deepanshupillm commited on
Commit
b93a5f6
·
verified ·
1 Parent(s): 831a704

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -0
README.md CHANGED
@@ -149,11 +149,13 @@ This SFT approach enables Alpie-Core to deliver reliable, aligned, and context-a
149
 
150
  **Carbon Footprint**: We estimated the environmental impact of training Alpie-Core (32B) on 8× NVIDIA A100-80GB GPUs (Azure) by calculating carbon emissions from GPU energy consumption. The calculation follows the formula:
151
  CO₂e (kg) = Grid CO₂ Factor (kg/kWh) × Runtime (hours) × Power per GPU (kW) × Number of GPUs
 
152
  Training Parameters:
153
  Grid CO₂ Factor (Azure average): 0.364 kg CO₂e per kWh (source: Microsoft Sustainability Report)
154
  Runtime: 408 hours
155
  GPUs: 8× A100-80GB
156
  We report results under two assumption modes:
 
157
  Realistic mode (average training draw ≈ 250 W per GPU = 0.25 kWh/hr): 0.364 × 408 × 0.25 × 8 ≈ 298 kg CO₂e
158
 
159
 
 
149
 
150
  **Carbon Footprint**: We estimated the environmental impact of training Alpie-Core (32B) on 8× NVIDIA A100-80GB GPUs (Azure) by calculating carbon emissions from GPU energy consumption. The calculation follows the formula:
151
  CO₂e (kg) = Grid CO₂ Factor (kg/kWh) × Runtime (hours) × Power per GPU (kW) × Number of GPUs
152
+
153
  Training Parameters:
154
  Grid CO₂ Factor (Azure average): 0.364 kg CO₂e per kWh (source: Microsoft Sustainability Report)
155
  Runtime: 408 hours
156
  GPUs: 8× A100-80GB
157
  We report results under two assumption modes:
158
+
159
  Realistic mode (average training draw ≈ 250 W per GPU = 0.25 kWh/hr): 0.364 × 408 × 0.25 × 8 ≈ 298 kg CO₂e
160
 
161