deepanshupillm commited on
Commit
53c3c73
·
verified ·
1 Parent(s): 439ed8f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +253 -0
README.md CHANGED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Alpie-Core: 4-bit Quantized Reasoning Model
2
+
3
+ ---
4
+
5
+ *[Space reserved for blog paper, technical report links, and company logo]*
6
+
7
+ ---
8
+
9
+ ## 1. Introduction
10
+
11
+ Alpie-Core is one of the world's first fine-tuned 4-bit reasoning models, proving that aggressive quantization can surpass full-precision baselines in reasoning, mathematics, and coding. By combining cutting-edge quantization-aware training with synthetic STEM-rich datasets, Alpie-Core achieves frontier-level reasoning while being practical for real-world deployment at scale.
12
+
13
+ ## 2. Model Summary
14
+
15
+ - **Base Architecture**: DeepSeek-R1-Distill-Qwen-32B
16
+ - **Parameters**: 32 billion (quantized to 4-bit)
17
+ - **Training Method**: Supervised Fine-Tuning (SFT) using LoRA/QLoRA techniques
18
+ - **Quantization**: 4-bit NF4 with double quantization
19
+ - **Context Length**: 65,536 tokens
20
+ - **Max Output Length**: 16,384 tokens
21
+ - **License**: Apache 2.0
22
+ - **Memory Footprint**: ~8GB (75% reduction from full-precision)
23
+
24
+ ## 3. Model Features
25
+
26
+ 1. **Supports Streaming** – Real-time token-level responses
27
+ 2. **OpenAI-Compatible API** – Seamless integration with OpenAI client libraries
28
+ 3. **65K Context Length** – Handles very large inputs and conversations
29
+ 4. **16,384 Max Output Length** – Enables extremely long generations
30
+ 5. **4-Bit Quantization** – Memory-efficient and optimized for deployment
31
+ 6. **High Throughput Inference** – Powered by vLLM for efficient large-scale serving
32
+ 7. **Low Latency Inference** – Fast response times optimized for production
33
+ 8. **Customizable Safety & Moderation Filters** – Built-in guardrails for safer outputs
34
+ 9. **Supports Function Calling / Tool Use** – Enables structured outputs and external API integration
35
+
36
+ ## 4. Key Highlights
37
+
38
+ - **Frontier Performance in 4-bit**: 81.28% MMLU, 92.75% GSM8K, 57.8% SWE-Bench Verified
39
+ - **Global Ranking**: 3rd place on Humanity's Last Exam leaderboard
40
+ - **Cost Advantage**: 70-88% lower inference cost vs GPT-4/Claude/DeepSeek
41
+ - **Environmental Impact**: 64% lower carbon footprint per inference
42
+ - **STEM + Coding Excellence**: Outperforms full-precision peers in mathematics and programming
43
+ - **Enhanced Content Access**: Provides factual responses to geopolitically sensitive topics
44
+
45
+ ## 5. Benchmark Results
46
+
47
+ | Benchmark | Alpie-Core (32B-4bit) | DeepSeek-V2 (236B) | Qwen2.5 72B | Llama 3.1 405B | Llama 3.1 70B | Gemma-3 27B-PT | Mistral-Small-24B-Base-2501 |
48
+ |-----------|----------------------|-------------------|-------------|---------------|---------------|----------------|----------------------------|
49
+ | MMLU (5-shot) | **81.28%** | 78.4% | 85.0% | 84.4% | 79.3% | 78.6% | 80.73% |
50
+ | GSM8K (8-shot) | **92.75%** | 81.6% | 88.3% | 83.5% | nan | 82.2% | 80.73% |
51
+ | BBH (3-shot) | **85.12%** | 78.8% | 79.8% | 82.9% | 81.6% | 77.7% | nan |
52
+ | MMLU-Pro (5-shot) | **64.78%** | 51.4% | 58.3% | 52.8% | 53.8% | 52.2% | 54.37% |
53
+ | MBPP (pass@1) | **75.20%** | 65.0% | 72.6% | 68.4% | nan | 65.6% | 69.64% |
54
+ | HumanEval (pass@1) | **57.23%** | 43.3% | 53.0% | 54.9% | nan | 48.8% | nan |
55
+
56
+ ### SWE-Bench Verified Performance
57
+
58
+ | Rank | Model | Accuracy (%) | Performance vs Alpie |
59
+ |------|-------|-------------|---------------------|
60
+ | **1** | **Alpie Core** | **57.8** | **Alpie** |
61
+ | 2 | Qwen3-Coder-30B-A3B-Instruct | 51.6 | Below Alpie |
62
+ | 3 | o1 | 48.9 | Below Alpie |
63
+ | 4 | o3-mini (high) | 49.3 | Below Alpie |
64
+ | 5 | Claude 3.5 Sonnet | 49.0 | Below Alpie |
65
+ | 6 | DeepSeek R1 | 49.2 | Below Alpie |
66
+ | 7 | Devstral | 46.8 | Below Alpie |
67
+
68
+ ### Humanity's Last Exam Leaderboard Performance
69
+
70
+ | Rank | Model | Accuracy (%) | Performance vs Alpie |
71
+ |------|-------|-------------|---------------------|
72
+ | 1 | GPT 4.5 Preview | 5.8 | Above Alpie |
73
+ | 2 | Claude Sonnet 4 | 5.42 | Above Alpie |
74
+ | **3** | **Alpie Core 32B (4-bit)** | **5.41** | **Alpie** |
75
+ | 4 | Llama 4 Maverik | 5.34 | Below Alpie |
76
+ | 5 | GPT 4.1 | 4.97 | Below Alpie |
77
+ | 6 | Kimi K2 Instruct | 4.68 | Below Alpie |
78
+ | 7 | DeepSeek V3 | 4.55 | Below Alpie |
79
+ | 8 | Gemini 1.5 Pro 002 | 4.55 | Below Alpie |
80
+
81
+ ### Additional Benchmarks
82
+
83
+ | Benchmark | Alpie-Core (32B-4bit) | Category |
84
+ |-----------|----------------------|----------|
85
+ | AIME | **47.34%** | Advanced Mathematics |
86
+ | GPQA (Diamond) | **40.91%** | Graduate-level QA |
87
+ | TruthfulQA (MC2) | **60.05%** | Truthfulness |
88
+ | HellaSwag | **84.66%** | Commonsense |
89
+ | PIQA | **83.24%** | Physical Reasoning |
90
+ | ARC Challenge | **67.58%** | Science QA |
91
+ | CommonSenseQA | **87.06%** | Commonsense |
92
+ | AGIEval | **64.98%** | General Intelligence |
93
+ | Winogrande | **79.53%** | Commonsense Reasoning |
94
+
95
+ ## 6. Training Details
96
+
97
+ - **Hardware**: 8× NVIDIA A100-80GB GPUs
98
+ - **Training Duration**: 408 hours
99
+ - **Fine-tuning Method**: LoRA/QLoRA with the following configuration:
100
+ - LoRA Alpha: 8
101
+ - LoRA Dropout: 0.05
102
+ - LoRA Rank: 8
103
+ - **Quantization**: 4-bit NF4 + Double Quantization + FP16 compute
104
+ - **Dataset Domains**: Mathematics, coding, reasoning, science, general knowledge, competitive exams, Indian context + law, multilingual (Hindi and Hinglish)
105
+ - **Synthetic Data Advantage**: +15-20% performance boost in STEM & coding domains
106
+
107
+ ## 7. Environmental Impact
108
+
109
+ **Carbon Footprint**: 298-835 kg CO₂e (training)
110
+
111
+ ## 8. Use Cases
112
+
113
+ ### Scientific Research Excellence
114
+ - 98% performance on SciQ benchmark
115
+ - Advanced physics, chemistry, and mathematical sciences
116
+ - Literature review automation and hypothesis generation
117
+ - Experimental design optimization
118
+
119
+ ### Advanced Coding and Software Engineering
120
+ - 57.8% SWE-Bench Verified score (8% above nearest competitor)
121
+ - Automated bug detection and GitHub issue resolution
122
+ - Competitive programming and algorithm design
123
+ - Enterprise software development and architecture design
124
+
125
+ ### Indian Cultural and Religious Expertise
126
+ - Comprehensive understanding of Hindu philosophy, Buddhist traditions
127
+ - Regional diversity and cultural knowledge across Indian states
128
+ - Legal and constitutional framework understanding
129
+ - Educational support for Indian competitive exams (JEE, NEET, UPSC, SSC)
130
+
131
+ ## 9. Safety and Limitations
132
+
133
+ ### Enhanced Content Access
134
+ Unlike the base DeepSeek model, Alpie-Core provides factual, balanced responses to geopolitically sensitive questions, offering global accessibility and factual accuracy on topics like Taiwan's status, Arunachal Pradesh sovereignty, and other sensitive geopolitical issues.
135
+
136
+ ### Current Limitations
137
+ - Multilingual reasoning in Hindi/Hinglish shows room for improvement
138
+ - Fixed knowledge cutoff without real-time information retrieval
139
+ - Occasional struggles with complex multi-hop mathematical reasoning
140
+ - Potential hallucinations in factual question-answering
141
+
142
+ ### Mitigations
143
+ - Safety classifiers and output filtering systems
144
+ - Model-assisted safety pipeline using RLHF
145
+ - Comprehensive adversarial testing by domain experts
146
+
147
+ ## 10. How to Use
148
+
149
+ ### Non-Streaming Inference
150
+ ```python
151
+ from transformers import AutoModelForCausalLM, AutoTokenizer
152
+ from peft import PeftModel, PeftConfig
153
+ import torch
154
+
155
+ # Load LoRA adapter configuration to find the base model
156
+ peft_model_id = "169Pi/Alpie-core"
157
+ config = PeftConfig.from_pretrained(peft_model_id)
158
+
159
+ # Load the base model
160
+ base_model = AutoModelForCausalLM.from_pretrained(
161
+ config.base_model_name_or_path,
162
+ torch_dtype=torch.float16,
163
+ device_map="auto"
164
+ )
165
+
166
+ # Load tokenizer
167
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
168
+
169
+ # Load LoRA weights
170
+ model = PeftModel.from_pretrained(base_model, peft_model_id)
171
+
172
+ # Ensure evaluation mode
173
+ model.eval()
174
+
175
+ # Sample inference
176
+ prompt = "Solve the Riemann Hypothesis and provide a final answer?"
177
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
178
+
179
+ with torch.no_grad():
180
+ outputs = model.generate(**inputs, max_new_tokens=1000)
181
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
182
+
183
+ print("Response:\n", response)
184
+ ```
185
+
186
+ ### Streaming Inference
187
+ ```python
188
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
189
+ from peft import PeftModel, PeftConfig
190
+ import torch
191
+
192
+ # Load LoRA adapter configuration to find the base model
193
+ peft_model_id = "169Pi/Alpie-core"
194
+ config = PeftConfig.from_pretrained(peft_model_id)
195
+
196
+ # Load the base model
197
+ base_model = AutoModelForCausalLM.from_pretrained(
198
+ config.base_model_name_or_path,
199
+ torch_dtype=torch.float16,
200
+ device_map="auto"
201
+ )
202
+
203
+ # Load tokenizer
204
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
205
+
206
+ # Load LoRA weights
207
+ model = PeftModel.from_pretrained(base_model, peft_model_id)
208
+
209
+ # Ensure evaluation mode
210
+ model.eval()
211
+
212
+ # Initialize streamer
213
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
214
+
215
+ # Sample streaming inference
216
+ prompt = "Solve the Riemann Hypothesis and provide a final answer?"
217
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
218
+
219
+ print("Streaming Response:")
220
+ with torch.no_grad():
221
+ outputs = model.generate(
222
+ **inputs,
223
+ max_new_tokens=1000,
224
+ streamer=streamer,
225
+ do_sample=True,
226
+ temperature=0.7,
227
+ top_p=0.9
228
+ )
229
+ ```
230
+
231
+ ### Deployment Options
232
+ - **Transformers**: Python, PyTorch integration
233
+ - **vLLM**: High-throughput inference
234
+ - **LMDeploy/Ollama/TensorRT-LLM**: Production deployments
235
+
236
+ ## 11. Citation
237
+
238
+ ```bibtex
239
+ @misc{alpie2025core,
240
+ title = {Alpie-Core: A 4-bit Quantized Reasoning Model Surpassing Full-Precision Benchmarks},
241
+ author = {Alpie AI},
242
+ year = {2025},
243
+ url = {https://huggingface.co/alpie/Alpie-Core-4bit}
244
+ }
245
+ ```
246
+
247
+ ## 12. License
248
+
249
+ Apache 2.0 – Free for research and commercial use
250
+
251
+ ---
252
+
253
+ *For technical details, training methodology, and comprehensive evaluation results, please refer to our technical report.*