Spaces:
Running
Running
corrected prev commit
Browse files
app.py
CHANGED
|
@@ -1,267 +1,245 @@
|
|
| 1 |
import os
|
| 2 |
-
import math
|
| 3 |
-
from typing import Literal, Optional, Dict, Any, List, Annotated
|
| 4 |
-
from datetime import datetime, timezone
|
| 5 |
-
import requests
|
| 6 |
-
from sgp4.api import Satrec, jday
|
| 7 |
-
from math import sqrt
|
| 8 |
-
|
| 9 |
from fastmcp import FastMCP
|
| 10 |
-
|
| 11 |
-
from
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
#
|
| 22 |
-
#
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
}
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
| 34 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
|
| 38 |
-
# ==============================================================================
|
| 39 |
|
| 40 |
-
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
print(f"Attempting to load ChromaDB client from {DB_PATH}...")
|
| 45 |
-
try:
|
| 46 |
-
embedding_model = HuggingFaceEmbeddings(
|
| 47 |
-
model_name="all-MiniLM-L6-v2",
|
| 48 |
-
model_kwargs={'device': 'cpu'}
|
| 49 |
-
)
|
| 50 |
-
vectorstore = Chroma(
|
| 51 |
-
persist_directory=DB_PATH,
|
| 52 |
-
embedding_function=embedding_model
|
| 53 |
-
)
|
| 54 |
-
print("β
KnowledgeBaseResource loaded successfully.")
|
| 55 |
-
return vectorstore
|
| 56 |
-
except Exception as e:
|
| 57 |
-
print(f"β ERROR: Did you run 'python ingest.py'? Error: {e}")
|
| 58 |
-
return None
|
| 59 |
|
| 60 |
-
|
| 61 |
-
# π£οΈ PROMPT TEMPLATE
|
| 62 |
-
# ==============================================================================
|
| 63 |
|
| 64 |
-
|
| 65 |
-
def launch_readiness_summary_prompt(
|
| 66 |
-
payload_name: str,
|
| 67 |
-
fit_check_result: str,
|
| 68 |
-
hazard_classification_result: Dict[str, Any],
|
| 69 |
-
cost_estimate: str,
|
| 70 |
-
required_documents_list: str,
|
| 71 |
-
timeline_summary: str,
|
| 72 |
-
) -> str:
|
| 73 |
-
hazard_level = hazard_classification_result.get('level', 'N/A')
|
| 74 |
-
return f"""
|
| 75 |
-
You are the **FalconPrep Launch Readiness Assistant**, an expert in SpaceX rideshare compliance.
|
| 76 |
-
Your task is to synthesize the following tool outputs for payload **'{payload_name}'**.
|
| 77 |
-
|
| 78 |
-
**Guidelines**
|
| 79 |
-
1. Lead with Fit + Hazard.
|
| 80 |
-
2. Use bullet points.
|
| 81 |
-
3. Use professional but friendly compliance language.
|
| 82 |
-
|
| 83 |
-
--- OUTPUTS ---
|
| 84 |
-
Fit Check:
|
| 85 |
-
{fit_check_result}
|
| 86 |
-
|
| 87 |
-
Hazard: {hazard_level}
|
| 88 |
-
Flags: {hazard_classification_result.get('risk_flags', [])}
|
| 89 |
-
|
| 90 |
-
Cost Estimate:
|
| 91 |
-
{cost_estimate}
|
| 92 |
-
|
| 93 |
-
Required Documents:
|
| 94 |
-
{required_documents_list}
|
| 95 |
-
|
| 96 |
-
Timeline:
|
| 97 |
-
{timeline_summary}
|
| 98 |
-
---
|
| 99 |
-
|
| 100 |
-
**Produce a final summary now.**
|
| 101 |
-
"""
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
# ==============================================================================
|
| 106 |
-
|
| 107 |
-
@mcp.tool()
|
| 108 |
-
def get_launch_requirements(
|
| 109 |
-
knowledge_base: Annotated[Any, mcp.resource("knowledge://rideshare/spacex-manuals-v1")] = None,
|
| 110 |
-
payload_type: str = "",
|
| 111 |
-
orbit: str = "",
|
| 112 |
-
) -> str:
|
| 113 |
-
query = f"requirements for {payload_type} in {orbit} orbit mechanical electrical communication"
|
| 114 |
-
try:
|
| 115 |
-
results = knowledge_base.similarity_search(query, k=3)
|
| 116 |
-
context = "\n\n".join([doc.page_content for doc in results])
|
| 117 |
-
except Exception as e:
|
| 118 |
-
context = f"ERROR during knowledge query: {e}"
|
| 119 |
-
return f"π RAG REQUIREMENTS (Based on manuals):\n{context}"
|
| 120 |
-
|
| 121 |
-
@mcp.tool()
|
| 122 |
-
def check_plate_fit(
|
| 123 |
-
length_cm: float,
|
| 124 |
-
width_cm: float,
|
| 125 |
-
height_cm: float,
|
| 126 |
-
mass_kg: float,
|
| 127 |
-
) -> str:
|
| 128 |
-
fits, fails = [], []
|
| 129 |
-
user_dims = sorted([length_cm, width_cm, height_cm])
|
| 130 |
-
for name, specs in ENVELOPES.items():
|
| 131 |
-
env_dims = sorted([specs["L"], specs["W"], specs["H"]])
|
| 132 |
-
mass_ok = mass_kg <= specs["max_mass"]
|
| 133 |
-
geo_ok = all(u <= e for u, e in zip(user_dims, env_dims))
|
| 134 |
-
if mass_ok and geo_ok:
|
| 135 |
-
fits.append(name)
|
| 136 |
-
else:
|
| 137 |
-
reasons = []
|
| 138 |
-
if not mass_ok: reasons.append(f"Overweight (Limit: {specs['max_mass']}kg)")
|
| 139 |
-
if not geo_ok: reasons.append("Geometry Violation")
|
| 140 |
-
fails.append(f"{name}: {' + '.join(reasons)}")
|
| 141 |
-
if fits:
|
| 142 |
-
return f"β
FIT SUCCESS: Fits {', '.join(fits)} (Recommend {fits[0]})"
|
| 143 |
-
return f"β FIT FAILURE: No fit. Issues: {chr(10).join(fails)}"
|
| 144 |
-
|
| 145 |
-
@mcp.tool()
|
| 146 |
-
def classify_hazard(
|
| 147 |
-
propellant_type: str,
|
| 148 |
-
battery_wh: float,
|
| 149 |
-
pressure_psi: float,
|
| 150 |
-
) -> Dict[str, Any]:
|
| 151 |
-
classification, flags = "Standard", []
|
| 152 |
-
if propellant_type.lower() not in ["none", "n/a", "green", "water", "xenon"]:
|
| 153 |
-
classification, flags = "Hazardous", [f"High-Risk Propellant: {propellant_type}"]
|
| 154 |
-
if battery_wh > 1000:
|
| 155 |
-
classification, flags = "Hazardous", flags + [f"Battery > 1kWh ({battery_wh}Wh)"]
|
| 156 |
-
if pressure_psi > 150:
|
| 157 |
-
classification, flags = "Hazardous", flags + [f"Pressure > 150 PSI"]
|
| 158 |
-
if not flags:
|
| 159 |
-
flags.append("Payload appears standard/benign.")
|
| 160 |
-
return {
|
| 161 |
-
"level": classification,
|
| 162 |
-
"risk_flags": flags,
|
| 163 |
-
"implication": (
|
| 164 |
-
"Full multi-phase Safety Review Required"
|
| 165 |
-
if classification == "Hazardous"
|
| 166 |
-
else "Standard single-phase review"
|
| 167 |
-
),
|
| 168 |
}
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
@mcp.tool()
|
| 177 |
-
def required_documents(
|
| 178 |
-
knowledge_base: Annotated[Any, mcp.resource("knowledge://rideshare/spacex-manuals-v1")] = None,
|
| 179 |
-
payload_type: str = "",
|
| 180 |
-
hazard_level: Literal["Standard", "Hazardous"] = "Standard",
|
| 181 |
-
) -> str:
|
| 182 |
-
query = f"required documents for {payload_type} deliverables ICD"
|
| 183 |
-
try:
|
| 184 |
-
results = knowledge_base.similarity_search(query, k=3)
|
| 185 |
-
base_docs = "\n\n".join([doc.page_content for doc in results])
|
| 186 |
-
except Exception as e:
|
| 187 |
-
base_docs = f"ERROR during knowledge query: {e}"
|
| 188 |
-
extra = ""
|
| 189 |
-
if hazard_level == "Hazardous":
|
| 190 |
-
extra = "\nβ οΈ EXTRA HAZARDOUS DOCUMENTS:\n* MSDS for all fluids\n* Burst Test Certificate\n* Propellant Handling Plan\n* Full Safety Review Package (SRDP)"
|
| 191 |
-
return f"π REQUIRED DOCUMENTS ({payload_type}, {hazard_level})\n{extra}\n---\nSTANDARD (from manual):\n{base_docs}"
|
| 192 |
-
|
| 193 |
-
@mcp.tool()
|
| 194 |
-
def timeline_check(
|
| 195 |
-
knowledge_base: Annotated[Any, mcp.resource("knowledge://rideshare/spacex-manuals-v1")] = None,
|
| 196 |
-
hazard_level: Literal["Standard", "Hazardous"] = "Standard",
|
| 197 |
-
) -> str:
|
| 198 |
-
query = "launch campaign schedule L-minus integration deadlines"
|
| 199 |
-
try:
|
| 200 |
-
results = knowledge_base.similarity_search(query, k=3)
|
| 201 |
-
base_timeline = "\n\n".join([doc.page_content for doc in results])
|
| 202 |
-
except Exception as e:
|
| 203 |
-
base_timeline = f"ERROR during knowledge query: {e}"
|
| 204 |
-
safety = "β
Standard Review ~L-4 Months" if hazard_level == "Standard" else "\nπ HAZARDOUS EARLY REVIEWS:\n* L-12m: Phase 0\n* L-9m: Phase 1\n* L-6m: Phase 2\n* L-3m: Phase 3"
|
| 205 |
-
return f"π TIMELINE ({hazard_level})\n{safety}\n---\nSTANDARD MILESTONES:\n{base_timeline}"
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
|
| 211 |
-
@mcp.tool()
|
| 212 |
-
def fetch_gp_data_tool(
|
| 213 |
-
query_type: str = "CATNR",
|
| 214 |
-
query_value: str = "",
|
| 215 |
-
format: Literal["TLE", "JSON", "JSON-PRETTY", "CSV", "XML", "KVN"] = "JSON"
|
| 216 |
-
) -> Dict[str, Any]:
|
| 217 |
-
base_url = "https://celestrak.org/NORAD/elements/gp.php"
|
| 218 |
-
params = {"FORMAT": format, query_type.upper(): query_value}
|
| 219 |
-
try:
|
| 220 |
-
resp = requests.get(base_url, params=params, timeout=10)
|
| 221 |
-
resp.raise_for_status()
|
| 222 |
-
if "JSON" in format:
|
| 223 |
-
return resp.json()
|
| 224 |
-
else:
|
| 225 |
-
return {"raw": resp.text}
|
| 226 |
-
except Exception as e:
|
| 227 |
-
return {"error": str(e)}
|
| 228 |
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
try:
|
| 235 |
-
sat = Satrec.twoline2rv(tle_lines[0], tle_lines[1])
|
| 236 |
-
target_time = target_time or datetime.now(timezone.utc)
|
| 237 |
-
jd, fr = jday(target_time.year, target_time.month, target_time.day,
|
| 238 |
-
target_time.hour, target_time.minute, target_time.second + target_time.microsecond*1e-6)
|
| 239 |
-
e, r, v = sat.sgp4(jd, fr)
|
| 240 |
-
if e != 0:
|
| 241 |
-
raise RuntimeError(f"SGP4 error code {e}")
|
| 242 |
-
return {"position_km": tuple(r), "velocity_kms": tuple(v), "timestamp": target_time.isoformat()}
|
| 243 |
-
except Exception as e:
|
| 244 |
-
return {"error": str(e)}
|
| 245 |
|
| 246 |
-
@mcp.tool()
|
| 247 |
-
def collision_check_tool(
|
| 248 |
-
sat1_tle: List[str],
|
| 249 |
-
sat2_tle: List[str],
|
| 250 |
-
threshold_km: float = 5.0,
|
| 251 |
-
target_time: Optional[datetime] = None
|
| 252 |
-
) -> Dict[str, Any]:
|
| 253 |
-
try:
|
| 254 |
-
pos1 = propagate_orbit_tool(sat1_tle, target_time)["position_km"]
|
| 255 |
-
pos2 = propagate_orbit_tool(sat2_tle, target_time)["position_km"]
|
| 256 |
-
distance = sqrt(sum((a - b) ** 2 for a, b in zip(pos1, pos2)))
|
| 257 |
-
warning = distance <= threshold_km
|
| 258 |
-
return {"distance_km": distance, "collision_warning": warning, "threshold_km": threshold_km, "timestamp": (target_time or datetime.now(timezone.utc)).isoformat()}
|
| 259 |
-
except Exception as e:
|
| 260 |
-
return {"error": str(e)}
|
| 261 |
|
| 262 |
-
# ==============================================================================
|
| 263 |
-
# π RUN MCP SERVER
|
| 264 |
-
# ==============================================================================
|
| 265 |
|
| 266 |
if __name__ == "__main__":
|
| 267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from fastmcp import FastMCP
|
| 3 |
+
from fastapi.responses import HTMLResponse
|
| 4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
from server import mcp
|
| 8 |
+
|
| 9 |
+
# app = mcp.app
|
| 10 |
+
|
| 11 |
+
# app.add_middleware(
|
| 12 |
+
# CORSMiddleware,
|
| 13 |
+
# allow_origins=["*"],
|
| 14 |
+
# allow_credentials=True,
|
| 15 |
+
# allow_methods=["*"],
|
| 16 |
+
# allow_headers=["*"],
|
| 17 |
+
# )
|
| 18 |
+
|
| 19 |
+
# -----------------------------
|
| 20 |
+
# Landing Page (Optional UI)
|
| 21 |
+
# -----------------------------
|
| 22 |
+
@mcp.custom_route("/", methods=["GET"])
|
| 23 |
+
async def index(_):
|
| 24 |
+
return HTMLResponse("""
|
| 25 |
+
<!DOCTYPE html>
|
| 26 |
+
<html lang="en">
|
| 27 |
+
<head>
|
| 28 |
+
<meta charset="UTF-8">
|
| 29 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 30 |
+
<title>FalconPrep MCP Server</title>
|
| 31 |
+
<style>
|
| 32 |
+
:root {
|
| 33 |
+
--accent: #22d3ee;
|
| 34 |
+
--bg: #020b14;
|
| 35 |
+
--panel: rgba(0,0,0,0.45);
|
| 36 |
+
--border: #1e293b;
|
| 37 |
+
--font: "Roboto Mono", monospace;
|
| 38 |
+
--text-dim: #9ac7e0;
|
| 39 |
+
}
|
| 40 |
+
body {
|
| 41 |
+
margin: 0;
|
| 42 |
+
background: var(--bg);
|
| 43 |
+
font-family: var(--font);
|
| 44 |
+
color: white;
|
| 45 |
+
overflow-x: hidden;
|
| 46 |
+
overflow-y: auto;
|
| 47 |
+
min-height: 100vh;
|
| 48 |
+
position: relative;
|
| 49 |
+
}
|
| 50 |
+
#starfield {
|
| 51 |
+
position: fixed;
|
| 52 |
+
inset: 0;
|
| 53 |
+
width: 100vw;
|
| 54 |
+
height: 100vh;
|
| 55 |
+
z-index: -1;
|
| 56 |
+
display: block;
|
| 57 |
+
}
|
| 58 |
+
.container {
|
| 59 |
+
width: 85vw;
|
| 60 |
+
max-width: 900px;
|
| 61 |
+
margin: 0 auto;
|
| 62 |
+
padding-top: 10vh;
|
| 63 |
+
padding-bottom: 10vh;
|
| 64 |
+
display: flex;
|
| 65 |
+
flex-direction: column;
|
| 66 |
+
gap: 2.5vh;
|
| 67 |
+
}
|
| 68 |
+
h1 {
|
| 69 |
+
font-size: 3.2rem;
|
| 70 |
+
text-transform: uppercase;
|
| 71 |
+
letter-spacing: 0.18rem;
|
| 72 |
+
margin: 0 0 0.5rem 0;
|
| 73 |
+
color: var(--accent);
|
| 74 |
+
font-weight: 900;
|
| 75 |
+
text-align: center;
|
| 76 |
+
}
|
| 77 |
+
.subtitle {
|
| 78 |
+
opacity: 0.75;
|
| 79 |
+
letter-spacing: 0.12rem;
|
| 80 |
+
text-align: center;
|
| 81 |
+
margin-bottom: 2vh;
|
| 82 |
+
}
|
| 83 |
+
.panel {
|
| 84 |
+
background: var(--panel);
|
| 85 |
+
border: 1px solid var(--border);
|
| 86 |
+
border-radius: 8px;
|
| 87 |
+
padding: 1.4rem;
|
| 88 |
+
box-shadow: 0px 0px 15px rgba(34,211,238,0.08);
|
| 89 |
+
backdrop-filter: blur(4px);
|
| 90 |
+
}
|
| 91 |
+
.panel h2 {
|
| 92 |
+
margin-top: 0;
|
| 93 |
+
margin-bottom: 0.8rem;
|
| 94 |
+
font-size: 1.25rem;
|
| 95 |
+
color: var(--accent);
|
| 96 |
+
font-weight: 700;
|
| 97 |
+
text-transform: uppercase;
|
| 98 |
+
letter-spacing: 0.12rem;
|
| 99 |
+
}
|
| 100 |
+
p {
|
| 101 |
+
font-size: 1rem;
|
| 102 |
+
line-height: 1.55;
|
| 103 |
+
color: var(--text-dim);
|
| 104 |
+
}
|
| 105 |
+
ul {
|
| 106 |
+
padding-left: 1.2rem;
|
| 107 |
+
margin: 0;
|
| 108 |
+
}
|
| 109 |
+
li {
|
| 110 |
+
color: var(--text-dim);
|
| 111 |
+
margin-bottom: 0.5rem;
|
| 112 |
+
font-size: 1rem;
|
| 113 |
+
}
|
| 114 |
+
code {
|
| 115 |
+
color: var(--accent);
|
| 116 |
+
}
|
| 117 |
+
</style>
|
| 118 |
+
</head>
|
| 119 |
+
|
| 120 |
+
<body>
|
| 121 |
+
<canvas id="starfield"></canvas>
|
| 122 |
+
|
| 123 |
+
<div class="container">
|
| 124 |
+
|
| 125 |
+
<h1>FalconPrep</h1>
|
| 126 |
+
<p class="subtitle">AI Launch Integration Assistant</p>
|
| 127 |
+
|
| 128 |
+
<div class="panel"><h2>Problem</h2>
|
| 129 |
+
<p>Launch teams must navigate 200β400+ pages of SpaceX rideshare manuals, unclear pricing, and slow email back-and-forth.</p>
|
| 130 |
+
</div>
|
| 131 |
+
|
| 132 |
+
<div class="panel"><h2>Pain Points</h2>
|
| 133 |
+
<ul>
|
| 134 |
+
<li>Complex requirements & engineering jargon</li>
|
| 135 |
+
<li>Slow cost estimation</li>
|
| 136 |
+
<li>Unclear safety & propellant rules</li>
|
| 137 |
+
<li>Scattered planning tools (PDFs, Excel, emails)</li>
|
| 138 |
+
</ul>
|
| 139 |
+
</div>
|
| 140 |
+
|
| 141 |
+
<div class="panel"><h2>Solution</h2>
|
| 142 |
+
<p>FalconPrep turns the documentation into structured MCP tools so AI agents can compute requirements, costs, hazards, and timelines.</p>
|
| 143 |
+
</div>
|
| 144 |
+
|
| 145 |
+
<div class="panel"><h2>Core Tools</h2>
|
| 146 |
+
<ul>
|
| 147 |
+
<li>check_plate_fit</li>
|
| 148 |
+
<li>classify_hazard</li>
|
| 149 |
+
<li>estimate_cost</li>
|
| 150 |
+
<li>lookup_standard</li>
|
| 151 |
+
<li>generate_report</li>
|
| 152 |
+
</ul>
|
| 153 |
+
</div>
|
| 154 |
+
|
| 155 |
+
<div class="panel"><h2>How to Use</h2>
|
| 156 |
+
<ul>
|
| 157 |
+
<li>Connect with an MCP client</li>
|
| 158 |
+
<li>SSE endpoint: <code>/sse</code></li>
|
| 159 |
+
<li>Supports all tool calls via JSON</li>
|
| 160 |
+
</ul>
|
| 161 |
+
</div>
|
| 162 |
+
|
| 163 |
+
</div>
|
| 164 |
+
|
| 165 |
+
<script>
|
| 166 |
+
/* starfield js animation preserved */
|
| 167 |
+
const canvas = document.getElementById("starfield");
|
| 168 |
+
const ctx = canvas.getContext("2d");
|
| 169 |
+
let stars = [];
|
| 170 |
+
|
| 171 |
+
function resizeCanvas() {
|
| 172 |
+
canvas.width = window.innerWidth;
|
| 173 |
+
canvas.height = window.innerHeight;
|
| 174 |
}
|
| 175 |
+
function initStars() {
|
| 176 |
+
resizeCanvas();
|
| 177 |
+
stars = Array.from({ length: 450 }, () => ({
|
| 178 |
+
x: Math.random() * canvas.width,
|
| 179 |
+
y: Math.random() * canvas.height,
|
| 180 |
+
speed: Math.random() * 0.7 + 0.2
|
| 181 |
+
}));
|
| 182 |
}
|
| 183 |
+
let lastScrollY = 0;
|
| 184 |
+
let scrollSpeed = 0;
|
| 185 |
+
window.addEventListener("scroll", () => {
|
| 186 |
+
const current = window.scrollY;
|
| 187 |
+
scrollSpeed = current - lastScrollY;
|
| 188 |
+
lastScrollY = current;
|
| 189 |
+
});
|
| 190 |
+
let smoothScroll = 0;
|
| 191 |
+
function animateStars() {
|
| 192 |
+
smoothScroll += (scrollSpeed - smoothScroll) * 0.05;
|
| 193 |
|
| 194 |
+
ctx.fillStyle = "#020b14";
|
| 195 |
+
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
|
|
|
| 196 |
|
| 197 |
+
ctx.fillStyle = "white";
|
| 198 |
|
| 199 |
+
for (const s of stars) {
|
| 200 |
+
ctx.fillRect(s.x, s.y, 1.5, 1.5);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
+
const scrollBoost = smoothScroll * 0.05;
|
|
|
|
|
|
|
| 203 |
|
| 204 |
+
s.y += s.speed + scrollBoost;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
+
if (s.y > canvas.height) s.y -= canvas.height;
|
| 207 |
+
if (s.y < 0) s.y += canvas.height;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
}
|
| 209 |
|
| 210 |
+
requestAnimationFrame(animateStars);
|
| 211 |
+
}
|
| 212 |
+
window.addEventListener("resize", resizeCanvas);
|
| 213 |
+
initStars();
|
| 214 |
+
animateStars();
|
| 215 |
+
</script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
+
</body>
|
| 218 |
+
</html>
|
| 219 |
+
""")
|
| 220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
+
# -----------------------------
|
| 223 |
+
# Run FastMCP (with SSE)
|
| 224 |
+
# -----------------------------
|
| 225 |
+
HF_SPACE_PORT = int(os.getenv("PORT", 7860))
|
| 226 |
+
HF_SPACE_HOST = os.getenv("HOST", "0.0.0.0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
if __name__ == "__main__":
|
| 231 |
+
print("π FalconPrep MCP Server starting...")
|
| 232 |
+
if hasattr(mcp, '_app'):
|
| 233 |
+
mcp._app.add_middleware(
|
| 234 |
+
CORSMiddleware,
|
| 235 |
+
allow_origins=["*"],
|
| 236 |
+
allow_credentials=True,
|
| 237 |
+
allow_methods=["*"],
|
| 238 |
+
allow_headers=["*"],
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
mcp.run(
|
| 242 |
+
transport="sse",
|
| 243 |
+
host=HF_SPACE_HOST,
|
| 244 |
+
port=HF_SPACE_PORT,
|
| 245 |
+
)
|
server.py
CHANGED
|
@@ -1,6 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
import math
|
| 3 |
from typing import Literal, Optional, Dict, Any, List, Annotated
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
from fastmcp import FastMCP
|
| 6 |
# from mcp.server.fastmcp import FastMCP
|
|
@@ -8,7 +12,10 @@ from langchain_chroma import Chroma
|
|
| 8 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 9 |
from langchain_core.vectorstores import VectorStore
|
| 10 |
|
| 11 |
-
#
|
|
|
|
|
|
|
|
|
|
| 12 |
mcp = FastMCP("FalconPrep", stateless_http=True)
|
| 13 |
|
| 14 |
# ==============================================================================
|
|
@@ -34,16 +41,6 @@ DB_PATH = "./falcon_db"
|
|
| 34 |
|
| 35 |
@mcp.resource("knowledge://rideshare/spacex-manuals-v1")
|
| 36 |
def get_knowledge_base_resource() -> Any:
|
| 37 |
-
"""
|
| 38 |
-
Initializes and returns the query client for the persistent ChromaDB vector store.
|
| 39 |
-
|
| 40 |
-
This resource loads the SpaceX Payload User Guides and uses a local
|
| 41 |
-
HuggingFace embedding model for zero-cost operation. The return type is
|
| 42 |
-
Any to prevent Pydantic serialization errors during FastMCP startup.
|
| 43 |
-
|
| 44 |
-
Returns:
|
| 45 |
-
Any (Chroma VectorStore instance): The connected vector store object.
|
| 46 |
-
"""
|
| 47 |
print(f"Attempting to load ChromaDB client from {DB_PATH}...")
|
| 48 |
try:
|
| 49 |
embedding_model = HuggingFaceEmbeddings(
|
|
@@ -54,7 +51,6 @@ def get_knowledge_base_resource() -> Any:
|
|
| 54 |
persist_directory=DB_PATH,
|
| 55 |
embedding_function=embedding_model
|
| 56 |
)
|
| 57 |
-
|
| 58 |
print("β
KnowledgeBaseResource loaded successfully.")
|
| 59 |
return vectorstore
|
| 60 |
except Exception as e:
|
|
@@ -74,21 +70,6 @@ def launch_readiness_summary_prompt(
|
|
| 74 |
required_documents_list: str,
|
| 75 |
timeline_summary: str,
|
| 76 |
) -> str:
|
| 77 |
-
"""
|
| 78 |
-
Instructs the AI Agent on how to synthesize the structured tool outputs
|
| 79 |
-
into a comprehensive, final launch readiness report for the user.
|
| 80 |
-
|
| 81 |
-
Args:
|
| 82 |
-
payload_name (str): The name of the satellite/payload.
|
| 83 |
-
fit_check_result (str): Output from the check_plate_fit tool.
|
| 84 |
-
hazard_classification_result (Dict[str, Any]): Output from the classify_hazard tool.
|
| 85 |
-
cost_estimate (str): Output from the calculate_launch_cost tool.
|
| 86 |
-
required_documents_list (str): Output from the required_documents tool.
|
| 87 |
-
timeline_summary (str): Output from the timeline_check tool.
|
| 88 |
-
|
| 89 |
-
Returns:
|
| 90 |
-
str: The full system prompt instructing the LLM on synthesis.
|
| 91 |
-
"""
|
| 92 |
hazard_level = hazard_classification_result.get('level', 'N/A')
|
| 93 |
return f"""
|
| 94 |
You are the **FalconPrep Launch Readiness Assistant**, an expert in SpaceX rideshare compliance.
|
|
@@ -120,7 +101,7 @@ def launch_readiness_summary_prompt(
|
|
| 120 |
"""
|
| 121 |
|
| 122 |
# ==============================================================================
|
| 123 |
-
# π οΈ TOOLS
|
| 124 |
# ==============================================================================
|
| 125 |
|
| 126 |
@mcp.tool()
|
|
@@ -129,30 +110,13 @@ def get_launch_requirements(
|
|
| 129 |
payload_type: str = "",
|
| 130 |
orbit: str = "",
|
| 131 |
) -> str:
|
| 132 |
-
"""
|
| 133 |
-
RAG-Based: Retrieves qualitative launch requirements from the ingested SpaceX payload manuals.
|
| 134 |
-
|
| 135 |
-
Queries the vector store for detailed technical and integration requirements
|
| 136 |
-
based on the payload type and target orbit.
|
| 137 |
-
|
| 138 |
-
Args:
|
| 139 |
-
knowledge_base (Any): The injected Chroma VectorStore client.
|
| 140 |
-
payload_type (str): The type of payload (e.g., 'CubeSat', 'Cake Topper').
|
| 141 |
-
orbit (str): The intended orbit (e.g., 'SSO', 'LEO').
|
| 142 |
-
|
| 143 |
-
Returns:
|
| 144 |
-
str: A string containing the relevant context found in the manuals.
|
| 145 |
-
"""
|
| 146 |
query = f"requirements for {payload_type} in {orbit} orbit mechanical electrical communication"
|
| 147 |
try:
|
| 148 |
results = knowledge_base.similarity_search(query, k=3)
|
| 149 |
context = "\n\n".join([doc.page_content for doc in results])
|
| 150 |
except Exception as e:
|
| 151 |
context = f"ERROR during knowledge query: {e}"
|
| 152 |
-
return f""
|
| 153 |
-
π RAG REQUIREMENTS (Based on manuals):
|
| 154 |
-
{context}
|
| 155 |
-
"""
|
| 156 |
|
| 157 |
@mcp.tool()
|
| 158 |
def check_plate_fit(
|
|
@@ -161,29 +125,12 @@ def check_plate_fit(
|
|
| 161 |
height_cm: float,
|
| 162 |
mass_kg: float,
|
| 163 |
) -> str:
|
| 164 |
-
"""
|
| 165 |
-
Logic Tool: Checks if a payload's bounding box and mass fit standard rideshare interfaces.
|
| 166 |
-
|
| 167 |
-
Compares the user-provided dimensions and mass against predefined standards
|
| 168 |
-
(1U, 3U, ESPA-class).
|
| 169 |
-
|
| 170 |
-
Args:
|
| 171 |
-
length_cm (float): Payload length in centimeters.
|
| 172 |
-
width_cm (float): Payload width in centimeters.
|
| 173 |
-
height_cm (float): Payload height in centimeters.
|
| 174 |
-
mass_kg (float): Payload mass in kilograms.
|
| 175 |
-
|
| 176 |
-
Returns:
|
| 177 |
-
str: A string indicating success and compatible interfaces, or a failure detail.
|
| 178 |
-
"""
|
| 179 |
fits, fails = [], []
|
| 180 |
user_dims = sorted([length_cm, width_cm, height_cm])
|
| 181 |
-
|
| 182 |
for name, specs in ENVELOPES.items():
|
| 183 |
env_dims = sorted([specs["L"], specs["W"], specs["H"]])
|
| 184 |
mass_ok = mass_kg <= specs["max_mass"]
|
| 185 |
geo_ok = all(u <= e for u, e in zip(user_dims, env_dims))
|
| 186 |
-
|
| 187 |
if mass_ok and geo_ok:
|
| 188 |
fits.append(name)
|
| 189 |
else:
|
|
@@ -191,7 +138,6 @@ def check_plate_fit(
|
|
| 191 |
if not mass_ok: reasons.append(f"Overweight (Limit: {specs['max_mass']}kg)")
|
| 192 |
if not geo_ok: reasons.append("Geometry Violation")
|
| 193 |
fails.append(f"{name}: {' + '.join(reasons)}")
|
| 194 |
-
|
| 195 |
if fits:
|
| 196 |
return f"β
FIT SUCCESS: Fits {', '.join(fits)} (Recommend {fits[0]})"
|
| 197 |
return f"β FIT FAILURE: No fit. Issues: {chr(10).join(fails)}"
|
|
@@ -202,32 +148,15 @@ def classify_hazard(
|
|
| 202 |
battery_wh: float,
|
| 203 |
pressure_psi: float,
|
| 204 |
) -> Dict[str, Any]:
|
| 205 |
-
"""
|
| 206 |
-
Logic Tool: Determines the payload's Hazard Classification (Standard/Hazardous).
|
| 207 |
-
|
| 208 |
-
Classification is based on critical thresholds for propulsion, battery capacity
|
| 209 |
-
(>1 kWh or 1000 Wh), and pressure vessels (>150 PSI).
|
| 210 |
-
|
| 211 |
-
Args:
|
| 212 |
-
propellant_type (str): Type of propellant used (e.g., Hydrazine, Xenon, None).
|
| 213 |
-
battery_wh (float): Total energy capacity of batteries in Watt-hours.
|
| 214 |
-
pressure_psi (float): Max operating pressure of any vessel in PSI.
|
| 215 |
-
|
| 216 |
-
Returns:
|
| 217 |
-
Dict[str, Any]: Classification level, risk flags, and implication.
|
| 218 |
-
"""
|
| 219 |
classification, flags = "Standard", []
|
| 220 |
-
|
| 221 |
if propellant_type.lower() not in ["none", "n/a", "green", "water", "xenon"]:
|
| 222 |
classification, flags = "Hazardous", [f"High-Risk Propellant: {propellant_type}"]
|
| 223 |
if battery_wh > 1000:
|
| 224 |
classification, flags = "Hazardous", flags + [f"Battery > 1kWh ({battery_wh}Wh)"]
|
| 225 |
if pressure_psi > 150:
|
| 226 |
classification, flags = "Hazardous", flags + [f"Pressure > 150 PSI"]
|
| 227 |
-
|
| 228 |
if not flags:
|
| 229 |
flags.append("Payload appears standard/benign.")
|
| 230 |
-
|
| 231 |
return {
|
| 232 |
"level": classification,
|
| 233 |
"risk_flags": flags,
|
|
@@ -240,26 +169,9 @@ def classify_hazard(
|
|
| 240 |
|
| 241 |
@mcp.tool()
|
| 242 |
def calculate_launch_cost(mass_kg: float) -> str:
|
| 243 |
-
"""
|
| 244 |
-
Logic Tool: Calculates the estimated launch cost using a linear cost model.
|
| 245 |
-
|
| 246 |
-
Applies the base rate per kg, but enforces a minimum plate fee defined in
|
| 247 |
-
the CORE CONSTANTS.
|
| 248 |
-
|
| 249 |
-
Args:
|
| 250 |
-
mass_kg (float): Payload mass in kilograms.
|
| 251 |
-
|
| 252 |
-
Returns:
|
| 253 |
-
str: A formatted string detailing the mass cost, minimum fee, and total estimate.
|
| 254 |
-
"""
|
| 255 |
mass_cost = mass_kg * PRICING_MODEL["base_rate_per_kg"]
|
| 256 |
final_cost = max(mass_cost, PRICING_MODEL["min_plate_fee"])
|
| 257 |
-
return f""
|
| 258 |
-
π° ESTIMATED COST
|
| 259 |
-
Mass Charge: ${mass_cost:,.0f}
|
| 260 |
-
Minimum Plate Fee: ${PRICING_MODEL['min_plate_fee']:,}
|
| 261 |
-
**TOTAL ESTIMATE: ${final_cost:,.0f} USD**
|
| 262 |
-
"""
|
| 263 |
|
| 264 |
@mcp.tool()
|
| 265 |
def required_documents(
|
|
@@ -267,84 +179,89 @@ def required_documents(
|
|
| 267 |
payload_type: str = "",
|
| 268 |
hazard_level: Literal["Standard", "Hazardous"] = "Standard",
|
| 269 |
) -> str:
|
| 270 |
-
"""
|
| 271 |
-
RAG & Logic Hybrid: Generates a document checklist, dynamically adding
|
| 272 |
-
specific safety documents if the payload is classified as Hazardous.
|
| 273 |
-
|
| 274 |
-
Args:
|
| 275 |
-
knowledge_base (Any): The injected Chroma VectorStore client.
|
| 276 |
-
payload_type (str): The payload type for RAG querying.
|
| 277 |
-
hazard_level (Literal["Standard", "Hazardous"]): The classification from classify_hazard.
|
| 278 |
-
|
| 279 |
-
Returns:
|
| 280 |
-
str: The combined list of standard and hazard-specific documentation.
|
| 281 |
-
"""
|
| 282 |
query = f"required documents for {payload_type} deliverables ICD"
|
| 283 |
try:
|
| 284 |
results = knowledge_base.similarity_search(query, k=3)
|
| 285 |
base_docs = "\n\n".join([doc.page_content for doc in results])
|
| 286 |
except Exception as e:
|
| 287 |
base_docs = f"ERROR during knowledge query: {e}"
|
| 288 |
-
|
| 289 |
extra = ""
|
| 290 |
if hazard_level == "Hazardous":
|
| 291 |
-
extra = ""
|
| 292 |
-
|
| 293 |
-
* MSDS for all fluids
|
| 294 |
-
* Burst Test Certificate
|
| 295 |
-
* Propellant Handling Plan
|
| 296 |
-
* Full Safety Review Package (SRDP)
|
| 297 |
-
"""
|
| 298 |
-
|
| 299 |
-
return f"""
|
| 300 |
-
π REQUIRED DOCUMENTS ({payload_type}, {hazard_level})
|
| 301 |
-
{extra}
|
| 302 |
-
---
|
| 303 |
-
STANDARD (from manual):
|
| 304 |
-
{base_docs}
|
| 305 |
-
"""
|
| 306 |
|
| 307 |
@mcp.tool()
|
| 308 |
def timeline_check(
|
| 309 |
knowledge_base: Annotated[Any, mcp.resource("knowledge://rideshare/spacex-manuals-v1")] = None,
|
| 310 |
hazard_level: Literal["Standard", "Hazardous"] = "Standard",
|
| 311 |
) -> str:
|
| 312 |
-
"""
|
| 313 |
-
RAG & Logic Hybrid: Generates a timeline summary, enforcing stricter safety
|
| 314 |
-
review deadlines for Hazardous payloads based on internal logic.
|
| 315 |
-
|
| 316 |
-
Args:
|
| 317 |
-
knowledge_base (Any): The injected Chroma VectorStore client.
|
| 318 |
-
hazard_level (Literal["Standard", "Hazardous"]): The classification from classify_hazard.
|
| 319 |
-
|
| 320 |
-
Returns:
|
| 321 |
-
str: The summary including safety milestones and standard integration dates.
|
| 322 |
-
"""
|
| 323 |
query = "launch campaign schedule L-minus integration deadlines"
|
| 324 |
try:
|
| 325 |
results = knowledge_base.similarity_search(query, k=3)
|
| 326 |
base_timeline = "\n\n".join([doc.page_content for doc in results])
|
| 327 |
except Exception as e:
|
| 328 |
base_timeline = f"ERROR during knowledge query: {e}"
|
|
|
|
|
|
|
| 329 |
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
* L-12m: Phase 0
|
| 334 |
-
* L-9m: Phase 1
|
| 335 |
-
* L-6m: Phase 2
|
| 336 |
-
* L-3m: Phase 3
|
| 337 |
-
"""
|
| 338 |
-
else:
|
| 339 |
-
safety = "β
Standard Review ~L-4 Months"
|
| 340 |
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
|
| 349 |
if __name__ == "__main__":
|
| 350 |
-
mcp.run()
|
|
|
|
| 1 |
import os
|
| 2 |
import math
|
| 3 |
from typing import Literal, Optional, Dict, Any, List, Annotated
|
| 4 |
+
from datetime import datetime, timezone
|
| 5 |
+
import requests
|
| 6 |
+
from sgp4.api import Satrec, jday
|
| 7 |
+
from math import sqrt
|
| 8 |
|
| 9 |
from fastmcp import FastMCP
|
| 10 |
# from mcp.server.fastmcp import FastMCP
|
|
|
|
| 12 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 13 |
from langchain_core.vectorstores import VectorStore
|
| 14 |
|
| 15 |
+
# ==============================================================================
|
| 16 |
+
# π§ MCP SERVER INITIALIZATION
|
| 17 |
+
# ==============================================================================
|
| 18 |
+
|
| 19 |
mcp = FastMCP("FalconPrep", stateless_http=True)
|
| 20 |
|
| 21 |
# ==============================================================================
|
|
|
|
| 41 |
|
| 42 |
@mcp.resource("knowledge://rideshare/spacex-manuals-v1")
|
| 43 |
def get_knowledge_base_resource() -> Any:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
print(f"Attempting to load ChromaDB client from {DB_PATH}...")
|
| 45 |
try:
|
| 46 |
embedding_model = HuggingFaceEmbeddings(
|
|
|
|
| 51 |
persist_directory=DB_PATH,
|
| 52 |
embedding_function=embedding_model
|
| 53 |
)
|
|
|
|
| 54 |
print("β
KnowledgeBaseResource loaded successfully.")
|
| 55 |
return vectorstore
|
| 56 |
except Exception as e:
|
|
|
|
| 70 |
required_documents_list: str,
|
| 71 |
timeline_summary: str,
|
| 72 |
) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
hazard_level = hazard_classification_result.get('level', 'N/A')
|
| 74 |
return f"""
|
| 75 |
You are the **FalconPrep Launch Readiness Assistant**, an expert in SpaceX rideshare compliance.
|
|
|
|
| 101 |
"""
|
| 102 |
|
| 103 |
# ==============================================================================
|
| 104 |
+
# π οΈ PAYLOAD TOOLS
|
| 105 |
# ==============================================================================
|
| 106 |
|
| 107 |
@mcp.tool()
|
|
|
|
| 110 |
payload_type: str = "",
|
| 111 |
orbit: str = "",
|
| 112 |
) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
query = f"requirements for {payload_type} in {orbit} orbit mechanical electrical communication"
|
| 114 |
try:
|
| 115 |
results = knowledge_base.similarity_search(query, k=3)
|
| 116 |
context = "\n\n".join([doc.page_content for doc in results])
|
| 117 |
except Exception as e:
|
| 118 |
context = f"ERROR during knowledge query: {e}"
|
| 119 |
+
return f"π RAG REQUIREMENTS (Based on manuals):\n{context}"
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
@mcp.tool()
|
| 122 |
def check_plate_fit(
|
|
|
|
| 125 |
height_cm: float,
|
| 126 |
mass_kg: float,
|
| 127 |
) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
fits, fails = [], []
|
| 129 |
user_dims = sorted([length_cm, width_cm, height_cm])
|
|
|
|
| 130 |
for name, specs in ENVELOPES.items():
|
| 131 |
env_dims = sorted([specs["L"], specs["W"], specs["H"]])
|
| 132 |
mass_ok = mass_kg <= specs["max_mass"]
|
| 133 |
geo_ok = all(u <= e for u, e in zip(user_dims, env_dims))
|
|
|
|
| 134 |
if mass_ok and geo_ok:
|
| 135 |
fits.append(name)
|
| 136 |
else:
|
|
|
|
| 138 |
if not mass_ok: reasons.append(f"Overweight (Limit: {specs['max_mass']}kg)")
|
| 139 |
if not geo_ok: reasons.append("Geometry Violation")
|
| 140 |
fails.append(f"{name}: {' + '.join(reasons)}")
|
|
|
|
| 141 |
if fits:
|
| 142 |
return f"β
FIT SUCCESS: Fits {', '.join(fits)} (Recommend {fits[0]})"
|
| 143 |
return f"β FIT FAILURE: No fit. Issues: {chr(10).join(fails)}"
|
|
|
|
| 148 |
battery_wh: float,
|
| 149 |
pressure_psi: float,
|
| 150 |
) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
classification, flags = "Standard", []
|
|
|
|
| 152 |
if propellant_type.lower() not in ["none", "n/a", "green", "water", "xenon"]:
|
| 153 |
classification, flags = "Hazardous", [f"High-Risk Propellant: {propellant_type}"]
|
| 154 |
if battery_wh > 1000:
|
| 155 |
classification, flags = "Hazardous", flags + [f"Battery > 1kWh ({battery_wh}Wh)"]
|
| 156 |
if pressure_psi > 150:
|
| 157 |
classification, flags = "Hazardous", flags + [f"Pressure > 150 PSI"]
|
|
|
|
| 158 |
if not flags:
|
| 159 |
flags.append("Payload appears standard/benign.")
|
|
|
|
| 160 |
return {
|
| 161 |
"level": classification,
|
| 162 |
"risk_flags": flags,
|
|
|
|
| 169 |
|
| 170 |
@mcp.tool()
|
| 171 |
def calculate_launch_cost(mass_kg: float) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
mass_cost = mass_kg * PRICING_MODEL["base_rate_per_kg"]
|
| 173 |
final_cost = max(mass_cost, PRICING_MODEL["min_plate_fee"])
|
| 174 |
+
return f"π° ESTIMATED COST\nMass Charge: ${mass_cost:,.0f}\nMinimum Plate Fee: ${PRICING_MODEL['min_plate_fee']:,}\n**TOTAL ESTIMATE: ${final_cost:,.0f} USD**"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
@mcp.tool()
|
| 177 |
def required_documents(
|
|
|
|
| 179 |
payload_type: str = "",
|
| 180 |
hazard_level: Literal["Standard", "Hazardous"] = "Standard",
|
| 181 |
) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
query = f"required documents for {payload_type} deliverables ICD"
|
| 183 |
try:
|
| 184 |
results = knowledge_base.similarity_search(query, k=3)
|
| 185 |
base_docs = "\n\n".join([doc.page_content for doc in results])
|
| 186 |
except Exception as e:
|
| 187 |
base_docs = f"ERROR during knowledge query: {e}"
|
|
|
|
| 188 |
extra = ""
|
| 189 |
if hazard_level == "Hazardous":
|
| 190 |
+
extra = "\nβ οΈ EXTRA HAZARDOUS DOCUMENTS:\n* MSDS for all fluids\n* Burst Test Certificate\n* Propellant Handling Plan\n* Full Safety Review Package (SRDP)"
|
| 191 |
+
return f"π REQUIRED DOCUMENTS ({payload_type}, {hazard_level})\n{extra}\n---\nSTANDARD (from manual):\n{base_docs}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
@mcp.tool()
|
| 194 |
def timeline_check(
|
| 195 |
knowledge_base: Annotated[Any, mcp.resource("knowledge://rideshare/spacex-manuals-v1")] = None,
|
| 196 |
hazard_level: Literal["Standard", "Hazardous"] = "Standard",
|
| 197 |
) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
query = "launch campaign schedule L-minus integration deadlines"
|
| 199 |
try:
|
| 200 |
results = knowledge_base.similarity_search(query, k=3)
|
| 201 |
base_timeline = "\n\n".join([doc.page_content for doc in results])
|
| 202 |
except Exception as e:
|
| 203 |
base_timeline = f"ERROR during knowledge query: {e}"
|
| 204 |
+
safety = "β
Standard Review ~L-4 Months" if hazard_level == "Standard" else "\nπ HAZARDOUS EARLY REVIEWS:\n* L-12m: Phase 0\n* L-9m: Phase 1\n* L-6m: Phase 2\n* L-3m: Phase 3"
|
| 205 |
+
return f"π TIMELINE ({hazard_level})\n{safety}\n---\nSTANDARD MILESTONES:\n{base_timeline}"
|
| 206 |
|
| 207 |
+
# ==============================================================================
|
| 208 |
+
# π°οΈ ORBITAL TOOLS
|
| 209 |
+
# ==============================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
+
@mcp.tool()
|
| 212 |
+
def fetch_gp_data_tool(
|
| 213 |
+
query_type: str = "CATNR",
|
| 214 |
+
query_value: str = "",
|
| 215 |
+
format: Literal["TLE", "JSON", "JSON-PRETTY", "CSV", "XML", "KVN"] = "JSON"
|
| 216 |
+
) -> Dict[str, Any]:
|
| 217 |
+
base_url = "https://celestrak.org/NORAD/elements/gp.php"
|
| 218 |
+
params = {"FORMAT": format, query_type.upper(): query_value}
|
| 219 |
+
try:
|
| 220 |
+
resp = requests.get(base_url, params=params, timeout=10)
|
| 221 |
+
resp.raise_for_status()
|
| 222 |
+
if "JSON" in format:
|
| 223 |
+
return resp.json()
|
| 224 |
+
else:
|
| 225 |
+
return {"raw": resp.text}
|
| 226 |
+
except Exception as e:
|
| 227 |
+
return {"error": str(e)}
|
| 228 |
+
|
| 229 |
+
@mcp.tool()
|
| 230 |
+
def propagate_orbit_tool(
|
| 231 |
+
tle_lines: List[str],
|
| 232 |
+
target_time: Optional[datetime] = None
|
| 233 |
+
) -> Dict[str, Any]:
|
| 234 |
+
try:
|
| 235 |
+
sat = Satrec.twoline2rv(tle_lines[0], tle_lines[1])
|
| 236 |
+
target_time = target_time or datetime.now(timezone.utc)
|
| 237 |
+
jd, fr = jday(target_time.year, target_time.month, target_time.day,
|
| 238 |
+
target_time.hour, target_time.minute, target_time.second + target_time.microsecond*1e-6)
|
| 239 |
+
e, r, v = sat.sgp4(jd, fr)
|
| 240 |
+
if e != 0:
|
| 241 |
+
raise RuntimeError(f"SGP4 error code {e}")
|
| 242 |
+
return {"position_km": tuple(r), "velocity_kms": tuple(v), "timestamp": target_time.isoformat()}
|
| 243 |
+
except Exception as e:
|
| 244 |
+
return {"error": str(e)}
|
| 245 |
+
|
| 246 |
+
@mcp.tool()
|
| 247 |
+
def collision_check_tool(
|
| 248 |
+
sat1_tle: List[str],
|
| 249 |
+
sat2_tle: List[str],
|
| 250 |
+
threshold_km: float = 5.0,
|
| 251 |
+
target_time: Optional[datetime] = None
|
| 252 |
+
) -> Dict[str, Any]:
|
| 253 |
+
try:
|
| 254 |
+
pos1 = propagate_orbit_tool(sat1_tle, target_time)["position_km"]
|
| 255 |
+
pos2 = propagate_orbit_tool(sat2_tle, target_time)["position_km"]
|
| 256 |
+
distance = sqrt(sum((a - b) ** 2 for a, b in zip(pos1, pos2)))
|
| 257 |
+
warning = distance <= threshold_km
|
| 258 |
+
return {"distance_km": distance, "collision_warning": warning, "threshold_km": threshold_km, "timestamp": (target_time or datetime.now(timezone.utc)).isoformat()}
|
| 259 |
+
except Exception as e:
|
| 260 |
+
return {"error": str(e)}
|
| 261 |
+
|
| 262 |
+
# ==============================================================================
|
| 263 |
+
# π RUN MCP SERVER
|
| 264 |
+
# ==============================================================================
|
| 265 |
|
| 266 |
if __name__ == "__main__":
|
| 267 |
+
mcp.run()
|