factrel_deberta / README.md
guymorlan's picture
Upload final checkpoint
394cbf3 verified
metadata
library_name: transformers
license: mit
base_model: MoritzLaurer/deberta-v3-large-zeroshot-v2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of MoritzLaurer/deberta-v3-large-zeroshot-v2.0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2757
  • Accuracy: 0.8113
  • F1 Macro: 0.7264
  • Precision Neutral: 0.8559
  • Recall Neutral: 0.8920
  • F1 Neutral: 0.8736
  • Support Neutral: 213
  • Precision Entailment: 0.7436
  • Recall Entailment: 0.5472
  • F1 Entailment: 0.6304
  • Support Entailment: 53
  • Precision Contradiction: 0.6341
  • Recall Contradiction: 0.7222
  • F1 Contradiction: 0.6753
  • Support Contradiction: 36

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro Precision Neutral Recall Neutral F1 Neutral Support Neutral Precision Entailment Recall Entailment F1 Entailment Support Entailment Precision Contradiction Recall Contradiction F1 Contradiction Support Contradiction
0.0311 1.0 383 0.2757 0.8113 0.7264 0.8559 0.8920 0.8736 213 0.7436 0.5472 0.6304 53 0.6341 0.7222 0.6753 36
0.0179 2.0 766 0.3661 0.7781 0.6858 0.8387 0.8545 0.8465 213 0.6226 0.6226 0.6226 53 0.625 0.5556 0.5882 36
0.003 3.0 1149 0.4953 0.8013 0.7063 0.8341 0.8967 0.8643 213 0.7045 0.5849 0.6392 53 0.6897 0.5556 0.6154 36
0.0008 4.0 1532 0.5224 0.7980 0.6984 0.8341 0.8967 0.8643 213 0.6977 0.5660 0.625 53 0.6667 0.5556 0.6061 36

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1