
 
 
 
 
 
2b3ee70
53c3c73
31db0f5
53c3c73
f3dd06b
 
be73b15
f3dd06b
be73b15
f3dd06b
be73b15
f3dd06b
be73b15
 
 
861a266
53c3c73
31db0f5
53c3c73
 
2b3ee70
53c3c73
 
 
 
 
 
be73b15
 
53c3c73
 
 
 
 
 
be73b15
31db0f5
53c3c73
 
 
 
 
 
 
 
be73b15
53c3c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be73b15
53c3c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac47855
 
 
 
 
 
 
 
 
 
 
53c3c73
31db0f5
53c3c73
 
2b3ee70
 
be73b15
53c3c73
45d1b55
53c3c73
 
 
be73b15
 
 
 
 
 
 
 
 
53c3c73
be73b15
53c3c73
be73b15
e687c70
be73b15
e687c70
be73b15
 
 
 
 
 
 
 
 
bae016e
 
 
53c3c73
2b3ee70
53c3c73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
---
tags:
- text-generation
- reasoning
- coding
- mathematics
- quantization
- 4-bit model
- state-of-the-art
license: apache-2.0
datasets:
- synthetic
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
language:
- en
- hi
library_name: transformers
pipeline_tag: text-generation
---
# Alpie Core: 4-bit Quantized Reasoning Model

📄 **[Technical Report: Alpie Core.pdf](./Alpie_Core.pdf)**

<p align="center">
  <a href="https://169pi.ai/"><img src="https://img.shields.io/badge/🌐%20Website-169Pi%20AI-blue" alt="Website"></a>
  <a href="https://huggingface.co/169Pi"><img src="https://img.shields.io/badge/🤗%20Hugging%20Face-169Pi%20AI-yellow" alt="Hugging Face"></a>
  <a href="https://www.linkedin.com/company/169pi/"><img src="https://img.shields.io/badge/LinkedIn-169Pi%20AI-blue" alt="LinkedIn"></a>
  <a href="https://x.com/169Pi_ai"><img src="https://img.shields.io/badge/X-169Pi%20AI-black" alt="X"></a>
</p>

## 1. Introduction

**Alpie Core is one of the first fine-tuned 4-bit reasoning models from India, and among one of the first worldwide.** Trained on just 8 Hopper GPUs using LoRA for parameter-efficient fine-tuning, combined with QLoRA 4-bit quantization, and synthetic STEM-rich dataset distillation, it proves that aggressive quantization can not only match but also surpass full-precision baselines.

With a dramatically reduced memory footprint, Alpie Core delivers competitive, frontier-level reasoning performance, even beating some top proprietary models. It achieves **81.28% on MMLU, 92.75% on GSM8K, and 57.8% on SWE-Bench Verified**, ranking top globally on competitive leaderboards, a demonstration that efficient models can rival frontier systems while remaining practical for real-world deployment at scale.

![Combined Benchmark](combined_benchmark.png)

## 2. Model Summary

- **Base Architecture**: DeepSeek-R1-Distill-Qwen-32B
- **Parameters**: 32 billion (quantized to 4-bit)
- **Training Method**: Supervised Fine-Tuning (SFT) using LoRA/QLoRA techniques
- **Quantization**: 4-bit NF4 with double quantization
- **Context Length**: 65k tokens
- **Max Output Length**: 16,384 tokens
- **Training Data Sources:** Synthetic (STEM, reasoning, coding) + domain-rich curated data (law, Indian context, exams, multilingual).
- **License**: Apache 2.0


## 3. Approach

**Alpie Core** has undergone extensive **supervised fine-tuning (SFT)** to strengthen reasoning, robustness, and safety. The training leveraged a diverse mixture of curated open-source datasets and proprietary synthetic data, optimised with high-quality LLM-generated responses. The fine-tuning process emphasised adherence to rigorous safety and usability standards, including:

1.**User Understanding and Clarity** – ensuring outputs are direct, interpretable, and pedagogically sound.

2.**Security and Ethical Guidelines** – filtering unsafe or harmful generations during and after training.

3.**Limitations, Disclaimers, and Knowledge Boundaries** – transparently communicating uncertainty and scope.

4.**Handling Complex and Sensitive Topics** – balancing informativeness with responsible guardrails.

5.**Safety and Respectful Engagement** – maintaining politeness, inclusivity, and cultural sensitivity.

6.**Confidentiality and Responsible Use** – preventing leakage of private training data, proprietary prompts, or internal reasoning traces.

This SFT approach enables Alpie Core to deliver reliable, aligned, and context-aware responses while maintaining safety across a broad range of use cases. This approach allows Alpie Core to generalize across global and Indian contexts while staying aligned to safe and responsible use guidelines.

## 4. Model Features

1. **Supports Streaming** – Real-time token-level responses
2. **OpenAI-Compatible API** – Seamless integration with OpenAI client libraries
3. **65K Context Length** – Handles very large inputs and conversations
4. **16,384 Max Output Length** – Enables extremely long generations
5. **4-Bit Quantization** – Memory-efficient and optimised for deployment
6. **High Throughput Inference** – Powered by vLLM for efficient large-scale serving
7. **Low Latency Inference** – Fast response times optimized for production
8. **Customizable Safety & Moderation Filters** – Built-in guardrails for safer outputs
9. **Supports Function Calling / Tool Use** – Enables structured outputs and external API integration
10. **Instruction Following** – Optimised for reasoning and chain-of-thought stepwise answers.
11. **Education & Research Ready** – Tailored for competitive exams, STEM reasoning, and knowledge-intensive tasks.

## 5. Key Highlights

1. **First 4-bit Reasoning Model from India**: Competitive globally with frontier models  
2. **Benchmark Competitiveness**: Outperforms or matches 70B+ models across reasoning, math, and coding  
3. **STEM & Coding Strength**: Excellent on GSM8K, MATH-500, HumanEval, SWE-Bench Verified  
4. **Efficiency & Deployment**: 16 GB VRAM footprint, runs on commodity GPUs with vLLM  
5. **Extended Context Length**: 65K tokens for research papers, conversations, multi-document reasoning  
6. **Environmental Benefits**: ~298–835 kg CO₂e, 2–3× more efficient than FP16 training  
7. **Open-Source Commitment**: Released under Apache 2.0 for global use  

## 6. Benchmark Results

![GSM8K Benchmark](GSM8K.png)


![BBH Benchmark](BBH.png)


| Benchmark | Alpie Core (32B-4bit) | DeepSeek-V2 (236B) | Qwen2.5 72B | Llama 3.1 405B | Llama 3.1 70B | Gemma-3 27B-PT | Mistral-Small-24B-Base-2501 |
|-----------|----------------------|-------------------|-------------|---------------|---------------|----------------|----------------------------|
| MMLU (5-shot) | **81.28%** | 78.4% | 85.0% | 84.4% | 79.3% | 78.6% | 80.73% |
| GSM8K (8-shot) | **92.75%** | 81.6% | 88.3% | 83.5% | - | 82.2% | 80.73% |
| BBH (3-shot) | **85.12%** | 78.8% | 79.8% | 82.9% | 81.6% | 77.7% | - |
| MMLU-Pro (5-shot) | **64.78%** | 51.4% | 58.3% | 52.8% | 53.8% | 52.2% | 54.37% |
| MBPP (pass@1) | **75.20%** | 65.0% | 72.6% | 68.4% | - | 65.6% | 69.64% |
| HumanEval (pass@1) | **57.23%** | 43.3% | 53.0% | 54.9% | - | 48.8% | = |

These results demonstrate Alpie Core’s ability to rival or surpass leading proprietary and open-source models, despite being 4-bit quantized.

### SWE-Bench Verified Performance


| Rank | Model | Accuracy (%) | Performance vs Alpie |
|------|-------|-------------|---------------------|
| **1** | **Alpie Core** | **57.8** | **Alpie** |
| 2 | Qwen3-Coder-30B-A3B-Instruct | 51.6 | Below Alpie |
| 3 | o1 | 48.9 | Below Alpie |
| 4 | o3-mini (high) | 49.3 | Below Alpie |
| 5 | Claude 3.5 Sonnet | 49.0 | Below Alpie |
| 6 | DeepSeek R1 | 49.2 | Below Alpie |
| 7 | Devstral | 46.8 | Below Alpie |

![SWE-Bench Performance](swe.png)

### Humanity's Last Exam Leaderboard Performance

| Rank | Model | Accuracy (%) | Performance vs Alpie |
|------|-------|-------------|---------------------|
| 1 | GPT 4.5 Preview | 5.8 | Above Alpie |
| 2 | Claude Sonnet 4 | 5.42 | Above Alpie |
| **3** | **Alpie Core 32B (4-bit)** | **5.41** | **Alpie** |
| 4 | Llama 4 Maverik | 5.34 | Below Alpie |
| 5 | GPT 4.1 | 4.97 | Below Alpie |
| 6 | Kimi K2 Instruct | 4.68 | Below Alpie |
| 7 | DeepSeek V3 | 4.55 | Below Alpie |
| 8 | Gemini 1.5 Pro 002 | 4.55 | Below Alpie |

![Humanity's Last Exam](HLE.png)

### Additional Benchmarks

| Benchmark | Alpie Core (32B-4bit) | Category |
|-----------|----------------------|----------|
| AIME | **47.34%** | Advanced Mathematics |
| GPQA (Diamond) | **40.91%** | Graduate-level QA |
| TruthfulQA (MC2) | **60.05%** | Truthfulness |
| HellaSwag | **84.66%** | Commonsense |
| PIQA | **83.24%** | Physical Reasoning |
| ARC Challenge | **67.58%** | Science QA |
| CommonSenseQA | **87.06%** | Commonsense |
| AGIEval | **64.98%** | General Intelligence |
| Winogrande | **79.53%** | Commonsense Reasoning |
| MATH-500 | **70.00%** | Advanced Mathematics |

![AIME Benchmark](AIME.png)

## 7. Training Details

- **Hardware**: 8× NVIDIA HOPPER-80GB GPUs
- **Fine-tuning Method**: LoRA/QLoRA with the following configuration:
  - LoRA Alpha: 16
  - LoRA Dropout: 0.05
  - LoRA Rank: 16
- **Quantization**: 4-bit NF4 + Double Quantization + FP16 compute
- **Dataset Domains**: Mathematics, coding, reasoning, science, general knowledge, competitive exams, Indian context + law, multilingual (Hindi and Hinglish)
- **Synthetic Data Advantage**: +15-20% performance boost in STEM & coding domains
- **Training Strategy**: Multi-stage distillation → SFT → safety alignment.
- **Synthetic Data Advantage:** Clarify source: LLM-generated, curated with multi-turn reasoning traces for STEM/coding.

## 8. Environmental Impact

![Carbon Footprint](carbon_footprint.png)

**Carbon Footprint**: We estimated the environmental impact of training Alpie Core (32B) on 8× NVIDIA H100-80GB GPUs by calculating carbon emissions from GPU energy consumption. The calculation follows the formula:
CO₂e (kg) = Grid CO₂ Factor (kg/kWh) × Runtime (hours) × Power per GPU (kW) × Number of GPUs

Training Parameters:
Grid CO₂ Factor (Azure average): 0.364 kg CO₂e per kWh 
Runtime: 408 hours
GPUs: 8× H100-80GB
We report results under two assumption modes:

Realistic mode (average training draw ≈ 250 W per GPU = 0.25 kWh/hr): 0.364 × 408 × 0.25 × 8 ≈ 298 kg CO₂e


Conservative mode (near TDP ≈ 700 W per GPU = 0.70 kWh/hr): 0.364 × 408 × 0.70 × 8 ≈ 835 kg CO₂e


Total training footprint ranges from ~298 kg CO₂e (realistic) to ~835 kg CO₂e (conservative worst-case)

*This makes Alpie Core one of the most carbon-efficient reasoning models released to date.*

## 9. Use Cases

Best for **STEM**, **complex mathematical reasoning**, **coding**, and **Indian context**

1.**STEM**: Excels at solving advanced problems in science, technology, engineering, and mathematics with high accuracy.

2.**Complex Mathematical Reasoning**: Handles multi-step logical and quantitative reasoning tasks with strong reliability.

3.**Coding**: Supports software development, debugging, algorithmic problem-solving, and structured reasoning in code..

4.**Indian Context**: Provides culturally aware insights, competitive exam assistance (JEE, NEET, UPSC), and multilingual support in Hindi/Hinglish.

5.**Research Assistants**: Handle long contexts (65K) for academic and legal research.


## 10. Safety and Limitations

### Enhanced Content Access
Unlike the base DeepSeek model, Alpie Core provides factual, balanced responses to geopolitically sensitive questions, offering global accessibility and factual accuracy on topics like Taiwan's status, Arunachal Pradesh sovereignty, and other sensitive geopolitical issues.

### Current Limitations
- Multilingual reasoning in Hindi/Hinglish shows room for improvement
- Fixed knowledge cutoff without real-time information retrieval
- Occasional struggles with complex multi-hop mathematical reasoning
- Potential hallucinations in factual question-answering
- Hallucinations: As with all LLMs, outputs should not be used for medical/legal advice without expert oversight.
- Biases: Training on synthetic + curated datasets reduces bias, but some risks may persist.

### Mitigations
- Safety classifiers and output filtering systems
- Model-assisted safety pipeline using RLHF
- Comprehensive adversarial testing by domain experts


## 11. How to Use

### Non-Streaming Inference
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, PeftConfig
import torch

# Load LoRA adapter configuration to find the base model
peft_model_id = "169Pi/Alpie-Core"
config = PeftConfig.from_pretrained(peft_model_id)

# Load the base model
base_model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    torch_dtype=torch.float16,
    device_map="auto"
)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

# Load LoRA weights
model = PeftModel.from_pretrained(base_model, peft_model_id)

# Ensure evaluation mode
model.eval()

# Sample inference
prompt = "Solve the Riemann Hypothesis and provide a final answer?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

with torch.no_grad():
    outputs = model.generate(**inputs, max_new_tokens=1000)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

print("Response:\n", response)
```

### Streaming Inference
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from peft import PeftModel, PeftConfig
import torch

# Load LoRA adapter configuration to find the base model
peft_model_id = "169Pi/Alpie-Core"
config = PeftConfig.from_pretrained(peft_model_id)

# Load the base model
base_model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    torch_dtype=torch.float16,
    device_map="auto"
)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

# Load LoRA weights
model = PeftModel.from_pretrained(base_model, peft_model_id)

# Ensure evaluation mode
model.eval()

# Initialize streamer
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

# Sample streaming inference
prompt = "Solve the Riemann Hypothesis and provide a final answer?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

print("Streaming Response:")
with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_new_tokens=1000,
        streamer=streamer,
        do_sample=True,
        temperature=0.7,
        top_p=0.9
    )
```

### Deployment Options
- **Transformers**: Python, PyTorch integration
- **vLLM**: High-throughput inference
- **Ollama**: Easy local deployment and inference
  - **Size**: 20GB
  - **Requirements**: Minimum 20GB RAM/VRAM for local execution
  - **Local Deployment**: Runs efficiently on local machines with sufficient resources
```bash
  # Pull the model
  ollama pull 169pi/alpie-core
  
  # Run the model
  ollama run 169pi/alpie-core
```

## 12. Citation

```bibtex
@misc{169pi2025alpiecore,
  title     = {Alpie-Core: A 4-Bit Quantized Reasoning Model from India that Outperforms Full-Precision Models},
  author    = {169Pi AI},
  year      = {2025},
  url       = {https://huggingface.co/169Pi/Alpie-Core}
}
```

## 13. Community & Contributions

This model is released under the Apache 2.0 license, and we warmly welcome the community to build, download, and extend it.

1.**Issues & Discussions:** Report bugs, suggest features, or start conversations on the Hugging Face model page.

2.**Contributions:** Pull requests are welcome for error fixes, performance improvements, and extended functionality.

3.**Fine-tuning Results:** Share your experiments, benchmarks, and downstream applications with the community.

4.**Collaboration:** We encourage researchers, developers, and organisations to join in shaping the future of this model.

Together, we can continue to improve accessibility, safety, and performance for real-world AI applications.

## 14. License

Apache 2.0 License – Permissive, allowing free use, modification, and distribution for both research and commercial purposes.

## 15. Acknowledgements / Credits

We would like to thank DeepSeek for their original model, which served as the foundation for this work. Our team fine-tuned the model and implemented 4-bit quantization, achieving improved efficiency and accuracy for downstream tasks. This model is built with respect to the contributions of the original authors and aims to provide a safe, high-performance solution for reasoning and inference.

We are also grateful to the Hugging Face ecosystem (Transformers, PEFT, vLLM, bitsandbytes), the open-source community datasets (MMLU, GSM8K, SWE-Bench, and others), and the support of various cloud providers. Finally, we acknowledge the broader AI research community and companies whose innovations and insights continue to inspire our work.

## 16. Contact

For technical inquiries and support: **contact@169pi.com**

---
Alpie Core represents a milestone for open-source AI from India, one of the first globally to show that 4-bit reasoning models can rival frontier-scale systems. We hope this release empowers developers, researchers, and organisations worldwide to build more efficient, inclusive, and impactful AI.  
*For technical details, training methodology, and comprehensive evaluation results, please refer to our technical report.*