drone-test / README.md
radiuson's picture
Upload dataset with 1 episodes
1cadadb verified
metadata
license: mit
task_categories:
  - robotics
  - reinforcement-learning
tags:
  - drone
  - simulation
  - liftoff
  - imitation-learning
  - robot-learning
size_categories:
  - n<1K
  - 1K<n<10K
  - 10K<n<100K
configs:
  - config_name: default
    data_files:
      - split: train
        path: chunk-*/data/*.parquet

liftoff_drone_dataset

Dataset Description

This dataset contains telemetry and control data from the Liftoff drone simulator, recorded for robot learning and imitation learning tasks.

Dataset Summary

  • Robot Type: liftoff_drone_simulator
  • Total Episodes: 1
  • Total Frames: 1357
  • Recording FPS: 30.0 Hz
  • Video FPS: 30.0 Hz
  • LeRobot Version: v3.0
  • Chunk Size: 100 episodes per chunk

Data Structure

The dataset is organized into chunks for efficient storage and retrieval:

dataset/
β”œβ”€β”€ chunk-000/          # Episodes 0-99
β”‚   β”œβ”€β”€ data/          # Parquet files with telemetry
β”‚   β”œβ”€β”€ videos/        # MP4 videos (if available)
β”‚   └── meta/          # Episode metadata
β”œβ”€β”€ chunk-001/          # Episodes 100-199
β”‚   └── ...
└── meta/              # Global metadata
    β”œβ”€β”€ info.json      # Dataset information
    └── stats.json     # Statistics

Features

Observation State (16 dimensions)

The observation state contains drone telemetry:

Index Feature Description
0-2 pos_x, pos_y, pos_z Position in 3D space (meters)
3-6 ori_x, ori_y, ori_z, ori_w Orientation quaternion
7-9 vel_x, vel_y, vel_z Linear velocity (m/s)
10-12 ang_vel_x, ang_vel_y, ang_vel_z Angular velocity (rad/s)
13-15 acc_x, acc_y, acc_z Linear acceleration (m/sΒ²)

Action (4 dimensions)

RC controller inputs:

Index Feature Description
0 throttle Throttle input
1 yaw Yaw control
2 pitch Pitch control
3 roll Roll control

Video Data

Each episode includes synchronized video at 30.0 FPS.

  • Format: MP4
  • Codec: mp4v
  • Location: chunk-XXX/videos/episode_XXXXXX_liftoff.mp4

Statistics

Observation State Statistics

Feature Mean Std Min Max
pos_x 1108.4283 45.6066 1062.3221 1266.5591
pos_y -1072.1070 45.1135 -1180.4570 -1014.4241
pos_z 2.3304 1.5687 0.0495 8.0291
ori_x -0.1632 0.3821 -0.8127 0.9584
ori_y 0.1264 0.3482 -0.6710 0.7001
ori_z 0.2719 0.5303 -0.8301 0.8648
ori_w -0.3539 0.4580 -0.8651 0.7685
vel_x 3.1551 16.4758 -31.6221 35.7065
vel_y -0.4859 20.3263 -35.7660 33.6974
vel_z 0.1774 2.3431 -8.8202 11.1492
ang_vel_x 0.2769 1.6505 -8.2796 13.7966
ang_vel_y 0.1181 1.6863 -35.1017 35.8174
ang_vel_z -0.1881 1.4257 -7.3040 34.0098
acc_x 0.1231 34.5961 -669.9283 359.1005
acc_y -0.3573 24.0967 -140.9671 253.7777
acc_z 0.1464 14.7532 -63.3092 382.4714

Action Statistics

Feature Mean Std Min Max
throttle 0.4076 0.6514 -0.9951 0.9843
yaw -0.0242 0.0779 -0.4100 0.2675
pitch -0.0541 0.1754 -0.9043 0.5213
roll 0.0623 0.3170 -0.9440 0.8151

Usage

Loading the Dataset

from datasets import load_dataset

# Load from Hugging Face Hub
dataset = load_dataset("YOUR_USERNAME/YOUR_DATASET_NAME")

# Or load locally
dataset = load_dataset("parquet", data_files="chunk-*/data/*.parquet")

Using with LeRobot

from lerobot.common.datasets.lerobot_dataset import LeRobotDataset

# Load dataset
dataset = LeRobotDataset("YOUR_USERNAME/YOUR_DATASET_NAME")

print(f"Total episodes: {dataset.num_episodes}")
print(f"Total frames: {len(dataset)}")

# Iterate through data
for item in dataset:
    observation = item['observation.state']  # Shape: [16]
    action = item['action']  # Shape: [4]
    # ... use for training

Accessing Videos

Videos are stored as MP4 files in chunk directories:

import pandas as pd
from pathlib import Path

# Load episode data
df = pd.read_parquet("chunk-000/data/episode_000000.parquet")

# Video path is stored in metadata
# Load from: chunk-000/videos/episode_000000_liftoff.mp4

Dataset Creation

Recording Setup

  • Simulator: Liftoff Drone Simulator
  • Bridge: ROS2 Jazzy
  • Recorder: Custom LeRobot-compatible recorder
  • Control: RC controller or gamepad

Data Collection Process

  1. Start Liftoff simulator
  2. Launch ROS2 bridge (liftoff_bridge_ros2.py)
  3. Start recorder with gamepad control
  4. Fly manually and record episodes
  5. Data automatically organized into chunks

Quality Control

  • Episodes with crashes or poor control are discarded using emergency stop
  • Each episode includes full telemetry and synchronized video
  • Statistics computed across all episodes for normalization

Licensing

This dataset is released under the MIT License.

Citation

If you use this dataset in your research, please cite:

@misc{liftoff_drone_dataset,
  title={Liftoff Drone Simulator Dataset},
  author={Your Name},
  year={2025},
  publisher={Hugging Face},
  howpublished={\url{https://huggingface.co/datasets/YOUR_USERNAME/YOUR_DATASET_NAME}}
}

Contact

For questions or issues, please open an issue on the dataset repository.


Generated with LeRobot Liftoff Bridge