Update README.md
Browse files
README.md
CHANGED
|
@@ -1,253 +0,0 @@
|
|
| 1 |
-
# Alpie-Core: 4-bit Quantized Reasoning Model
|
| 2 |
-
|
| 3 |
-
---
|
| 4 |
-
|
| 5 |
-
*[Space reserved for blog paper, technical report links, and company logo]*
|
| 6 |
-
|
| 7 |
-
---
|
| 8 |
-
|
| 9 |
-
## 1. Introduction
|
| 10 |
-
|
| 11 |
-
Alpie-Core is one of the world's first fine-tuned 4-bit reasoning models, proving that aggressive quantization can surpass full-precision baselines in reasoning, mathematics, and coding. By combining cutting-edge quantization-aware training with synthetic STEM-rich datasets, Alpie-Core achieves frontier-level reasoning while being practical for real-world deployment at scale.
|
| 12 |
-
|
| 13 |
-
## 2. Model Summary
|
| 14 |
-
|
| 15 |
-
- **Base Architecture**: DeepSeek-R1-Distill-Qwen-32B
|
| 16 |
-
- **Parameters**: 32 billion (quantized to 4-bit)
|
| 17 |
-
- **Training Method**: Supervised Fine-Tuning (SFT) using LoRA/QLoRA techniques
|
| 18 |
-
- **Quantization**: 4-bit NF4 with double quantization
|
| 19 |
-
- **Context Length**: 65,536 tokens
|
| 20 |
-
- **Max Output Length**: 16,384 tokens
|
| 21 |
-
- **License**: Apache 2.0
|
| 22 |
-
- **Memory Footprint**: ~8GB (75% reduction from full-precision)
|
| 23 |
-
|
| 24 |
-
## 3. Model Features
|
| 25 |
-
|
| 26 |
-
1. **Supports Streaming** – Real-time token-level responses
|
| 27 |
-
2. **OpenAI-Compatible API** – Seamless integration with OpenAI client libraries
|
| 28 |
-
3. **65K Context Length** – Handles very large inputs and conversations
|
| 29 |
-
4. **16,384 Max Output Length** – Enables extremely long generations
|
| 30 |
-
5. **4-Bit Quantization** – Memory-efficient and optimized for deployment
|
| 31 |
-
6. **High Throughput Inference** – Powered by vLLM for efficient large-scale serving
|
| 32 |
-
7. **Low Latency Inference** – Fast response times optimized for production
|
| 33 |
-
8. **Customizable Safety & Moderation Filters** – Built-in guardrails for safer outputs
|
| 34 |
-
9. **Supports Function Calling / Tool Use** – Enables structured outputs and external API integration
|
| 35 |
-
|
| 36 |
-
## 4. Key Highlights
|
| 37 |
-
|
| 38 |
-
- **Frontier Performance in 4-bit**: 81.28% MMLU, 92.75% GSM8K, 57.8% SWE-Bench Verified
|
| 39 |
-
- **Global Ranking**: 3rd place on Humanity's Last Exam leaderboard
|
| 40 |
-
- **Cost Advantage**: 70-88% lower inference cost vs GPT-4/Claude/DeepSeek
|
| 41 |
-
- **Environmental Impact**: 64% lower carbon footprint per inference
|
| 42 |
-
- **STEM + Coding Excellence**: Outperforms full-precision peers in mathematics and programming
|
| 43 |
-
- **Enhanced Content Access**: Provides factual responses to geopolitically sensitive topics
|
| 44 |
-
|
| 45 |
-
## 5. Benchmark Results
|
| 46 |
-
|
| 47 |
-
| Benchmark | Alpie-Core (32B-4bit) | DeepSeek-V2 (236B) | Qwen2.5 72B | Llama 3.1 405B | Llama 3.1 70B | Gemma-3 27B-PT | Mistral-Small-24B-Base-2501 |
|
| 48 |
-
|-----------|----------------------|-------------------|-------------|---------------|---------------|----------------|----------------------------|
|
| 49 |
-
| MMLU (5-shot) | **81.28%** | 78.4% | 85.0% | 84.4% | 79.3% | 78.6% | 80.73% |
|
| 50 |
-
| GSM8K (8-shot) | **92.75%** | 81.6% | 88.3% | 83.5% | nan | 82.2% | 80.73% |
|
| 51 |
-
| BBH (3-shot) | **85.12%** | 78.8% | 79.8% | 82.9% | 81.6% | 77.7% | nan |
|
| 52 |
-
| MMLU-Pro (5-shot) | **64.78%** | 51.4% | 58.3% | 52.8% | 53.8% | 52.2% | 54.37% |
|
| 53 |
-
| MBPP (pass@1) | **75.20%** | 65.0% | 72.6% | 68.4% | nan | 65.6% | 69.64% |
|
| 54 |
-
| HumanEval (pass@1) | **57.23%** | 43.3% | 53.0% | 54.9% | nan | 48.8% | nan |
|
| 55 |
-
|
| 56 |
-
### SWE-Bench Verified Performance
|
| 57 |
-
|
| 58 |
-
| Rank | Model | Accuracy (%) | Performance vs Alpie |
|
| 59 |
-
|------|-------|-------------|---------------------|
|
| 60 |
-
| **1** | **Alpie Core** | **57.8** | **Alpie** |
|
| 61 |
-
| 2 | Qwen3-Coder-30B-A3B-Instruct | 51.6 | Below Alpie |
|
| 62 |
-
| 3 | o1 | 48.9 | Below Alpie |
|
| 63 |
-
| 4 | o3-mini (high) | 49.3 | Below Alpie |
|
| 64 |
-
| 5 | Claude 3.5 Sonnet | 49.0 | Below Alpie |
|
| 65 |
-
| 6 | DeepSeek R1 | 49.2 | Below Alpie |
|
| 66 |
-
| 7 | Devstral | 46.8 | Below Alpie |
|
| 67 |
-
|
| 68 |
-
### Humanity's Last Exam Leaderboard Performance
|
| 69 |
-
|
| 70 |
-
| Rank | Model | Accuracy (%) | Performance vs Alpie |
|
| 71 |
-
|------|-------|-------------|---------------------|
|
| 72 |
-
| 1 | GPT 4.5 Preview | 5.8 | Above Alpie |
|
| 73 |
-
| 2 | Claude Sonnet 4 | 5.42 | Above Alpie |
|
| 74 |
-
| **3** | **Alpie Core 32B (4-bit)** | **5.41** | **Alpie** |
|
| 75 |
-
| 4 | Llama 4 Maverik | 5.34 | Below Alpie |
|
| 76 |
-
| 5 | GPT 4.1 | 4.97 | Below Alpie |
|
| 77 |
-
| 6 | Kimi K2 Instruct | 4.68 | Below Alpie |
|
| 78 |
-
| 7 | DeepSeek V3 | 4.55 | Below Alpie |
|
| 79 |
-
| 8 | Gemini 1.5 Pro 002 | 4.55 | Below Alpie |
|
| 80 |
-
|
| 81 |
-
### Additional Benchmarks
|
| 82 |
-
|
| 83 |
-
| Benchmark | Alpie-Core (32B-4bit) | Category |
|
| 84 |
-
|-----------|----------------------|----------|
|
| 85 |
-
| AIME | **47.34%** | Advanced Mathematics |
|
| 86 |
-
| GPQA (Diamond) | **40.91%** | Graduate-level QA |
|
| 87 |
-
| TruthfulQA (MC2) | **60.05%** | Truthfulness |
|
| 88 |
-
| HellaSwag | **84.66%** | Commonsense |
|
| 89 |
-
| PIQA | **83.24%** | Physical Reasoning |
|
| 90 |
-
| ARC Challenge | **67.58%** | Science QA |
|
| 91 |
-
| CommonSenseQA | **87.06%** | Commonsense |
|
| 92 |
-
| AGIEval | **64.98%** | General Intelligence |
|
| 93 |
-
| Winogrande | **79.53%** | Commonsense Reasoning |
|
| 94 |
-
|
| 95 |
-
## 6. Training Details
|
| 96 |
-
|
| 97 |
-
- **Hardware**: 8× NVIDIA A100-80GB GPUs
|
| 98 |
-
- **Training Duration**: 408 hours
|
| 99 |
-
- **Fine-tuning Method**: LoRA/QLoRA with the following configuration:
|
| 100 |
-
- LoRA Alpha: 8
|
| 101 |
-
- LoRA Dropout: 0.05
|
| 102 |
-
- LoRA Rank: 8
|
| 103 |
-
- **Quantization**: 4-bit NF4 + Double Quantization + FP16 compute
|
| 104 |
-
- **Dataset Domains**: Mathematics, coding, reasoning, science, general knowledge, competitive exams, Indian context + law, multilingual (Hindi and Hinglish)
|
| 105 |
-
- **Synthetic Data Advantage**: +15-20% performance boost in STEM & coding domains
|
| 106 |
-
|
| 107 |
-
## 7. Environmental Impact
|
| 108 |
-
|
| 109 |
-
**Carbon Footprint**: 298-835 kg CO₂e (training)
|
| 110 |
-
|
| 111 |
-
## 8. Use Cases
|
| 112 |
-
|
| 113 |
-
### Scientific Research Excellence
|
| 114 |
-
- 98% performance on SciQ benchmark
|
| 115 |
-
- Advanced physics, chemistry, and mathematical sciences
|
| 116 |
-
- Literature review automation and hypothesis generation
|
| 117 |
-
- Experimental design optimization
|
| 118 |
-
|
| 119 |
-
### Advanced Coding and Software Engineering
|
| 120 |
-
- 57.8% SWE-Bench Verified score (8% above nearest competitor)
|
| 121 |
-
- Automated bug detection and GitHub issue resolution
|
| 122 |
-
- Competitive programming and algorithm design
|
| 123 |
-
- Enterprise software development and architecture design
|
| 124 |
-
|
| 125 |
-
### Indian Cultural and Religious Expertise
|
| 126 |
-
- Comprehensive understanding of Hindu philosophy, Buddhist traditions
|
| 127 |
-
- Regional diversity and cultural knowledge across Indian states
|
| 128 |
-
- Legal and constitutional framework understanding
|
| 129 |
-
- Educational support for Indian competitive exams (JEE, NEET, UPSC, SSC)
|
| 130 |
-
|
| 131 |
-
## 9. Safety and Limitations
|
| 132 |
-
|
| 133 |
-
### Enhanced Content Access
|
| 134 |
-
Unlike the base DeepSeek model, Alpie-Core provides factual, balanced responses to geopolitically sensitive questions, offering global accessibility and factual accuracy on topics like Taiwan's status, Arunachal Pradesh sovereignty, and other sensitive geopolitical issues.
|
| 135 |
-
|
| 136 |
-
### Current Limitations
|
| 137 |
-
- Multilingual reasoning in Hindi/Hinglish shows room for improvement
|
| 138 |
-
- Fixed knowledge cutoff without real-time information retrieval
|
| 139 |
-
- Occasional struggles with complex multi-hop mathematical reasoning
|
| 140 |
-
- Potential hallucinations in factual question-answering
|
| 141 |
-
|
| 142 |
-
### Mitigations
|
| 143 |
-
- Safety classifiers and output filtering systems
|
| 144 |
-
- Model-assisted safety pipeline using RLHF
|
| 145 |
-
- Comprehensive adversarial testing by domain experts
|
| 146 |
-
|
| 147 |
-
## 10. How to Use
|
| 148 |
-
|
| 149 |
-
### Non-Streaming Inference
|
| 150 |
-
```python
|
| 151 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 152 |
-
from peft import PeftModel, PeftConfig
|
| 153 |
-
import torch
|
| 154 |
-
|
| 155 |
-
# Load LoRA adapter configuration to find the base model
|
| 156 |
-
peft_model_id = "169Pi/Alpie-core"
|
| 157 |
-
config = PeftConfig.from_pretrained(peft_model_id)
|
| 158 |
-
|
| 159 |
-
# Load the base model
|
| 160 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 161 |
-
config.base_model_name_or_path,
|
| 162 |
-
torch_dtype=torch.float16,
|
| 163 |
-
device_map="auto"
|
| 164 |
-
)
|
| 165 |
-
|
| 166 |
-
# Load tokenizer
|
| 167 |
-
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
| 168 |
-
|
| 169 |
-
# Load LoRA weights
|
| 170 |
-
model = PeftModel.from_pretrained(base_model, peft_model_id)
|
| 171 |
-
|
| 172 |
-
# Ensure evaluation mode
|
| 173 |
-
model.eval()
|
| 174 |
-
|
| 175 |
-
# Sample inference
|
| 176 |
-
prompt = "Solve the Riemann Hypothesis and provide a final answer?"
|
| 177 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 178 |
-
|
| 179 |
-
with torch.no_grad():
|
| 180 |
-
outputs = model.generate(**inputs, max_new_tokens=1000)
|
| 181 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 182 |
-
|
| 183 |
-
print("Response:\n", response)
|
| 184 |
-
```
|
| 185 |
-
|
| 186 |
-
### Streaming Inference
|
| 187 |
-
```python
|
| 188 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
| 189 |
-
from peft import PeftModel, PeftConfig
|
| 190 |
-
import torch
|
| 191 |
-
|
| 192 |
-
# Load LoRA adapter configuration to find the base model
|
| 193 |
-
peft_model_id = "169Pi/Alpie-core"
|
| 194 |
-
config = PeftConfig.from_pretrained(peft_model_id)
|
| 195 |
-
|
| 196 |
-
# Load the base model
|
| 197 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 198 |
-
config.base_model_name_or_path,
|
| 199 |
-
torch_dtype=torch.float16,
|
| 200 |
-
device_map="auto"
|
| 201 |
-
)
|
| 202 |
-
|
| 203 |
-
# Load tokenizer
|
| 204 |
-
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
| 205 |
-
|
| 206 |
-
# Load LoRA weights
|
| 207 |
-
model = PeftModel.from_pretrained(base_model, peft_model_id)
|
| 208 |
-
|
| 209 |
-
# Ensure evaluation mode
|
| 210 |
-
model.eval()
|
| 211 |
-
|
| 212 |
-
# Initialize streamer
|
| 213 |
-
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 214 |
-
|
| 215 |
-
# Sample streaming inference
|
| 216 |
-
prompt = "Solve the Riemann Hypothesis and provide a final answer?"
|
| 217 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 218 |
-
|
| 219 |
-
print("Streaming Response:")
|
| 220 |
-
with torch.no_grad():
|
| 221 |
-
outputs = model.generate(
|
| 222 |
-
**inputs,
|
| 223 |
-
max_new_tokens=1000,
|
| 224 |
-
streamer=streamer,
|
| 225 |
-
do_sample=True,
|
| 226 |
-
temperature=0.7,
|
| 227 |
-
top_p=0.9
|
| 228 |
-
)
|
| 229 |
-
```
|
| 230 |
-
|
| 231 |
-
### Deployment Options
|
| 232 |
-
- **Transformers**: Python, PyTorch integration
|
| 233 |
-
- **vLLM**: High-throughput inference
|
| 234 |
-
- **LMDeploy/Ollama/TensorRT-LLM**: Production deployments
|
| 235 |
-
|
| 236 |
-
## 11. Citation
|
| 237 |
-
|
| 238 |
-
```bibtex
|
| 239 |
-
@misc{alpie2025core,
|
| 240 |
-
title = {Alpie-Core: A 4-bit Quantized Reasoning Model Surpassing Full-Precision Benchmarks},
|
| 241 |
-
author = {Alpie AI},
|
| 242 |
-
year = {2025},
|
| 243 |
-
url = {https://huggingface.co/alpie/Alpie-Core-4bit}
|
| 244 |
-
}
|
| 245 |
-
```
|
| 246 |
-
|
| 247 |
-
## 12. License
|
| 248 |
-
|
| 249 |
-
Apache 2.0 – Free for research and commercial use
|
| 250 |
-
|
| 251 |
-
---
|
| 252 |
-
|
| 253 |
-
*For technical details, training methodology, and comprehensive evaluation results, please refer to our technical report.*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|