File size: 5,575 Bytes
1cadadb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
---
license: mit
task_categories:
- robotics
- reinforcement-learning
tags:
- drone
- simulation
- liftoff
- imitation-learning
- robot-learning
size_categories:
- n<1K
- 1K<n<10K
- 10K<n<100K
configs:
- config_name: default
data_files:
- split: train
path: "chunk-*/data/*.parquet"
---
# liftoff_drone_dataset
## Dataset Description
This dataset contains telemetry and control data from the Liftoff drone simulator, recorded for robot learning and imitation learning tasks.
### Dataset Summary
- **Robot Type**: liftoff_drone_simulator
- **Total Episodes**: 1
- **Total Frames**: 1357
- **Recording FPS**: 30.0 Hz
- **Video FPS**: 30.0 Hz
- **LeRobot Version**: v3.0
- **Chunk Size**: 100 episodes per chunk
### Data Structure
The dataset is organized into chunks for efficient storage and retrieval:
```
dataset/
βββ chunk-000/ # Episodes 0-99
β βββ data/ # Parquet files with telemetry
β βββ videos/ # MP4 videos (if available)
β βββ meta/ # Episode metadata
βββ chunk-001/ # Episodes 100-199
β βββ ...
βββ meta/ # Global metadata
βββ info.json # Dataset information
βββ stats.json # Statistics
```
## Features
### Observation State (16 dimensions)
The observation state contains drone telemetry:
| Index | Feature | Description |
|-------|---------|-------------|
| 0-2 | pos_x, pos_y, pos_z | Position in 3D space (meters) |
| 3-6 | ori_x, ori_y, ori_z, ori_w | Orientation quaternion |
| 7-9 | vel_x, vel_y, vel_z | Linear velocity (m/s) |
| 10-12 | ang_vel_x, ang_vel_y, ang_vel_z | Angular velocity (rad/s) |
| 13-15 | acc_x, acc_y, acc_z | Linear acceleration (m/sΒ²) |
### Action (4 dimensions)
RC controller inputs:
| Index | Feature | Description |
|-------|---------|-------------|
| 0 | throttle | Throttle input |
| 1 | yaw | Yaw control |
| 2 | pitch | Pitch control |
| 3 | roll | Roll control |
### Video Data
Each episode includes synchronized video at 30.0 FPS.
- **Format**: MP4
- **Codec**: mp4v
- **Location**: `chunk-XXX/videos/episode_XXXXXX_liftoff.mp4`
## Statistics
### Observation State Statistics
| Feature | Mean | Std | Min | Max |
|---------|------|-----|-----|-----|
| pos_x | 1108.4283 | 45.6066 | 1062.3221 | 1266.5591 |
| pos_y | -1072.1070 | 45.1135 | -1180.4570 | -1014.4241 |
| pos_z | 2.3304 | 1.5687 | 0.0495 | 8.0291 |
| ori_x | -0.1632 | 0.3821 | -0.8127 | 0.9584 |
| ori_y | 0.1264 | 0.3482 | -0.6710 | 0.7001 |
| ori_z | 0.2719 | 0.5303 | -0.8301 | 0.8648 |
| ori_w | -0.3539 | 0.4580 | -0.8651 | 0.7685 |
| vel_x | 3.1551 | 16.4758 | -31.6221 | 35.7065 |
| vel_y | -0.4859 | 20.3263 | -35.7660 | 33.6974 |
| vel_z | 0.1774 | 2.3431 | -8.8202 | 11.1492 |
| ang_vel_x | 0.2769 | 1.6505 | -8.2796 | 13.7966 |
| ang_vel_y | 0.1181 | 1.6863 | -35.1017 | 35.8174 |
| ang_vel_z | -0.1881 | 1.4257 | -7.3040 | 34.0098 |
| acc_x | 0.1231 | 34.5961 | -669.9283 | 359.1005 |
| acc_y | -0.3573 | 24.0967 | -140.9671 | 253.7777 |
| acc_z | 0.1464 | 14.7532 | -63.3092 | 382.4714 |
### Action Statistics
| Feature | Mean | Std | Min | Max |
|---------|------|-----|-----|-----|
| throttle | 0.4076 | 0.6514 | -0.9951 | 0.9843 |
| yaw | -0.0242 | 0.0779 | -0.4100 | 0.2675 |
| pitch | -0.0541 | 0.1754 | -0.9043 | 0.5213 |
| roll | 0.0623 | 0.3170 | -0.9440 | 0.8151 |
## Usage
### Loading the Dataset
```python
from datasets import load_dataset
# Load from Hugging Face Hub
dataset = load_dataset("YOUR_USERNAME/YOUR_DATASET_NAME")
# Or load locally
dataset = load_dataset("parquet", data_files="chunk-*/data/*.parquet")
```
### Using with LeRobot
```python
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
# Load dataset
dataset = LeRobotDataset("YOUR_USERNAME/YOUR_DATASET_NAME")
print(f"Total episodes: {dataset.num_episodes}")
print(f"Total frames: {len(dataset)}")
# Iterate through data
for item in dataset:
observation = item['observation.state'] # Shape: [16]
action = item['action'] # Shape: [4]
# ... use for training
```
### Accessing Videos
Videos are stored as MP4 files in chunk directories:
```python
import pandas as pd
from pathlib import Path
# Load episode data
df = pd.read_parquet("chunk-000/data/episode_000000.parquet")
# Video path is stored in metadata
# Load from: chunk-000/videos/episode_000000_liftoff.mp4
```
## Dataset Creation
### Recording Setup
- **Simulator**: Liftoff Drone Simulator
- **Bridge**: ROS2 Jazzy
- **Recorder**: Custom LeRobot-compatible recorder
- **Control**: RC controller or gamepad
### Data Collection Process
1. Start Liftoff simulator
2. Launch ROS2 bridge (`liftoff_bridge_ros2.py`)
3. Start recorder with gamepad control
4. Fly manually and record episodes
5. Data automatically organized into chunks
### Quality Control
- Episodes with crashes or poor control are discarded using emergency stop
- Each episode includes full telemetry and synchronized video
- Statistics computed across all episodes for normalization
## Licensing
This dataset is released under the MIT License.
## Citation
If you use this dataset in your research, please cite:
```bibtex
@misc{liftoff_drone_dataset,
title={Liftoff Drone Simulator Dataset},
author={Your Name},
year={2025},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/datasets/YOUR_USERNAME/YOUR_DATASET_NAME}}
}
```
## Contact
For questions or issues, please open an issue on the dataset repository.
---
**Generated with [LeRobot Liftoff Bridge](https://github.com/YOUR_REPO)**
|