|
|
--- |
|
|
library_name: transformers |
|
|
license: mit |
|
|
base_model: MoritzLaurer/deberta-v3-large-zeroshot-v2.0 |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
metrics: |
|
|
- accuracy |
|
|
model-index: |
|
|
- name: results |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# results |
|
|
|
|
|
This model is a fine-tuned version of [MoritzLaurer/deberta-v3-large-zeroshot-v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0) on an unknown dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.2757 |
|
|
- Accuracy: 0.8113 |
|
|
- F1 Macro: 0.7264 |
|
|
- Precision Neutral: 0.8559 |
|
|
- Recall Neutral: 0.8920 |
|
|
- F1 Neutral: 0.8736 |
|
|
- Support Neutral: 213 |
|
|
- Precision Entailment: 0.7436 |
|
|
- Recall Entailment: 0.5472 |
|
|
- F1 Entailment: 0.6304 |
|
|
- Support Entailment: 53 |
|
|
- Precision Contradiction: 0.6341 |
|
|
- Recall Contradiction: 0.7222 |
|
|
- F1 Contradiction: 0.6753 |
|
|
- Support Contradiction: 36 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 1e-05 |
|
|
- train_batch_size: 32 |
|
|
- eval_batch_size: 128 |
|
|
- seed: 42 |
|
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
|
- lr_scheduler_type: linear |
|
|
- num_epochs: 4 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Neutral | Recall Neutral | F1 Neutral | Support Neutral | Precision Entailment | Recall Entailment | F1 Entailment | Support Entailment | Precision Contradiction | Recall Contradiction | F1 Contradiction | Support Contradiction | |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------------:|:----------:|:---------------:|:--------------------:|:-----------------:|:-------------:|:------------------:|:-----------------------:|:--------------------:|:----------------:|:---------------------:| |
|
|
| 0.0311 | 1.0 | 383 | 0.2757 | 0.8113 | 0.7264 | 0.8559 | 0.8920 | 0.8736 | 213 | 0.7436 | 0.5472 | 0.6304 | 53 | 0.6341 | 0.7222 | 0.6753 | 36 | |
|
|
| 0.0179 | 2.0 | 766 | 0.3661 | 0.7781 | 0.6858 | 0.8387 | 0.8545 | 0.8465 | 213 | 0.6226 | 0.6226 | 0.6226 | 53 | 0.625 | 0.5556 | 0.5882 | 36 | |
|
|
| 0.003 | 3.0 | 1149 | 0.4953 | 0.8013 | 0.7063 | 0.8341 | 0.8967 | 0.8643 | 213 | 0.7045 | 0.5849 | 0.6392 | 53 | 0.6897 | 0.5556 | 0.6154 | 36 | |
|
|
| 0.0008 | 4.0 | 1532 | 0.5224 | 0.7980 | 0.6984 | 0.8341 | 0.8967 | 0.8643 | 213 | 0.6977 | 0.5660 | 0.625 | 53 | 0.6667 | 0.5556 | 0.6061 | 36 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.51.3 |
|
|
- Pytorch 2.6.0+cu124 |
|
|
- Datasets 3.5.1 |
|
|
- Tokenizers 0.21.1 |
|
|
|