FalconPrep / server.py
tsinviking's picture
corrected prev commit
ffd6fdf verified
import os
import math
from typing import Literal, Optional, Dict, Any, List, Annotated
from datetime import datetime, timezone
import requests
from sgp4.api import Satrec, jday
from math import sqrt
from fastmcp import FastMCP
# from mcp.server.fastmcp import FastMCP
from langchain_chroma import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_core.vectorstores import VectorStore
# ==============================================================================
# 🧠 MCP SERVER INITIALIZATION
# ==============================================================================
mcp = FastMCP("FalconPrep", stateless_http=True)
# ==============================================================================
# 🧠 CORE CONSTANTS (The Engineering Brain)
# ==============================================================================
ENVELOPES: Dict[str, Dict[str, Any]] = {
"1U_CubeSat": {"L": 10, "W": 10, "H": 11.35, "max_mass": 2.0},
"3U_CubeSat": {"L": 10, "W": 10, "H": 34.05, "max_mass": 5.0},
"15_Inch_ESPA": {"L": 61.0, "W": 71.0, "H": 71.0, "max_mass": 220.0},
}
PRICING_MODEL: Dict[str, int] = {
"base_rate_per_kg": 6500,
"min_plate_fee": 300000
}
# ==============================================================================
# πŸ—„οΈ RESOURCE: Knowledge Base (VectorStore Connection)
# ==============================================================================
DB_PATH = "./falcon_db"
@mcp.resource("knowledge://rideshare/spacex-manuals-v1")
def get_knowledge_base_resource() -> Any:
print(f"Attempting to load ChromaDB client from {DB_PATH}...")
try:
embedding_model = HuggingFaceEmbeddings(
model_name="all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'}
)
vectorstore = Chroma(
persist_directory=DB_PATH,
embedding_function=embedding_model
)
print("βœ… KnowledgeBaseResource loaded successfully.")
return vectorstore
except Exception as e:
print(f"❌ ERROR: Did you run 'python ingest.py'? Error: {e}")
return None
# ==============================================================================
# πŸ—£οΈ PROMPT TEMPLATE
# ==============================================================================
@mcp.prompt()
def launch_readiness_summary_prompt(
payload_name: str,
fit_check_result: str,
hazard_classification_result: Dict[str, Any],
cost_estimate: str,
required_documents_list: str,
timeline_summary: str,
) -> str:
hazard_level = hazard_classification_result.get('level', 'N/A')
return f"""
You are the **FalconPrep Launch Readiness Assistant**, an expert in SpaceX rideshare compliance.
Your task is to synthesize the following tool outputs for payload **'{payload_name}'**.
**Guidelines**
1. Lead with Fit + Hazard.
2. Use bullet points.
3. Use professional but friendly compliance language.
--- OUTPUTS ---
Fit Check:
{fit_check_result}
Hazard: {hazard_level}
Flags: {hazard_classification_result.get('risk_flags', [])}
Cost Estimate:
{cost_estimate}
Required Documents:
{required_documents_list}
Timeline:
{timeline_summary}
---
**Produce a final summary now.**
"""
# ==============================================================================
# πŸ› οΈ PAYLOAD TOOLS
# ==============================================================================
@mcp.tool()
def get_launch_requirements(
knowledge_base: Annotated[Any, mcp.resource("knowledge://rideshare/spacex-manuals-v1")] = None,
payload_type: str = "",
orbit: str = "",
) -> str:
query = f"requirements for {payload_type} in {orbit} orbit mechanical electrical communication"
try:
results = knowledge_base.similarity_search(query, k=3)
context = "\n\n".join([doc.page_content for doc in results])
except Exception as e:
context = f"ERROR during knowledge query: {e}"
return f"πŸ“„ RAG REQUIREMENTS (Based on manuals):\n{context}"
@mcp.tool()
def check_plate_fit(
length_cm: float,
width_cm: float,
height_cm: float,
mass_kg: float,
) -> str:
fits, fails = [], []
user_dims = sorted([length_cm, width_cm, height_cm])
for name, specs in ENVELOPES.items():
env_dims = sorted([specs["L"], specs["W"], specs["H"]])
mass_ok = mass_kg <= specs["max_mass"]
geo_ok = all(u <= e for u, e in zip(user_dims, env_dims))
if mass_ok and geo_ok:
fits.append(name)
else:
reasons = []
if not mass_ok: reasons.append(f"Overweight (Limit: {specs['max_mass']}kg)")
if not geo_ok: reasons.append("Geometry Violation")
fails.append(f"{name}: {' + '.join(reasons)}")
if fits:
return f"βœ… FIT SUCCESS: Fits {', '.join(fits)} (Recommend {fits[0]})"
return f"❌ FIT FAILURE: No fit. Issues: {chr(10).join(fails)}"
@mcp.tool()
def classify_hazard(
propellant_type: str,
battery_wh: float,
pressure_psi: float,
) -> Dict[str, Any]:
classification, flags = "Standard", []
if propellant_type.lower() not in ["none", "n/a", "green", "water", "xenon"]:
classification, flags = "Hazardous", [f"High-Risk Propellant: {propellant_type}"]
if battery_wh > 1000:
classification, flags = "Hazardous", flags + [f"Battery > 1kWh ({battery_wh}Wh)"]
if pressure_psi > 150:
classification, flags = "Hazardous", flags + [f"Pressure > 150 PSI"]
if not flags:
flags.append("Payload appears standard/benign.")
return {
"level": classification,
"risk_flags": flags,
"implication": (
"Full multi-phase Safety Review Required"
if classification == "Hazardous"
else "Standard single-phase review"
),
}
@mcp.tool()
def calculate_launch_cost(mass_kg: float) -> str:
mass_cost = mass_kg * PRICING_MODEL["base_rate_per_kg"]
final_cost = max(mass_cost, PRICING_MODEL["min_plate_fee"])
return f"πŸ’° ESTIMATED COST\nMass Charge: ${mass_cost:,.0f}\nMinimum Plate Fee: ${PRICING_MODEL['min_plate_fee']:,}\n**TOTAL ESTIMATE: ${final_cost:,.0f} USD**"
@mcp.tool()
def required_documents(
knowledge_base: Annotated[Any, mcp.resource("knowledge://rideshare/spacex-manuals-v1")] = None,
payload_type: str = "",
hazard_level: Literal["Standard", "Hazardous"] = "Standard",
) -> str:
query = f"required documents for {payload_type} deliverables ICD"
try:
results = knowledge_base.similarity_search(query, k=3)
base_docs = "\n\n".join([doc.page_content for doc in results])
except Exception as e:
base_docs = f"ERROR during knowledge query: {e}"
extra = ""
if hazard_level == "Hazardous":
extra = "\n⚠️ EXTRA HAZARDOUS DOCUMENTS:\n* MSDS for all fluids\n* Burst Test Certificate\n* Propellant Handling Plan\n* Full Safety Review Package (SRDP)"
return f"πŸ“‘ REQUIRED DOCUMENTS ({payload_type}, {hazard_level})\n{extra}\n---\nSTANDARD (from manual):\n{base_docs}"
@mcp.tool()
def timeline_check(
knowledge_base: Annotated[Any, mcp.resource("knowledge://rideshare/spacex-manuals-v1")] = None,
hazard_level: Literal["Standard", "Hazardous"] = "Standard",
) -> str:
query = "launch campaign schedule L-minus integration deadlines"
try:
results = knowledge_base.similarity_search(query, k=3)
base_timeline = "\n\n".join([doc.page_content for doc in results])
except Exception as e:
base_timeline = f"ERROR during knowledge query: {e}"
safety = "βœ… Standard Review ~L-4 Months" if hazard_level == "Standard" else "\nπŸ›‘ HAZARDOUS EARLY REVIEWS:\n* L-12m: Phase 0\n* L-9m: Phase 1\n* L-6m: Phase 2\n* L-3m: Phase 3"
return f"πŸ•’ TIMELINE ({hazard_level})\n{safety}\n---\nSTANDARD MILESTONES:\n{base_timeline}"
# ==============================================================================
# πŸ›°οΈ ORBITAL TOOLS
# ==============================================================================
@mcp.tool()
def fetch_gp_data_tool(
query_type: str = "CATNR",
query_value: str = "",
format: Literal["TLE", "JSON", "JSON-PRETTY", "CSV", "XML", "KVN"] = "JSON"
) -> Dict[str, Any]:
base_url = "https://celestrak.org/NORAD/elements/gp.php"
params = {"FORMAT": format, query_type.upper(): query_value}
try:
resp = requests.get(base_url, params=params, timeout=10)
resp.raise_for_status()
if "JSON" in format:
return resp.json()
else:
return {"raw": resp.text}
except Exception as e:
return {"error": str(e)}
@mcp.tool()
def propagate_orbit_tool(
tle_lines: List[str],
target_time: Optional[datetime] = None
) -> Dict[str, Any]:
try:
sat = Satrec.twoline2rv(tle_lines[0], tle_lines[1])
target_time = target_time or datetime.now(timezone.utc)
jd, fr = jday(target_time.year, target_time.month, target_time.day,
target_time.hour, target_time.minute, target_time.second + target_time.microsecond*1e-6)
e, r, v = sat.sgp4(jd, fr)
if e != 0:
raise RuntimeError(f"SGP4 error code {e}")
return {"position_km": tuple(r), "velocity_kms": tuple(v), "timestamp": target_time.isoformat()}
except Exception as e:
return {"error": str(e)}
@mcp.tool()
def collision_check_tool(
sat1_tle: List[str],
sat2_tle: List[str],
threshold_km: float = 5.0,
target_time: Optional[datetime] = None
) -> Dict[str, Any]:
try:
pos1 = propagate_orbit_tool(sat1_tle, target_time)["position_km"]
pos2 = propagate_orbit_tool(sat2_tle, target_time)["position_km"]
distance = sqrt(sum((a - b) ** 2 for a, b in zip(pos1, pos2)))
warning = distance <= threshold_km
return {"distance_km": distance, "collision_warning": warning, "threshold_km": threshold_km, "timestamp": (target_time or datetime.now(timezone.utc)).isoformat()}
except Exception as e:
return {"error": str(e)}
# ==============================================================================
# 🏁 RUN MCP SERVER
# ==============================================================================
if __name__ == "__main__":
mcp.run()