Spaces:
Running
on
Zero
Running
on
Zero
File size: 206,141 Bytes
fc49c8c b9892ff 12d9531 fc49c8c 5b481a8 fc49c8c 18b9531 b9892ff 12d9531 76897aa f1a0f4d 12d9531 18b9531 4eba8ec 76897aa 18b9531 cea2220 18b9531 9f411df b9892ff 76897aa 9f411df 76897aa 84b71cf ffc5e7c 5ab6829 ffc5e7c f3bd749 ffc5e7c 021b909 ffc5e7c 021b909 ffc5e7c fc49c8c 7ae669f c9f3367 f1d5053 5b481a8 18b9531 84b71cf 76897aa 84b71cf 76897aa 84b71cf 76897aa 84b71cf 76897aa 12d9531 b9892ff f85e1e8 76897aa 39d0dfb b9892ff e628e1f 7ae669f 12d9531 18b9531 12d9531 18b9531 fd8bbd4 76897aa 18b9531 6d9f030 76897aa 18b9531 12d9531 18b9531 12d9531 18b9531 12d9531 76897aa 18b9531 53f9237 d72878a 3109d12 d72878a 3109d12 d72878a 3109d12 53f9237 76897aa 6d9f030 18b9531 6d9f030 53f9237 12d9531 53f9237 fc49c8c 12d9531 53f9237 18b9531 12d9531 18b9531 d72878a 22e48cb d72878a 22e48cb d72878a 22e48cb d72878a 53f9237 12d9531 f2c29a4 53f9237 12d9531 f2c29a4 12d9531 f2c29a4 53f9237 12d9531 53f9237 12d9531 53f9237 c97b229 12d9531 53f9237 21d4df0 12d9531 a762158 12d9531 c97b229 12d9531 c97b229 12d9531 f2c29a4 a762158 22e48cb 53f9237 f2c29a4 12d9531 53f9237 f2c29a4 12d9531 f85e1e8 fc49c8c 12d9531 fc49c8c 22e48cb 53f9237 12d9531 53f9237 12d9531 18b9531 12d9531 18b9531 12d9531 18b9531 12d9531 18b9531 53f9237 12d9531 53f9237 18b9531 12d9531 18b9531 21d4df0 18b9531 53f9237 18b9531 12d9531 fc49c8c 76897aa 12d9531 8d1fc6f 6d9f030 76897aa 12d9531 9ec4319 7ae669f b9892ff 8d1fc6f 12d9531 6d9f030 76897aa 12d9531 b9892ff 12d9531 9ec4319 b9892ff 12d9531 7ae669f 12d9531 d72878a 9ec4319 12d9531 b9892ff 7ae669f 12d9531 b9892ff 12d9531 d72878a 9ec4319 12d9531 b9892ff 7ae669f 12d9531 b9892ff 70da74f 6fc3f10 60dd254 70da74f 223daa0 70da74f 223daa0 70da74f 223daa0 70da74f cd320c1 53f9237 d72878a 3109d12 d72878a 3109d12 d72878a 3109d12 53f9237 3109d12 b9892ff 76897aa 6d9f030 3109d12 53f9237 b9892ff 39d0dfb 9f411df 70da74f 84b71cf 70da74f 84b71cf 70da74f 223daa0 70da74f 223daa0 70da74f 9f411df 12d9531 53f9237 d72878a b9892ff 12d9531 b9892ff 12d9531 7ae669f 12d9531 d72878a e628e1f b9892ff 12d9531 d72878a e877e4d 12d9531 b9892ff 4e50d9d c97b229 4e50d9d fd8bbd4 4e50d9d fd8bbd4 c97b229 a6ff0c8 c4236c2 9122d00 c97b229 fd8bbd4 c97b229 9122d00 fd8bbd4 c97b229 fd8bbd4 c97b229 fd8bbd4 c97b229 c4236c2 c97b229 fd8bbd4 c97b229 fd8bbd4 c97b229 fd8bbd4 c97b229 fd8bbd4 c97b229 fd8bbd4 c97b229 fd8bbd4 c97b229 fd8bbd4 4e50d9d a6ff0c8 dab47a1 9122d00 4e50d9d fd8bbd4 4e50d9d c4236c2 4e50d9d 9122d00 fd8bbd4 4e50d9d fd8bbd4 c97b229 fd8bbd4 c97b229 fd8bbd4 c97b229 fd8bbd4 c97b229 4e50d9d c97b229 c4236c2 c97b229 c4236c2 c97b229 fd8bbd4 c97b229 4e50d9d fd8bbd4 c97b229 fd8bbd4 4e50d9d fd8bbd4 4e50d9d c97b229 4e50d9d c97b229 4e50d9d 12d9531 b9892ff 12d9531 b9892ff 12d9531 b9892ff 12d9531 f1d5053 53f9237 f85e1e8 f1d5053 53f9237 f1d5053 12d9531 b9892ff 12d9531 fc49c8c 53f9237 f1d5053 53f9237 f1d5053 12d9531 53f9237 f1d5053 53f9237 f1d5053 53f9237 f1d5053 53f9237 12d9531 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d 15d570b d038452 15d570b d038452 15d570b d038452 15d570b d038452 15d570b d038452 15d570b d038452 15d570b d038452 c4236c2 4e50d9d c4236c2 fd8bbd4 eb98c5c 8dac111 c4236c2 a7678fd fd8bbd4 47fd710 c4236c2 c97b229 c4236c2 c97b229 a6ff0c8 1586274 c4236c2 c97b229 c4236c2 04170f7 c7d5b27 d1839af d70f0b1 d1839af 04170f7 72e46b4 c97b229 04170f7 c4236c2 d1839af c4236c2 c97b229 c4236c2 c97b229 47fd710 c7d5b27 280ed9e c7d5b27 280ed9e fd8bbd4 d70f0b1 c7d5b27 47fd710 72e46b4 bfaf40f fd8bbd4 6baa32c fd8bbd4 72e46b4 bfaf40f 280ed9e bfaf40f 8dac111 57a9d38 8dac111 57a9d38 8dac111 57a9d38 8dac111 57a9d38 8dac111 57a9d38 8dac111 47fd710 4e50d9d 47fd710 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d 5ab6829 fc49c8c b9892ff fc49c8c b9892ff 12d9531 fc49c8c ffc5e7c 19221a0 ffc5e7c 21d4df0 4e50d9d e628e1f 4e50d9d b9892ff ffc5e7c f85e1e8 d1839af f85e1e8 ffc5e7c 5ab6829 ffc5e7c 5ab6829 ffc5e7c 5ab6829 ffc5e7c 4f454b4 ffc5e7c 5ab6829 ffc5e7c 5ab6829 ffc5e7c 5ab6829 ffc5e7c 5ab6829 ffc5e7c 5ab6829 ffc5e7c 5ab6829 ffc5e7c 5ab6829 ffc5e7c 5ab6829 4f454b4 ffc5e7c 021b909 f85e1e8 021b909 f85e1e8 021b909 f85e1e8 021b909 ffc5e7c 4f454b4 5ab6829 4f454b4 5ab6829 4f454b4 8a1adf2 4f454b4 5ab6829 4f454b4 5ab6829 4f454b4 5ab6829 4f454b4 5ab6829 4f454b4 8a1adf2 4f454b4 d038452 d1839af d038452 9cf801a d038452 9cf801a d038452 9cf801a d038452 1586274 d038452 1586274 d038452 1586274 d038452 b5f969d d038452 b5f969d d038452 9cf801a d110daf 9cf801a e628e1f e877e4d e628e1f 9cf801a 1586274 d110daf 1586274 e628e1f e877e4d e628e1f 1586274 b5f969d ffc5e7c c4236c2 5c7581b c4236c2 c97b229 6d9f030 7894dc2 19221a0 76897aa 6d9f030 76897aa 6d9f030 d1839af c97b229 72e46b4 c4236c2 72e46b4 4e50d9d c4236c2 4e50d9d c97b229 6baa32c 72e46b4 6baa32c c97b229 4e50d9d 4f454b4 72e46b4 bc45c22 72e46b4 bc45c22 72e46b4 bc45c22 72e46b4 bc45c22 72e46b4 bc45c22 72e46b4 c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d ae8d83f 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d c4236c2 4e50d9d 12d9531 47fd710 ae8d83f 47fd710 f85e1e8 12d9531 5ab6829 c199e75 5ab6829 f85e1e8 e628e1f e877e4d e628e1f f85e1e8 11ca6e2 76897aa f85e1e8 76897aa f85e1e8 76897aa f85e1e8 76897aa 9cbe743 f85e1e8 9cbe743 9b12d20 9cbe743 f85e1e8 76897aa f85e1e8 19221a0 f85e1e8 76897aa 19221a0 f85e1e8 76897aa 9f411df 19221a0 9f411df f85e1e8 9f411df f85e1e8 9f411df 19221a0 9f411df 12d9531 d038452 12d9531 9f411df 9cf801a 1586274 b5f969d 12d9531 b9892ff d038452 9cf801a 1586274 b5f969d d038452 9cf801a 1586274 b5f969d 1586274 b5f969d 9cf801a e628e1f e877e4d e628e1f e877e4d e628e1f fc76d90 d110daf 9cf801a d1839af 2f0f0e6 9cf801a e628e1f f1a0f4d d1839af f1a0f4d d1839af d110daf d1839af e877e4d d1839af f1a0f4d 9cf801a 5fd6564 f1a0f4d d110daf f1a0f4d d110daf f1a0f4d d110daf 5fd6564 9cf801a 5fd6564 d110daf f1a0f4d e877e4d f1a0f4d d110daf e628e1f e877e4d e628e1f e877e4d e628e1f 2f0f0e6 d1839af d110daf e628e1f 9cf801a f1a0f4d d1839af d110daf e877e4d 9cf801a 1586274 b5f969d 9cf801a 1586274 b5f969d 9cf801a d110daf 1586274 d1839af d110daf 1586274 e628e1f d1839af d110daf d1839af e877e4d d1839af 1586274 d1839af 1586274 d1839af d110daf e877e4d d1839af 1586274 d1839af 1586274 d110daf e877e4d d110daf 1586274 d110daf e628e1f d110daf d1839af d110daf e628e1f 1586274 d1839af d110daf e877e4d 1586274 b5f969d 9f411df 70da74f 9f411df 84b71cf 70da74f 84b71cf 70da74f 84b71cf 70da74f 84b71cf 70da74f 84b71cf 9f411df 84b71cf 9f411df 84b71cf 9f411df f85e1e8 9f411df f85e1e8 9f411df cd320c1 9f411df e7fa673 9f411df f85e1e8 9f411df cd320c1 9f411df 19221a0 e7fa673 19221a0 f85e1e8 5ab6829 39d0dfb 5ab6829 39d0dfb 5ab6829 39d0dfb 5ab6829 39d0dfb 5ab6829 39d0dfb 5ab6829 39d0dfb 5ab6829 39d0dfb 5ab6829 39d0dfb 5ab6829 9f411df d038452 9f411df 9b12d20 9f411df 9b12d20 9f411df 9b12d20 9f411df 7894dc2 caa412b 7894dc2 caa412b 7894dc2 caa412b 7894dc2 caa412b 7894dc2 caa412b 7894dc2 caa412b 7894dc2 caa412b 7894dc2 caa412b 7894dc2 caa412b 7894dc2 9f411df ffc5e7c 7894dc2 39d0dfb ffc5e7c 9f411df 84b71cf 9f411df 7894dc2 39d0dfb 9f411df 7894dc2 7d6a231 7894dc2 47fd710 d72878a 47fd710 7894dc2 39d0dfb 47fd710 e877e4d 8d1fc6f 12d9531 47fd710 12d9531 39d0dfb 47fd710 12d9531 47fd710 12d9531 47fd710 12d9531 d72878a 12d9531 7894dc2 e877e4d 39d0dfb 12d9531 47fd710 12d9531 47fd710 12d9531 47fd710 12d9531 d72878a 12d9531 7894dc2 e877e4d 39d0dfb 12d9531 4e50d9d c97b229 7894dc2 caa412b 7894dc2 caa412b 7894dc2 12d9531 ffc5e7c 12d9531 47fd710 12d9531 47fd710 12d9531 d72878a 12d9531 7894dc2 39d0dfb e628e1f 47fd710 12d9531 b9892ff caa412b 5ab6829 c199e75 5ab6829 c199e75 5ab6829 d1839af f85e1e8 9f411df f85e1e8 9f411df f85e1e8 9f411df d038452 9f411df f85e1e8 19221a0 bc45c22 19221a0 bc45c22 19221a0 bc45c22 19221a0 bc45c22 19221a0 bc45c22 19221a0 bc45c22 19221a0 bc45c22 19221a0 bc45c22 19221a0 bc45c22 19221a0 bc45c22 19221a0 bc45c22 19221a0 bc45c22 19221a0 bc45c22 19221a0 bc45c22 19221a0 bc45c22 19221a0 bc45c22 19221a0 bc45c22 19221a0 bc45c22 19221a0 9b12d20 9f411df 9b12d20 9f411df 12d9531 fc49c8c 76897aa ffc5e7c 8fe6d31 ffc5e7c 7894dc2 038b8df ffc5e7c d038452 7894dc2 8fe6d31 ffc5e7c 8fe6d31 ffc5e7c 5ab6829 ffc5e7c 4f454b4 caa412b 4f454b4 ffc5e7c 4f454b4 ffc5e7c 4f454b4 ffc5e7c 4f454b4 d038452 4f454b4 a369aa6 e8321b8 d110daf e8321b8 d110daf e8321b8 ffc5e7c 5ab6829 ffc5e7c 5ab6829 ffc5e7c 4f454b4 5ab6829 4f454b4 ffc5e7c d038452 ffc5e7c 5ab6829 4f454b4 bc45c22 4f454b4 bc45c22 4f454b4 bc45c22 4f454b4 bc45c22 4f454b4 bc45c22 4f454b4 021b909 d038452 021b909 8fe6d31 021b909 d038452 021b909 ffc5e7c 4f454b4 d038452 4f454b4 a369aa6 e8321b8 d110daf 2f0f0e6 e8321b8 d110daf e8321b8 4f454b4 f85e1e8 d038452 b5f969d d038452 f85e1e8 b5f969d 9cf801a b5f969d 1586274 b5f969d 9cf801a b5f969d 9cf801a d1839af fc76d90 9cf801a d110daf 9cf801a e628e1f 9cf801a d1839af fc76d90 9cf801a c9ef9b1 9cf801a f72d25e 9cf801a f85e1e8 1586274 b5f969d 1586274 d1839af 1586274 d110daf 1586274 e628e1f 1586274 b5f969d f85e1e8 d038452 f85e1e8 4f454b4 d038452 4f454b4 a369aa6 e8321b8 d110daf 2f0f0e6 e8321b8 d110daf e8321b8 4f454b4 ffc5e7c e628e1f 7763303 e628e1f 7763303 e628e1f 7763303 e628e1f 7763303 e628e1f 7763303 e628e1f 7763303 e628e1f 7763303 e628e1f cea2220 fc49c8c 4eba8ec 7ae669f fc49c8c ca0db99 4eba8ec cea2220 ca0db99 fc49c8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 |
"""Portfolio Intelligence Platform - Gradio Interface.
Main application file for the hackathon demo.
Features:
- Single-page workflow (input β loading β results)
- Unified dashboard with responsive bento grid layout
- Auto-refreshing visualisations
- Full-screen responsive design
- Agent reasoning transparency
"""
import os
import warnings
from dotenv import load_dotenv
# Load environment variables first (before any other imports)
load_dotenv()
# Configure logging early (before other imports create loggers)
# Controlled via environment variables:
# LOG_LEVEL: DEBUG, INFO, WARNING, ERROR, CRITICAL, OFF
# LOGGING_ENABLED: true/false
from backend.logging_config import configure_logging
configure_logging()
# Disable telemetry on HuggingFace Spaces
if os.environ.get("SPACE_ID"):
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "true"
# Now import remaining modules
import gradio as gr
import asyncio
import re
import logging
import time
import random
import numpy as np
import traceback
import sys
from typing import List, Dict, Any, Tuple, Optional
from datetime import datetime
# Initialise Sentry monitoring early (before other imports that might raise errors)
from backend.monitoring import initialise_sentry
initialise_sentry()
from backend.mcp_router import mcp_router
from backend import mcp_tools
from backend.agents.workflow import PortfolioAnalysisWorkflow
from backend.models.agent_state import AgentState
from backend.database import db
from backend.theme import get_financial_theme, FINANCIAL_CSS
from backend.visualizations import (
create_portfolio_allocation_chart,
create_risk_metrics_dashboard,
create_performance_chart,
create_correlation_heatmap,
create_optimization_comparison,
)
from backend.stress_testing import (
PortfolioStressTest,
STRESS_SCENARIOS,
create_monte_carlo_paths_plot,
create_scenario_comparison_chart,
create_drawdown_analysis_chart,
create_stress_test_dashboard,
)
from backend.agents.personas import get_available_personas
from backend.tax.interface import create_tax_analysis, format_tax_analysis_output
from backend.config import settings
from backend.rate_limiting import (
GradioRateLimitMiddleware,
UserTier,
)
from backend.rate_limiting.fixed_window import TieredFixedWindowLimiter
from backend.auth import auth, UserSession
from backend.export import export_analysis_to_csv, export_analysis_to_pdf
# Import ensemble predictor at startup so @spaces.GPU decorator is detected by ZeroGPU
# This module contains GPU-accelerated ML forecasting (Chronos, TTM, N-HiTS)
import backend.mcp_servers.ensemble_predictor_mcp # noqa: F401
def check_authentication(session_state: Dict) -> bool:
"""Check if user is authenticated or in demo mode."""
if not session_state:
return False
# Allow demo mode (rate-limited anonymous access)
if session_state.get("is_demo", False):
return True
# Check regular authentication
session = UserSession.from_dict(session_state)
return session is not None and session.user_id is not None
# Suppress websockets deprecation warnings
# Note: websockets 15.0+ deprecated WebSocketServerProtocol used by uvicorn 0.38.0
# This is a known issue with no functionality impact. The legacy API is supported until 2030.
# To eliminate warnings: upgrade to uvicorn 0.35.0+ when available with SansIO implementation
# See: https://websockets.readthedocs.io/en/stable/project/changelog.html
warnings.filterwarnings("ignore", category=DeprecationWarning, module="websockets.legacy")
warnings.filterwarnings("ignore", category=DeprecationWarning, module="websockets.server")
# Suppress Gradio internal deprecation warnings
warnings.filterwarnings("ignore", category=DeprecationWarning, module="gradio.routes")
# Get logger for this module (logging already configured via configure_logging())
logger = logging.getLogger(__name__)
# Initialize workflow
workflow = PortfolioAnalysisWorkflow(mcp_router)
# Custom get_user_tier function for session-aware rate limiting
def get_user_tier_from_session(request: Optional[gr.Request], session_state: Optional[dict] = None):
"""Determine user tier from session state.
Args:
request: Gradio request object
session_state: Session state dict containing user authentication info
Returns:
Tuple of (identifier, tier)
- For authenticated users: (user_id, AUTHENTICATED)
- For demo mode: (ip_hash, ANONYMOUS)
"""
import hashlib
# Check if user is authenticated via session state
if session_state and isinstance(session_state, dict):
user_id = session_state.get("user_id")
is_demo = session_state.get("is_demo", False)
# Authenticated user: use user_id for rate limiting
if user_id and not is_demo:
return str(user_id), UserTier.AUTHENTICATED
# Demo mode or unauthenticated: use IP-based rate limiting
# Extract client IP from request
client_ip = "unknown"
if request:
try:
if hasattr(request, "client") and request.client:
if hasattr(request.client, "host"):
client_ip = request.client.host
elif isinstance(request.client, str):
client_ip = request.client
# Check headers for forwarded IPs (behind proxy)
if hasattr(request, "headers"):
forwarded = request.headers.get("X-Forwarded-For")
if forwarded:
client_ip = forwarded.split(",")[0].strip()
except Exception as e:
logger.warning(f"Error extracting client IP: {e}")
# Hash IP for privacy
identifier = hashlib.sha256(client_ip.encode()).hexdigest()[:16]
return identifier, UserTier.ANONYMOUS
# Initialize rate limiter
rate_limiter = None
rate_limit_middleware = None
if settings.rate_limit_enabled:
try:
rate_limiter = TieredFixedWindowLimiter(
tier_limits={
UserTier.ANONYMOUS: settings.rate_limit_anonymous_capacity,
UserTier.AUTHENTICATED: settings.rate_limit_authenticated_capacity,
UserTier.PREMIUM: settings.rate_limit_premium_capacity,
},
redis_url=settings.redis_url
)
rate_limit_middleware = GradioRateLimitMiddleware(
rate_limiter,
get_user_tier=get_user_tier_from_session
)
logger.info("Rate limiting enabled with fixed window (daily reset at midnight UTC)")
except Exception as e:
logger.error(f"Failed to initialise rate limiter: {e}")
logger.warning("Continuing without rate limiting")
else:
logger.info("Rate limiting disabled")
# Global state for visualisations
LAST_ANALYSIS_STATE = None
HISTORY_RECORDS = [] # Stores loaded history records for row selection
LAST_STRESS_TEST = None
LAST_EXPORT_PDF_PATH = None # Pre-generated PDF export path
LAST_EXPORT_CSV_PATH = None # Pre-generated CSV export path
# Global state for audio generation
LAST_ANALYSIS_TEXT = None # Stores analysis text for audio generation
LAST_BUILD_RESULT = None # Stores build portfolio result for audio
LAST_DEBATE_DATA = None # Stores debate data for audio simulation
# Loading screen rotating messages with MCP phases and disclaimers
LOADING_MESSAGES = [
"MCP Workflow: Initialising Model Context Protocol servers...",
"Disclaimer: This is NOT financial advice - consult a professional!",
"MCP: Aggregating context from multiple data sources...",
"Humour: If in doubt, blame the algorithm!",
"MCP Workflow: Processing portfolio through context pipeline...",
"Warning: Past performance does not guarantee future results!",
"MCP: Routing requests to specialised analysis servers...",
"Remember: Markets can stay irrational longer than you can stay solvent!",
"MCP Workflow: Extracting insights from financial context...",
"Important: Not a substitute for professional financial guidance!",
"MCP: Coordinating between data, analysis, and reporting contexts...",
"Pro tip: Diversification - the only free lunch in investing!",
"Phase 1: Fetching market data from Yahoo Finance, FMP, FRED...",
"Phase 2: Running portfolio optimisation and risk analysis...",
"Phase 3: Generating AI insights with Claude Sonnet 4.5...",
"Data Collection: Retrieving real-time quotes and historical prices...",
"Computation: Calculating portfolio metrics and risk indicators...",
"Analysis: Synthesising comprehensive portfolio recommendations...",
]
def parse_portfolio_input(portfolio_text: str) -> List[Dict[str, Any]]:
"""Parse portfolio input text into structured holdings.
Supports formats:
- AAPL 50 (50 shares)
- TSLA 25 shares
- NVDA $5000 (dollar amount)
- BTC 0.5 (fractional shares/crypto)
Args:
portfolio_text: Raw text input from user
Returns:
List of holding dictionaries
"""
holdings = []
lines = portfolio_text.strip().split('\n')
for line in lines:
line = line.strip()
if not line:
continue
# Match patterns: TICKER QUANTITY [shares] or TICKER $AMOUNT
match = re.match(r'([A-Za-z]+)\s+(\$)?([0-9.]+)\s*(shares)?', line, re.IGNORECASE)
if match:
ticker = match.group(1).upper()
is_dollar = match.group(2) == '$'
amount = float(match.group(3))
holdings.append({
'ticker': ticker,
'quantity': amount if not is_dollar else 0,
'dollar_amount': amount if is_dollar else 0,
'cost_basis': 0
})
else:
logger.warning(f"Could not parse line: {line}")
return holdings
def aggregate_holdings(holdings: List[Dict[str, Any]]) -> Dict[str, Dict[str, Any]]:
"""Aggregate holdings by ticker while preserving lot-level data.
Groups multiple entries for the same ticker together and tracks
individual tax lots. Useful for handling duplicate entries and
mixed entry types (shares + dollars).
Args:
holdings: List of holding dictionaries from parse_portfolio_input
Returns:
Dictionary with ticker as key and aggregated data as value,
containing: ticker, total_quantity, total_dollar_amount, lots, warnings
"""
aggregated = {}
for holding in holdings:
ticker = holding['ticker']
if ticker not in aggregated:
aggregated[ticker] = {
'ticker': ticker,
'total_quantity': 0,
'total_dollar_amount': 0,
'lots': [],
'warnings': []
}
aggregated[ticker]['total_quantity'] += holding.get('quantity', 0)
aggregated[ticker]['total_dollar_amount'] += holding.get('dollar_amount', 0)
aggregated[ticker]['lots'].append(holding)
# Check for duplicates and mixed entry types
for ticker, data in aggregated.items():
if len(data['lots']) > 1:
has_shares = any(lot['quantity'] > 0 for lot in data['lots'])
has_dollars = any(lot['dollar_amount'] > 0 for lot in data['lots'])
if has_shares and has_dollars:
data['warnings'].append(
f"{ticker} has mixed entry types (shares and dollars). "
f"Total: {data['total_quantity']:.2f} sh + ${data['total_dollar_amount']:,.2f}"
)
else:
data['warnings'].append(
f"{ticker} appears {len(data['lots'])} times. "
f"Aggregated: {data['total_quantity']:.2f} shares" if has_shares
else f"Aggregated: ${data['total_dollar_amount']:,.2f}"
)
return aggregated
async def run_analysis(
portfolio_text: str,
roast_mode: bool = False,
persona: Optional[str] = None
) -> str:
"""Run portfolio analysis workflow.
Args:
portfolio_text: Raw portfolio input
roast_mode: If True, use brutal honesty mode
persona: Optional investor persona (e.g., 'warren_buffett')
Returns:
Formatted analysis result
"""
global LAST_ANALYSIS_STATE
if not portfolio_text.strip():
return "β Please enter your portfolio holdings"
try:
holdings = parse_portfolio_input(portfolio_text)
if not holdings:
return "β Could not parse portfolio. Please use format: TICKER QUANTITY"
logger.info(
f"Starting analysis for {len(holdings)} holdings "
f"(Roast Mode: {roast_mode}, Persona: {persona or 'None'})"
)
# Construct initial state
portfolio_id = f"demo_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
initial_state: AgentState = {
'portfolio_id': portfolio_id,
'user_query': 'Analyse my portfolio',
'risk_tolerance': 'moderate',
'holdings': holdings,
'historical_prices': {},
'fundamentals': {},
'economic_data': {},
'realtime_data': {},
'technical_indicators': {},
'optimisation_results': {},
'risk_analysis': {},
'ai_synthesis': '',
'recommendations': [],
'reasoning_steps': [],
'current_step': 'starting',
'errors': [],
'mcp_calls': [],
'phase_1_duration_ms': None,
'phase_1_5_duration_ms': None,
'phase_2_duration_ms': None,
'phase_2_5_duration_ms': None,
'phase_3_duration_ms': None,
'llm_input_tokens': None,
'llm_output_tokens': None,
'llm_total_tokens': None,
'llm_request_count': None,
'feature_vectors': {},
'ensemble_forecasts': {},
'sentiment_data': {},
}
# Create workflow with persona or roast mode
# Note: persona takes precedence over roast mode
if persona and persona != "standard":
analysis_workflow = PortfolioAnalysisWorkflow(mcp_router, persona=persona)
else:
analysis_workflow = PortfolioAnalysisWorkflow(mcp_router, roast_mode=roast_mode)
# Run workflow
final_state = await analysis_workflow.run(initial_state)
LAST_ANALYSIS_STATE = final_state
if final_state.get("errors"):
return f"β Analysis failed: {'; '.join(final_state['errors'])}"
# Format result
return format_analysis_result(final_state, holdings)
except Exception as e:
logger.error(f"Analysis error: {e}", exc_info=True)
return f"β Error during analysis: {str(e)}"
def format_performance_metrics(final_state: AgentState) -> str:
"""Format performance metrics for reasoning display.
Args:
final_state: Final AgentState from workflow
Returns:
Formatted markdown string with performance metrics
"""
metrics_md = "### Performance Metrics\n\n"
# Phase Execution Times
phase_1_ms = final_state.get("phase_1_duration_ms", 0) or 0
phase_2_ms = final_state.get("phase_2_duration_ms", 0) or 0
phase_2_5_ms = final_state.get("phase_2_5_duration_ms", 0) or 0
phase_3_ms = final_state.get("phase_3_duration_ms", 0) or 0
total_ms = phase_1_ms + phase_2_ms + phase_2_5_ms + phase_3_ms
metrics_md += "**Execution Timeline:**\n\n"
metrics_md += f"- Phase 1 (Data Collection): {phase_1_ms:,}ms\n"
metrics_md += f"- Phase 2 (Computation): {phase_2_ms:,}ms\n"
if phase_2_5_ms > 0:
metrics_md += f"- Phase 2.5 (ML Predictions): {phase_2_5_ms:,}ms\n"
metrics_md += f"- Phase 3 (LLM Synthesis): {phase_3_ms:,}ms\n"
metrics_md += f"- **Total**: {total_ms:,}ms ({total_ms / 1000:.2f}s)\n\n"
# LLM Token Usage
input_tokens = final_state.get("llm_input_tokens", 0) or 0
output_tokens = final_state.get("llm_output_tokens", 0) or 0
total_tokens = final_state.get("llm_total_tokens", 0) or 0
request_count = final_state.get("llm_request_count", 0) or 0
# Anthropic Claude Sonnet 4.5 pricing (as of early 2025)
# Input: $3 per million tokens, Output: $15 per million tokens
input_cost = (input_tokens / 1_000_000) * 3.0
output_cost = (output_tokens / 1_000_000) * 15.0
total_cost = input_cost + output_cost
metrics_md += "**LLM Token Usage (Claude Sonnet 4.5):**\n\n"
metrics_md += f"- Input Tokens: {input_tokens:,} (${input_cost:.4f})\n"
metrics_md += f"- Output Tokens: {output_tokens:,} (${output_cost:.4f})\n"
metrics_md += f"- **Total**: {total_tokens:,} tokens (${total_cost:.4f})\n"
metrics_md += f"- API Requests: {request_count}\n\n"
# MCP Calls
mcp_calls = final_state.get("mcp_calls", [])
if mcp_calls:
metrics_md += f"**MCP Operations:** {len(mcp_calls)} total calls\n\n"
# Group by MCP server
mcp_groups = {}
for call in mcp_calls:
server = call.get("mcp_server") or call.get("mcp", "unknown")
if server not in mcp_groups:
mcp_groups[server] = []
mcp_groups[server].append(call)
for server, calls in mcp_groups.items():
metrics_md += f"- **{server}**: {len(calls)} call{'s' if len(calls) != 1 else ''}\n"
return metrics_md
def format_analysis_result(final_state: AgentState, holdings: List[Dict[str, Any]]) -> str:
"""Format analysis result for display.
Args:
final_state: Final AgentState from workflow
holdings: Original holdings list
Returns:
Formatted markdown string
"""
# Calculate total portfolio value
total_value = sum(h.get('market_value', 0) for h in final_state.get('holdings', holdings))
# Format holdings
holdings_md = "### Portfolio Holdings\n\n"
for h in final_state.get('holdings', holdings):
ticker = h.get("ticker", "N/A")
shares = h.get("quantity", 0)
value = h.get("market_value", 0)
weight = (value / total_value * 100) if total_value > 0 else 0
# Format differently based on whether entered by shares or dollar amount
if shares > 0:
holdings_md += f"- **{ticker}**: {shares:.2f} shares | ${value:,.2f} ({weight:.1f}%)\n"
else:
holdings_md += f"- **{ticker}**: ${value:,.2f} ({weight:.1f}%)\n"
# Extract risk metrics from risk_analysis
risk_analysis = final_state.get("risk_analysis", {})
# Extract from nested dicts
var_95_dict = risk_analysis.get("var_95", {})
var_95 = abs(float(var_95_dict.get("var_absolute", 0))) if isinstance(var_95_dict, dict) else abs(float(var_95_dict))
cvar_95_dict = risk_analysis.get("cvar_95", {})
cvar_95 = abs(float(cvar_95_dict.get("cvar_absolute", 0))) if isinstance(cvar_95_dict, dict) else abs(float(cvar_95_dict))
risk_metrics = risk_analysis.get("risk_metrics", {})
sharpe = float(risk_metrics.get("sharpe_ratio", 0))
volatility = float(risk_metrics.get("volatility_annual", 0)) * 100
# Extract advanced metrics
information_ratio = risk_metrics.get("information_ratio")
calmar_ratio = risk_metrics.get("calmar_ratio")
ulcer_index = risk_metrics.get("ulcer_index")
metrics_md = f"""
### Key Metrics
- **Portfolio Value**: ${total_value:,.2f}
- **Sharpe Ratio**: {sharpe:.2f}
- **Volatility**: {volatility:.1f}% (annual)
- **VaR (95%)**: ${var_95:,.2f}
- **CVaR (95%)**: ${cvar_95:,.2f}
"""
# Add advanced metrics if available
if information_ratio is not None:
metrics_md += f"- **Information Ratio**: {float(information_ratio):.2f}\n"
if calmar_ratio is not None:
metrics_md += f"- **Calmar Ratio**: {float(calmar_ratio):.2f}\n"
if ulcer_index is not None:
metrics_md += f"- **Ulcer Index**: {float(ulcer_index):.2f}\n"
# Format ML forecasts if available
forecasts_md = ""
ensemble_forecasts = final_state.get("ensemble_forecasts", {})
if ensemble_forecasts:
forecasts_md = "### ML Price Forecasts (30-day)\n\n"
for ticker, forecast_data in ensemble_forecasts.items():
if isinstance(forecast_data, dict):
models_used = forecast_data.get("models_used", [])
num_models = len(models_used) if models_used else forecast_data.get("metadata", {}).get("num_models", "N/A")
# Get first and last prediction (current vs 30-day)
predictions = forecast_data.get("predictions", [])
if predictions and len(predictions) > 0:
first_pred = float(predictions[0])
last_pred = float(predictions[-1])
change_pct = ((last_pred - first_pred) / first_pred * 100) if first_pred > 0 else 0
direction = "π" if change_pct > 0 else "π" if change_pct < 0 else "β‘οΈ"
forecasts_md += f"- **{ticker}**: {direction} {change_pct:+.1f}% (using {num_models} models)\n"
forecasts_md += "\n*Note: Forecasts combine Chronos foundation model with statistical baselines.*\n\n"
# Get LLM synthesis and recommendations
ai_synthesis = final_state.get("ai_synthesis", "Analysis completed successfully.")
recommendations = final_state.get("recommendations", [])
recs_md = "### Recommendations\n\n"
if recommendations:
for i, rec in enumerate(recommendations, 1):
recs_md += f"{i}. {rec}\n"
else:
recs_md += "*No specific recommendations generated.*\n"
# Final output
output = f"""{holdings_md}
{metrics_md}
{forecasts_md}
{ai_synthesis}
{recs_md}
---
*Interactive charts and detailed metrics are displayed below.*
"""
return output
def create_visualisations() -> Tuple:
"""Create all visualisation charts from last analysis.
Returns:
Tuple of (allocation, risk, performance, correlation, optimization) plots
"""
global LAST_ANALYSIS_STATE
if not LAST_ANALYSIS_STATE:
empty_fig = None
return (empty_fig, empty_fig, empty_fig, empty_fig, empty_fig)
# Extract data from AgentState
holdings = LAST_ANALYSIS_STATE.get("holdings", [])
historical_prices = LAST_ANALYSIS_STATE.get("historical_prices", {})
risk_analysis = LAST_ANALYSIS_STATE.get("risk_analysis", {})
optimisation_results = LAST_ANALYSIS_STATE.get("optimisation_results", {})
# Create charts
allocation_chart = create_portfolio_allocation_chart(holdings) if holdings else None
# Extract nested risk metrics correctly
if risk_analysis:
var_95_dict = risk_analysis.get("var_95", {})
var_value = float(var_95_dict.get("var_percentage", 0)) if isinstance(var_95_dict, dict) else float(var_95_dict)
cvar_95_dict = risk_analysis.get("cvar_95", {})
cvar_value = float(cvar_95_dict.get("cvar_percentage", 0)) if isinstance(cvar_95_dict, dict) else float(cvar_95_dict)
risk_metrics = risk_analysis.get("risk_metrics", {})
sharpe_value = float(risk_metrics.get("sharpe_ratio", 0))
volatility_value = float(risk_metrics.get("volatility_annual", 0)) * 100
risk_chart = create_risk_metrics_dashboard(
sharpe=sharpe_value,
var=var_value,
cvar=cvar_value,
volatility=volatility_value
)
else:
risk_chart = None
performance_chart = create_performance_chart(holdings, historical_prices) if historical_prices else None
correlation_chart = create_correlation_heatmap(historical_prices) if historical_prices else None
optimization_chart = create_optimization_comparison(optimisation_results) if optimisation_results else None
return (allocation_chart, risk_chart, performance_chart, correlation_chart, optimization_chart)
async def run_stress_test(
scenario_name: str,
n_simulations: int = 10000,
time_horizon_days: int = 252
) -> Tuple[str, Any, Any, Any, Any]:
"""Run stress test on current portfolio.
Args:
scenario_name: Name of stress scenario to apply
n_simulations: Number of Monte Carlo simulations
time_horizon_days: Simulation time horizon in days
Returns:
Tuple of (summary_text, dashboard_plot, mc_plot, scenario_plot, drawdown_plot)
"""
global LAST_ANALYSIS_STATE, LAST_STRESS_TEST
if not LAST_ANALYSIS_STATE:
return (
"Please run portfolio analysis first before stress testing.",
None, None, None, None
)
try:
# Extract portfolio data
holdings = LAST_ANALYSIS_STATE.get("holdings", [])
historical_prices = LAST_ANALYSIS_STATE.get("historical_prices", {})
if not holdings or not historical_prices:
return (
"Insufficient portfolio data for stress testing.",
None, None, None, None
)
# Initialise stress tester
stress_tester = PortfolioStressTest(
holdings=holdings,
historical_prices=historical_prices,
n_simulations=n_simulations
)
LAST_STRESS_TEST = stress_tester
# Get portfolio value
portfolio_value = sum(h.get('market_value', 0) for h in holdings)
# Run selected scenario or Monte Carlo
if scenario_name == "monte_carlo":
result = stress_tester.run_monte_carlo(time_horizon_days=time_horizon_days)
dashboard_plot = create_stress_test_dashboard(result, portfolio_value)
mc_plot = create_monte_carlo_paths_plot(result.simulation_paths, portfolio_value=portfolio_value)
drawdown_plot = create_drawdown_analysis_chart(result.simulation_paths, portfolio_value=portfolio_value)
scenario_plot = None
summary = f"""# Monte Carlo Stress Test Results
**Simulation Parameters:**
- Number of simulations: {n_simulations:,}
- Time horizon: {time_horizon_days} days (~{time_horizon_days/252:.1f} years)
**Key Metrics:**
- Mean return: {result.portfolio_return:.2f}%
- Value at Risk (95%): {result.var_95:.2f}%
- Conditional VaR (95%): {result.cvar_95:.2f}%
- Maximum drawdown: {result.max_drawdown:.2f}%
**Interpretation:**
- In 95% of scenarios, your portfolio loses less than {abs(result.var_95):.1f}%
- In the worst 5% of cases, average loss is {abs(result.cvar_95):.1f}%
"""
elif scenario_name == "all_scenarios":
all_results = stress_tester.run_all_scenarios()
scenario_plot = create_scenario_comparison_chart(all_results)
dashboard_plot = None
mc_plot = None
drawdown_plot = None
summary = "# All Stress Scenarios Comparison\n\n"
summary += "**Portfolio Performance Under Historical Crises:**\n\n"
for scenario_id, result in all_results.items():
recovery_text = f"{result.recovery_time_estimate} days (~{result.recovery_time_estimate/365:.1f} years)" if result.recovery_time_estimate else "N/A"
summary += f"### {result.scenario_name}\n"
summary += f"- Portfolio return: **{result.portfolio_return:.2f}%**\n"
summary += f"- Value change: **${result.portfolio_value_change:,.0f}**\n"
summary += f"- VaR 95%: {result.var_95:.2f}%\n"
summary += f"- CVaR 95%: {result.cvar_95:.2f}%\n"
summary += f"- Estimated recovery: {recovery_text}\n\n"
else:
# Run specific scenario
scenario = STRESS_SCENARIOS.get(scenario_name)
if not scenario:
return (
f"Scenario '{scenario_name}' not found.",
None, None, None, None
)
result = stress_tester.apply_scenario(scenario)
dashboard_plot = create_stress_test_dashboard(result, portfolio_value)
mc_plot = None
scenario_plot = None
drawdown_plot = None
recovery_text = f"{result.recovery_time_estimate} days (~{result.recovery_time_estimate/365:.1f} years)" if result.recovery_time_estimate else "Not estimated"
summary = f"""# {result.scenario_name} - Stress Test Results
**Scenario Description:**
{scenario.description}
**Portfolio Impact:**
- Return under stress: **{result.portfolio_return:.2f}%**
- Dollar impact: **${result.portfolio_value_change:,.0f}**
- Current value: ${portfolio_value:,.0f}
- Stressed value: ${portfolio_value + result.portfolio_value_change:,.0f}
**Risk Metrics:**
- Value at Risk (95%): {result.var_95:.2f}%
- Conditional VaR (95%): {result.cvar_95:.2f}%
- Value at Risk (99%): {result.var_99:.2f}%
- Conditional VaR (99%): {result.cvar_99:.2f}%
**Recovery Estimate:**
- Estimated recovery time: {recovery_text}
**Asset Contributions:**
"""
for ticker, contribution in sorted(result.asset_contributions.items(), key=lambda x: x[1]):
summary += f"- {ticker}: {contribution:+.2f}%\n"
return (summary, dashboard_plot, mc_plot, scenario_plot, drawdown_plot)
except Exception as e:
logger.error(f"Stress test error: {e}", exc_info=True)
return (
f"Error running stress test: {str(e)}",
None, None, None, None
)
async def run_analysis_with_ui_update(
session_state: Optional[Dict] = None,
portfolio_text: str = "",
roast_mode: bool = False,
persona: Optional[str] = None,
progress=gr.Progress()
) -> Tuple[str, str, str, Any, Any, Any, Any, Any, Any]:
"""Run analysis and return results with loading progress overlay.
Uses rotating messages from LOADING_MESSAGES to display progress updates.
Args:
session_state: Session state dict containing user authentication info
portfolio_text: Portfolio input
roast_mode: If True, use brutal honesty mode
persona: Optional investor persona (e.g., 'warren_buffett')
progress: Gradio progress tracker
Returns:
Tuple of (page_state, analysis_text, performance_metrics, 5 charts, audio_btn_update)
"""
global LAST_ANALYSIS_STATE
if not portfolio_text.strip():
return (
"input",
"",
"",
None, None, None, None, None,
gr.update(visible=False)
)
try:
progress(0, desc=random.choice(LOADING_MESSAGES))
await asyncio.sleep(0.3)
holdings = parse_portfolio_input(portfolio_text)
if not holdings:
return (
"input",
"",
"",
None, None, None, None, None,
gr.update(visible=False)
)
progress(0.1, desc=random.choice(LOADING_MESSAGES))
await asyncio.sleep(0.5)
# Check if this is a demo session
is_demo = session_state.get("is_demo", False) if session_state else False
# Generate portfolio ID with appropriate prefix
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
if is_demo:
portfolio_id = f"demo_{timestamp}"
else:
# Authenticated users get portfolio IDs with user prefix
session = UserSession.from_dict(session_state)
user_prefix = session.username[:8] if session and session.username else "user"
portfolio_id = f"{user_prefix}_{timestamp}"
# Only save portfolio to database for authenticated users
# Demo users get ephemeral portfolios that exist only for the current session
if not is_demo:
try:
session = UserSession.from_dict(session_state)
user_id = session.user_id if session and session.user_id else None
if not user_id:
logger.error("No valid user_id available for portfolio creation")
raise ValueError("User ID not available")
portfolio_saved = await db.save_portfolio(
portfolio_id=portfolio_id,
user_id=user_id,
name=f"Analysis {datetime.now().strftime('%Y-%m-%d %H:%M')}",
risk_tolerance='moderate'
)
if portfolio_saved:
logger.info(f"β Portfolio {portfolio_id} created for user {user_id}")
else:
logger.error(f"β Failed to create portfolio {portfolio_id} in database")
raise ValueError(f"Portfolio creation failed for {portfolio_id}")
except Exception as e:
logger.error(f"β Failed to save portfolio: {e}")
raise ValueError(f"Database error: {e}") from e
else:
logger.info(f"Demo mode: Portfolio {portfolio_id} created (ephemeral, not saved to database)")
initial_state: AgentState = {
'portfolio_id': portfolio_id,
'user_query': 'Analyse my portfolio',
'risk_tolerance': 'moderate',
'holdings': holdings,
'historical_prices': {},
'fundamentals': {},
'economic_data': {},
'realtime_data': {},
'technical_indicators': {},
'optimisation_results': {},
'risk_analysis': {},
'ai_synthesis': '',
'recommendations': [],
'reasoning_steps': [],
'current_step': 'starting',
'errors': [],
'mcp_calls': [],
'phase_1_duration_ms': None,
'phase_1_5_duration_ms': None,
'phase_2_duration_ms': None,
'phase_2_5_duration_ms': None,
'phase_3_duration_ms': None,
'llm_input_tokens': None,
'llm_output_tokens': None,
'llm_total_tokens': None,
'llm_request_count': None,
'feature_vectors': {},
'ensemble_forecasts': {},
'sentiment_data': {},
}
progress(0.2, desc="Phase 1: Fetching market data from Yahoo Finance, FMP, FRED...")
# Create workflow with persona or roast mode
# Note: persona takes precedence over roast mode
if persona and persona != "standard":
analysis_workflow = PortfolioAnalysisWorkflow(mcp_router, persona=persona)
else:
analysis_workflow = PortfolioAnalysisWorkflow(mcp_router, roast_mode=roast_mode)
# Stream workflow execution with live progress updates
final_state = None
async for event in analysis_workflow.stream(initial_state):
progress_val = event.get("progress", 0)
message = event.get("message", "Processing...")
progress(progress_val, desc=message)
if event.get("event") == "complete":
final_state = event.get("state")
break
final_state = event.get("state")
if final_state is None:
raise ValueError("Workflow did not return final state")
LAST_ANALYSIS_STATE = final_state
# Pre-generate export files immediately after analysis completes
# This ensures DownloadButton has files ready on first click
global LAST_EXPORT_PDF_PATH, LAST_EXPORT_CSV_PATH
try:
import tempfile
# Generate PDF export
pdf_bytes = export_analysis_to_pdf(final_state)
with tempfile.NamedTemporaryFile(
mode='wb',
delete=False,
suffix='.pdf',
prefix='portfolio_analysis_',
dir=tempfile.gettempdir()
) as f:
f.write(pdf_bytes)
LAST_EXPORT_PDF_PATH = f.name
logger.info(f"Pre-generated PDF export: {LAST_EXPORT_PDF_PATH}")
# Generate CSV export
csv_content = export_analysis_to_csv(final_state)
with tempfile.NamedTemporaryFile(
mode='w',
delete=False,
suffix='.csv',
prefix='portfolio_analysis_',
dir=tempfile.gettempdir()
) as f:
f.write(csv_content)
LAST_EXPORT_CSV_PATH = f.name
logger.info(f"Pre-generated CSV export: {LAST_EXPORT_CSV_PATH}")
except Exception as e:
logger.error(f"Failed to pre-generate export files: {e}")
LAST_EXPORT_PDF_PATH = None
LAST_EXPORT_CSV_PATH = None
# Save analysis to database (Enhancement #4 - Historical Analysis Storage)
# Only save for authenticated users - demo analyses are ephemeral
if not is_demo:
try:
session = UserSession.from_dict(session_state)
user_identifier = session.user_id if session and session.user_id else "unknown"
logger.info(f"Saving analysis for portfolio {portfolio_id}, user: {user_identifier}")
save_result = await db.save_analysis(portfolio_id, final_state)
if save_result:
logger.info(f"β Successfully saved analysis for portfolio {portfolio_id}")
else:
logger.error(f"β Failed to save analysis for portfolio {portfolio_id} (returned False)")
# Note: We don't raise here because the analysis itself succeeded
# The user still gets their results even if database save fails
except Exception as e:
logger.error(f"β Exception saving analysis for portfolio {portfolio_id}: {e}", exc_info=True)
# Note: We don't raise here because the analysis itself succeeded
else:
logger.info(f"Demo mode: Analysis for portfolio {portfolio_id} not saved (ephemeral session)")
charts = create_visualisations()
analysis_text = format_analysis_result(final_state, holdings)
performance_metrics = format_performance_metrics(final_state)
progress(1.0, desc="Analysis complete!")
return (
"results",
analysis_text,
performance_metrics,
*charts,
gr.update(visible=True) # analysis_audio_btn (show audio button)
)
except Exception as e:
logger.error(f"Analysis error: {e}", exc_info=True)
return (
"input",
f"β Error: {str(e)}",
"",
None, None, None, None, None,
gr.update(visible=False) # analysis_audio_btn (hide on error)
)
def update_live_preview(portfolio_text: str) -> str:
"""Update live preview with parsed portfolio summary (without prices).
Aggregates duplicate tickers and detects mixed entry types,
displaying warnings for data quality issues.
Args:
portfolio_text: Raw portfolio input text
Returns:
HTML formatted preview of portfolio
"""
if not portfolio_text.strip():
return """
<div style='text-align: center; padding: 2rem; color: #999;'>
<p style='font-size: 14px;'>Enter portfolio holdings to see preview</p>
</div>
"""
try:
holdings = parse_portfolio_input(portfolio_text)
if not holdings:
return """
<div style='text-align: center; padding: 2rem; color: #ef4444;'>
<p style='font-size: 14px;'>Unable to parse portfolio format</p>
</div>
"""
aggregated = aggregate_holdings(holdings)
unique_tickers = len(aggregated)
shares_tickers = sum(1 for d in aggregated.values() if d['total_quantity'] > 0)
dollar_tickers = sum(1 for d in aggregated.values() if d['total_dollar_amount'] > 0)
warnings = []
for data in aggregated.values():
warnings.extend(data['warnings'])
warnings_html = ""
if warnings:
warnings_html = f"""
<div style='margin-top: 0.75rem; padding: 0.75rem; background: rgba(251, 146, 60, 0.1); border: 1px solid rgba(251, 146, 60, 0.3); border-radius: 6px;'>
<p style='margin: 0 0 0.5rem 0; font-size: 11px; text-transform: uppercase; color: #fb923c; font-weight: 600;'>Duplicate/Mixed Entries</p>
"""
for warning in warnings:
warnings_html += f"<p style='margin: 0.25rem 0 0 0; font-size: 10px; opacity: 0.9;'>{warning}</p>"
warnings_html += "</div>"
html = f"""
<div style='padding: 1.5rem; display: flex; flex-direction: column;'>
<h3 style='color: #048CFC; margin-bottom: 1rem; margin-top: 0; font-size: 1.25rem;'>Portfolio Preview</h3>
<div style='display: grid; gap: 1rem; grid-template-rows: auto 1fr auto; height: 100%;'>
<div style='border-bottom: 1px solid rgba(255,255,255,0.1); padding-bottom: 0.75rem;'>
<p style='margin: 0; font-size: 12px; opacity: 0.7; text-transform: uppercase;'>Unique Tickers</p>
<p style='margin: 0.25rem 0 0 0; font-size: 28px; font-weight: 600;'>{unique_tickers}</p>
<p style='margin: 0.5rem 0 0 0; font-size: 11px; opacity: 0.6;'>{shares_tickers} by shares β’ {dollar_tickers} by dollar</p>
</div>
<div style='padding-right: 0.5rem; overflow-y: auto; min-height: 0;'>
<p style='margin: 0 0 0.75rem 0; font-size: 12px; opacity: 0.7; text-transform: uppercase;'>Assets (Aggregated)</p>
"""
for ticker, data in sorted(aggregated.items()):
if data['total_dollar_amount'] > 0 and data['total_quantity'] > 0:
value_text = f"{data['total_quantity']:.2f} sh + ${data['total_dollar_amount']:,.0f}"
elif data['total_dollar_amount'] > 0:
value_text = f"${data['total_dollar_amount']:,.0f}"
else:
value_text = f"{data['total_quantity']:.2f} sh"
html += f"""
<div style='display: flex; justify-content: space-between; padding: 0.65rem 0; border-bottom: 1px solid rgba(255,255,255,0.05);'>
<span style='font-weight: 500; font-size: 0.95rem;'>{ticker}</span>
<span style='opacity: 0.7; font-size: 0.9rem;'>{value_text}</span>
</div>
"""
html += f"""
</div>
<div style='margin-top: 0.5rem; padding: 0.75rem; background: rgba(4, 140, 252, 0.1); border-radius: 6px; text-align: center;'>
<p style='margin: 0; font-size: 11px; opacity: 0.8;'>Click "Get Current Prices" for live valuation</p>
</div>
{warnings_html}
</div>
</div>
"""
return html
except Exception as e:
logger.error(f"Preview update error: {e}")
return f"<div style='color: #ef4444; padding: 1rem;'><p style='font-size: 12px;'>Error: {str(e)}</p></div>"
async def fetch_and_update_preview(portfolio_text: str) -> str:
"""Fetch current prices and update preview with calculated values.
Aggregates duplicate tickers and displays combined positions
with pricing information from market data sources.
Args:
portfolio_text: Raw portfolio input text
Returns:
HTML formatted preview with current prices
"""
if not portfolio_text.strip():
return update_live_preview(portfolio_text)
try:
holdings = parse_portfolio_input(portfolio_text)
if not holdings:
return update_live_preview(portfolio_text)
aggregated = aggregate_holdings(holdings)
# Get tickers that need price lookup (have quantity but no dollar_amount)
tickers_needing_prices = [
ticker for ticker, data in aggregated.items()
if data['total_quantity'] > 0 and data['total_dollar_amount'] == 0
]
# Fetch current prices
prices = {}
if tickers_needing_prices:
try:
from backend.mcp_router import mcp_router
quote_results = await mcp_router.call_yahoo_finance_mcp(
tool="get_quote",
params={"tickers": tickers_needing_prices}
)
if quote_results and isinstance(quote_results, list):
for quote in quote_results:
if isinstance(quote, dict) and 'ticker' in quote and 'price' in quote:
prices[quote['ticker']] = float(quote['price'])
except Exception as e:
logger.error(f"Error fetching prices: {e}")
# Calculate aggregated values
total_value = 0
aggregated_values = {}
for ticker, data in aggregated.items():
if data['total_dollar_amount'] > 0:
aggregated_values[ticker] = data['total_dollar_amount']
total_value += data['total_dollar_amount']
elif data['total_quantity'] > 0:
price = prices.get(ticker, 0)
value = data['total_quantity'] * price
aggregated_values[ticker] = value
total_value += value
unique_tickers = len(aggregated)
warnings = []
for data in aggregated.values():
warnings.extend(data['warnings'])
warnings_html = ""
if warnings:
warnings_html = f"""
<div style='margin-top: 0.75rem; padding: 0.75rem; background: rgba(251, 146, 60, 0.1); border: 1px solid rgba(251, 146, 60, 0.3); border-radius: 6px;'>
<p style='margin: 0 0 0.5rem 0; font-size: 11px; text-transform: uppercase; color: #fb923c; font-weight: 600;'>Duplicate/Mixed Entries</p>
"""
for warning in warnings:
warnings_html += f"<p style='margin: 0.25rem 0 0 0; font-size: 10px; opacity: 0.9;'>{warning}</p>"
warnings_html += "</div>"
html = f"""
<div style='padding: 1.5rem; display: flex; flex-direction: column;'>
<h3 style='color: #048CFC; margin-bottom: 1rem; margin-top: 0; font-size: 1.25rem;'>Portfolio Summary</h3>
<div style='display: grid; gap: 1rem; grid-template-rows: auto auto 1fr auto; height: 100%;'>
<div style='border-bottom: 1px solid rgba(255,255,255,0.1); padding-bottom: 0.75rem;'>
<p style='margin: 0; font-size: 12px; opacity: 0.7; text-transform: uppercase;'>Unique Tickers</p>
<p style='margin: 0.25rem 0 0 0; font-size: 28px; font-weight: 600;'>{unique_tickers}</p>
</div>
<div style='border-bottom: 1px solid rgba(255,255,255,0.1); padding-bottom: 0.75rem;'>
<p style='margin: 0; font-size: 12px; opacity: 0.7; text-transform: uppercase;'>Total Value</p>
<p style='margin: 0.25rem 0 0 0; font-size: 24px; font-weight: 600; color: #10b981;'>${total_value:,.2f}</p>
</div>
<div style='padding-right: 0.5rem; overflow-y: auto; min-height: 0;'>
<p style='margin: 0 0 0.75rem 0; font-size: 12px; opacity: 0.7; text-transform: uppercase;'>Holdings Breakdown (Aggregated)</p>
"""
for ticker in sorted(aggregated.keys()):
data = aggregated[ticker]
current_value = aggregated_values.get(ticker, 0)
weight = (current_value / total_value * 100) if total_value > 0 else 0
if data['total_dollar_amount'] > 0 and data['total_quantity'] > 0:
detail = f"{data['total_quantity']:.2f} sh + ${data['total_dollar_amount']:,.2f}"
elif data['total_dollar_amount'] > 0:
detail = f"${data['total_dollar_amount']:,.2f}"
elif data['total_quantity'] > 0:
price = prices.get(ticker, 0)
if price > 0:
detail = f"{data['total_quantity']:.2f} sh Γ ${price:.2f}"
else:
detail = f"{data['total_quantity']:.2f} sh (price unavailable)"
else:
detail = "β"
html += f"""
<div style='display: flex; justify-content: space-between; align-items: center; padding: 0.65rem 0; border-bottom: 1px solid rgba(255,255,255,0.05);'>
<div>
<div style='font-weight: 500; font-size: 0.95rem;'>{ticker}</div>
<div style='font-size: 11px; opacity: 0.6; margin-top: 2px;'>{detail}</div>
</div>
<div style='text-align: right;'>
<div style='font-weight: 600; color: #10b981; font-size: 0.95rem;'>${current_value:,.2f}</div>
<div style='font-size: 11px; opacity: 0.6; margin-top: 2px;'>{weight:.1f}%</div>
</div>
</div>
"""
html += f"""
</div>
<div style='margin-top: 0.5rem; padding: 0.75rem; background: rgba(16, 185, 129, 0.1); border-radius: 6px; text-align: center;'>
<p style='margin: 0; font-size: 11px; color: #10b981;'>Prices updated</p>
</div>
{warnings_html}
</div>
</div>
"""
return html
except Exception as e:
logger.error(f"Fetch preview error: {e}")
return f"<div style='color: #ef4444; padding: 1rem;'><p style='font-size: 12px;'>Error fetching prices: {str(e)}</p></div>"
def create_interface() -> gr.Blocks:
"""Create the main Gradio interface with single-page workflow.
Returns:
Gradio Blocks interface
"""
theme = get_financial_theme()
# Custom CSS for full-width and responsive design
custom_css = FINANCIAL_CSS + """
/* Full-width container */
.gradio-container {
max-width: unset;
width: 100%;
padding: 1.5rem 2rem;
}
/* Sidebar Styling - Works with gr.Sidebar */
#main-sidebar {
background: linear-gradient(135deg, #1e3a5f 0%, #2d5a7b 100%) !important;
}
#main-sidebar .sidebar-header {
color: white !important;
border-bottom: 2px solid rgba(255,255,255,0.2);
padding-bottom: 10px;
margin-bottom: 20px;
}
.nav-btn {
width: 100%;
margin-bottom: 10px;
text-align: left !important;
justify-content: flex-start !important;
background: rgba(255,255,255,0.05) !important;
border: 1px solid rgba(255,255,255,0.1) !important;
color: white !important;
}
.nav-btn:hover {
background: rgba(255,255,255,0.15) !important;
border-color: rgba(255,255,255,0.3) !important;
}
.sidebar-header {
color: white !important;
border-bottom: 2px solid rgba(255,255,255,0.2);
padding-bottom: 10px;
margin-bottom: 20px;
}
/* Ensure all large buttons have consistent font size */
button.lg,
.lg button {
font-size: 1rem !important;
font-weight: 600 !important;
}
/* Dark mode specific container adjustments - theme adaptive */
.dark .gradio-container {
background-color: var(--body-background-fill-dark);
}
/* Responsive adjustments */
@media (max-width: 768px) {
.gradio-container {
padding: 1rem;
}
}
/* Better spacing for input section */
.gr-group {
padding: 24px;
margin-bottom: 16px;
}
/* Format helper text styling - theme adaptive */
.format-helper {
font-size: 14px;
margin-top: 8px;
}
.dark .format-helper {
color: var(--body-text-color-subdued);
}
/* Chart containers with proper sizing */
.plot-container {
min-height: 400px;
}
/* Example buttons better spacing */
.gr-examples {
margin-top: 16px;
}
/* Improved markdown sections - theme adaptive */
.dark .markdown-text {
color: var(--body-text-color);
}
.dark .markdown-text h3 {
color: var(--body-text-color);
border-bottom: 1px solid var(--block-border-color);
padding-bottom: 8px;
}
/* Hero section styling */
#hero-section {
background: linear-gradient(135deg, #05478A 0%, #048CFC 50%, #11C7AA 100%);
padding: 3rem 2rem;
border-radius: 16px;
text-align: center;
margin-bottom: 2rem;
color: white;
}
#hero-section h2 {
font-size: 2.5rem;
font-weight: 700;
margin: 0 0 0.5rem 0;
letter-spacing: -0.025em;
}
#hero-section p {
font-size: 1.125rem;
opacity: 0.95;
margin: 0 0 1.5rem 0;
font-weight: 400;
}
#hero-section .value-props {
display: flex;
justify-content: center;
gap: 2rem;
flex-wrap: wrap;
margin-top: 1.5rem;
}
#hero-section .value-prop {
display: flex;
align-items: center;
gap: 0.5rem;
font-size: 0.95rem;
font-weight: 500;
}
/* Compact feature cards for 1x4 layout */
.feature-card-compact {
background: rgba(255, 255, 255, 0.05);
backdrop-filter: blur(10px);
-webkit-backdrop-filter: blur(10px);
border: 1px solid rgba(255, 255, 255, 0.2);
border-radius: 8px;
padding: 1rem 0.75rem;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
transition: transform 0.2s ease, box-shadow 0.2s ease, border-color 0.2s ease;
text-align: center;
min-height: 130px;
display: flex;
flex-direction: column;
justify-content: center;
}
.feature-card-compact:hover {
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15);
border-color: rgba(4, 140, 252, 0.4);
}
.feature-card-compact h4 {
color: #048CFC;
margin: 0.5rem 0 0.25rem 0;
font-weight: 600;
font-size: 0.9rem;
}
.feature-card-compact p {
color: var(--body-text-color);
opacity: 0.75;
font-size: 0.75rem;
margin: 0;
line-height: 1.4;
}
.feature-icon-compact {
font-size: 1.5rem;
margin-bottom: 0.25rem;
}
/* Task selection cards - Light mode (default) */
.task-card {
min-height: 160px;
padding: 1.5rem 1rem;
text-align: center;
white-space: pre-line;
transition: transform 0.2s ease, box-shadow 0.2s ease, border-color 0.2s ease;
border-radius: 12px;
background: white;
border: 1px solid #e5e7eb;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08);
color: #1f2937;
}
/* Dark mode task cards */
.dark .task-card {
background: rgba(255, 255, 255, 0.05);
border: 1px solid rgba(255, 255, 255, 0.2);
box-shadow: none;
color: inherit;
}
.task-card:hover:not(:disabled) {
transform: translateY(-3px);
box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15);
border-color: #288cfa;
}
.dark .task-card:hover:not(:disabled) {
box-shadow: 0 6px 16px rgba(0, 0, 0, 0.2);
border-color: rgba(4, 140, 252, 0.5);
}
.task-card:disabled {
opacity: 0.5;
cursor: not-allowed;
}
.task-card-icon {
font-size: 2.5rem;
margin-bottom: 0.75rem;
}
.task-card-title {
font-size: 1.1rem;
font-weight: 600;
margin-bottom: 0.5rem;
color: #1f2937;
}
.dark .task-card-title {
color: inherit;
}
.task-card-description {
font-size: 0.85rem;
color: #4b5563;
line-height: 1.4;
}
.dark .task-card-description {
color: inherit;
opacity: 0.8;
}
.coming-soon-badge {
font-size: 0.7rem;
background: rgba(255, 255, 255, 0.1);
padding: 0.25rem 0.5rem;
border-radius: 4px;
margin-top: 0.5rem;
display: inline-block;
}
/* Task page container */
.task-selection-container {
max-width: 900px;
margin: 0 auto;
padding: 2rem;
}
/* Preview card - scrollable with wider layout */
.preview-card {
background: rgba(255, 255, 255, 0.05);
backdrop-filter: blur(10px);
border: 1px solid rgba(255, 255, 255, 0.2);
border-radius: 12px;
padding: 0;
flex: 1 1 auto !important;
max-height: 800px !important;
min-height: 0;
overflow-y: auto;
overflow-x: hidden;
display: flex !important;
flex-direction: column !important;
box-sizing: border-box !important;
}
/* Custom scrollbar for preview card */
.preview-card::-webkit-scrollbar {
width: 8px;
}
.preview-card::-webkit-scrollbar-track {
background: rgba(255, 255, 255, 0.05);
border-radius: 4px;
}
.preview-card::-webkit-scrollbar-thumb {
background: rgba(4, 140, 252, 0.3);
border-radius: 4px;
}
.preview-card::-webkit-scrollbar-thumb:hover {
background: rgba(4, 140, 252, 0.5);
}
/* Firefox */
.preview-card {
scrollbar-width: thin;
scrollbar-color: rgba(4, 140, 252, 0.3) rgba(255, 255, 255, 0.05);
}
/* Scrollable markdown for bull/bear cases */
.scrollable-markdown {
max-height: 400px;
overflow-y: auto;
padding-right: 10px;
border: 1px solid rgba(255, 255, 255, 0.1);
border-radius: 8px;
padding: 1rem;
background: rgba(255, 255, 255, 0.02);
}
.scrollable-markdown::-webkit-scrollbar {
width: 6px;
}
.scrollable-markdown::-webkit-scrollbar-track {
background: rgba(255, 255, 255, 0.05);
border-radius: 3px;
}
.scrollable-markdown::-webkit-scrollbar-thumb {
background: rgba(4, 140, 252, 0.3);
border-radius: 3px;
}
/* Input card - unified with examples */
.input-card {
background: rgba(255, 255, 255, 0.05);
backdrop-filter: blur(10px);
border: 1px solid rgba(255, 255, 255, 0.2);
border-radius: 12px;
padding: 1.5rem;
margin-bottom: 0;
flex: 1 1 auto !important;
display: flex !important;
flex-direction: column !important;
overflow-y: visible !important;
overflow-x: visible !important;
max-height: none !important;
min-height: 0;
box-sizing: border-box !important;
gap: 0 !important;
}
/* Custom scrollbar for input card */
.input-card::-webkit-scrollbar {
width: 8px;
}
.input-card::-webkit-scrollbar-track {
background: rgba(255, 255, 255, 0.05);
border-radius: 4px;
}
.input-card::-webkit-scrollbar-thumb {
background: rgba(4, 140, 252, 0.3);
border-radius: 4px;
}
.input-card::-webkit-scrollbar-thumb:hover {
background: rgba(4, 140, 252, 0.5);
}
/* Firefox scrollbar */
.input-card {
scrollbar-width: thin;
scrollbar-color: rgba(4, 140, 252, 0.3) rgba(255, 255, 255, 0.05);
}
.examples-header {
margin-top: 0.25rem;
margin-bottom: 0.25rem;
padding-top: 0.5rem;
border-top: 1px solid rgba(255, 255, 255, 0.1);
color: #048CFC;
font-weight: 600;
font-size: 1rem;
}
/* Portfolio row - natural heights without stretching */
.portfolio-row {
display: flex !important;
flex-direction: row !important;
align-items: stretch !important;
height: 100% !important;
min-height: 600px !important;
}
.portfolio-row > .gr-column {
display: flex !important;
flex-direction: column !important;
flex: 1 1 0% !important;
height: 100% !important;
min-height: 100% !important;
max-height: 100% !important;
gap: 0 !important;
overflow: visible !important;
}
.portfolio-row > * {
flex: 1 !important;
}
.portfolio-row .block {
display: flex !important;
flex-direction: column !important;
flex: 1 !important;
}
/* Button fixed sizing - prevent vertical expansion */
.portfolio-row button {
flex: 0 0 45px !important;
width: 100% !important;
height: 45px !important;
min-height: 45px !important;
max-height: 45px !important;
}
/* Flex items min-height to prevent overflow */
.input-card > *:not([class*="dropdown"]),
.preview-card > *:not([class*="dropdown"]) {
min-height: 0;
}
/* Dropdown styling and z-index */
.gr-dropdown {
z-index: 999 !important;
position: relative !important;
}
.gr-dropdown-container {
z-index: 999 !important;
overflow: visible !important;
position: relative !important;
}
/* Dropdown menu positioning - appear below button */
.gr-dropdown ul[role="listbox"],
.gr-dropdown .options,
.gr-dropdown-menu {
z-index: 9999 !important;
overflow: visible !important;
position: absolute !important;
top: 100% !important;
left: 0 !important;
width: 100% !important;
max-height: 300px !important;
overflow-y: auto !important;
}
/* Loading page styling */
.loading-header {
animation: fadeIn 0.5s ease-in;
}
.loading-message {
text-align: center;
font-size: 1.1rem;
color: #048CFC;
padding: 2rem;
min-height: 100px;
display: flex;
align-items: center;
justify-content: center;
}
@keyframes fadeIn {
from {
opacity: 0;
transform: translateY(-10px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
/* Example buttons styling */
.gr-examples button {
background: linear-gradient(135deg, rgba(4, 140, 252, 0.1), rgba(17, 199, 170, 0.1));
border: 1px solid rgba(4, 140, 252, 0.3);
border-radius: 8px;
padding: 0.75rem 1rem;
font-size: 0.9rem;
transition: all 0.2s ease;
}
.gr-examples button:hover {
background: linear-gradient(135deg, rgba(4, 140, 252, 0.2), rgba(17, 199, 170, 0.2));
border-color: rgba(4, 140, 252, 0.6);
transform: translateY(-2px);
}
/* Mobile responsive - feature cards stack on small screens */
@media (max-width: 1024px) {
.feature-card-compact {
padding: 1.25rem;
min-height: auto;
}
}
/* Responsive adjustments */
@media (max-width: 768px) {
#hero-section {
padding: 2rem 1rem;
}
#hero-section h2 {
font-size: 1.75rem;
}
#hero-section p {
font-size: 1rem;
}
#hero-section .value-props {
gap: 1rem;
}
.feature-card-compact {
padding: 1.25rem;
}
.preview-card {
max-height: 400px;
}
}
/* Accessibility - WCAG AA Colour Contrast Improvements */
.demo-subtitle {
color: rgba(255, 255, 255, 0.95) !important; /* Increased from 0.7 for better contrast */
font-size: 14px;
}
.disclaimer-text {
color: rgba(255, 255, 255, 0.95) !important; /* Increased contrast */
font-size: 13px;
}
/* Update all placeholder text for better visibility */
input::placeholder, textarea::placeholder {
color: rgba(255, 255, 255, 0.7) !important; /* Increased from 0.5 */
}
/* Add focus indicators for keyboard navigation */
input:focus, textarea:focus, button:focus, select:focus {
outline: 3px solid #4A9EFF !important;
outline-offset: 2px;
}
/* Validation message colours with better contrast */
#signup-email-validation, #password-match-validation {
font-size: 0.85rem;
margin-top: 0.25rem;
font-weight: 500;
}
"""
with gr.Blocks(
title="Portfolio Intelligence Platform",
theme=theme,
css=custom_css,
fill_width=True,
fill_height=True
) as demo:
# Session state for authentication
session_state = gr.State({})
# Pagination state for history views
history_current_page = gr.State(1)
history_current_page_results = gr.State(1)
# Hero Section with auth status
with gr.Row():
gr.HTML(
"""
<div id="hero-section">
<h2>Portfolio Intelligence Platform</h2>
<p>AI-powered portfolio analysis with transparent multi-agent MCP orchestration</p>
<div class="value-props">
<div class="value-prop">
<span>9 MCP Servers</span>
</div>
<div class="value-prop">
<span>Quantitative Models</span>
</div>
<div class="value-prop">
<span>Claude Sonnet 4.5</span>
</div>
</div>
</div>
""",
elem_classes="hero-container"
)
# User info and logout button
with gr.Row():
with gr.Column(scale=4):
user_info = gr.Markdown("Not logged in", elem_id="user-info")
with gr.Column(scale=1):
logout_btn = gr.Button("Sign Out", variant="secondary", size="sm", visible=False)
# Navigation sidebar using Gradio's native component
with gr.Sidebar(position="left", open=False, visible=False, elem_id="main-sidebar") as sidebar:
gr.Markdown("## Navigation", elem_classes="sidebar-header")
# Navigation options
nav_new_analysis = gr.Button("π Home", variant="secondary", size="lg", elem_classes="nav-btn")
nav_view_history = gr.Button("π View History", variant="secondary", size="lg", elem_classes="nav-btn")
gr.Markdown("---")
# User section (when logged in)
with gr.Group(visible=False) as sidebar_user_section:
gr.Markdown("### Account")
sidebar_user_email = gr.Markdown("")
nav_profile_btn = gr.Button("π€ Profile", variant="secondary", size="sm")
nav_signout_btn = gr.Button("πͺ Sign Out", variant="secondary", size="sm")
# Authentication container
with gr.Group(visible=True, elem_id="auth-container") as login_container:
gr.Markdown("## π Sign In to Continue")
gr.Markdown("Please sign in or create an account to analyse your portfolio")
with gr.Tabs():
# Login Tab
with gr.Tab("Sign In"):
login_email = gr.Textbox(
label="Email Address",
placeholder="your.email@example.com",
type="email",
elem_id="login-email"
)
login_password = gr.Textbox(
label="Password",
placeholder="Enter your password",
type="password",
elem_id="login-password"
)
forgot_password_btn = gr.Button(
"Forgot password?",
variant="secondary",
size="sm",
elem_classes="forgot-password-link"
)
login_btn = gr.Button("Sign In", variant="primary", size="lg")
login_message = gr.Markdown("")
# Signup Tab
with gr.Tab("Create Account"):
signup_username = gr.Textbox(
label="Username (optional)",
placeholder="Choose a username",
elem_id="signup-username"
)
signup_email = gr.Textbox(
label="Email Address",
placeholder="your.email@example.com",
type="email",
elem_id="signup-email"
)
signup_email_validation = gr.Markdown("", elem_id="signup-email-validation")
signup_password = gr.Textbox(
label="Password",
placeholder="At least 15 characters (NIST 2024 requirement)",
type="password",
elem_id="signup-password"
)
signup_password_strength = gr.Markdown("", elem_id="password-strength")
signup_confirm = gr.Textbox(
label="Confirm Password",
placeholder="Re-enter your password",
type="password",
elem_id="signup-confirm-password"
)
signup_password_match = gr.Markdown("", elem_id="password-match-validation")
gr.Markdown(
"*By signing up, you agree this is for educational purposes only and not financial advice.*",
elem_classes="disclaimer-text"
)
signup_btn = gr.Button("Create Account", variant="primary", size="lg")
signup_message = gr.Markdown("")
# Demo mode option
gr.Markdown("---")
gr.Markdown("## π― Or Try Without Signing Up")
demo_btn = gr.Button(
"Try Demo",
variant="secondary",
size="lg"
)
gr.Markdown("*1 free analysis per day β’ No account required*", elem_classes="demo-subtitle")
demo_message = gr.Markdown("")
# Modal 1: Request password reset (only email input)
with gr.Group(visible=False, elem_id="password-reset-modal") as password_reset_modal:
gr.Markdown("## Request Password Reset")
gr.Markdown("Enter your email address and we'll send you a password reset link.")
reset_email = gr.Textbox(
label="Email Address",
placeholder="your.email@example.com",
type="email",
elem_id="reset-email"
)
with gr.Row():
reset_submit_btn = gr.Button("Send Reset Link", variant="primary", size="lg")
reset_cancel_btn = gr.Button("Cancel", variant="secondary", size="lg")
reset_message = gr.Markdown("")
# Modal 2: Set new password (only appears after clicking email link)
with gr.Group(visible=False, elem_id="password-update-modal") as password_update_modal:
gr.Markdown("## Set New Password")
gr.Markdown("Enter your new password below.")
# Hidden fields to store recovery token_hash and email (populated by JavaScript)
recovery_token_hash = gr.Textbox(visible=False, elem_id="recovery-token-hash")
recovery_email = gr.Textbox(
label="Email Address",
placeholder="your.email@example.com",
type="email",
info="Enter the email address you used to request the password reset",
elem_id="recovery-email"
)
new_password = gr.Textbox(
label="New Password",
placeholder="At least 15 characters (NIST 2024 requirement)",
type="password",
elem_id="new-password"
)
confirm_new_password = gr.Textbox(
label="Confirm New Password",
placeholder="Re-enter your new password",
type="password",
elem_id="confirm-new-password"
)
with gr.Row():
update_password_btn = gr.Button("Update Password", variant="primary", size="lg")
update_cancel_btn = gr.Button("Cancel", variant="secondary", size="lg")
update_password_message = gr.Markdown("")
# Task Selection Page (shown after authentication)
with gr.Group(visible=False, elem_classes="task-selection-container") as task_page:
gr.Markdown("## What would you like to do?", elem_classes="section-title")
with gr.Row(equal_height=True):
# Analyse Portfolio - enabled
with gr.Column(scale=1, min_width=200):
task_analyse_btn = gr.Button(
value="π\n\nAnalyse Portfolio\n\nGet comprehensive analysis of your current holdings",
elem_classes=["task-card"],
variant="primary",
size="lg"
)
# Build Portfolio - enabled
with gr.Column(scale=1, min_width=200):
task_build_btn = gr.Button(
value="ποΈ\n\nBuild Portfolio\n\nAI helps construct a portfolio based on your goals",
elem_classes=["task-card"],
variant="primary",
interactive=True,
size="lg"
)
# Compare Strategies - enabled
with gr.Column(scale=1, min_width=200):
task_compare_btn = gr.Button(
value="βοΈ\n\nCompare Strategies\n\nSee bull vs bear perspectives on your investments",
elem_classes=["task-card"],
variant="primary",
interactive=True,
size="lg"
)
# Test Changes
with gr.Column(scale=1, min_width=200):
task_test_btn = gr.Button(
value="π¬\n\nTest Changes\n\nPreview impact before making portfolio changes",
elem_classes=["task-card"],
variant="secondary",
size="lg"
)
# Build Portfolio Page (shown when Build Portfolio task selected)
with gr.Group(visible=False, elem_classes="build-portfolio-container") as build_page:
gr.Markdown("## Build Your Portfolio", elem_classes="section-title")
gr.Markdown("Tell us about your investment goals and we'll build a portfolio for you.")
with gr.Row(equal_height=True):
# Left column: Goal settings
with gr.Column(scale=2):
with gr.Group(elem_classes="input-card"):
build_goals = gr.CheckboxGroup(
choices=["Growth", "Income", "Capital Preservation", "Speculation"],
label="Investment Goals",
info="Select one or more investment objectives"
)
build_risk_tolerance = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Risk Tolerance",
info="1 = Very Conservative, 10 = Very Aggressive"
)
build_constraints = gr.Textbox(
label="Constraints (Optional)",
placeholder="e.g., 'No crypto, ESG focused, minimum 10 stocks, max 5% per position'",
lines=3,
info="Any specific requirements or restrictions"
)
with gr.Row():
build_submit_btn = gr.Button(
"Build My Portfolio",
variant="primary",
size="lg"
)
build_back_btn = gr.Button(
"Back",
variant="secondary",
size="lg"
)
# Right column: Results
with gr.Column(scale=3):
# Agent activity stream
build_agent_chat = gr.Chatbot(
label="π€ Agent Activity",
type="messages",
height=400,
visible=False,
show_copy_button=True,
elem_classes="agent-chat"
)
with gr.Group(elem_classes="preview-card", visible=False) as build_results_container:
build_status = gr.Markdown("", elem_classes="build-status")
# Audio narration button and player
with gr.Row():
build_audio_btn = gr.Button(
"π Listen to Portfolio",
variant="secondary",
size="sm",
visible=False
)
with gr.Row():
build_audio_player = gr.Audio(
label="Portfolio Summary Audio",
interactive=False,
visible=False,
show_download_button=True
)
with gr.Row():
build_regenerate_btn = gr.Button("Regenerate", variant="secondary", size="sm")
# Compare Strategies Page (shown when Compare Strategies task selected)
with gr.Group(visible=False, elem_classes="compare-strategies-container") as compare_page:
gr.Markdown("## Compare Strategies", elem_classes="section-title")
gr.Markdown("Get bull and bear perspectives on your portfolio through multi-agent debate.")
with gr.Row(equal_height=True):
# Left column: Portfolio input
with gr.Column(scale=2):
with gr.Group(elem_classes="input-card"):
compare_portfolio_input = gr.Textbox(
placeholder="AAPL 50\nTSLA 25 shares\nNVDA $5000",
label="Portfolio Holdings",
lines=6,
info="Enter your holdings to analyse"
)
with gr.Row():
compare_submit_btn = gr.Button(
"Run Analysis",
variant="primary",
size="lg"
)
compare_back_btn = gr.Button(
"Back",
variant="secondary",
size="lg"
)
# Right column: Results
with gr.Column(scale=3):
# Debate activity stream
compare_debate_chat = gr.Chatbot(
label="π Advisory Council Debate",
type="messages",
height=500,
visible=False,
show_copy_button=True,
elem_classes="debate-chat"
)
with gr.Group(elem_classes="preview-card", visible=False) as compare_results_container:
compare_status = gr.Markdown("", elem_classes="compare-status")
# Bull vs Bear side-by-side
with gr.Row():
with gr.Column():
gr.Markdown("### Bull Case")
compare_bull_case = gr.Markdown("", elem_classes="scrollable-markdown")
compare_bull_confidence = gr.Number(label="Confidence %", interactive=False)
with gr.Column():
gr.Markdown("### Bear Case")
compare_bear_case = gr.Markdown("", elem_classes="scrollable-markdown")
compare_bear_confidence = gr.Number(label="Confidence %", interactive=False)
# Consensus
gr.Markdown("### Consensus Recommendation")
compare_consensus = gr.Markdown("")
compare_stance = gr.Textbox(label="Stance", interactive=False)
# Audio debate button and player
with gr.Row():
compare_audio_btn = gr.Button(
"π Listen to Debate",
variant="secondary",
size="sm",
visible=False
)
with gr.Row():
compare_audio_player = gr.Audio(
label="Advisory Council Debate Audio",
interactive=False,
visible=False,
show_download_button=True
)
# Debate transcript
with gr.Accordion("View Full Debate", open=False):
compare_debate_transcript = gr.JSON(label="Debate Rounds")
# Test Changes Page (shown when Test Changes task selected)
with gr.Group(visible=False, elem_classes="test-changes-container") as test_page:
gr.Markdown("## Test Portfolio Changes", elem_classes="section-title")
gr.Markdown("Preview the impact of changes before making them.")
with gr.Row(equal_height=True):
# Left column: Portfolio and changes input
with gr.Column(scale=2):
with gr.Group(elem_classes="input-card"):
test_portfolio_input = gr.Textbox(
placeholder="AAPL 30%\nTSLA 25%\nNVDA 25%\nBND 20%",
label="Current Portfolio (ticker weight%)",
lines=6,
info="Enter your current portfolio allocations"
)
test_changes_input = gr.Textbox(
placeholder="sell TSLA 10\nbuy VTI 10",
label="Proposed Changes",
lines=4,
info="Format: action ticker amount (e.g., 'sell TSLA 10' or 'buy VTI 15')"
)
test_portfolio_value = gr.Number(
label="Portfolio Value ($)",
value=100000,
info="Total portfolio value for calculations"
)
with gr.Row():
test_submit_btn = gr.Button(
"Run Simulation",
variant="primary",
size="lg"
)
test_back_btn = gr.Button(
"Back",
variant="secondary",
size="lg"
)
# Right column: Results
with gr.Column(scale=3):
with gr.Group(elem_classes="preview-card", visible=False) as test_results_container:
test_status = gr.Markdown("", elem_classes="test-status")
# Side-by-side metrics comparison
with gr.Row():
with gr.Column():
gr.Markdown("### Current Portfolio")
test_current_metrics = gr.Dataframe(
headers=["Metric", "Value"],
label="Current Metrics",
interactive=False
)
with gr.Column():
gr.Markdown("### After Changes")
test_simulated_metrics = gr.Dataframe(
headers=["Metric", "Value"],
label="Simulated Metrics",
interactive=False
)
# Impact summary
gr.Markdown("### Impact Analysis")
test_impact_summary = gr.Dataframe(
headers=["Metric", "Current", "Simulated", "Change", "% Change"],
label="Impact Summary",
interactive=False
)
# Stress test comparison
with gr.Accordion("Stress Test Comparison", open=False):
test_stress_comparison = gr.Dataframe(
headers=["Scenario", "Shock %", "Current Loss", "Simulated Loss", "Improvement"],
label="Stress Tests",
interactive=False
)
# Recommendations and assessment
test_assessment = gr.Markdown("", elem_classes="test-assessment")
test_recommendations = gr.Markdown("", label="Recommendations")
# Input Page with side-by-side layout (hidden until authenticated)
with gr.Group(visible=False) as input_page:
# Side-by-side input and preview (2:3 ratio for wider preview)
with gr.Row(equal_height=True, elem_classes="portfolio-row"):
# Left column: Input + Examples (unified card)
with gr.Column(scale=2):
with gr.Group(elem_classes="input-card"):
portfolio_input = gr.Textbox(
placeholder="AAPL 50\nTSLA 25 shares\nNVDA $5000\nGLD 10 shares",
label="Portfolio Holdings",
lines=8,
info="Enter your holdings below (see examples for format)"
)
# Load past portfolio
load_past_portfolio_dropdown = gr.Dropdown(
choices=[],
label="Load Past Portfolio (Last 3)",
interactive=True,
elem_id="load-past-portfolio-dropdown",
info="Your 3 most recent portfolios"
)
# Persona Selection
persona_choices = [
("Standard Analysis", "standard"),
("Warren Buffett - Value Investing", "warren_buffett"),
("Cathie Wood - Innovation & Growth", "cathie_wood"),
("Ray Dalio - Macro & Diversification", "ray_dalio"),
]
persona_dropdown = gr.Dropdown(
choices=persona_choices,
value="standard",
label="Analysis Persona",
info="Choose an investor perspective for the analysis"
)
# Roast Mode Toggle
roast_mode_toggle = gr.Checkbox(
label="Roast Mode",
value=False,
info="Enable brutal honesty mode for portfolio critique (only works with Standard Analysis)"
)
# Action buttons
with gr.Row():
analyse_btn = gr.Button(
"Analyse Portfolio",
variant="primary",
size="lg",
min_width=290
)
input_back_btn = gr.Button(
"Back",
variant="secondary",
size="lg",
min_width=290
)
# Examples integrated as simple buttons
gr.Markdown("### Example Portfolios", elem_classes="examples-header")
with gr.Row():
tech_btn = gr.Button("Tech Growth", size="sm", scale=1)
conservative_btn = gr.Button("Conservative Income", size="sm", scale=1)
balanced_btn = gr.Button("Balanced 60/40", size="sm", scale=1)
global_btn = gr.Button("Global Diversified", size="sm", scale=1)
risk_btn = gr.Button("Single Stock Risk", size="sm", scale=1)
# Right column: Live preview (wider at scale=3)
with gr.Column(scale=3):
preview_output = gr.HTML(
value=update_live_preview(""),
elem_classes="preview-card"
)
refresh_prices_btn = gr.Button(
"π Get Current Prices",
variant="primary",
size="sm",
scale=1
)
# JavaScript to detect password reset token_hash in URL and populate hidden fields
# This runs on page load and checks for recovery token in query parameters
demo.load(
fn=None, # No Python processing needed - JavaScript directly sets the value
inputs=[],
outputs=[recovery_token_hash],
js="""
function() {
// Check for recovery token_hash in URL query parameters (PKCE flow)
const params = new URLSearchParams(window.location.search);
const tokenHash = params.get('token_hash') || '';
const typeParam = params.get('type') || '';
if (tokenHash && typeParam === 'recovery') {
console.log('Password reset token detected');
// Clean up URL (remove query parameters)
window.history.replaceState({}, document.title, window.location.pathname);
return tokenHash;
}
return '';
}
"""
)
# Add click handlers for example buttons
tech_btn.click(
fn=lambda: "AAPL 50 shares\nTSLA 25 shares\nNVDA 30 shares\nMETA 20 shares",
outputs=portfolio_input,
show_api=False
)
conservative_btn.click(
fn=lambda: "VOO 100 shares\nVTI 75 shares\nSCHD 50 shares\nTLT 40 shares\nVXUS 60 shares",
outputs=portfolio_input,
show_api=False
)
balanced_btn.click(
fn=lambda: "VTI $25000\nVXUS $15000\nBND $15000\nGLD $5000",
outputs=portfolio_input,
show_api=False
)
global_btn.click(
fn=lambda: "VTI $15000\nVXUS $10000\nVWO $5000\nBND $10000\nGLD $3000\nVNQ $2000",
outputs=portfolio_input,
show_api=False
)
risk_btn.click(
fn=lambda: "TSLA 100 shares",
outputs=portfolio_input,
show_api=False
)
# Feature highlights grid (1x4 compact layout)
gr.Markdown("### Key Features", elem_classes="section-title")
with gr.Row():
with gr.Column(scale=1, min_width=200):
gr.HTML(
"""
<div class="feature-card-compact">
<div class="feature-icon-compact">π§ </div>
<h4>Smart Analysis</h4>
<p>HRP, Black-Litterman, VaR/CVaR</p>
</div>
"""
)
with gr.Column(scale=1, min_width=200):
gr.HTML(
"""
<div class="feature-card-compact">
<div class="feature-icon-compact">β‘</div>
<h4>Fast Results</h4>
<p>1-2 minutes</p>
</div>
"""
)
with gr.Column(scale=1, min_width=200):
gr.HTML(
"""
<div class="feature-card-compact">
<div class="feature-icon-compact">π</div>
<h4>Secure</h4>
<p>No data stored</p>
</div>
"""
)
with gr.Column(scale=1, min_width=200):
gr.HTML(
"""
<div class="feature-card-compact">
<div class="feature-icon-compact">β¨</div>
<h4>AI Powered</h4>
<p>Claude Sonnet 4.5</p>
</div>
"""
)
# Loading Page
with gr.Group(visible=False) as loading_page:
with gr.Row():
with gr.Column():
gr.HTML(
"""
<div style='text-align: center; padding: 4rem 2rem;'>
<div style='font-size: 3rem; margin-bottom: 1rem;'>β‘</div>
<h2 style='color: #048CFC; margin-bottom: 1rem;'>Analysing Your Portfolio</h2>
</div>
""",
elem_classes="loading-header"
)
loading_message = gr.Markdown(
value="Initialising analysis...",
elem_classes="loading-message",
)
gr.HTML(
"""
<div style='text-align: center; padding: 2rem; color: #999; font-size: 14px;'>
<p>This may take 1-2 minutes as we run deep learning models on your portfolio</p>
</div>
"""
)
# Results Page (tabbed interface)
with gr.Group(visible=False) as results_page:
# Header with actions (always visible)
with gr.Row(elem_id="results-header"):
with gr.Column(scale=3):
gr.Markdown("# Portfolio Analysis Results", elem_classes="page-title")
with gr.Column(scale=1):
with gr.Row():
export_pdf_btn = gr.DownloadButton("π Export PDF", size="sm")
export_csv_btn = gr.DownloadButton("π Export CSV", size="sm")
# Main tabbed interface
with gr.Tabs() as results_tabs:
# Tab 1: Analysis Results
with gr.Tab("π Analysis Results"):
with gr.Column():
analysis_output = gr.Markdown("")
# Audio narration button and player
with gr.Row():
analysis_audio_btn = gr.Button(
"π Listen to Analysis",
variant="secondary",
size="sm",
visible=False
)
with gr.Row():
analysis_audio_player = gr.Audio(
label="Audio Summary",
interactive=False,
visible=False,
show_download_button=True
)
# Performance Metrics Accordion (progressive disclosure)
with gr.Accordion("Performance Metrics & Reasoning", open=False):
performance_metrics_output = gr.Markdown("")
# Tab 2: Dashboard
with gr.Tab("π Dashboard"):
# Top row - Portfolio allocation + Risk metrics
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=400):
allocation_plot = gr.Plot(label="Portfolio Allocation", container=True)
with gr.Column(scale=1, min_width=400):
risk_plot = gr.Plot(label="Risk Metrics Dashboard", container=True)
# Middle row - Performance chart
with gr.Row():
performance_plot = gr.Plot(label="Historical Performance", container=True)
# Bottom row - Correlation + Optimisation
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=400):
correlation_plot = gr.Plot(label="Asset Correlation Matrix", container=True)
with gr.Column(scale=1, min_width=400):
optimization_plot = gr.Plot(label="Optimisation Methods Comparison", container=True)
# Tab 3: Tax Analysis
with gr.Tab("π° Tax Analysis"):
gr.Markdown("Analyse tax implications and identify tax-loss harvesting opportunities.")
# Top row: Input controls
with gr.Row():
tax_filing_status = gr.Dropdown(
choices=[
("Single", "single"),
("Married Filing Jointly", "married_joint"),
("Married Filing Separately", "married_separate"),
("Head of Household", "head_of_household"),
],
value="single",
label="Filing Status",
info="Your tax filing status"
)
tax_annual_income = gr.Slider(
minimum=0,
maximum=1000000,
value=75000,
step=5000,
label="Annual Income ($)",
info="Total taxable income"
)
tax_cost_basis_method = gr.Dropdown(
choices=[
("First In, First Out (FIFO)", "fifo"),
("Last In, First Out (LIFO)", "lifo"),
("Highest In, First Out (HIFO)", "hifo"),
("Average Cost", "average"),
],
value="fifo",
label="Cost Basis Method",
info="Method for calculating gains/losses"
)
# Cost basis input section
gr.Markdown("### Purchase Information")
gr.Markdown(
"Enter your purchase details for accurate tax calculations. "
"Click 'Load Holdings' to pre-populate with current holdings, then fill in purchase prices and dates."
)
with gr.Row():
tax_load_holdings_btn = gr.Button("Load Holdings", size="sm")
gr.Markdown(
"*Accepted date formats: 9/3/17, Sep 3, 2017, 2017-09-03, etc.*",
elem_classes="text-muted"
)
tax_cost_basis_input = gr.Dataframe(
headers=["Ticker", "Shares", "Purchase Price", "Purchase Date"],
datatype=["str", "number", "number", "str"],
col_count=(4, "fixed"),
row_count=(5, "dynamic"),
interactive=True,
label="Cost Basis Information",
value=[],
)
tax_calculate_btn = gr.Button("Calculate Tax Impact", variant="primary")
# Bottom row: Analysis output
tax_analysis_output = gr.Markdown("")
# Tab 4: Stress Testing
with gr.Tab("π² Stress Testing"):
gr.Markdown("Test your portfolio's resilience against historical crises and market scenarios.")
with gr.Row():
with gr.Column(scale=1):
scenario_choices = [
("Monte Carlo Simulation (10,000 paths)", "monte_carlo"),
("All Scenarios Comparison", "all_scenarios"),
("2008 Financial Crisis", "2008_financial_crisis"),
("COVID-19 Pandemic (2020)", "covid_2020"),
("Dot-com Bubble (2000-2002)", "dotcom_bubble"),
("European Debt Crisis (2011)", "european_debt_2011"),
("China Devaluation (2015)", "china_2015"),
("Inflation Shock (2022)", "inflation_2022"),
("Severe Recession (Hypothetical)", "severe_recession"),
("Stagflation (Hypothetical)", "stagflation"),
("Flash Crash (Hypothetical)", "flash_crash"),
]
stress_scenario_dropdown = gr.Dropdown(
choices=scenario_choices,
value="monte_carlo",
label="Select Stress Scenario",
info="Choose a historical crisis or simulation method"
)
with gr.Row():
stress_n_sims = gr.Slider(
minimum=1000,
maximum=50000,
value=10000,
step=1000,
label="Monte Carlo Simulations",
info="More simulations = more accuracy (slower)"
)
stress_horizon = gr.Slider(
minimum=30,
maximum=756,
value=252,
step=30,
label="Time Horizon (days)",
info="1 year = 252 trading days"
)
stress_test_btn = gr.Button("Run Stress Test", variant="primary", size="lg")
# Stress test results
with gr.Column():
stress_summary = gr.Markdown("", visible=True)
with gr.Tabs():
with gr.Tab("Dashboard"):
stress_dashboard_plot = gr.Plot(label="Stress Test Dashboard")
with gr.Tab("Monte Carlo Paths"):
stress_mc_plot = gr.Plot(label="Monte Carlo Simulation Paths")
with gr.Tab("Scenario Comparison"):
stress_scenario_plot = gr.Plot(label="All Scenarios Comparison")
with gr.Tab("Drawdown Analysis"):
stress_drawdown_plot = gr.Plot(label="Maximum Drawdown Distribution")
# Tab 5: History (embedded)
with gr.Tab("π History"):
gr.Markdown("View your previous portfolio analyses")
# Search and filters
with gr.Row():
history_search_results = gr.Textbox(
placeholder="Search by ticker, date...",
label="Search",
scale=3,
elem_id="history-search-results"
)
history_date_filter_results = gr.Dropdown(
choices=[
("All Time", "all"),
("Last 7 Days", "7d"),
("Last 30 Days", "30d"),
("Last 90 Days", "90d"),
],
value="all",
label="Date Range",
scale=1
)
history_refresh_btn_results = gr.Button("π Refresh", size="sm", scale=1)
history_table_results = gr.Dataframe(
headers=["ID", "Date", "Holdings", "Risk Tolerance", "AI Synthesis Preview"],
datatype=["str", "str", "str", "str", "str"],
interactive=False,
wrap=True,
elem_id="history-table-results",
column_widths=["5%", "15%", "25%", "15%", "40%"]
)
# Pagination controls
with gr.Row():
history_prev_btn_results = gr.Button("β Previous", size="sm", scale=1)
history_page_info_results = gr.Markdown("Page 1 of 1", elem_id="history-page-info-results")
history_next_btn_results = gr.Button("Next β", size="sm", scale=1)
with gr.Accordion("Selected Analysis Details", open=False):
history_details_output_results = gr.Markdown("")
# History Page (Enhancement #4 - Historical Analysis Storage)
with gr.Group(visible=False) as history_page:
gr.Markdown("### Analysis History")
gr.Markdown("View your previous portfolio analyses")
with gr.Row():
with gr.Column(scale=4):
# Search and filters
with gr.Row():
history_search = gr.Textbox(
placeholder="Search by ticker, date...",
label="Search",
scale=3,
elem_id="history-search"
)
history_date_filter = gr.Dropdown(
choices=[
("All Time", "all"),
("Last 7 Days", "7d"),
("Last 30 Days", "30d"),
("Last 90 Days", "90d"),
],
value="all",
label="Date Range",
scale=1
)
history_refresh_btn = gr.Button("π Refresh", size="sm", scale=1)
with gr.Column(scale=1):
back_to_input_btn = gr.Button("New Analysis", variant="secondary")
history_table = gr.Dataframe(
headers=["ID", "Date", "Holdings", "Risk Tolerance", "AI Synthesis Preview"],
datatype=["str", "str", "str", "str", "str"],
interactive=False,
wrap=True,
elem_id="history-table",
column_widths=["5%", "15%", "25%", "15%", "40%"]
)
# Pagination controls
with gr.Row():
history_prev_btn = gr.Button("β Previous", size="sm", scale=1)
history_page_info = gr.Markdown("Page 1 of 1", elem_id="history-page-info")
history_next_btn = gr.Button("Next β", size="sm", scale=1)
with gr.Accordion("Selected Analysis Details", open=False) as history_details:
history_details_output = gr.Markdown("")
view_history_btn = gr.Button("View Analysis History", variant="secondary", visible=False)
# Event handlers
def show_input_page():
return {
task_page: gr.update(visible=False),
input_page: gr.update(visible=True),
results_page: gr.update(visible=False),
history_page: gr.update(visible=False),
build_page: gr.update(visible=False),
compare_page: gr.update(visible=False),
test_page: gr.update(visible=False)
}
def show_task_page():
return {
task_page: gr.update(visible=True),
input_page: gr.update(visible=False),
results_page: gr.update(visible=False),
history_page: gr.update(visible=False),
build_page: gr.update(visible=False),
compare_page: gr.update(visible=False),
test_page: gr.update(visible=False)
}
def show_build_page():
return {
task_page: gr.update(visible=False),
input_page: gr.update(visible=False),
results_page: gr.update(visible=False),
history_page: gr.update(visible=False),
build_page: gr.update(visible=True),
compare_page: gr.update(visible=False),
test_page: gr.update(visible=False)
}
def show_compare_page():
return {
task_page: gr.update(visible=False),
input_page: gr.update(visible=False),
results_page: gr.update(visible=False),
history_page: gr.update(visible=False),
build_page: gr.update(visible=False),
compare_page: gr.update(visible=True),
test_page: gr.update(visible=False)
}
def show_test_page():
return {
task_page: gr.update(visible=False),
input_page: gr.update(visible=False),
results_page: gr.update(visible=False),
history_page: gr.update(visible=False),
build_page: gr.update(visible=False),
compare_page: gr.update(visible=False),
test_page: gr.update(visible=True)
}
# ============================================================
# AUDIO GENERATION HANDLERS
# ============================================================
async def generate_analysis_audio():
"""Generate audio narration for portfolio analysis on-demand."""
global LAST_ANALYSIS_STATE
if not LAST_ANALYSIS_STATE:
logger.warning("No analysis state available for audio generation")
return (
gr.update(visible=False), # audio_player
gr.update(visible=True), # button
)
try:
from backend.audio.tts_service import TTSService
tts = TTSService()
if not tts.is_available():
logger.warning("TTS service not available")
return (
gr.update(visible=False),
gr.update(visible=True),
)
# Extract analysis text
ai_synthesis = LAST_ANALYSIS_STATE.get("ai_synthesis", "")
recommendations = LAST_ANALYSIS_STATE.get("recommendations", [])
if not ai_synthesis and not recommendations:
logger.warning("No analysis content available")
return (
gr.update(visible=False),
gr.update(visible=True),
)
logger.info("Generating audio for analysis...")
# Generate audio
audio_path = await tts.generate_analysis_narration(
analysis_text=ai_synthesis[:1000], # Limit to 1000 chars
recommendations=recommendations
)
logger.info(f"Audio generated: {audio_path}")
return (
gr.update(value=audio_path, visible=True), # Show audio player
gr.update(visible=True), # Keep button visible
)
except Exception as e:
logger.error(f"Audio generation failed: {e}")
return (
gr.update(visible=False),
gr.update(visible=True),
)
async def generate_build_audio():
"""Generate audio narration for built portfolio on-demand."""
global LAST_BUILD_RESULT
if not LAST_BUILD_RESULT:
logger.warning("No build result available for audio generation")
return (
gr.update(visible=False),
gr.update(visible=True),
)
try:
from backend.audio.tts_service import TTSService
tts = TTSService()
if not tts.is_available():
logger.warning("TTS service not available")
return (
gr.update(visible=False),
gr.update(visible=True),
)
# Extract portfolio summary
portfolio_summary = LAST_BUILD_RESULT.get("summary", "")
holdings = LAST_BUILD_RESULT.get("holdings", [])
if not portfolio_summary:
logger.warning("No portfolio summary available")
return (
gr.update(visible=False),
gr.update(visible=True),
)
logger.info("Generating audio for portfolio...")
# Generate audio
audio_path = await tts.generate_portfolio_narration(
portfolio_summary=portfolio_summary[:1000],
holdings=holdings
)
logger.info(f"Audio generated: {audio_path}")
return (
gr.update(value=audio_path, visible=True),
gr.update(visible=True),
)
except Exception as e:
logger.error(f"Audio generation failed: {e}")
return (
gr.update(visible=False),
gr.update(visible=True),
)
async def generate_debate_audio():
"""Generate multi-speaker debate audio on-demand."""
global LAST_DEBATE_DATA
logger.info(f"generate_debate_audio called. LAST_DEBATE_DATA exists: {LAST_DEBATE_DATA is not None}")
if LAST_DEBATE_DATA:
logger.info(f"Debate data keys: {LAST_DEBATE_DATA.keys()}")
logger.info(f"Bull case length: {len(LAST_DEBATE_DATA.get('bull_case', ''))}")
logger.info(f"Bear case length: {len(LAST_DEBATE_DATA.get('bear_case', ''))}")
logger.info(f"Consensus length: {len(LAST_DEBATE_DATA.get('consensus', ''))}")
if not LAST_DEBATE_DATA:
logger.warning("No debate data available for audio generation")
return (
gr.update(visible=False),
gr.update(visible=True),
)
try:
from backend.audio.tts_service import DebateAudioGenerator
debate_gen = DebateAudioGenerator()
if not debate_gen.is_available():
logger.warning("Debate audio generator not available")
return (
gr.update(visible=False),
gr.update(visible=True),
)
# Extract debate data
bull_case = LAST_DEBATE_DATA.get("bull_case", "")
bear_case = LAST_DEBATE_DATA.get("bear_case", "")
consensus = LAST_DEBATE_DATA.get("consensus", "")
bull_confidence = LAST_DEBATE_DATA.get("bull_confidence")
bear_confidence = LAST_DEBATE_DATA.get("bear_confidence")
stance = LAST_DEBATE_DATA.get("stance")
if not bull_case or not bear_case or not consensus:
logger.warning("Incomplete debate data")
return (
gr.update(visible=False),
gr.update(visible=True),
)
logger.info("Generating debate audio...")
# Generate multi-speaker debate audio
audio_path = await debate_gen.generate_debate_audio(
bull_case=bull_case[:1000],
bear_case=bear_case[:1000],
consensus=consensus[:1000],
bull_confidence=bull_confidence,
bear_confidence=bear_confidence,
stance=stance
)
logger.info(f"Debate audio generated: {audio_path}")
logger.info(f"Audio file exists: {os.path.exists(audio_path) if audio_path else False}")
logger.info(f"Returning audio player update with visible=True")
return (
gr.update(value=audio_path, visible=True),
gr.update(visible=True),
)
except Exception as e:
logger.error(f"Debate audio generation failed: {e}")
return (
gr.update(visible=False),
gr.update(visible=True),
)
async def handle_build_portfolio(goals, risk_tolerance, constraints, session_state):
"""Handle the Build Portfolio workflow with streaming updates.
Args:
goals: List of selected investment goals
risk_tolerance: Risk tolerance score 1-10
constraints: User constraints text
session_state: User session
Yields:
Tuple of UI updates: (agent_chat, results_container, status)
"""
global LAST_BUILD_RESULT
logger.info(f"handle_build_portfolio called")
logger.info(f"Input types - goals: {type(goals).__name__}, risk_tolerance: {type(risk_tolerance).__name__}, constraints: {type(constraints).__name__}")
logger.info(f"Input values - goals: {goals!r}, risk_tolerance: {risk_tolerance!r}, constraints: {constraints!r}")
if not goals:
logger.warning(f"No goals provided")
yield (
gr.update(value=[], visible=False), # build_agent_chat (empty, hidden)
gr.update(visible=True), # build_results_container
"Please select at least one investment goal.", # build_status
gr.update(visible=False) # build_audio_btn (hide on error)
)
return
try:
logger.info(f"Initialising MCP and workflow routers")
# Initialise MCP router and workflow router
from backend.mcp_router import MCPRouter
from backend.agents.workflow_router import WorkflowRouter
mcp_router = MCPRouter()
workflow_router = WorkflowRouter(mcp_router)
# Normalise input types
goals_list = goals if isinstance(goals, list) else [goals] if goals else []
constraints_str = ", ".join(constraints) if isinstance(constraints, list) else (constraints or "")
logger.info(f"After normalisation - goals_list: {goals_list!r} (type: {type(goals_list).__name__})")
logger.info(f"After normalisation - constraints_str: {constraints_str!r} (type: {type(constraints_str).__name__})")
# Stream the build workflow
chat_messages = []
message_count = 0
logger.info(f"Starting stream from route_build_stream")
async for message in workflow_router.route_build_stream(
goals=goals_list,
risk_tolerance=int(risk_tolerance),
constraints=constraints_str
):
try:
message_count += 1
logger.debug(f"Received message #{message_count} from stream")
logger.debug(f"Message type: {type(message).__name__}")
logger.debug(f"Message keys: {message.keys() if isinstance(message, dict) else 'N/A'}")
logger.debug(f"Message content type: {type(message.get('content')).__name__ if isinstance(message, dict) else 'N/A'}")
logger.debug(f"Message: {message!r}")
chat_messages.append(message)
logger.debug(f"Message appended to chat_messages. Total messages: {len(chat_messages)}")
try:
# Stream each message to the chatbot in real-time
logger.debug(f"About to yield UI update with {len(chat_messages)} messages")
yield (
gr.update(value=chat_messages, visible=True), # build_agent_chat (visible, growing list)
gr.update(visible=False), # build_results_container (hidden during streaming)
"", # build_status
gr.update(visible=False) # build_audio_btn (hide during streaming)
)
logger.debug(f"UI update yielded successfully")
except Exception as e:
logger.error(f"Error yielding UI update: {e}")
logger.error(f"chat_messages type: {type(chat_messages).__name__}")
logger.error(f"chat_messages length: {len(chat_messages)}")
logger.error(f"Last message: {chat_messages[-1] if chat_messages else 'N/A'}")
raise
except Exception as e:
logger.error(f"Error processing message #{message_count}")
logger.error(f"Message: {message!r}")
logger.error(f"Error type: {type(e).__name__}")
logger.error(f"Error message: {str(e)}")
logger.error(f"Full traceback:\n{traceback.format_exc()}")
raise
# Store build result for audio generation
if chat_messages:
final_message = chat_messages[-1]
if isinstance(final_message, dict) and "metadata" in final_message:
portfolio_data = final_message.get("metadata", {}).get("portfolio", {})
# Handle both dict and list formats
if isinstance(portfolio_data, list):
holdings = portfolio_data
elif isinstance(portfolio_data, dict):
holdings = portfolio_data.get("holdings", [])
else:
holdings = []
LAST_BUILD_RESULT = {
"summary": final_message.get("content", ""),
"holdings": holdings,
"reasoning": final_message.get("metadata", {}).get("reasoning_trace", [])
}
logger.info("Build result stored for audio generation")
# Final yield: Show results container
logger.info(f"Completed streaming. Yielding final result with {len(chat_messages)} messages")
yield (
gr.update(value=chat_messages, visible=True), # build_agent_chat (final state, visible)
gr.update(visible=True), # build_results_container (show results)
"Portfolio built successfully!", # build_status
gr.update(visible=True) # build_audio_btn (show audio button)
)
except Exception as e:
logger.error(f"=== BUILD PORTFOLIO ERROR ===")
logger.error(f"Error type: {type(e).__name__}")
logger.error(f"Error message: {str(e)}")
# Extract detailed traceback information
import traceback
import sys
tb = sys.exc_info()[2]
if tb:
tb_list = traceback.extract_tb(tb)
for frame_summary in tb_list:
logger.error(f" File: {frame_summary.filename}")
logger.error(f" Function: {frame_summary.name}")
logger.error(f" Line {frame_summary.lineno}: {frame_summary.line}")
logger.error(f"Full traceback:\n{traceback.format_exc()}")
logger.error(f"message_count at error: {message_count if 'message_count' in locals() else 'N/A'}")
logger.error(f"chat_messages at error: {len(chat_messages) if 'chat_messages' in locals() else 'N/A'} messages")
logger.error(f"=== END BUILD PORTFOLIO ERROR ===")
yield (
gr.update(value=[], visible=False), # build_agent_chat (empty, hidden on error)
gr.update(visible=True), # build_results_container
f"Error building portfolio: {str(e)}", # build_status
gr.update(visible=False) # build_audio_btn (hide on error)
)
def handle_build_accept(portfolio_table):
"""Accept built portfolio and populate input for analysis.
Args:
portfolio_table: DataFrame with ticker and allocation data
Returns:
Tuple of values for each output component
"""
if portfolio_table is None or len(portfolio_table) == 0:
return (
"", # portfolio_input
gr.update(visible=False), # task_page
gr.update(visible=True), # input_page
gr.update(visible=False), # results_page
gr.update(visible=False), # history_page
gr.update(visible=False), # build_page
gr.update(visible=False), # compare_page
gr.update(visible=False) # test_page
)
# Convert portfolio table to input format
lines = []
for row in portfolio_table:
ticker = row[0] if len(row) > 0 else ""
allocation = row[1] if len(row) > 1 else 0
if ticker:
lines.append(f"{ticker} {allocation}%")
portfolio_text = "\n".join(lines)
return (
portfolio_text, # portfolio_input
gr.update(visible=False), # task_page
gr.update(visible=True), # input_page
gr.update(visible=False), # results_page
gr.update(visible=False), # history_page
gr.update(visible=False), # build_page
gr.update(visible=False), # compare_page
gr.update(visible=False) # test_page
)
async def handle_compare_portfolio(portfolio_text, session_state):
"""Handle the Compare Strategies workflow with streaming debate.
Args:
portfolio_text: Raw portfolio text input
session_state: User session
Yields:
Tuple of UI updates: (debate_chat, results_container, status, bull_case, bull_conf,
bear_case, bear_conf, consensus, stance, debate_transcript)
"""
global LAST_DEBATE_DATA
if not portfolio_text or not portfolio_text.strip():
yield (
gr.update(value=[], visible=False), # compare_debate_chat (empty, hidden)
gr.update(visible=True), # compare_results_container
"Please enter your portfolio holdings.", # compare_status
"", # compare_bull_case
0, # compare_bull_confidence
"", # compare_bear_case
0, # compare_bear_confidence
"", # compare_consensus
"", # compare_stance
[], # compare_debate_transcript
gr.update(visible=False) # compare_audio_btn (hide on error)
)
return
# Parse portfolio
holdings = parse_portfolio_input(portfolio_text)
if not holdings:
yield (
gr.update(value=[], visible=False), # compare_debate_chat (empty, hidden)
gr.update(visible=True), # compare_results_container
"Could not parse portfolio. Please check format.", # compare_status
"", 0, "", 0, "", "", [],
gr.update(visible=False) # compare_audio_btn (hide on error)
)
return
try:
# Initialise MCP router and workflow router
from backend.mcp_router import MCPRouter
from backend.agents.workflow_router import WorkflowRouter
mcp_router = MCPRouter()
workflow_router = WorkflowRouter(mcp_router)
# Stream the compare workflow
chat_messages = []
bull_case_data = {}
bear_case_data = {}
consensus_data = {}
debate_transcript = []
async for message in workflow_router.route_compare_stream(holdings=holdings):
chat_messages.append(message)
# Stream each message to the chatbot in real-time
yield (
gr.update(value=chat_messages, visible=True), # compare_debate_chat (visible, growing list)
gr.update(visible=False), # compare_results_container (hidden during streaming)
"", # compare_status
"", # compare_bull_case
0, # compare_bull_confidence
"", # compare_bear_case
0, # compare_bear_confidence
"", # compare_consensus
"", # compare_stance
[], # compare_debate_transcript
gr.update(visible=False) # compare_audio_btn (hide during streaming)
)
# Extract data from final consensus message
metadata = message.get("metadata", {})
if metadata and "Consensus" in metadata.get("title", ""):
# This is the final consensus - parse it
content = message.get("content", "")
# Store for final display
consensus_data = {"recommendation": content, "stance": "Mixed"}
# Extract bull/bear from previous messages
for msg in chat_messages:
msg_meta = msg.get("metadata", {})
title = msg_meta.get("title", "")
if "Bull Researcher" in title:
bull_case_data = {
"thesis": msg.get("content", ""),
"confidence": 65 # Default, could parse from title
}
elif "Bear Researcher" in title:
bear_case_data = {
"thesis": msg.get("content", ""),
"confidence": 60 # Default, could parse from title
}
# Store debate data for audio generation
if consensus_data and bull_case_data and bear_case_data:
LAST_DEBATE_DATA = {
"bull_case": bull_case_data.get("thesis", ""),
"bear_case": bear_case_data.get("thesis", ""),
"consensus": consensus_data.get("recommendation", ""),
"bull_confidence": bull_case_data.get("confidence"),
"bear_confidence": bear_case_data.get("confidence"),
"stance": consensus_data.get("stance", "Mixed")
}
logger.info("Debate data stored for audio generation")
# Final yield: Show results container with analysis
yield (
gr.update(value=chat_messages, visible=True), # compare_debate_chat (final state, visible)
gr.update(visible=True), # compare_results_container (show results)
"Analysis complete!", # compare_status
bull_case_data.get("thesis", ""), # compare_bull_case
bull_case_data.get("confidence", 0), # compare_bull_confidence
bear_case_data.get("thesis", ""), # compare_bear_case
bear_case_data.get("confidence", 0), # compare_bear_confidence
consensus_data.get("recommendation", ""), # compare_consensus
consensus_data.get("stance", "Mixed"), # compare_stance
chat_messages, # compare_debate_transcript (use chat messages)
gr.update(visible=True) # compare_audio_btn (show audio button)
)
except Exception as e:
logger.error(f"Compare portfolio error: {e}")
yield (
gr.update(value=[], visible=False), # compare_debate_chat (empty, hidden on error)
gr.update(visible=True), # compare_results_container
f"Error: {str(e)}", # compare_status
"", 0, "", 0, "", "", [],
gr.update(visible=False) # compare_audio_btn (hide on error)
)
async def handle_test_changes(portfolio_text, changes_text, portfolio_value, session_state):
"""Handle the Test Changes workflow.
Args:
portfolio_text: Current portfolio as text (ticker weight%)
changes_text: Proposed changes as text
portfolio_value: Total portfolio value
session_state: User session
Returns:
Tuple of UI updates for test results
"""
try:
if not portfolio_text.strip():
return (
gr.update(visible=True),
"Please enter your current portfolio.",
[],
[],
[],
[],
"",
""
)
if not changes_text.strip():
return (
gr.update(visible=True),
"Please enter proposed changes.",
[],
[],
[],
[],
"",
""
)
# Parse current portfolio
current_portfolio = {}
for line in portfolio_text.strip().split("\n"):
line = line.strip()
if not line:
continue
parts = line.replace("%", "").split()
if len(parts) >= 2:
ticker = parts[0].upper()
try:
weight = float(parts[1])
current_portfolio[ticker] = {"weight": weight}
except ValueError:
continue
# Parse proposed changes
proposed_changes = []
for line in changes_text.strip().split("\n"):
line = line.strip().lower()
if not line:
continue
parts = line.split()
if len(parts) >= 3:
action = parts[0]
ticker = parts[1].upper()
try:
amount = float(parts[2])
if action in ["buy", "sell"]:
proposed_changes.append({
"action": action,
"ticker": ticker,
"amount": amount
})
except ValueError:
continue
if not current_portfolio:
return (
gr.update(visible=True),
"Could not parse portfolio. Use format: TICKER WEIGHT%",
[],
[],
[],
[],
"",
""
)
if not proposed_changes:
return (
gr.update(visible=True),
"Could not parse changes. Use format: buy/sell TICKER AMOUNT",
[],
[],
[],
[],
"",
""
)
# Initialise MCP router and workflow router
from backend.mcp_router import MCPRouter
from backend.agents.workflow_router import WorkflowRouter
mcp_router = MCPRouter()
workflow_router = WorkflowRouter(mcp_router)
# Run the test workflow
result = await workflow_router.route_test(
current_portfolio=current_portfolio,
proposed_changes=proposed_changes,
portfolio_value=float(portfolio_value)
)
# Format current metrics for display
current_metrics_data = []
for metric, value in result.get("current", {}).get("metrics", {}).items():
if isinstance(value, (int, float)):
current_metrics_data.append([metric.replace("_", " ").title(), f"{value:.4f}"])
# Format simulated metrics for display
simulated_metrics_data = []
for metric, value in result.get("simulated", {}).get("metrics", {}).items():
if isinstance(value, (int, float)):
simulated_metrics_data.append([metric.replace("_", " ").title(), f"{value:.4f}"])
# Format impact summary
impact_data = []
for metric, impact in result.get("impact", {}).items():
impact_data.append([
metric.replace("_", " ").title(),
f"{impact.get('current', 0):.4f}",
f"{impact.get('simulated', 0):.4f}",
f"{impact.get('delta', 0):+.4f}",
f"{impact.get('pct_change', 0):+.2f}%"
])
# Format stress test comparison
stress_data = []
for scenario, data in result.get("stress_comparison", {}).items():
stress_data.append([
scenario.replace("_", " ").title(),
f"{data.get('shock', 0):.0f}%",
f"${data.get('current_loss', 0):,.0f}",
f"${data.get('simulated_loss', 0):,.0f}",
f"${data.get('improvement', 0):+,.0f}"
])
# Format recommendations
recommendations_text = "### Recommendations\n\n"
for rec in result.get("recommendations", []):
recommendations_text += f"- {rec}\n"
# Format assessment
assessment_text = f"### Overall Assessment\n\n**{result.get('overall_assessment', 'No assessment')}**"
return (
gr.update(visible=True),
"Simulation complete!",
current_metrics_data,
simulated_metrics_data,
impact_data,
stress_data,
assessment_text,
recommendations_text
)
except Exception as e:
logger.error(f"Test changes error: {e}")
return (
gr.update(visible=True),
f"Error running simulation: {str(e)}",
[],
[],
[],
[],
"",
""
)
def sync_handle_test_changes(portfolio_text, changes_text, portfolio_value, session_state):
"""Synchronous wrapper for handle_test_changes."""
return asyncio.run(handle_test_changes(portfolio_text, changes_text, portfolio_value, session_state))
async def load_history(session_state):
"""Load analysis history from database.
Demo users do not have persistent history - their analyses are ephemeral
and only exist for the current session.
"""
try:
is_demo = session_state.get("is_demo", False) if session_state else False
# Demo users don't have persistent history
if is_demo:
logger.info("Demo mode: No persistent history available (analyses are ephemeral)")
return [], "Demo mode does not save history. Sign up for a free account to save your analyses!"
session = UserSession.from_dict(session_state)
# Must be authenticated user with valid user_id
if not session or not session.user_id:
logger.error("No valid user_id for loading history")
return [], "Please sign in to view your analysis history"
user_id = session.user_id
logger.info(f"Loading history for user: {user_id}")
history = await db.get_analysis_history(user_id, limit=20)
if not history:
logger.info(f"No history found for user {user_id}")
return [], "No previous analyses found"
logger.info(f"Loaded {len(history)} analyses for user {user_id}")
# Format history for dataframe
# Store analysis records globally for row selection
global HISTORY_RECORDS
HISTORY_RECORDS = history
rows = []
for i, record in enumerate(history):
# Format holdings as comma-separated tickers
holdings_str = ", ".join([h.get("ticker", "?") for h in record.get("holdings_snapshot", [])])
# Truncate AI synthesis for preview
synthesis_preview = record.get("ai_synthesis", "")
rows.append([
str(i), # Row index for selection
record.get("created_at", "").split("T")[0], # Date only
holdings_str,
record.get("portfolios", {}).get("risk_tolerance", "moderate"),
synthesis_preview
])
return rows, f"Loaded {len(history)} previous analyses"
except Exception as e:
logger.error(f"Failed to load history: {e}")
return [], f"Error loading history: {str(e)}"
def sync_load_history(session_state):
"""Synchronous wrapper for load_history."""
return asyncio.run(load_history(session_state))
async def filter_history(session_state, search_query: str, date_filter: str, page: int = 1, page_size: int = 10):
"""Filter and paginate history based on search query and date range.
Args:
session_state: User session dictionary
search_query: Search string to filter by ticker or date
date_filter: Date range filter ("all", "7d", "30d", "90d")
page: Current page number (1-indexed)
page_size: Number of items per page
Returns:
Tuple of (filtered_rows, page_info_message)
"""
from datetime import datetime, timedelta
try:
is_demo = session_state.get("is_demo", False) if session_state else False
if is_demo:
return [], "Page 1 of 1"
session = UserSession.from_dict(session_state)
if not session or not session.user_id:
return [], "Page 1 of 1"
user_id = session.user_id
# Load full history (increased limit for filtering)
full_history = await db.get_analysis_history(user_id, limit=100)
if not full_history:
return [], "Page 1 of 1"
# Apply date filter
filtered_history = []
now = datetime.now()
cutoff = None
if date_filter == "7d":
cutoff = now - timedelta(days=7)
elif date_filter == "30d":
cutoff = now - timedelta(days=30)
elif date_filter == "90d":
cutoff = now - timedelta(days=90)
for record in full_history:
# Apply date filter
if cutoff:
try:
created_at_str = record.get('created_at', '')
if created_at_str:
# Handle both ISO format with and without timezone
if 'T' in created_at_str:
created_at_str = created_at_str.split('.')[0] # Remove microseconds
created_at_str = created_at_str.replace('Z', '') # Remove timezone
analysis_date = datetime.fromisoformat(created_at_str)
else:
analysis_date = datetime.fromisoformat(created_at_str)
if analysis_date < cutoff:
continue
except Exception as e:
logger.warning(f"Date parsing error: {e}")
continue
# Apply search filter
if search_query and search_query.strip():
query_lower = search_query.lower().strip()
# Search in tickers
holdings = record.get('holdings_snapshot', [])
tickers = ' '.join([h.get('ticker', '') for h in holdings]).lower()
# Search in date
date_str = record.get('created_at', '').lower()
# Search in risk tolerance
risk = record.get('portfolios', {}).get('risk_tolerance', '').lower()
# If query not found in any field, skip this record
if query_lower not in tickers and query_lower not in date_str and query_lower not in risk:
continue
filtered_history.append(record)
# Store filtered records globally for row selection
global HISTORY_RECORDS
HISTORY_RECORDS = filtered_history
# Calculate pagination
total_items = len(filtered_history)
total_pages = max(1, (total_items + page_size - 1) // page_size)
page = max(1, min(page, total_pages)) # Clamp page to valid range
start_idx = (page - 1) * page_size
end_idx = min(start_idx + page_size, total_items)
page_items = filtered_history[start_idx:end_idx]
# Format for display
rows = []
for i, record in enumerate(page_items, start=start_idx):
holdings_str = ", ".join([h.get("ticker", "?") for h in record.get("holdings_snapshot", [])])
synthesis_preview = record.get("ai_synthesis", "")
rows.append([
str(i), # Global index for selection
record.get("created_at", "").split("T")[0],
holdings_str,
record.get("portfolios", {}).get("risk_tolerance", "moderate"),
synthesis_preview
])
page_info = f"Page {page} of {total_pages} ({total_items} total)"
return rows, page_info
except Exception as e:
logger.error(f"Failed to filter history: {e}")
return [], "Page 1 of 1"
def sync_filter_history(session_state, search_query: str, date_filter: str, page: int = 1, page_size: int = 10):
"""Synchronous wrapper for filter_history."""
return asyncio.run(filter_history(session_state, search_query, date_filter, page, page_size))
def view_historical_analysis(evt: gr.SelectData):
"""View full details of a selected historical analysis.
Args:
evt: Gradio SelectData event containing row index
Returns:
Markdown string with full analysis details
"""
global HISTORY_RECORDS
try:
# Get the row index from the selected row
row_index = int(evt.value) # First column contains the index
if not HISTORY_RECORDS or row_index >= len(HISTORY_RECORDS):
return "**Error**: Could not load analysis. Please refresh the history table."
record = HISTORY_RECORDS[row_index]
# Format detailed analysis view
details = f"""# Analysis Details
**Date**: {record.get('created_at', 'Unknown').split('T')[0]}
**Portfolio**: {record.get('portfolios', {}).get('name', 'Unnamed Portfolio')}
**Risk Tolerance**: {record.get('portfolios', {}).get('risk_tolerance', 'moderate')}
---
## Holdings Snapshot
"""
# Format holdings as table
holdings = record.get('holdings_snapshot', [])
if holdings:
details += "\n| Ticker | Shares | Value |\n|--------|--------|-------|\n"
for holding in holdings:
details += f"| {holding.get('ticker', '?')} | {holding.get('shares', 0)} | ${holding.get('value', 0):,.2f} |\n"
else:
details += "\n*No holdings data available*\n"
details += f"""
---
## AI Analysis
{record.get('ai_synthesis', '*No analysis available*')}
---
## Recommendations
"""
recommendations = record.get('recommendations', [])
if recommendations:
for i, rec in enumerate(recommendations, 1):
details += f"\n{i}. {rec}"
else:
details += "\n*No recommendations available*"
details += f"""
---
**Model**: {record.get('model_version', 'Unknown')}
**Execution Time**: {record.get('execution_time_ms', 0):,.0f}ms
"""
return details
except Exception as e:
logger.error(f"Failed to view historical analysis: {e}")
return f"**Error**: Failed to load analysis details: {str(e)}"
def export_current_analysis_csv():
"""Return pre-generated CSV file path.
Returns:
Path to temporary CSV file, or None if no analysis available
"""
global LAST_EXPORT_CSV_PATH
if not LAST_EXPORT_CSV_PATH:
logger.warning("No CSV export available")
return None
logger.info(f"Returning pre-generated CSV: {LAST_EXPORT_CSV_PATH}")
return LAST_EXPORT_CSV_PATH
def export_current_analysis_pdf():
"""Return pre-generated PDF file path.
Returns:
Path to temporary PDF file, or None if no analysis available
"""
global LAST_EXPORT_PDF_PATH
if not LAST_EXPORT_PDF_PATH:
logger.warning("No PDF export available")
return None
logger.info(f"Returning pre-generated PDF: {LAST_EXPORT_PDF_PATH}")
return LAST_EXPORT_PDF_PATH
def validate_email_format(email: str) -> str:
"""Validate email format in real-time.
Args:
email: Email address to validate
Returns:
Validation message
"""
import re
if not email:
return ""
email_regex = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
if re.match(email_regex, email):
return "β Valid email format"
else:
return "β Invalid email format"
def validate_password_match(password: str, confirm: str) -> str:
"""Check if passwords match in real-time.
Args:
password: Password field value
confirm: Confirmation field value
Returns:
Validation message
"""
if not confirm:
return ""
if password == confirm:
return "β Passwords match"
else:
return "β Passwords do not match"
def check_password_strength(password: str) -> str:
"""Real-time password strength indicator.
Args:
password: Password to evaluate
Returns:
Strength indicator with feedback
"""
import re
if not password:
return ""
score = 0
feedback = []
# Length check (main NIST requirement)
if len(password) >= 15:
score += 3 # Length is most important
elif len(password) >= 12:
score += 2
feedback.append("15+ characters")
elif len(password) >= 8:
score += 1
feedback.append("15+ characters")
else:
feedback.append("15+ characters")
# Optional complexity (not required by NIST)
if re.search(r'[A-Z]', password):
score += 1
if re.search(r'[a-z]', password):
score += 1
if re.search(r'\d', password):
score += 1
if re.search(r'[!@#$%^&*(),.?":{}|<>]', password):
score += 1
# Generate feedback message
if score <= 2:
return "π΄ **Weak** - Add: " + ", ".join(feedback) if feedback else "π΄ **Weak**"
elif score <= 4:
return "π **Moderate** - " + (("Add: " + ", ".join(feedback)) if feedback else "Consider 15+ characters")
elif score <= 6:
return "π‘ **Good** - " + (("Add: " + ", ".join(feedback)) if feedback else "Meets requirements")
else:
return "π’ **Strong** - Exceeds requirements"
def show_history_page():
"""Navigate to history page."""
return {
task_page: gr.update(visible=False),
input_page: gr.update(visible=False),
results_page: gr.update(visible=False),
history_page: gr.update(visible=True)
}
def load_tax_holdings():
"""Load current portfolio holdings into the cost basis dataframe.
Returns:
List of lists with [ticker, shares, "", ""] for each holding.
"""
global LAST_ANALYSIS_STATE
if not LAST_ANALYSIS_STATE or "holdings" not in LAST_ANALYSIS_STATE:
return []
holdings = LAST_ANALYSIS_STATE.get("holdings", [])
dataframe_data = []
for holding in holdings:
ticker = holding.get("ticker", "")
quantity = holding.get("quantity", 0)
if ticker and quantity > 0:
dataframe_data.append([ticker, quantity, None, ""])
return dataframe_data
def calculate_tax_impact(
filing_status: str,
annual_income: float,
cost_basis_method: str,
cost_basis_data: list
):
"""Calculate tax impact for current portfolio holdings.
Args:
filing_status: Tax filing status
annual_income: Annual taxable income
cost_basis_method: Cost basis calculation method
cost_basis_data: Dataframe rows with ticker, shares, purchase_price, purchase_date
Returns:
Formatted markdown tax analysis report
"""
global LAST_ANALYSIS_STATE
if not LAST_ANALYSIS_STATE or "holdings" not in LAST_ANALYSIS_STATE:
return """# Tax Impact Analysis
**Error**: Please run a portfolio analysis first before calculating tax impact.
Use the "Analyse Portfolio" button to analyse your portfolio, then return here to view tax implications.
"""
try:
holdings = LAST_ANALYSIS_STATE.get("holdings", [])
# Parse cost basis dataframe into structured format
user_cost_basis = []
# Handle pandas DataFrame from Gradio
import pandas as pd
if isinstance(cost_basis_data, pd.DataFrame):
logger.info(f"Received DataFrame with {len(cost_basis_data)} rows")
if not cost_basis_data.empty:
# Convert DataFrame to list of lists
cost_basis_rows = cost_basis_data.values.tolist()
logger.info(f"DataFrame data: {cost_basis_rows}")
else:
cost_basis_rows = []
logger.info("DataFrame is empty")
elif cost_basis_data is not None:
# Already a list
cost_basis_rows = cost_basis_data
logger.info(f"Received list with {len(cost_basis_rows)} rows")
else:
cost_basis_rows = []
logger.info("No cost basis data provided")
for row in cost_basis_rows:
if len(row) >= 4:
# Handle pandas nan values
ticker_val = row[0]
if pd.isna(ticker_val) or not str(ticker_val).strip():
continue
ticker = str(ticker_val).strip().upper()
shares = None if pd.isna(row[1]) else row[1]
purchase_price = None if pd.isna(row[2]) else row[2]
purchase_date = "" if pd.isna(row[3]) else str(row[3]).strip()
# Only include rows with meaningful data
if ticker and purchase_price is not None and purchase_date:
user_cost_basis.append({
"ticker": ticker,
"shares": shares,
"purchase_price": purchase_price,
"purchase_date": purchase_date,
})
logger.info(f"Parsed {len(user_cost_basis)} valid cost basis entries: {user_cost_basis}")
report = create_tax_analysis(
holdings=holdings,
filing_status=filing_status,
annual_income=annual_income,
cost_basis_method=cost_basis_method,
user_cost_basis=user_cost_basis if user_cost_basis else None,
)
return format_tax_analysis_output(report)
except Exception as e:
logger.error(f"Tax calculation error: {e}", exc_info=True)
return f"""# Tax Impact Analysis
**Error**: {str(e)}
Please try again with different parameters.
"""
async def save_portfolio_input_text(user_id: str, portfolio_text: str):
"""Save portfolio input text for quick reload.
Automatically keeps only last 3 entries per user via database trigger.
"""
try:
await db.save_portfolio_input(user_id, portfolio_text)
except Exception as e:
logger.error(f"Failed to save portfolio input: {e}")
async def get_past_portfolios_for_dropdown(user_id: str):
"""Get last 3 portfolio inputs formatted for dropdown."""
try:
portfolios = await db.get_portfolio_inputs(user_id, limit=3)
# Format for dropdown: (display_text, index)
choices = []
for i, portfolio in enumerate(portfolios):
# Generate preview from first few lines of description
lines = [line.strip() for line in portfolio['description'].split('\n') if line.strip()][:3]
tickers = []
for line in lines:
parts = line.split()
if parts:
tickers.append(parts[0])
preview = ', '.join(tickers)
total_lines = len([l for l in portfolio['description'].split('\n') if l.strip()])
if total_lines > 3:
preview += f' +{total_lines - 3} more'
choices.append((preview, i))
return choices
except Exception as e:
logger.error(f"Failed to load past portfolios: {e}")
return []
async def load_portfolio_text(user_id: str, index: int):
"""Load portfolio text by index (0 = most recent)."""
try:
portfolios = await db.get_portfolio_inputs(user_id, limit=3)
if 0 <= index < len(portfolios):
return portfolios[index].get('description', '')
return ""
except Exception as e:
logger.error(f"Failed to load portfolio text: {e}")
return ""
async def handle_analysis(session_state, portfolio_text, roast_mode, persona, request: gr.Request, progress=gr.Progress()):
# Check authentication
if not check_authentication(session_state):
yield {
input_page: gr.update(visible=False),
loading_page: gr.update(visible=False),
results_page: gr.update(visible=False),
loading_message: "β Please sign in to analyse your portfolio",
analysis_output: "",
performance_metrics_output: "",
allocation_plot: None,
risk_plot: None,
performance_plot: None,
correlation_plot: None,
optimization_plot: None,
load_past_portfolio_dropdown: gr.skip(),
export_pdf_btn: gr.skip(),
export_csv_btn: gr.skip()
}
return
# Enforce rate limiting
if rate_limit_middleware:
try:
rate_limit_middleware.enforce(request, session_state=session_state)
except Exception as e:
logger.warning(f"Rate limit exceeded: {e}")
yield {
input_page: gr.update(visible=False),
loading_page: gr.update(visible=False),
results_page: gr.update(visible=False),
loading_message: f"β {str(e)}",
analysis_output: "",
performance_metrics_output: "",
allocation_plot: None,
risk_plot: None,
performance_plot: None,
correlation_plot: None,
optimization_plot: None,
load_past_portfolio_dropdown: gr.skip(),
export_pdf_btn: gr.skip(),
export_csv_btn: gr.skip()
}
return
# Auto-save portfolio input for quick reload (keep last 3)
session = UserSession.from_dict(session_state)
dropdown_choices = []
if session and session.user_id and portfolio_text.strip():
await save_portfolio_input_text(session.user_id, portfolio_text)
dropdown_choices = await get_past_portfolios_for_dropdown(session.user_id)
# Show loading page immediately
yield {
input_page: gr.update(visible=False),
loading_page: gr.update(visible=True),
results_page: gr.update(visible=False),
loading_message: random.choice(LOADING_MESSAGES),
analysis_output: "",
performance_metrics_output: "",
allocation_plot: None,
risk_plot: None,
performance_plot: None,
correlation_plot: None,
optimization_plot: None,
load_past_portfolio_dropdown: gr.update(choices=dropdown_choices) if dropdown_choices else gr.skip(),
export_pdf_btn: gr.skip(),
export_csv_btn: gr.skip()
}
# Run analysis with progress updates
page, analysis, perf_metrics, alloc, risk, perf, corr, opt, audio_btn = await run_analysis_with_ui_update(
session_state, portfolio_text, roast_mode, persona, progress
)
# Show results or return to input
if page == "results":
global LAST_EXPORT_PDF_PATH, LAST_EXPORT_CSV_PATH
yield {
input_page: gr.update(visible=False),
loading_page: gr.update(visible=False),
results_page: gr.update(visible=True),
loading_message: "Analysis complete!",
analysis_output: analysis,
performance_metrics_output: perf_metrics,
allocation_plot: alloc,
risk_plot: risk,
performance_plot: perf,
correlation_plot: corr,
optimization_plot: opt,
analysis_audio_btn: audio_btn,
load_past_portfolio_dropdown: gr.update(choices=dropdown_choices) if dropdown_choices else gr.skip(),
export_pdf_btn: LAST_EXPORT_PDF_PATH,
export_csv_btn: LAST_EXPORT_CSV_PATH
}
else:
yield {
input_page: gr.update(visible=True),
loading_page: gr.update(visible=False),
results_page: gr.update(visible=False),
loading_message: "",
analysis_output: analysis,
performance_metrics_output: "",
allocation_plot: None,
risk_plot: None,
performance_plot: None,
correlation_plot: None,
optimization_plot: None,
analysis_audio_btn: audio_btn,
load_past_portfolio_dropdown: gr.skip(),
export_pdf_btn: gr.skip(),
export_csv_btn: gr.skip()
}
# Wire up live preview on input change
portfolio_input.change(
update_live_preview,
inputs=[portfolio_input],
outputs=[preview_output]
)
# Wire up refresh prices button
refresh_prices_btn.click(
fetch_and_update_preview,
inputs=[portfolio_input],
outputs=[preview_output]
)
# Wire up past portfolio dropdown to load selected portfolio
async def handle_load_past_portfolio(index, session):
"""Load selected past portfolio into input field."""
if index is None:
return gr.skip()
session_obj = UserSession.from_dict(session)
if not session_obj or not session_obj.user_id:
return ""
portfolio_text = await load_portfolio_text(session_obj.user_id, index)
return portfolio_text
load_past_portfolio_dropdown.change(
handle_load_past_portfolio,
inputs=[load_past_portfolio_dropdown, session_state],
outputs=[portfolio_input]
)
analyse_btn.click(
handle_analysis,
inputs=[session_state, portfolio_input, roast_mode_toggle, persona_dropdown],
outputs=[
input_page,
loading_page,
results_page,
loading_message,
analysis_output,
performance_metrics_output,
allocation_plot,
risk_plot,
performance_plot,
correlation_plot,
optimization_plot,
load_past_portfolio_dropdown,
export_pdf_btn,
export_csv_btn,
analysis_audio_btn # Audio button
],
show_progress="full"
)
# Export buttons - download directly (DownloadButton triggers browser download automatically)
export_pdf_btn.click(
export_current_analysis_pdf,
outputs=export_pdf_btn
)
export_csv_btn.click(
export_current_analysis_csv,
outputs=export_csv_btn
)
# Back button from input page to task page
input_back_btn.click(
show_task_page,
outputs=[task_page, input_page, results_page, history_page, build_page, compare_page, test_page]
)
# Auto-load history when History tab is selected
def load_history_if_selected(evt: gr.SelectData, session):
"""Load history only when History tab is selected."""
if evt.index == 4: # History tab is index 4 (0-indexed: Analysis, Dashboard, Tax, Stress, History)
return sync_load_history(session)
return gr.skip(), gr.skip()
results_tabs.select(
load_history_if_selected,
inputs=[session_state],
outputs=[history_table_results, history_details_output_results]
)
back_to_input_btn.click(
show_input_page,
outputs=[task_page, input_page, results_page, history_page]
)
# History table selection handlers
history_table.select(
view_historical_analysis,
outputs=[history_details_output]
)
history_table_results.select(
view_historical_analysis,
outputs=[history_details_output_results]
)
# History search and filter handlers (standalone history page)
history_search.change(
lambda sess, query, date_filter, page: sync_filter_history(sess, query, date_filter, page),
inputs=[session_state, history_search, history_date_filter, history_current_page],
outputs=[history_table, history_page_info],
show_api=False
).then(
lambda: 1, # Reset to page 1 on search
outputs=[history_current_page],
show_api=False
)
history_date_filter.change(
lambda sess, query, date_filter, page: sync_filter_history(sess, query, date_filter, page),
inputs=[session_state, history_search, history_date_filter, history_current_page],
outputs=[history_table, history_page_info],
show_api=False
).then(
lambda: 1, # Reset to page 1 on filter change
outputs=[history_current_page],
show_api=False
)
history_refresh_btn.click(
lambda sess, query, date_filter, page: sync_filter_history(sess, query, date_filter, page),
inputs=[session_state, history_search, history_date_filter, history_current_page],
outputs=[history_table, history_page_info],
show_api=False
)
# Pagination handlers (standalone)
history_prev_btn.click(
lambda page: max(1, page - 1),
inputs=[history_current_page],
outputs=[history_current_page],
show_api=False
).then(
lambda sess, query, date_filter, page: sync_filter_history(sess, query, date_filter, page),
inputs=[session_state, history_search, history_date_filter, history_current_page],
outputs=[history_table, history_page_info],
show_api=False
)
history_next_btn.click(
lambda page: page + 1,
inputs=[history_current_page],
outputs=[history_current_page],
show_api=False
).then(
lambda sess, query, date_filter, page: sync_filter_history(sess, query, date_filter, page),
inputs=[session_state, history_search, history_date_filter, history_current_page],
outputs=[history_table, history_page_info],
show_api=False
)
# History search and filter handlers (results page tab)
history_search_results.change(
lambda sess, query, date_filter, page: sync_filter_history(sess, query, date_filter, page),
inputs=[session_state, history_search_results, history_date_filter_results, history_current_page_results],
outputs=[history_table_results, history_page_info_results],
show_api=False
).then(
lambda: 1, # Reset to page 1 on search
outputs=[history_current_page_results],
show_api=False
)
history_date_filter_results.change(
lambda sess, query, date_filter, page: sync_filter_history(sess, query, date_filter, page),
inputs=[session_state, history_search_results, history_date_filter_results, history_current_page_results],
outputs=[history_table_results, history_page_info_results],
show_api=False
).then(
lambda: 1, # Reset to page 1 on filter change
outputs=[history_current_page_results],
show_api=False
)
history_refresh_btn_results.click(
lambda sess, query, date_filter, page: sync_filter_history(sess, query, date_filter, page),
inputs=[session_state, history_search_results, history_date_filter_results, history_current_page_results],
outputs=[history_table_results, history_page_info_results],
show_api=False
)
# Pagination handlers (results page)
history_prev_btn_results.click(
lambda page: max(1, page - 1),
inputs=[history_current_page_results],
outputs=[history_current_page_results],
show_api=False
).then(
lambda sess, query, date_filter, page: sync_filter_history(sess, query, date_filter, page),
inputs=[session_state, history_search_results, history_date_filter_results, history_current_page_results],
outputs=[history_table_results, history_page_info_results],
show_api=False
)
history_next_btn_results.click(
lambda page: page + 1,
inputs=[history_current_page_results],
outputs=[history_current_page_results],
show_api=False
).then(
lambda sess, query, date_filter, page: sync_filter_history(sess, query, date_filter, page),
inputs=[session_state, history_search_results, history_date_filter_results, history_current_page_results],
outputs=[history_table_results, history_page_info_results],
show_api=False
)
# Tax load holdings button
tax_load_holdings_btn.click(
load_tax_holdings,
inputs=[],
outputs=[tax_cost_basis_input]
)
# Tax calculator button (Enhancement #5)
tax_calculate_btn.click(
calculate_tax_impact,
inputs=[tax_filing_status, tax_annual_income, tax_cost_basis_method, tax_cost_basis_input],
outputs=[tax_analysis_output]
)
# Wire up stress test button
stress_test_btn.click(
run_stress_test,
inputs=[stress_scenario_dropdown, stress_n_sims, stress_horizon],
outputs=[
stress_summary,
stress_dashboard_plot,
stress_mc_plot,
stress_scenario_plot,
stress_drawdown_plot
]
)
# Authentication event handlers
async def handle_login(email: str, password: str, current_session: Dict):
"""Handle user login."""
if not email or not password:
return current_session, "Please enter email and password", gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
success, message, session = await auth.login(email, password)
if success and session:
# Update session state
session_dict = session.to_dict()
# Get past portfolio dropdown choices
dropdown_choices = await get_past_portfolios_for_dropdown(session.user_id)
return (
session_dict,
f"β
{message}",
gr.update(visible=False), # Hide login form
gr.update(visible=True), # Show task selection
gr.update(value=f"π€ {session.username} | {session.email}"), # Update user info
gr.update(choices=dropdown_choices), # Update past portfolio dropdown
gr.update(visible=True), # Show logout button
gr.update(visible=True) # Show sidebar
)
else:
# On failure, don't show logout_btn or sidebar
return current_session, f"β {message}", gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
async def handle_signup(email: str, password: str, confirm_password: str, username: str, current_session: Dict):
"""Handle user signup."""
# Validation
if not email or not password:
return current_session, "β Please enter email and password"
if password != confirm_password:
return current_session, "β Passwords do not match"
# NIST SP 800-63B-4: Minimum 15 characters for single-factor auth
# No composition rules (uppercase, numbers, symbols) required
if len(password) < 15:
return current_session, "β Password must be at least 15 characters (NIST 2024 requirement)"
success, message, session = await auth.signup(email, password, username)
if success:
if session:
# Auto-login after signup (if email confirmation disabled)
return session.to_dict(), f"β
{message}"
else:
return current_session, f"β
{message}"
else:
return current_session, f"β {message}"
async def handle_logout(current_session: Dict):
"""Handle user logout and reset all UI components.
Security: Clears all global state and user-specific cache to prevent
data leakage between user sessions.
"""
global LAST_ANALYSIS_STATE, HISTORY_RECORDS, LAST_STRESS_TEST
session = UserSession.from_dict(current_session)
# Extract user ID before clearing session (for cache cleanup)
user_id = session.user_id if session else None
# 1. Clear backend authentication
success, message = await auth.logout(session)
# 2. Clear global state variables (CRITICAL for data security)
LAST_ANALYSIS_STATE = None
HISTORY_RECORDS = []
LAST_STRESS_TEST = None
# 3. Clear user-specific cache entries
if user_id:
try:
from backend.caching.factory import cache_manager
# Clear user-specific data from cache
cache_manager.invalidation.invalidate_by_event("user_update", user_id)
logger.info(f"Cleared cache for user {user_id}")
except Exception as e:
logger.error(f"Failed to clear user cache on logout: {e}")
# 4. Clear session and reset ALL UI components to initial state
return (
{}, # Clear session state
f"β
{message}", # Login message
gr.update(visible=True), # Show login container
gr.update(visible=False), # Hide task page
gr.update(visible=False), # Hide input page
gr.update(value="Not logged in"), # Clear user info
gr.update(visible=False), # Hide logout button
gr.update(visible=False), # Hide sidebar
gr.update(visible=False), # Hide results page
gr.update(visible=False), # Hide loading page
gr.update(visible=False), # Hide history page
# Clear all analysis outputs
gr.update(value=""), # analysis_output
gr.update(value=None), # allocation_plot
gr.update(value=None), # risk_plot
gr.update(value=None), # performance_plot
gr.update(value=None), # correlation_plot
gr.update(value=None), # optimization_plot
# Clear history
gr.update(value=[]), # history_table
# Clear password reset modals
gr.update(visible=False), # password_reset_modal
gr.update(visible=False), # password_update_modal
# Clear user input data (SECURITY: prevent data leakage)
gr.update(value=""), # portfolio_input
gr.update(choices=[], value=None), # load_past_portfolio_dropdown
# Clear build page
gr.update(visible=False), # Hide build_page
gr.update(visible=False), # Hide build_results_container
gr.update(value=[]), # Clear build_agent_chat
gr.update(value=[]), # Clear build_goals
gr.update(value=5), # Reset build_risk_tolerance to middle value
gr.update(value=""), # Clear build_constraints
gr.update(value=""), # Clear build_status
# Clear compare page
gr.update(visible=False), # Hide compare_page
gr.update(visible=False), # Hide compare_results_container
gr.update(value=[]), # Clear compare_debate_chat
gr.update(value=""), # Clear compare_portfolio_input
gr.update(value=""), # Clear compare_status
gr.update(value=""), # Clear compare_bull_case
gr.update(value=0), # Reset compare_bull_confidence
gr.update(value=""), # Clear compare_bear_case
gr.update(value=0), # Reset compare_bear_confidence
gr.update(value=""), # Clear compare_consensus
gr.update(value=""), # Clear compare_stance
gr.update(value=[]), # Clear compare_debate_transcript
# Clear test page
gr.update(visible=False), # Hide test_page
gr.update(visible=False), # Hide test_results_container
gr.update(value=""), # Clear test_portfolio_input
gr.update(value=""), # Clear test_changes_input
gr.update(value=100000), # Reset test_portfolio_value to default
gr.update(value=""), # Clear test_status
gr.update(value=[]), # Clear test_current_metrics
gr.update(value=[]), # Clear test_simulated_metrics
gr.update(value=[]), # Clear test_impact_summary
gr.update(value=[]), # Clear test_stress_comparison
gr.update(value=""), # Clear test_assessment
gr.update(value=""), # Clear test_recommendations
)
def sync_login(email: str, password: str, current_session: Dict):
"""Synchronous wrapper for login."""
return asyncio.run(handle_login(email, password, current_session))
def sync_signup(email: str, password: str, confirm_password: str, username: str, current_session: Dict):
"""Synchronous wrapper for signup."""
return asyncio.run(handle_signup(email, password, confirm_password, username, current_session))
def sync_logout(current_session: Dict):
"""Synchronous wrapper for logout."""
return asyncio.run(handle_logout(current_session))
async def handle_password_reset(email: str):
"""Handle password reset request."""
if not email:
return "", "β Please enter your email address"
success, message = await auth.request_password_reset(email)
# Simple success message
if success:
return "", f"{message}\n\nCheck your email and click the reset link to set your new password."
return "", message
def sync_password_reset(email: str):
"""Synchronous wrapper for password reset."""
return asyncio.run(handle_password_reset(email))
async def handle_password_update(password: str, confirm: str, email: str, token_hash: str):
"""Handle password update after reset with recovery token_hash."""
if not email:
return "β Please enter your email address"
if not password or not confirm:
return "β Please enter both password fields"
if password != confirm:
return "β Passwords do not match"
# NIST SP 800-63B-4: Minimum 15 characters for single-factor auth
if len(password) < 15:
return "β Password must be at least 15 characters (NIST 2024 requirement)"
success, message = await auth.update_password(password, email, token_hash)
return message
def sync_password_update(password: str, confirm: str, email: str, token_hash: str):
"""Synchronous wrapper for password update."""
return asyncio.run(handle_password_update(password, confirm, email, token_hash))
# Connect authentication handlers
login_btn.click(
sync_login,
inputs=[login_email, login_password, session_state],
outputs=[session_state, login_message, login_container, task_page, user_info, load_past_portfolio_dropdown, logout_btn, sidebar]
)
signup_btn.click(
sync_signup,
inputs=[signup_email, signup_password, signup_confirm, signup_username, session_state],
outputs=[session_state, signup_message]
)
# Real-time email validation
signup_email.change(
validate_email_format,
inputs=[signup_email],
outputs=[signup_email_validation]
)
# Real-time password strength meter
signup_password.change(
check_password_strength,
inputs=[signup_password],
outputs=[signup_password_strength]
)
# Real-time password match validation
signup_confirm.change(
validate_password_match,
inputs=[signup_password, signup_confirm],
outputs=[signup_password_match]
)
# Password reset handlers
forgot_password_btn.click(
lambda: (gr.update(visible=False), gr.update(visible=True)),
outputs=[login_container, password_reset_modal],
show_api=False
)
reset_cancel_btn.click(
lambda: (gr.update(visible=True), gr.update(visible=False), ""),
outputs=[login_container, password_reset_modal, reset_message],
show_api=False
)
update_cancel_btn.click(
lambda: (gr.update(visible=True), gr.update(visible=False), ""),
outputs=[login_container, password_update_modal, update_password_message],
show_api=False
)
reset_submit_btn.click(
sync_password_reset,
inputs=[reset_email],
outputs=[reset_email, reset_message]
)
# Show password update modal when recovery token_hash is detected
recovery_token_hash.change(
fn=lambda token: (
gr.update(visible=False) if token else gr.update(visible=True),
gr.update(visible=True) if token else gr.update(visible=False)
),
inputs=[recovery_token_hash],
outputs=[login_container, password_update_modal],
show_api=False
)
# Password update handler (separate modal after email link click)
update_password_btn.click(
sync_password_update,
inputs=[new_password, confirm_new_password, recovery_email, recovery_token_hash],
outputs=[update_password_message]
).then(
# On success, hide modal and show login form
lambda msg: (
gr.update(visible=False) if "β
" in msg else gr.update(visible=True),
gr.update(visible=True) if "β
" in msg else gr.update(visible=False)
),
inputs=[update_password_message],
outputs=[password_update_modal, login_container],
show_api=False
)
def handle_demo_mode(current_session: Dict):
"""Handle demo mode activation (anonymous with rate limiting)."""
# Create a demo session (not authenticated)
demo_session = {
"authenticated": False,
"is_demo": True,
"user_id": None, # No user ID for anonymous
}
return (
demo_session, # session_state
"", # demo_message (cleared)
gr.update(visible=False), # Hide login container
gr.update(visible=True), # Show task selection
"Demo Mode - 1 free analysis per day", # user_info
gr.update(visible=False), # Hide logout button for demo
gr.update(visible=True) # Show sidebar
)
demo_btn.click(
handle_demo_mode,
inputs=[session_state],
outputs=[session_state, demo_message, login_container, task_page, user_info, logout_btn, sidebar]
)
logout_btn.click(
sync_logout,
inputs=[session_state],
outputs=[
session_state, login_message, login_container, task_page, input_page, user_info,
logout_btn, sidebar, results_page, loading_page, history_page,
analysis_output, allocation_plot, risk_plot, performance_plot,
correlation_plot, optimization_plot, history_table,
password_reset_modal, password_update_modal,
portfolio_input, load_past_portfolio_dropdown,
# Build page components
build_page, build_results_container, build_agent_chat,
build_goals, build_risk_tolerance, build_constraints, build_status,
# Compare page components
compare_page, compare_results_container, compare_debate_chat, compare_portfolio_input, compare_status,
compare_bull_case, compare_bull_confidence, compare_bear_case, compare_bear_confidence,
compare_consensus, compare_stance, compare_debate_transcript,
# Test page components
test_page, test_results_container, test_portfolio_input, test_changes_input,
test_portfolio_value, test_status, test_current_metrics, test_simulated_metrics,
test_impact_summary, test_stress_comparison, test_assessment, test_recommendations
]
)
# Navigation event handlers
nav_new_analysis.click(
show_task_page,
outputs=[task_page, input_page, results_page, history_page, build_page, compare_page, test_page]
)
# Task card event handlers
task_analyse_btn.click(
show_input_page,
outputs=[task_page, input_page, results_page, history_page, build_page, compare_page, test_page]
)
task_build_btn.click(
show_build_page,
outputs=[task_page, input_page, results_page, history_page, build_page, compare_page, test_page]
)
task_compare_btn.click(
show_compare_page,
outputs=[task_page, input_page, results_page, history_page, build_page, compare_page, test_page]
)
task_test_btn.click(
show_test_page,
outputs=[task_page, input_page, results_page, history_page, build_page, compare_page, test_page]
)
# Build page event handlers
build_back_btn.click(
show_task_page,
outputs=[task_page, input_page, results_page, history_page, build_page, compare_page, test_page]
)
build_submit_btn.click(
handle_build_portfolio,
inputs=[build_goals, build_risk_tolerance, build_constraints, session_state],
outputs=[
build_agent_chat,
build_results_container,
build_status,
build_audio_btn # Audio button
]
)
build_regenerate_btn.click(
handle_build_portfolio,
inputs=[build_goals, build_risk_tolerance, build_constraints, session_state],
outputs=[
build_agent_chat,
build_results_container,
build_status,
build_audio_btn
]
)
# Compare page event handlers
compare_back_btn.click(
show_task_page,
outputs=[task_page, input_page, results_page, history_page, build_page, compare_page, test_page]
)
compare_submit_btn.click(
handle_compare_portfolio,
inputs=[compare_portfolio_input, session_state],
outputs=[
compare_debate_chat,
compare_results_container,
compare_status,
compare_bull_case,
compare_bull_confidence,
compare_bear_case,
compare_bear_confidence,
compare_consensus,
compare_stance,
compare_debate_transcript,
compare_audio_btn # Audio button
]
)
# Test page event handlers
test_back_btn.click(
show_task_page,
outputs=[task_page, input_page, results_page, history_page, build_page, compare_page, test_page]
)
test_submit_btn.click(
sync_handle_test_changes,
inputs=[test_portfolio_input, test_changes_input, test_portfolio_value, session_state],
outputs=[
test_results_container,
test_status,
test_current_metrics,
test_simulated_metrics,
test_impact_summary,
test_stress_comparison,
test_assessment,
test_recommendations
]
)
nav_view_history.click(
show_history_page,
outputs=[task_page, input_page, results_page, history_page]
).then(
sync_load_history,
inputs=[session_state],
outputs=[history_table, history_details_output]
)
# Sidebar sign out button (mirrors main logout button)
nav_signout_btn.click(
sync_logout,
inputs=[session_state],
outputs=[
session_state, login_message, login_container, task_page, input_page, user_info,
logout_btn, sidebar, results_page, loading_page, history_page,
analysis_output, allocation_plot, risk_plot, performance_plot,
correlation_plot, optimization_plot, history_table,
password_reset_modal, password_update_modal,
portfolio_input, load_past_portfolio_dropdown,
# Build page components
build_page, build_results_container, build_agent_chat,
build_goals, build_risk_tolerance, build_constraints, build_status,
# Compare page components
compare_page, compare_results_container, compare_debate_chat, compare_portfolio_input, compare_status,
compare_bull_case, compare_bull_confidence, compare_bear_case, compare_bear_confidence,
compare_consensus, compare_stance, compare_debate_transcript,
# Test page components
test_page, test_results_container, test_portfolio_input, test_changes_input,
test_portfolio_value, test_status, test_current_metrics, test_simulated_metrics,
test_impact_summary, test_stress_comparison, test_assessment, test_recommendations
]
)
# ============================================================
# AUDIO BUTTON EVENT HANDLERS
# ============================================================
# Use event chaining to show loading state during audio generation:
# 1. Disable button and change text to "Generating..."
# 2. Run async audio generation with progress indicator
# 3. Restore button to original state
# Analysis audio button
analysis_audio_btn.click(
fn=lambda: gr.update(value="Generating...", interactive=False),
outputs=analysis_audio_btn
).then(
fn=generate_analysis_audio,
inputs=[],
outputs=[analysis_audio_player, analysis_audio_btn],
show_progress="minimal"
).then(
fn=lambda: gr.update(value="π Listen to Analysis", interactive=True),
outputs=analysis_audio_btn
)
# Build portfolio audio button
build_audio_btn.click(
fn=lambda: gr.update(value="Generating...", interactive=False),
outputs=build_audio_btn
).then(
fn=generate_build_audio,
inputs=[],
outputs=[build_audio_player, build_audio_btn],
show_progress="minimal"
).then(
fn=lambda: gr.update(value="π Listen to Portfolio", interactive=True),
outputs=build_audio_btn
)
# Compare/debate audio button
compare_audio_btn.click(
fn=lambda: gr.update(value="Generating...", interactive=False),
outputs=compare_audio_btn
).then(
fn=generate_debate_audio,
inputs=[],
outputs=[compare_audio_player, compare_audio_btn],
show_progress="minimal"
).then(
fn=lambda: gr.update(value="π Listen to Debate", interactive=True),
outputs=compare_audio_btn
)
# MCP Tool Registrations (API/MCP only - no UI components)
# Market Data Tools
gr.api(mcp_tools.market_get_quote, api_name="market_get_quote")
gr.api(mcp_tools.market_get_historical_data, api_name="market_get_historical_data")
gr.api(mcp_tools.market_get_fundamentals, api_name="market_get_fundamentals")
gr.api(mcp_tools.market_get_company_profile, api_name="market_get_company_profile")
gr.api(mcp_tools.market_get_income_statement, api_name="market_get_income_statement")
gr.api(mcp_tools.market_get_balance_sheet, api_name="market_get_balance_sheet")
gr.api(mcp_tools.market_get_cash_flow_statement, api_name="market_get_cash_flow_statement")
gr.api(mcp_tools.market_get_financial_ratios, api_name="market_get_financial_ratios")
gr.api(mcp_tools.market_get_key_metrics, api_name="market_get_key_metrics")
gr.api(mcp_tools.market_get_economic_series, api_name="market_get_economic_series")
# Technical Analysis Tools
gr.api(mcp_tools.technical_get_indicators, api_name="technical_get_indicators")
gr.api(mcp_tools.technical_extract_features, api_name="technical_extract_features")
gr.api(mcp_tools.technical_normalise_features, api_name="technical_normalise_features")
gr.api(mcp_tools.technical_select_features, api_name="technical_select_features")
gr.api(mcp_tools.technical_compute_feature_vector, api_name="technical_compute_feature_vector")
# Portfolio Optimisation Tools
gr.api(mcp_tools.portfolio_optimize_hrp, api_name="portfolio_optimize_hrp")
gr.api(mcp_tools.portfolio_optimize_black_litterman, api_name="portfolio_optimize_black_litterman")
gr.api(mcp_tools.portfolio_optimize_mean_variance, api_name="portfolio_optimize_mean_variance")
# Risk Analysis Tools
gr.api(mcp_tools.risk_analyze, api_name="risk_analyze")
gr.api(mcp_tools.risk_forecast_volatility_garch, api_name="risk_forecast_volatility_garch")
# ML Forecasting Tools
gr.api(mcp_tools.ml_forecast_ensemble, api_name="ml_forecast_ensemble")
# Sentiment Analysis Tools
gr.api(mcp_tools.sentiment_get_news, api_name="sentiment_get_news")
return demo
if __name__ == "__main__":
demo = create_interface()
# Suppress console output on HF Spaces for cleaner logs
is_hf_space = os.environ.get("SPACE_ID") is not None
demo.queue().launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
quiet=is_hf_space, # Suppress verbose output on HF Spaces
mcp_server=True, # Native MCP server at /gradio_api/mcp/
allowed_paths=["/tmp"] # Allow serving export files from temp directory
)
|