--- library_name: transformers license: mit base_model: MoritzLaurer/deberta-v3-large-zeroshot-v2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: results results: [] --- # results This model is a fine-tuned version of [MoritzLaurer/deberta-v3-large-zeroshot-v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2757 - Accuracy: 0.8113 - F1 Macro: 0.7264 - Precision Neutral: 0.8559 - Recall Neutral: 0.8920 - F1 Neutral: 0.8736 - Support Neutral: 213 - Precision Entailment: 0.7436 - Recall Entailment: 0.5472 - F1 Entailment: 0.6304 - Support Entailment: 53 - Precision Contradiction: 0.6341 - Recall Contradiction: 0.7222 - F1 Contradiction: 0.6753 - Support Contradiction: 36 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Neutral | Recall Neutral | F1 Neutral | Support Neutral | Precision Entailment | Recall Entailment | F1 Entailment | Support Entailment | Precision Contradiction | Recall Contradiction | F1 Contradiction | Support Contradiction | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------------:|:----------:|:---------------:|:--------------------:|:-----------------:|:-------------:|:------------------:|:-----------------------:|:--------------------:|:----------------:|:---------------------:| | 0.0311 | 1.0 | 383 | 0.2757 | 0.8113 | 0.7264 | 0.8559 | 0.8920 | 0.8736 | 213 | 0.7436 | 0.5472 | 0.6304 | 53 | 0.6341 | 0.7222 | 0.6753 | 36 | | 0.0179 | 2.0 | 766 | 0.3661 | 0.7781 | 0.6858 | 0.8387 | 0.8545 | 0.8465 | 213 | 0.6226 | 0.6226 | 0.6226 | 53 | 0.625 | 0.5556 | 0.5882 | 36 | | 0.003 | 3.0 | 1149 | 0.4953 | 0.8013 | 0.7063 | 0.8341 | 0.8967 | 0.8643 | 213 | 0.7045 | 0.5849 | 0.6392 | 53 | 0.6897 | 0.5556 | 0.6154 | 36 | | 0.0008 | 4.0 | 1532 | 0.5224 | 0.7980 | 0.6984 | 0.8341 | 0.8967 | 0.8643 | 213 | 0.6977 | 0.5660 | 0.625 | 53 | 0.6667 | 0.5556 | 0.6061 | 36 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1