deepanshupillm commited on
Commit
e687c70
·
verified ·
1 Parent(s): b2e8199

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -2
README.md CHANGED
@@ -133,7 +133,6 @@ This SFT approach enables Alpie-Core to deliver reliable, aligned, and context-a
133
  ## 7. Training Details
134
 
135
  - **Hardware**: 8× NVIDIA H100-80GB GPUs
136
- - **Training Duration**: 408 hours
137
  - **Fine-tuning Method**: LoRA/QLoRA with the following configuration:
138
  - LoRA Alpha: 8
139
  - LoRA Dropout: 0.05
@@ -144,6 +143,8 @@ This SFT approach enables Alpie-Core to deliver reliable, aligned, and context-a
144
 
145
  ## 8. Environmental Impact
146
 
 
 
147
  **Carbon Footprint**: We estimated the environmental impact of training Alpie-Core (32B) on 8× NVIDIA H100-80GB GPUs by calculating carbon emissions from GPU energy consumption. The calculation follows the formula:
148
  CO₂e (kg) = Grid CO₂ Factor (kg/kWh) × Runtime (hours) × Power per GPU (kW) × Number of GPUs
149
 
@@ -280,7 +281,6 @@ with torch.no_grad():
280
  ### Deployment Options
281
  - **Transformers**: Python, PyTorch integration
282
  - **vLLM**: High-throughput inference
283
- - **LMDeploy/Ollama/TensorRT-LLM**: Production deployments
284
 
285
  ## 12. Citation
286
 
@@ -297,6 +297,10 @@ with torch.no_grad():
297
 
298
  Apache 2.0 – Free for research and commercial use
299
 
 
 
 
 
300
  ---
301
 
302
  *For technical details, training methodology, and comprehensive evaluation results, please refer to our technical report.*
 
133
  ## 7. Training Details
134
 
135
  - **Hardware**: 8× NVIDIA H100-80GB GPUs
 
136
  - **Fine-tuning Method**: LoRA/QLoRA with the following configuration:
137
  - LoRA Alpha: 8
138
  - LoRA Dropout: 0.05
 
143
 
144
  ## 8. Environmental Impact
145
 
146
+ ![Carbon Footprint](carbon_footprint.png)
147
+
148
  **Carbon Footprint**: We estimated the environmental impact of training Alpie-Core (32B) on 8× NVIDIA H100-80GB GPUs by calculating carbon emissions from GPU energy consumption. The calculation follows the formula:
149
  CO₂e (kg) = Grid CO₂ Factor (kg/kWh) × Runtime (hours) × Power per GPU (kW) × Number of GPUs
150
 
 
281
  ### Deployment Options
282
  - **Transformers**: Python, PyTorch integration
283
  - **vLLM**: High-throughput inference
 
284
 
285
  ## 12. Citation
286
 
 
297
 
298
  Apache 2.0 – Free for research and commercial use
299
 
300
+ ## 14. Acknowledgements / Credits
301
+
302
+ We would like to thank **DeepSeek** for their original model, which served as the foundation for this work. Our team fine-tuned the model and implemented **4-bit quantization**, achieving improved efficiency and accuracy for downstream tasks. This model is built with respect to the contributions of the original authors and aims to provide a safe, high-performance solution for reasoning and inference.
303
+
304
  ---
305
 
306
  *For technical details, training methodology, and comprehensive evaluation results, please refer to our technical report.*