Spaces:
Running
Running
File size: 10,381 Bytes
943ae13 ffd6fdf 943ae13 ffd6fdf 943ae13 ffd6fdf 943ae13 ffd6fdf 943ae13 ffd6fdf 943ae13 ffd6fdf 943ae13 ffd6fdf 943ae13 ffd6fdf 943ae13 ffd6fdf 943ae13 ffd6fdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import os
import math
from typing import Literal, Optional, Dict, Any, List, Annotated
from datetime import datetime, timezone
import requests
from sgp4.api import Satrec, jday
from math import sqrt
from fastmcp import FastMCP
# from mcp.server.fastmcp import FastMCP
from langchain_chroma import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_core.vectorstores import VectorStore
# ==============================================================================
# π§ MCP SERVER INITIALIZATION
# ==============================================================================
mcp = FastMCP("FalconPrep", stateless_http=True)
# ==============================================================================
# π§ CORE CONSTANTS (The Engineering Brain)
# ==============================================================================
ENVELOPES: Dict[str, Dict[str, Any]] = {
"1U_CubeSat": {"L": 10, "W": 10, "H": 11.35, "max_mass": 2.0},
"3U_CubeSat": {"L": 10, "W": 10, "H": 34.05, "max_mass": 5.0},
"15_Inch_ESPA": {"L": 61.0, "W": 71.0, "H": 71.0, "max_mass": 220.0},
}
PRICING_MODEL: Dict[str, int] = {
"base_rate_per_kg": 6500,
"min_plate_fee": 300000
}
# ==============================================================================
# ποΈ RESOURCE: Knowledge Base (VectorStore Connection)
# ==============================================================================
DB_PATH = "./falcon_db"
@mcp.resource("knowledge://rideshare/spacex-manuals-v1")
def get_knowledge_base_resource() -> Any:
print(f"Attempting to load ChromaDB client from {DB_PATH}...")
try:
embedding_model = HuggingFaceEmbeddings(
model_name="all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'}
)
vectorstore = Chroma(
persist_directory=DB_PATH,
embedding_function=embedding_model
)
print("β
KnowledgeBaseResource loaded successfully.")
return vectorstore
except Exception as e:
print(f"β ERROR: Did you run 'python ingest.py'? Error: {e}")
return None
# ==============================================================================
# π£οΈ PROMPT TEMPLATE
# ==============================================================================
@mcp.prompt()
def launch_readiness_summary_prompt(
payload_name: str,
fit_check_result: str,
hazard_classification_result: Dict[str, Any],
cost_estimate: str,
required_documents_list: str,
timeline_summary: str,
) -> str:
hazard_level = hazard_classification_result.get('level', 'N/A')
return f"""
You are the **FalconPrep Launch Readiness Assistant**, an expert in SpaceX rideshare compliance.
Your task is to synthesize the following tool outputs for payload **'{payload_name}'**.
**Guidelines**
1. Lead with Fit + Hazard.
2. Use bullet points.
3. Use professional but friendly compliance language.
--- OUTPUTS ---
Fit Check:
{fit_check_result}
Hazard: {hazard_level}
Flags: {hazard_classification_result.get('risk_flags', [])}
Cost Estimate:
{cost_estimate}
Required Documents:
{required_documents_list}
Timeline:
{timeline_summary}
---
**Produce a final summary now.**
"""
# ==============================================================================
# π οΈ PAYLOAD TOOLS
# ==============================================================================
@mcp.tool()
def get_launch_requirements(
knowledge_base: Annotated[Any, mcp.resource("knowledge://rideshare/spacex-manuals-v1")] = None,
payload_type: str = "",
orbit: str = "",
) -> str:
query = f"requirements for {payload_type} in {orbit} orbit mechanical electrical communication"
try:
results = knowledge_base.similarity_search(query, k=3)
context = "\n\n".join([doc.page_content for doc in results])
except Exception as e:
context = f"ERROR during knowledge query: {e}"
return f"π RAG REQUIREMENTS (Based on manuals):\n{context}"
@mcp.tool()
def check_plate_fit(
length_cm: float,
width_cm: float,
height_cm: float,
mass_kg: float,
) -> str:
fits, fails = [], []
user_dims = sorted([length_cm, width_cm, height_cm])
for name, specs in ENVELOPES.items():
env_dims = sorted([specs["L"], specs["W"], specs["H"]])
mass_ok = mass_kg <= specs["max_mass"]
geo_ok = all(u <= e for u, e in zip(user_dims, env_dims))
if mass_ok and geo_ok:
fits.append(name)
else:
reasons = []
if not mass_ok: reasons.append(f"Overweight (Limit: {specs['max_mass']}kg)")
if not geo_ok: reasons.append("Geometry Violation")
fails.append(f"{name}: {' + '.join(reasons)}")
if fits:
return f"β
FIT SUCCESS: Fits {', '.join(fits)} (Recommend {fits[0]})"
return f"β FIT FAILURE: No fit. Issues: {chr(10).join(fails)}"
@mcp.tool()
def classify_hazard(
propellant_type: str,
battery_wh: float,
pressure_psi: float,
) -> Dict[str, Any]:
classification, flags = "Standard", []
if propellant_type.lower() not in ["none", "n/a", "green", "water", "xenon"]:
classification, flags = "Hazardous", [f"High-Risk Propellant: {propellant_type}"]
if battery_wh > 1000:
classification, flags = "Hazardous", flags + [f"Battery > 1kWh ({battery_wh}Wh)"]
if pressure_psi > 150:
classification, flags = "Hazardous", flags + [f"Pressure > 150 PSI"]
if not flags:
flags.append("Payload appears standard/benign.")
return {
"level": classification,
"risk_flags": flags,
"implication": (
"Full multi-phase Safety Review Required"
if classification == "Hazardous"
else "Standard single-phase review"
),
}
@mcp.tool()
def calculate_launch_cost(mass_kg: float) -> str:
mass_cost = mass_kg * PRICING_MODEL["base_rate_per_kg"]
final_cost = max(mass_cost, PRICING_MODEL["min_plate_fee"])
return f"π° ESTIMATED COST\nMass Charge: ${mass_cost:,.0f}\nMinimum Plate Fee: ${PRICING_MODEL['min_plate_fee']:,}\n**TOTAL ESTIMATE: ${final_cost:,.0f} USD**"
@mcp.tool()
def required_documents(
knowledge_base: Annotated[Any, mcp.resource("knowledge://rideshare/spacex-manuals-v1")] = None,
payload_type: str = "",
hazard_level: Literal["Standard", "Hazardous"] = "Standard",
) -> str:
query = f"required documents for {payload_type} deliverables ICD"
try:
results = knowledge_base.similarity_search(query, k=3)
base_docs = "\n\n".join([doc.page_content for doc in results])
except Exception as e:
base_docs = f"ERROR during knowledge query: {e}"
extra = ""
if hazard_level == "Hazardous":
extra = "\nβ οΈ EXTRA HAZARDOUS DOCUMENTS:\n* MSDS for all fluids\n* Burst Test Certificate\n* Propellant Handling Plan\n* Full Safety Review Package (SRDP)"
return f"π REQUIRED DOCUMENTS ({payload_type}, {hazard_level})\n{extra}\n---\nSTANDARD (from manual):\n{base_docs}"
@mcp.tool()
def timeline_check(
knowledge_base: Annotated[Any, mcp.resource("knowledge://rideshare/spacex-manuals-v1")] = None,
hazard_level: Literal["Standard", "Hazardous"] = "Standard",
) -> str:
query = "launch campaign schedule L-minus integration deadlines"
try:
results = knowledge_base.similarity_search(query, k=3)
base_timeline = "\n\n".join([doc.page_content for doc in results])
except Exception as e:
base_timeline = f"ERROR during knowledge query: {e}"
safety = "β
Standard Review ~L-4 Months" if hazard_level == "Standard" else "\nπ HAZARDOUS EARLY REVIEWS:\n* L-12m: Phase 0\n* L-9m: Phase 1\n* L-6m: Phase 2\n* L-3m: Phase 3"
return f"π TIMELINE ({hazard_level})\n{safety}\n---\nSTANDARD MILESTONES:\n{base_timeline}"
# ==============================================================================
# π°οΈ ORBITAL TOOLS
# ==============================================================================
@mcp.tool()
def fetch_gp_data_tool(
query_type: str = "CATNR",
query_value: str = "",
format: Literal["TLE", "JSON", "JSON-PRETTY", "CSV", "XML", "KVN"] = "JSON"
) -> Dict[str, Any]:
base_url = "https://celestrak.org/NORAD/elements/gp.php"
params = {"FORMAT": format, query_type.upper(): query_value}
try:
resp = requests.get(base_url, params=params, timeout=10)
resp.raise_for_status()
if "JSON" in format:
return resp.json()
else:
return {"raw": resp.text}
except Exception as e:
return {"error": str(e)}
@mcp.tool()
def propagate_orbit_tool(
tle_lines: List[str],
target_time: Optional[datetime] = None
) -> Dict[str, Any]:
try:
sat = Satrec.twoline2rv(tle_lines[0], tle_lines[1])
target_time = target_time or datetime.now(timezone.utc)
jd, fr = jday(target_time.year, target_time.month, target_time.day,
target_time.hour, target_time.minute, target_time.second + target_time.microsecond*1e-6)
e, r, v = sat.sgp4(jd, fr)
if e != 0:
raise RuntimeError(f"SGP4 error code {e}")
return {"position_km": tuple(r), "velocity_kms": tuple(v), "timestamp": target_time.isoformat()}
except Exception as e:
return {"error": str(e)}
@mcp.tool()
def collision_check_tool(
sat1_tle: List[str],
sat2_tle: List[str],
threshold_km: float = 5.0,
target_time: Optional[datetime] = None
) -> Dict[str, Any]:
try:
pos1 = propagate_orbit_tool(sat1_tle, target_time)["position_km"]
pos2 = propagate_orbit_tool(sat2_tle, target_time)["position_km"]
distance = sqrt(sum((a - b) ** 2 for a, b in zip(pos1, pos2)))
warning = distance <= threshold_km
return {"distance_km": distance, "collision_warning": warning, "threshold_km": threshold_km, "timestamp": (target_time or datetime.now(timezone.utc)).isoformat()}
except Exception as e:
return {"error": str(e)}
# ==============================================================================
# π RUN MCP SERVER
# ==============================================================================
if __name__ == "__main__":
mcp.run()
|