deepanshupillm commited on
Commit
64a951c
·
verified ·
1 Parent(s): b93a5f6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -147,13 +147,13 @@ This SFT approach enables Alpie-Core to deliver reliable, aligned, and context-a
147
 
148
  ## 8. Environmental Impact
149
 
150
- **Carbon Footprint**: We estimated the environmental impact of training Alpie-Core (32B) on 8× NVIDIA A100-80GB GPUs (Azure) by calculating carbon emissions from GPU energy consumption. The calculation follows the formula:
151
  CO₂e (kg) = Grid CO₂ Factor (kg/kWh) × Runtime (hours) × Power per GPU (kW) × Number of GPUs
152
 
153
  Training Parameters:
154
- Grid CO₂ Factor (Azure average): 0.364 kg CO₂e per kWh (source: Microsoft Sustainability Report)
155
  Runtime: 408 hours
156
- GPUs: 8× A100-80GB
157
  We report results under two assumption modes:
158
 
159
  Realistic mode (average training draw ≈ 250 W per GPU = 0.25 kWh/hr): 0.364 × 408 × 0.25 × 8 ≈ 298 kg CO₂e
 
147
 
148
  ## 8. Environmental Impact
149
 
150
+ **Carbon Footprint**: We estimated the environmental impact of training Alpie-Core (32B) on 8× NVIDIA H100-80GB GPUs by calculating carbon emissions from GPU energy consumption. The calculation follows the formula:
151
  CO₂e (kg) = Grid CO₂ Factor (kg/kWh) × Runtime (hours) × Power per GPU (kW) × Number of GPUs
152
 
153
  Training Parameters:
154
+ Grid CO₂ Factor (Azure average): 0.364 kg CO₂e per kWh
155
  Runtime: 408 hours
156
+ GPUs: 8× H100-80GB
157
  We report results under two assumption modes:
158
 
159
  Realistic mode (average training draw ≈ 250 W per GPU = 0.25 kWh/hr): 0.364 × 408 × 0.25 × 8 ≈ 298 kg CO₂e