blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
4
721
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
5
91
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
321 values
visit_date
timestamp[ns]date
2016-08-12 09:31:09
2023-09-06 10:45:07
revision_date
timestamp[ns]date
2010-09-28 14:01:40
2023-09-06 06:22:19
committer_date
timestamp[ns]date
2010-09-28 14:01:40
2023-09-06 06:22:19
github_id
int64
426
681M
star_events_count
int64
101
243k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[ns]date
2012-06-28 18:51:49
2023-09-14 21:59:16
gha_created_at
timestamp[ns]date
2008-02-11 22:55:26
2023-08-10 11:14:58
gha_language
stringclasses
147 values
src_encoding
stringclasses
26 values
language
stringclasses
2 values
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
6
10.2M
extension
stringclasses
115 values
filename
stringlengths
3
113
content
stringlengths
6
10.2M
dd1739691d3ca4cfd195ff77c6eb486eff52bafe
fbbe424559f64e9a94116a07eaaa555a01b0a7bb
/Tensorflow_LightGBM_Scipy_nightly/source/index.py
359f1907cc26256fc67235fd492d5e917570632b
[ "MIT" ]
permissive
ryfeus/lambda-packs
6544adb4dec19b8e71d75c24d8ed789b785b0369
cabf6e4f1970dc14302f87414f170de19944bac2
refs/heads/master
2022-12-07T16:18:52.475504
2022-11-29T13:35:35
2022-11-29T13:35:35
71,386,735
1,283
263
MIT
2022-11-26T05:02:14
2016-10-19T18:22:39
Python
UTF-8
Python
false
false
77
py
index.py
import tensorflow import lightgbm def handler(event, context): return 0
55381a2ce301e272d1e44395624b8ecc1c2ba531
2a1b8a671aceda6bc446f8ce26400aa84fa444a6
/Packs/Sixgill-Darkfeed/Scripts/SixgillSearchIndicators/SixgillSearchIndicators.py
71ee5158567bf057f53858b053496ad531f3e2ef
[ "MIT" ]
permissive
demisto/content
6d4722d46f0ff0beea2748e9f7de585bf91a78b4
890def5a0e0ae8d6eaa538148249ddbc851dbb6b
refs/heads/master
2023-09-04T00:02:25.618032
2023-09-03T21:56:22
2023-09-03T21:56:22
60,525,392
1,023
1,921
MIT
2023-09-14T20:55:24
2016-06-06T12:17:02
Python
UTF-8
Python
false
false
1,192
py
SixgillSearchIndicators.py
import demistomock as demisto from CommonServerPython import * DEFAULT_SIZE = 50 def search_indicators(args): keys = ['id', 'value', 'CustomFields', 'type', 'score', 'firstSeen', 'lastSeen', 'expiration', 'expirationStatus', 'sourceBrands', 'sourceInstances'] query = args.get('query', None) if not query: raise ValueError('Query not set!') size = int(args.get('size', DEFAULT_SIZE)) indicators = demisto.executeCommand("findIndicators", {"query": query, 'size': size}) outputs = list() if not isinstance(indicators, list) or len(indicators) < 1 or 'Contents' not in indicators[0]: raise ValueError('No content') for i in indicators[0]['Contents']: oi = dict() for k in i.keys(): if k in keys: oi[k] = i[k] outputs.append(oi) return CommandResults( outputs_prefix='FoundIndicators', outputs_key_field='value', outputs=outputs ) def main(args): try: return_results(search_indicators(args)) except Exception as e: return_error(f'Error : {str(e)}') if __name__ in ('builtins', '__builtin__'): main(demisto.args())
3e0e87223b39b25e1bfbcf2e1af8b64b17a8ffcc
2be164d2b1e34553064b933d4015fae80c1aae18
/Dk_TanD.py
a4683b5a19738c9b722106721fd3bc4ffaa25120
[ "MIT" ]
permissive
linmingchih/HowtoSim_Script
a8c14de9f1c70152c1676abb87b15b3d429d6eb9
8f6abbcd9c2ad8c76e97357cd622f9f2ca87da7c
refs/heads/master
2023-04-03T07:27:04.067901
2023-03-19T09:35:53
2023-03-19T09:35:53
168,629,194
118
100
null
2021-07-27T09:58:01
2019-02-01T02:19:16
Python
UTF-8
Python
false
false
2,627
py
Dk_TanD.py
relative_permittivity='4.11483+0.0281238*ln((2.53303e+22+Freq*Freq)/(4.95658e+09+Freq*Freq))' bulk_conductivity='1e-12+3.12919e-12*Freq*(atan(Freq/70403)-atan(Freq/1.59155e+11))' import ScriptEnv, random, string def calculate(relative_permittivity,bulk_conductivity): from math import * ln=log F=[pow(10,i/10) for i in range(30, 130)] x=relative_permittivity y=bulk_conductivity Dk=eval('[{} for Freq in F]'.format(x)) Cond=eval('[{} for Freq in F]'.format(y)) td=[Cond_p/(2*pi*Freq)/(Dk_p*8.8542e-12) for Cond_p, Freq, Dk_p in zip(Cond,F,Dk)] with open("Dk_tanD.csv",'w') as f: f.write('Freq, Dk, TanD\n') for i,j,k in zip(F,Dk,td): f.write(str(i)+', ' + str(j)+', '+str(k)+'\n') generate_plot() def generate_plot(): ScriptEnv.Initialize("Ansoft.ElectronicsDesktop") oDesktop.RestoreWindow() oProject = oDesktop.GetActiveProject() oDesign = oProject.GetActiveDesign() oModule = oDesign.GetModule("Solutions") name= ''.join([random.choice(string.ascii_letters + string.digits) for n in xrange(6)]) oModule.ImportTable("Dk_tanD.csv", name, "Table", True, True, ["Freq", "Dk", "TanD"], [True, False, False]) oModule = oDesign.GetModule("ReportSetup") oModule.CreateReport(name, "Modal Solution Data", "Rectangular Plot", name+" : Table", [], [ "Tb(Freq):=" , ["All"] ], [ "X Component:=" , "Tb(Freq)", "Y Component:=" , ["Tb(Dk)","Tb(TanD)"] ], []) oModule.ChangeProperty( [ "NAME:AllTabs", [ "NAME:Trace", [ "NAME:PropServers", name+":Tb(TanD)" ], [ "NAME:ChangedProps", [ "NAME:Y Axis", "Value:=" , "Y2" ] ] ] ]) oModule.ChangeProperty( [ "NAME:AllTabs", [ "NAME:Scaling", [ "NAME:PropServers", name+":AxisX" ], [ "NAME:ChangedProps", [ "NAME:Axis Scaling", "Value:=" , "Log" ] ] ] ]) calculate(relative_permittivity,bulk_conductivity)
6266a969cb65ab23e59c13d4da1182aa2ab19bf2
3abc1fef99ac6ce0b845a1090fae7f6875fee729
/src/ralph/operations/migrations/0002_auto_20151218_1029.py
c1b7208de4551c52b0de7ededa017fe3059b9067
[ "Apache-2.0" ]
permissive
allegro/ralph
5ff9165a202e836061c99e8af20214e0d651622f
b4a72356f527b1f12c7babd7465d2d7fa3ffb0d3
refs/heads/ng
2023-09-02T01:13:43.672554
2023-09-01T09:48:38
2023-09-01T09:48:38
4,359,038
1,970
617
Apache-2.0
2023-09-01T09:44:39
2012-05-17T14:04:57
Python
UTF-8
Python
false
false
1,772
py
0002_auto_20151218_1029.py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations OPERATION_TYPES = ( (1, 'Change', []), (101, 'Incident', []), (201, 'Problem', []), (301, 'Failure', [ (302, 'Hardware Failure', [ (303, 'Disk', []), (304, 'Controller', []), (305, 'RAM', []), (306, 'Eth card', [ (307, 'Eth card 1Gb', []), (308, 'Eth card 10Gb', []), ]), (309, 'Management Module', []), (310, 'Power supply', []), (311, 'Fan', []), (312, 'SFP', []), (313, 'Motherboard', []), (314, 'Firmware upgrade', []), (315, 'Backplane', []), ]) ]), ) def load_operation(model, obj_id, name, parent, children): obj = model.objects.create( id=obj_id, pk=obj_id, name=name, parent=parent, **{'lft': 0, 'rght': 0, 'level': 0, 'tree_id': 0} ) for child_id, child_name, child_children in children: load_operation(model, child_id, child_name, obj, child_children) def load_initial_data(apps, schema_editor): OperationType = apps.get_model("operations", "OperationType") for op_id, op_name, op_children in OPERATION_TYPES: load_operation(OperationType, op_id, op_name, None, op_children) def unload_initial_data(apps, schema_editor): OperationType = apps.get_model("operations", "OperationType") OperationType.objects.all().delete() class Migration(migrations.Migration): dependencies = [ ('operations', '0001_initial'), ] operations = [ migrations.RunPython( load_initial_data, reverse_code=unload_initial_data ), ]
77aee86a09cc03ed876a131cad0473b103de9be8
f1872915f044e9bc8d6622d529535441ea8aec6a
/tests/opengl/items/common.py
3e6e078753230dc5972d4f19dab027234d872ee5
[ "MIT" ]
permissive
pyqtgraph/pyqtgraph
5dc14ddd513f4f3fdd0e834aba720e61b122c886
f261280905a74f6cae4a43e39fa1732635b25c63
refs/heads/master
2023-08-30T23:24:30.305478
2023-08-29T00:35:59
2023-08-29T00:35:59
12,777,496
3,432
1,184
NOASSERTION
2023-09-14T13:40:51
2013-09-12T07:18:21
Python
UTF-8
Python
false
false
211
py
common.py
from pyqtgraph.opengl.GLGraphicsItem import GLGraphicsItem def ensure_parentItem(parent: GLGraphicsItem, child: GLGraphicsItem): assert child in parent.childItems() assert parent is child.parentItem()
83c930c47d120ff3a6ead0adae79c796799a457c
a3d6556180e74af7b555f8d47d3fea55b94bcbda
/tools/perf/cli_tools/tbmv3/trace_downloader.py
f6f0c3fed14b24f73bd979a6b378ea86dc06be6d
[ "BSD-3-Clause" ]
permissive
chromium/chromium
aaa9eda10115b50b0616d2f1aed5ef35d1d779d6
a401d6cf4f7bf0e2d2e964c512ebb923c3d8832c
refs/heads/main
2023-08-24T00:35:12.585945
2023-08-23T22:01:11
2023-08-23T22:01:11
120,360,765
17,408
7,102
BSD-3-Clause
2023-09-10T23:44:27
2018-02-05T20:55:32
null
UTF-8
Python
false
false
4,649
py
trace_downloader.py
# Copyright 2020 The Chromium Authors # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import os from py_utils import cloud_storage _SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) DEFAULT_TRACE_DIR = os.path.join(_SCRIPT_DIR, 'traces') HTML_URL_PREFIX = ('https://storage.cloud.google.com/chrome-telemetry-output/') def _GetSubpathInBucket(html_url): """Returns the path minus the HTML_URL_PREFIX. Given https://storage.../chrome-telemetry-output/foo/bar/trace.html, it returns foo/bar/trace.html.""" if not html_url.startswith(HTML_URL_PREFIX): raise Exception('Html trace url must start with %s' % HTML_URL_PREFIX) return html_url.replace(HTML_URL_PREFIX, "") def _GetProtoTraceLinkFromTraceEventsDir(link_prefix): """Returns the first proto trace in |link_prefix|/trace/traceEvents/""" proto_link_prefix = '/'.join([link_prefix, 'trace/traceEvents/**']) try: for link in cloud_storage.List(cloud_storage.TELEMETRY_OUTPUT, proto_link_prefix): if link.endswith('.pb.gz') or link.endswith('.pb'): return link[1:] # Strip the initial '/'. except cloud_storage.NotFoundError as e: # This directory doesn't exist at all. raise cloud_storage.NotFoundError('No URLs match the prefix %s: %s' % (proto_link_prefix, str(e))) # The directory exists, but no proto trace found. raise cloud_storage.NotFoundError( 'Proto trace not found in cloud storage. Path: %s.' % proto_link_prefix) def GetFileExtension(file_path): """Given foo/bar/baz.pb.gz, returns '.pb.gz'.""" # Get the filename only because the directory names can contain "." like # "v8.browsing". filename = file_path.split('/')[-1] first_dot_index = filename.find('.') if first_dot_index == -1: return '' return filename[first_dot_index:] def GetLocalTraceFileName(html_url): """Returns a local filename derived from the html trace url. Given https://storage.../chrome-telemetry-output/foo/bar/trace.html, it returns foo_bar_trace as the local filename. The filename does not contain extensions. It's up to the caller to add .html or .pb etc.""" subpath = _GetSubpathInBucket(html_url) extension = GetFileExtension(subpath) no_extension_subpath = subpath[:-len(extension)] return '_'.join(no_extension_subpath.split('/')) def FindProtoTracePath(html_url): """ Finds the proto trace path given a html trace url. In the simple case foo/bar/trace.pb is the proto trace for foo/bar/trace.html. But sometimes that's not available so we have to look for a .pb.gz file in a special directory.""" subpath = _GetSubpathInBucket(html_url) if subpath.endswith('trace.html'): proto_path = subpath.replace('trace.html', 'trace.pb') if cloud_storage.Exists(cloud_storage.TELEMETRY_OUTPUT, proto_path): return proto_path proto_path += '.gz' if cloud_storage.Exists(cloud_storage.TELEMETRY_OUTPUT, proto_path): return proto_path directory_path = '/'.join(subpath.split('/')[:-1]) return _GetProtoTraceLinkFromTraceEventsDir(directory_path) def DownloadHtmlTrace(html_url, download_dir=DEFAULT_TRACE_DIR): """Downloads html trace given the url. Returns local path. Skips downloading if file was already downloaded once.""" local_filename = os.path.join(download_dir, GetLocalTraceFileName(html_url)) local_path = local_filename + '.html' if os.path.exists(local_path): logging.info('%s already downloaded. Skipping.' % local_path) return local_path remote_path = _GetSubpathInBucket(html_url) if not cloud_storage.Exists(cloud_storage.TELEMETRY_OUTPUT, remote_path): raise cloud_storage.NotFoundError( 'HTML trace %s not found in cloud storage.' % html_url) cloud_storage.Get(cloud_storage.TELEMETRY_OUTPUT, remote_path, local_path) return local_path def DownloadProtoTrace(html_url, download_dir=DEFAULT_TRACE_DIR): """Downloads the associated proto trace for html trace url. Returns path. Skips downloading if file was already downloaded once.""" local_filename = os.path.join(download_dir, GetLocalTraceFileName(html_url)) for local_path in [local_filename + '.pb', local_filename + '.pb.gz']: if os.path.exists(local_path): logging.info('%s already downloaded. Skipping.' % local_path) return local_path remote_path = FindProtoTracePath(html_url) extension = GetFileExtension(remote_path) local_path = local_filename + extension cloud_storage.Get(cloud_storage.TELEMETRY_OUTPUT, remote_path, local_path) return local_path
1d35f1aa07311d7750d8c92a5190adff752f71ef
5ef6c8d47864f471e26b9902d61f8c687e941f05
/src/genie/libs/parser/iosxe/tests/ShowMacsecInterface/cli/equal/golden_output_3_expected.py
5a285a43b52fd922042d502b2ea1ea6430a37bfa
[ "Apache-2.0" ]
permissive
CiscoTestAutomation/genieparser
169c196558f1c1a0f0d10650876096f993224917
b531eff760b2e44cd69d7a2716db6f866907c239
refs/heads/master
2023-09-03T08:56:18.831340
2023-08-29T22:32:02
2023-08-29T22:32:02
131,621,824
247
409
Apache-2.0
2023-08-29T22:32:04
2018-04-30T16:51:50
Python
UTF-8
Python
false
false
599
py
golden_output_3_expected.py
expected_output = { "macsec-data": { "status": "disabled" }, "capabilities": { "icv-length": "16", "data-length-change-supported": "yes", "max-rx-sa": "32", "max-tx-sa": "32", "max-rx-sc": "16", "max-tx-sc": "16", "validate-frames": "disabled", "pn-threshold-notification-support": "Yes", "ciphers-supported": [ "GCM-AES-128", "GCM-AES-256", "GCM-AES-XPN-128", "GCM-AES-XPN-256", ], }, "access-control": "must secure", }
36bb81b7f88ac084b01f9f36c00ff458cb80541f
e5dd9568e49cc88d13e4a1255ca5a7763feafb72
/theonionbox/tob/system/darwin/__init__.py
f5e165219e0345ea2d92e8600c23a5f55ca573c4
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
ralphwetzel/theonionbox
21bc8142394a55492ca82dcd1430d22366703bcb
9812fce48153955e179755ea7a58413c3bee182f
refs/heads/master
2023-08-09T09:16:21.665677
2020-01-19T16:43:13
2020-01-19T16:43:13
48,622,560
130
23
MIT
2023-07-26T06:46:51
2015-12-26T20:20:52
JavaScript
UTF-8
Python
false
false
8,068
py
__init__.py
from typing import Optional, Callable from datetime import datetime, timedelta import logging import re import subprocess import time from .. import BaseSystem from .osxtemp import Temperature, Sensors, Units from .systray import Icon class Darwin(BaseSystem): temp_function = None def __init__(self): super(Darwin, self).__init__() self.__ntp = None self.__uptime = None @property def system(self): return 'Darwin' @property def temperature(self) -> Optional[float]: if self.temp_function is None: try: self.temp_function = Temperature(Sensors.CPU_0_PROXIMITY, Units.CELSIUS) except OSError: log = logging.getLogger('theonionbox') log.debug('macOSX SMC access library not found. Please check README for further instructions.') if self.temp_function is not None: try: return float(self.temp_function()) except: pass return None @property def uptime(self) -> Optional[str]: if self.__uptime is None: try: uptime = subprocess.check_output('uptime', shell=True) uptime = uptime.decode("utf-8") # uptime return format is ... complex! # 17:35 up 5:10, 1 user, load averages: 4.03 2.47 1.97 # 17:35 up 14 mins, 1 user, load averages: 4.03 2.47 1.97 # 17:35 up 1 min, 1 user, load averages: 4.03 2.47 1.97 # 17:35 up 7 days, 5:10, 1 user, load averages: 4.03 2.47 1.97 # 17:35 up 7 days, 14 mins, 1 user, load averages: 4.03 2.47 1.97 # 17:35 up 7 days, 1 min, 1 user, load averages: 4.03 2.47 1.97 # 17:35 up 17 days, 5:10, 1 user, load averages: 4.03 2.47 1.97 # 17:35 up 17 days, 14 mins, 1 user, load averages: 4.03 2.47 1.97 # 17:35 up 17 days, 1 min, 1 user, load averages: 4.03 2.47 1.97 # 17:35 up 1 day, 5:10, 1 user, load averages: 4.03 2.47 1.97 uptime = re.findall('(\d+:\d+)(?: {1,2}up {1,2})(?:(\d+)(?: days?, ))?(?:(\d+:\d+)|(?:(\d+)(?: mins?))),', uptime) # we just expect one match! if len(uptime) == 1: uptime = uptime[0] except Exception as exc: pass else: # Uptime RegEx tuple: (Timestamp, Days, hours:mins, mins) # hours:mins and mins are mutually exclusive! if len(uptime) == 4: (ts, days, hours, mins) = uptime if hours != '': hours = hours.split(':') mins = hours[1] hours = hours[0] days = days or '0' hours = ('00{}'.format(hours))[-2:] mins = ('00{}'.format(mins))[-2:] its_now = datetime.fromtimestamp(time.time()) upt_diff = timedelta(days=int(days), hours=int(hours), minutes=int(mins)) upt = its_now - upt_diff self.__uptime = upt.strftime('%Y-%m-%d %H:%M') return self.__uptime @property def ntp(self) -> Optional[str]: if self.__ntp is None: # find potential interfaces try: networksetup = subprocess.check_output(['networksetup', '-listallhardwareports']) networksetup = networksetup.decode("utf-8") # Hardware Port: Wi-Fi # Device: en0 # Ethernet Address: ... # # Hardware Port: Bluetooth PAN # Device: en6 # Ethernet Address: ... # # Hardware Port: Thunderbolt 1 # Device: en3 # Ethernet Address: ... # # ... regex = r'Device: (.+)' interfaces = re.findall(regex, networksetup) except subprocess.CalledProcessError: return None # check if there's lease information for those interfaces for interface in interfaces: try: ipconfig = subprocess.check_output(['ipconfig', 'getpacket', interface]) ipconfig = ipconfig.decode("utf-8") # op = BOOTREPLY # htype = 1 # flags = 0 # hlen = 6 # hops = 0 # xid = ... # secs = 2 # ciaddr = 0.0.0.0 # yiaddr = 192.168.178.xx # siaddr = 192.168.178.1 # giaddr = 0.0.0.0 # chaddr = ... # sname = # file = # options: # Options count is 12 # dhcp_message_type (uint8): ACK 0x5 # server_identifier (ip): 192.168.178.1 # lease_time (uint32): 0x112380 # renewal_t1_time_value (uint32): 0x891c0 # rebinding_t2_time_value (uint32): 0xeff10 # subnet_mask (ip): 255.255.255.0 # router (ip_mult): {192.168.178.1} # domain_name_server (ip_mult): {192.168.178.1} # domain_name (string): ... # broadcast_address (ip): 192.168.178.255 # network_time_protocol_servers (ip_mult): {192.168.178.1, 192.168.178.2} <=== # end (none): regex = r"network_time_protocol_servers \(ip_mult\): \{((?:\d{1,3}.\d{1,3}.\d{1,3}.\d{1,3},? ?)+)\}" ntp_servers = re.findall(regex, ipconfig) # 192.168.178.1, 192.168.178.2 if len(ntp_servers) > 0: regex = r"(\d{1,3}.\d{1,3}.\d{1,3}.\d{1,3})(?:,? ?)" ntps = re.findall(regex, ntp_servers[0]) if len(ntps) > 0: self.__ntp = ntps[0] break except Exception: continue return self.__ntp # This is Test code! def run_with_icon(self, launch, shutdown): from . import Icon import pystray from functools import partial import os def on_openBox(icon, item, self): os.system(f"open /Applications/Safari.app {self.url}") menu = pystray.Menu( pystray.MenuItem('Show TheOnionBox...', partial(on_openBox, self=self)) ) icon = Icon('The Onion Box', menu=menu) from PIL import Image, ImageDraw def create_image(): # Generate an image and draw a pattern width = 41 height = 41 color1 = 0x000000 color2 = 0xffffff image = Image.new('RGB', (width, height), color1) dc = ImageDraw.Draw(image) dc.rectangle( (width // 2, 0, width, height // 2), fill=color2) dc.rectangle( (0, height // 2, width // 2, height), fill=color2) return image icon.icon = create_image() # Prevent app from showing up in the dock # https://stackoverflow.com/questions/4345102/how-to-hide-application-icon-from-mac-os-x-dock from AppKit import NSBundle bundle = NSBundle.mainBundle() info = bundle.localizedInfoDictionary() or bundle.infoDictionary() info['LSUIElement'] = '1' def run_call(icon): if icon is not None: icon.visible = True launch() icon.run(run_call, shutdown)
d16633773505edf72490ed3588bd5389cfefc749
c50e7eb190802d7849c0d0cea02fb4d2f0021777
/src/networkcloud/azext_networkcloud/tests/latest/test_rack.py
8bd9116e4f54f3da60a5b9e1632a4f0a457e579f
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
Azure/azure-cli-extensions
c1615b19930bba7166c282918f166cd40ff6609c
b8c2cf97e991adf0c0a207d810316b8f4686dc29
refs/heads/main
2023-08-24T12:40:15.528432
2023-08-24T09:17:25
2023-08-24T09:17:25
106,580,024
336
1,226
MIT
2023-09-14T10:48:57
2017-10-11T16:27:31
Python
UTF-8
Python
false
false
2,989
py
test_rack.py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # # -------------------------------------------------------------------------------------------- # pylint: disable=too-few-public-methods,unnecessary-pass,unused-argument """ Rack test scenarios """ from azure.cli.testsdk import ResourceGroupPreparer, ScenarioTest from azure.cli.testsdk.scenario_tests import AllowLargeResponse from .config import CONFIG def setup_scenario1(test): """Env setup_scenario1""" pass def cleanup_scenario1(test): """Env cleanup_scenario1""" pass def call_scenario1(test): """# Testcase: scenario1""" setup_scenario1(test) step_update( test, checks=[ test.check("tags", "{tagsUpdate}"), test.check("provisioningState", "Succeeded"), ], ) step_show(test, checks=[]) step_list_subscription(test) step_list_resource_group(test, checks=[]) cleanup_scenario1(test) def step_show(test, checks=None): """Rack show operation""" if checks is None: checks = [] test.cmd( "az networkcloud rack show --name {name} " "--resource-group {rg}", checks=checks, ) def step_list_resource_group(test=None, checks=None): """Rack list by resource group operation""" if checks is None: checks = [] test.cmd("az networkcloud rack list --resource-group {rg}") @AllowLargeResponse def step_list_subscription(test): """Rack list by subscription operation""" test.cmd("az networkcloud rack list") def step_update(test, checks=None): """Rack update operation""" if checks is None: checks = [] test.cmd( "az networkcloud rack update --name {name} " "--rack-location {rackLocation} " "--rack-serial-number {serialNumber} " "--tags {tagsUpdate} --resource-group {rg}" ) # As Rack is a hydrated resource, it won't be provisioned in a testing rg # instead, we will use a resource created as a part of cluster deployment for testing class RackScenarioTest(ScenarioTest): """Rack scenario test""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.kwargs.update( { "name": CONFIG.get("RACK", "name"), "location": CONFIG.get("RACK", "location"), "rackLocation": CONFIG.get("RACK", "rack_location"), "rg": CONFIG.get("RACK", "resource_group"), "serialNumber": CONFIG.get("RACK", "serial_number"), "tags": CONFIG.get("RACK", "tags"), "tagsUpdate": CONFIG.get("RACK", "tags_update"), } ) def test_rack_scenario1(self): """test scenario for Rack read and update operations""" call_scenario1(self)
34ffb95470460cd55f44a47d72c2af92beca5e36
e338fad18e9bdd6f0252c9306b05ad7b336c2ecd
/daqhats/hats.py
4a80889e0c8b9e1007731ad82e37bcaf7524b4dc
[ "MIT" ]
permissive
mccdaq/daqhats
fd22172bf89adff9e2f6d2c4a9198c9d39918ed7
e6d96c8fb621c83696536a037f1c4fa373c46068
refs/heads/master
2022-12-01T16:47:45.491181
2022-11-18T15:05:17
2022-11-18T15:05:17
144,043,320
112
83
NOASSERTION
2022-06-24T18:42:34
2018-08-08T16:57:41
C
UTF-8
Python
false
false
12,724
py
hats.py
""" Wraps the global methods from the MCC Hat library for use in Python. """ from collections import namedtuple from ctypes import cdll, Structure, c_ubyte, c_ushort, c_char, c_int, POINTER, \ CFUNCTYPE, c_void_p from enum import IntEnum, unique _HAT_CALLBACK = None @unique class HatIDs(IntEnum): """Known MCC HAT IDs.""" ANY = 0 #: Match any MCC ID in :py:func:`hat_list` MCC_118 = 0x0142 #: MCC 118 ID MCC_128 = 0x0146 #: MCC 128 ID MCC_134 = 0x0143 #: MCC 134 ID MCC_152 = 0x0144 #: MCC 152 ID MCC_172 = 0x0145 #: MCC 172 ID @unique class TriggerModes(IntEnum): """Scan trigger input modes.""" RISING_EDGE = 0 #: Start the scan on a rising edge of TRIG. FALLING_EDGE = 1 #: Start the scan on a falling edge of TRIG. ACTIVE_HIGH = 2 #: Start the scan any time TRIG is high. ACTIVE_LOW = 3 #: Start the scan any time TRIG is low. class OptionFlags(IntEnum): """Scan / read option flags. See individual methods for detailed descriptions.""" DEFAULT = 0x0000 #: Use default behavior. NOSCALEDATA = 0x0001 #: Read / write unscaled data. NOCALIBRATEDATA = 0x0002 #: Read / write uncalibrated data. EXTCLOCK = 0x0004 #: Use an external clock source. EXTTRIGGER = 0x0008 #: Use an external trigger source. CONTINUOUS = 0x0010 #: Run until explicitly stopped. TEMPERATURE = 0x0020 #: Return temperature (MCC 134) # exception class class HatError(Exception): """ Exceptions raised for MCC DAQ HAT specific errors. Args: address (int): the address of the board that caused the exception. value (str): the exception description. """ def __init__(self, address, value): super(HatError, self).__init__(value) self.address = address self.value = value def __str__(self): return "Addr {}: ".format(self.address) + self.value # HAT info structure class class _Info(Structure): # pylint: disable=too-few-public-methods _fields_ = [("address", c_ubyte), ("id", c_ushort), ("version", c_ushort), ("product_name", c_char * 256)] # Callback function class class HatCallback(object): """ DAQ HAT interrupt callback function class. This class handles passing Python functions to the shared library as a callback. It stores the user data internally and passes it to the callback function to avoid issues with passing the object through the library. The callback function should have a single argument (optional) that is a Python object the user provides to :py:func:`interrupt_callback_enable` that will be passed to the callback function whenever it is called. Args: function (function): the function to be called when an interrupt occurs. """ def __init__(self, function): """ Store the function and create the CFUNCTYPE. """ if not callable(function): raise TypeError("Argument 1 must be a function or method.") self.function = function self.cbfunctype = CFUNCTYPE(None) self.cbfunc = None self.user_data = None def get_callback_func(self): """ Create a wrapper function without the self argument since that can't get passed to the library function, and assign it to a variable to avoid it getting garbage collected. """ def func(): """ Function wrapper. """ self.handle_callback() self.cbfunc = self.cbfunctype(func) return self.cbfunc def handle_callback(self): """ This is directly called from the interrupt thread. It calls the user's callback, passing the user_data object that gets set with interrupt_callback_enable(). """ self.function(self.user_data) def _load_daqhats_library(): """ Load the library """ libname = 'libdaqhats.so.1' try: lib = cdll.LoadLibrary(libname) except: # pylint: disable=bare-except lib = 0 return lib def hat_list(filter_by_id=0): """ Return a list of detected DAQ HAT boards. Scans certain locations for information from the HAT EEPROMs. Verifies the contents are valid HAT EEPROM contents and returns a list of namedtuples containing information on the HAT. Info will only be returned for DAQ HATs. The EEPROM contents are stored in /etc/mcc/hats when using the daqhats_read_eeproms tool, or in /proc/device-tree in the case of a single HAT at address 0. Args: filter_by_id (int): If this is :py:const:`HatIDs.ANY` return all DAQ HATs found. Otherwise, return only DAQ HATs with ID matching this value. Returns: list: A list of namedtuples, the number of elements match the number of DAQ HATs found. Each namedtuple will contain the following field names: * **address** (int): device address * **id** (int): device product ID, identifies the type of DAQ HAT * **version** (int): device hardware version * **product_name** (str): device product name """ _libc = _load_daqhats_library() if _libc == 0: return [] _libc.hat_list.argtypes = [c_ushort, POINTER(_Info)] _libc.hat_list.restype = c_int # find out how many structs we need count = _libc.hat_list(filter_by_id, None) if count == 0: return [] # allocate array of Info structs my_info = (_Info * count)() # get the info count = _libc.hat_list(filter_by_id, my_info) # create the list of dictionaries to return my_list = [] hat_info = namedtuple('HatInfo', ['address', 'id', 'version', 'product_name']) for item in my_info: info = hat_info( address=item.address, id=item.id, version=item.version, product_name=item.product_name.decode('ascii')) my_list.append(info) return my_list def interrupt_state(): """ Read the current DAQ HAT interrupt status Returns the status of the interrupt signal, True if active or False if inactive. The signal can be shared by multiple DAQ HATs so the status of each board that may generate an interrupt must be read and the interrupt source(s) cleared before the interrupt will become inactive. This function only applies when using devices that can generate an interrupt: * MCC 152 Returns: bool: The interrupt status. """ _libc = _load_daqhats_library() if _libc == 0: return False _libc.hat_interrupt_state.argtypes = [] _libc.hat_interrupt_state.restype = c_int # get the info state = _libc.hat_interrupt_state() return state == 1 def wait_for_interrupt(timeout): """ Wait for an interrupt from a DAQ HAT to occur. Pass a timeout in seconds. Pass -1 to wait forever or 0 to return immediately. If the interrupt has not occurred before the timeout elapses the function will return False. This function only applies when using devices that can generate an interrupt: * MCC 152 Returns: bool: The interrupt status - True = interrupt active, False = interrupt inactive. """ _libc = _load_daqhats_library() if _libc == 0: return False _libc.hat_wait_for_interrupt.argtypes = [c_int] _libc.hat_wait_for_interrupt.restype = c_int if timeout == -1: timeout_ms = -1 elif timeout == 0: timeout_ms = 0 else: timeout_ms = timeout * 1000 state = _libc.hat_wait_for_interrupt(timeout_ms) return state == 1 def interrupt_callback_enable(callback, user_data): """ Enable an interrupt callback function. Set a function that will be called when a DAQ HAT interrupt occurs. The function will be called when the DAQ HAT interrupt signal becomes active, and cannot be called again until the interrupt signal becomes inactive. Active sources become inactive when manually cleared (such as reading the digital I/O inputs or clearing the interrupt enable.) If not latched, an active source also becomes inactive when the value returns to the original value (the value at the source before the interrupt was generated.) There may only be one callback function at a time; if you call this when a function is already set as the callback function then it will be replaced with the new function and the old function will no longer be called if an interrupt occurs. The data argument to this function will be passed to the callback function when it is called. The callback function must have the form "callback(user_data)". For example: :: def my_function(data): # This is my callback function. print("The interrupt occurred, and returned {}.".format(data)) data[0] += 1 value = [0] interrupt_enable_callback(my_function, value) In this example *my_function()* will be called when the interrupt occurs, and the list *value* will be passed as the user_data. Inside the callback it will be received as *data*, but will still be the same object so any changes made will be present in the original *value*. Every time the interrupt occurs *value[0]* will be incremented and a higher number will be printed. An integer was not used for *value* because integers are immutable in Python so the original *value* would never change. The callback may be disabled with :py:func:`interrupt_callback_disable`. This function only applies when using devices that can generate an interrupt: * MCC 152 Args: callback (callback function): The callback function. user_data (object) Optional Python object or data to pass to the callback function. Raises: Exception: Internal error enabling the callback. """ _libc = _load_daqhats_library() if _libc == 0: return # callback must be an instance of HatCallback; legacy code may already # encapsulate it, so handle both cases if isinstance(callback, HatCallback): my_callback = callback else: my_callback = HatCallback(callback) # function argtype is provided by callback class _libc.hat_interrupt_callback_enable.argtypes = [my_callback.cbfunctype, c_void_p] _libc.hat_interrupt_callback_enable.restype = c_int # save the user data in the HatCallback object my_callback.user_data = user_data # pass the callback class handler function and void * to the library if (_libc.hat_interrupt_callback_enable(my_callback.get_callback_func(), None) != 0): raise Exception("Could not enable callback function.") # save reference so it isn't garbage collected global _HAT_CALLBACK # pylint: disable=global-statement _HAT_CALLBACK = my_callback def interrupt_callback_disable(): """ Disable interrupt callbacks. Raises: Exception: Internal error disabling the callback. """ _libc = _load_daqhats_library() if _libc == 0: return _libc.hat_interrupt_callback_disable.argtypes = [] _libc.hat_interrupt_callback_disable.restype = c_int if _libc.hat_interrupt_callback_disable() != 0: raise Exception("Could not disable callback function.") class Hat(object): # pylint: disable=too-few-public-methods """ DAQ HAT base class. Args: address (int): board address, must be 0-7. Raises: ValueError: the address is invalid. """ _RESULT_SUCCESS = 0 _RESULT_BAD_PARAMETER = -1 _RESULT_BUSY = -2 _RESULT_TIMEOUT = -3 _RESULT_LOCK_TIMEOUT = -4 _RESULT_INVALID_DEVICE = -5 _RESULT_RESOURCE_UNAVAIL = -6 _RESULT_COMMS_FAILURE = -7 _RESULT_UNDEFINED = -10 def __init__(self, address=0): """Initialize the class. Address must be 0-7.""" self._initialized = False self._address = 0 # max address value is 7 if address in range(8): self._address = address else: raise ValueError("Invalid address {}. Must be 0-7.".format(address)) self._lib = _load_daqhats_library() if self._lib == 0: raise Exception("daqhats shared library is not installed.") self._initialized = True return def address(self): """Return the device address.""" return self._address
126b8e68effd60222be11caf39b5ea95e86aca96
974d04d2ea27b1bba1c01015a98112d2afb78fe5
/test/mkldnn/test_fusion_lstm_int8_mkldnn_op.py
546a30c3046ced360e3ead1ca0a23a111932ac92
[ "Apache-2.0" ]
permissive
PaddlePaddle/Paddle
b3d2583119082c8e4b74331dacc4d39ed4d7cff0
22a11a60e0e3d10a3cf610077a3d9942a6f964cb
refs/heads/develop
2023-08-17T21:27:30.568889
2023-08-17T12:38:22
2023-08-17T12:38:22
65,711,522
20,414
5,891
Apache-2.0
2023-09-14T19:20:51
2016-08-15T06:59:08
C++
UTF-8
Python
false
false
5,251
py
test_fusion_lstm_int8_mkldnn_op.py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import OpTest from test_fusion_lstm_op import ACTIVATION, fusion_lstm class TestFusionLSTMINT8MKLDNNOp(OpTest): def set_confs(self): pass def setUp(self): self.op_type = "fusion_lstm" self.lod = [[2, 3, 5, 4]] self.IC = 3 self.OC = 5 self.is_reverse = False self.has_initial_state = False self.act_cell = 'tanh' self.act_gate = 'sigmoid' self.act_cand = 'tanh' self.use_peepholes = False # LSTM u8 doesn't support peepholes self.use_mkldnn = True self.mkldnn_data_type = "int8" self.force_fp32_output = False self.error_margin = 1e-5 self.set_confs() # RNN dimensions T = sum(self.lod[0]) N = len(self.lod[0]) # Input data x_f32 = np.random.rand(T, self.IC).astype('float32') * 2 - 1 scale_data = 63.0 shift_data = 64.0 x_u8 = np.rint(x_f32 * scale_data + shift_data).astype(np.uint8) # WeightX/WeightH data wx = np.random.rand(self.IC, 4 * self.OC).astype('float32') * 2 - 1 wh = np.random.rand(self.OC, 4 * self.OC).astype('float32') * 2 - 1 # Calculating weight scales # scales = 127 / max(abs(channel_wise(weightsX + weightsH))) s8_max = 127.0 scale_weights = s8_max / np.max( np.abs(np.concatenate([wx[:, :], wh[:, :]], axis=0)), axis=0 ) scale_weights = scale_weights.astype('float') if self.use_peepholes: b = np.random.rand(1, 7 * self.OC).astype('float32') else: b = np.random.rand(1, 4 * self.OC).astype('float32') w_b = np.copy(b[:, 0 : 4 * self.OC]) w_c = b[:, 4 * self.OC :] if self.use_peepholes else None bx = np.random.normal(size=(1, 4 * self.OC)).astype('float32') b[0, 0 : 4 * self.OC] += bx[0, :] if self.has_initial_state: h0 = np.random.rand(N, self.OC).astype('float32') c0 = np.random.rand(N, self.OC).astype('float32') else: h0 = np.zeros((N, self.OC)).astype('float32') c0 = np.zeros((N, self.OC)).astype('float32') hidden_f32, c = fusion_lstm( x_f32, self.lod, wx, bx, h0, c0, wh, w_b, w_c, self.is_reverse, ACTIVATION[self.act_gate], ACTIVATION[self.act_cell], ACTIVATION[self.act_cand], ) self.inputs = { 'X': (x_u8, self.lod), 'WeightX': wx, 'WeightH': wh, 'Bias': b, } if self.has_initial_state: self.inputs['H0'] = h0 self.inputs['C0'] = c0 if self.force_fp32_output: self.error_margin = 1e-1 self.outputs = { 'Hidden': (hidden_f32, self.lod), 'Cell': (c, self.lod), } else: self.error_margin = 2 hidden_u8 = np.rint(hidden_f32 * scale_data + shift_data).astype( np.uint8 ) self.outputs = { 'Hidden': (hidden_u8, self.lod), 'Cell': (c, self.lod), } self.attrs = { 'gate_activation': self.act_gate, 'cell_activation': self.act_cell, 'candidate_activation': self.act_cand, 'is_reverse': self.is_reverse, 'use_peepholes': self.use_peepholes, 'use_mkldnn': self.use_mkldnn, 'mkldnn_data_type': self.mkldnn_data_type, 'force_fp32_output': self.force_fp32_output, 'Scale_data': scale_data, 'Shift_data': shift_data, 'Scale_weights': scale_weights, } def test_check_output(self): for use_seq in {True, False}: self.attrs['use_seq'] = use_seq self.check_output( check_dygraph=False, no_check_set=["Cell"], atol=self.error_margin, ) class TestFusionLSTMINT8MKLDNNOp2(TestFusionLSTMINT8MKLDNNOp): def set_confs(self): self.force_fp32_output = True class TestFusionLSTMINT8MKLDNNOp4(TestFusionLSTMINT8MKLDNNOp): def set_confs(self): self.is_reverse = True class TestFusionLSTMINT8MKLDNNOp5(TestFusionLSTMINT8MKLDNNOp): def set_confs(self): self.has_initial_state = True if __name__ == "__main__": from paddle import enable_static enable_static() unittest.main()
7358fd17d1ca6ad45a86e585b0794e4682484f3f
530b180c3aade8e67cc61ad2baddff018f7d59a8
/robocorp-python-ls-core/src/robocorp_ls_core/__init__.py
a0f0c2082d9cf84959e2adca86fc83ed5fa2cb3b
[ "Apache-2.0" ]
permissive
robocorp/robotframework-lsp
67a1f35b9268d349045eb8fe930ea381c2d94cae
d72e5310ed4a8165d7ee516d79e0accccaf7748c
refs/heads/master
2023-08-17T05:12:43.598270
2023-08-12T12:11:22
2023-08-12T12:13:21
235,202,865
167
72
Apache-2.0
2023-09-13T22:39:09
2020-01-20T21:31:20
Python
UTF-8
Python
false
false
122
py
__init__.py
import os.path __file__ = os.path.abspath(__file__) if __file__.endswith((".pyc", ".pyo")): __file__ = __file__[:-1]
6738978d82bdbc182069e58badd7fbccfc8cb64c
1ad268817e4f048815df6e7b7669c45257a37b0e
/kartothek/io_components/cube/query/_group.py
8884ff077d1d3fd45e648bcce973ba07eb677916
[ "MIT" ]
permissive
JDASoftwareGroup/kartothek
07c7f2fceb3dcee5cf8d0a6a93f4c1060eb0bcf4
1821ea5df60d4079d3911b3c2f17be11d8780e22
refs/heads/master
2023-05-26T11:43:04.781173
2021-12-10T09:15:19
2021-12-10T09:15:19
184,608,549
178
59
MIT
2023-05-15T21:56:50
2019-05-02T15:45:42
Python
UTF-8
Python
false
false
7,998
py
_group.py
""" Query group code datastructure and load code. """ import typing import attr import pandas as pd from kartothek.io_components.metapartition import SINGLE_TABLE, MetaPartition from kartothek.utils.converters import converter_str from kartothek.utils.pandas import ( concat_dataframes, drop_sorted_duplicates_keep_last, sort_dataframe, ) __all__ = ("QueryGroup", "load_group", "quick_concat") @attr.s(frozen=True) class QueryGroup: """ Query group, aka logical partition w/ all kartothek metapartition and information required to load the data. Parameters ---------- metapartition: Dict[int, Dict[str, Tuple[kartothek.io_components.metapartition.MetaPartition, ...]]] Mapping from partition ID to metapartitions per dataset ID. load_columns: Dict[str, Set[str]] Columns to load. output_columns: Tuple[str, ...] Tuple of columns that will be returned from the query API. predicates: Dict[str, Tuple[Tuple[Tuple[str, str, Any], ...], ...]] Predicates for each dataset ID. empty_df: Dict[str, pandas.DataFrame] Empty DataFrame for each dataset ID. dimension_columns: Tuple[str, ...] Dimension columns, used for de-duplication and to join data. restrictive_dataset_ids: Set[str] Datasets (by Ktk_cube dataset ID) that are restrictive during the join process. """ metapartitions = attr.ib( type=typing.Dict[int, typing.Dict[str, typing.Tuple[MetaPartition, ...]]] ) load_columns = attr.ib(type=typing.Dict[str, typing.Tuple[str, ...]]) output_columns = attr.ib(type=typing.Tuple[str, ...]) predicates = attr.ib( type=typing.Dict[ str, typing.Tuple[typing.Tuple[typing.Tuple[str, str, typing.Any], ...], ...], ] ) empty_df = attr.ib(type=typing.Dict[str, pd.DataFrame]) dimension_columns = attr.ib(type=typing.Tuple[str, ...]) restrictive_dataset_ids = attr.ib(type=typing.Set[str]) def _load_all_mps(mps, store, load_columns, predicates, empty): """ Load kartothek_cube-relevant data from all given MetaPartitions. The result will be a concatenated Dataframe. Parameters ---------- mps: Iterable[MetaPartition] MetaPartitions to load. store: simplekv.KeyValueStore Store to load data from. load_columns: List[str] Columns to load. predicates: Optional[List[List[Tuple[str, str, Any]]]] Predicates to apply during load. empty: pandas.DataFrame Empty Dataframe dummy. Returns ------- df: pandas.DataFrame Concatenated data. """ dfs_mp = [] for mp in mps: mp = mp.load_dataframes( store=store, predicate_pushdown_to_io=True, tables=[SINGLE_TABLE], columns={SINGLE_TABLE: sorted(load_columns)}, predicates=predicates, ) df = mp.data[SINGLE_TABLE] df.columns = df.columns.map(converter_str) dfs_mp.append(df) return concat_dataframes(dfs_mp, empty) def _load_partition_dfs(cube, group, partition_mps, store): """ Load partition Dataframes for seed, restrictive and other data. The information about the merge strategy (seed, restricting, others) is taken from ``group``. Parameters ---------- cube: Cube Cube spec. group: QueryGroup Query group. partition_mps: Dict[str, Iterable[MetaPartition]] MetaPartitions for every dataset in this partition. store: simplekv.KeyValueStore Store to load data from. Returns ------- df_seed: pandas.DataFrame Seed data. dfs_restrict: List[pandas.DataFrame] Restrictive data (for inner join). dfs_other: List[pandas.DataFrame] Other data (for left join). """ df_seed = None dfs_restrict = [] dfs_other = [] for ktk_cube_dataset_id, empty in group.empty_df.items(): mps = partition_mps.get(ktk_cube_dataset_id, []) df = _load_all_mps( mps=mps, store=store, load_columns=list(group.load_columns[ktk_cube_dataset_id]), predicates=group.predicates.get(ktk_cube_dataset_id, None), empty=empty, ) # de-duplicate and sort data # PERF: keep order of dimensionality identical to group.dimension_columns df_cols = set(df.columns) dimensionality = [c for c in group.dimension_columns if c in df_cols] df = sort_dataframe(df=df, columns=dimensionality) df = drop_sorted_duplicates_keep_last(df, dimensionality) if ktk_cube_dataset_id == cube.seed_dataset: assert df_seed is None df_seed = df elif ktk_cube_dataset_id in group.restrictive_dataset_ids: dfs_restrict.append(df) else: dfs_other.append(df) assert df_seed is not None return df_seed, dfs_restrict, dfs_other def _load_partition(cube, group, partition_mps, store): """ Load partition and merge partition data within given QueryGroup. The information about the merge strategy (seed, restricting, others) is taken from ``group``. Parameters ---------- cube: Cube Cube spec. group: QueryGroup Query group. partition_mps: Dict[str, Iterable[MetaPartition]] MetaPartitions for every dataset in this partition. store: simplekv.KeyValueStore Store to load data from. Returns ------- df: pandas.DataFrame Merged data. """ # MEMORY: keep the DF references only as long as they are required: # - use only 1 "intermediate result variable" called df_partition # - consume the DFs lists (dfs_restrict, dfs_other) while iterating over them df_partition, dfs_restrict, dfs_other = _load_partition_dfs( cube=cube, group=group, partition_mps=partition_mps, store=store ) while dfs_restrict: df_partition = df_partition.merge(dfs_restrict.pop(0), how="inner") while dfs_other: df_partition = df_partition.merge(dfs_other.pop(0), how="left") return df_partition.loc[:, list(group.output_columns)] def load_group(group, store, cube): """ Load :py:class:`QueryGroup` and return DataFrame. Parameters ---------- group: QueryGroup Query group. store: Union[Callable[[], simplekv.KeyValueStore], simplekv.KeyValueStore] Store to load data from. cube: kartothek.core.cube.cube.Cube Cube specification. Returns ------- df: pandas.DataFrame Dataframe, may be empty. """ if callable(store): store = store() partition_results = [] for partition_id in sorted(group.metapartitions.keys()): partition_results.append( _load_partition( cube=cube, group=group, partition_mps=group.metapartitions[partition_id], store=store, ) ) # concat all partitions return quick_concat( dfs=partition_results, dimension_columns=group.dimension_columns, partition_columns=cube.partition_columns, ) def quick_concat(dfs, dimension_columns, partition_columns): """ Fast version of:: pd.concat( dfs, ignore_index=True, sort=False, ).sort_values(dimension_columns + partition_columns).reset_index(drop=True) if inputs are presorted. Parameters ----------- dfs: Iterable[pandas.DataFrame] DataFrames to concat. dimension_columns: Iterable[str] Dimension columns in correct order. partition_columns: Iterable[str] Partition columns in correct order. Returns ------- df: pandas.DataFrame Concatenated result. """ return sort_dataframe( df=concat_dataframes(dfs), columns=list(dimension_columns) + list(partition_columns), )
5daf74551dd020acb0add1638037b906b3f7180c
a4d8fcfa8084c5d36a862aeb0978327ff4cfe50f
/prototypes/c2p/c2p_1x1_4bpl_blitter.py
f87ac1548a5eccdd56c64e45585a8f4ced98b0e4
[ "Artistic-2.0" ]
permissive
cahirwpz/demoscene
a0b548527d89a354b5b8dfd922f39d8b14d61643
cd4517ba69e26c96a69e505e305a6d0152972982
refs/heads/master
2023-03-17T13:06:43.731158
2023-03-13T19:48:47
2023-03-13T19:48:47
3,242,770
105
21
Artistic-2.0
2022-10-18T09:43:25
2012-01-22T23:03:06
C
UTF-8
Python
false
false
2,604
py
c2p_1x1_4bpl_blitter.py
#!/usr/bin/env python3 from common import Bit, Word, Channel, Blit, Array def c2p(bitplane_output=True): m0 = Word.Mask('00ff') m1 = Word.Mask('0f0f') m2 = Word.Mask('3333') m3 = Word.Mask('5555') print("=[ c2p 1x1 4bpl (blitter) ]=".center(48, '-')) def MakeWord(chars, color): bits = [] for c in chars: for i in range(4): bits.append(Bit.Var(c, i, color)) return Word(bits) A = Array.Make(MakeWord) N = len(A) Array.Print("Data:", *A) B = Array.Zero(N, 16) Blit(lambda a, b: ((a >> 8) & m0) | (b & ~m0), N // 4, 2, Channel(A, 2, 2), Channel(A, 0, 2), Channel(B, 0, 2)) Blit(lambda a, b: ((a << 8) & ~m0) | (b & m0), N // 4, 2, Channel(A, 0, 2), Channel(A, 2, 2), Channel(B, 2, 2)) Array.Print("Swap 8x4:", *B) C = Array.Zero(N, 16) Blit(lambda a, b: ((a >> 4) & m1) | (b & ~m1), N // 2, 1, Channel(B, 1, 1), Channel(B, 0, 1), Channel(C, 0, 1)) Blit(lambda a, b: ((a << 4) & ~m1) | (b & m1), N // 2, 1, Channel(B, 0, 1), Channel(B, 1, 1), Channel(C, 1, 1)) Array.Print("Swap 4x2:", *C) D = Array.Zero(N, 16) Blit(lambda a, b: ((a >> 2) & m2) | (b & ~m2), N // 4, 2, Channel(C, 2, 2), Channel(C, 0, 2), Channel(D, 0, 2)) Blit(lambda a, b: ((a << 2) & ~m2) | (b & m2), N // 4, 2, Channel(C, 0, 2), Channel(C, 2, 2), Channel(D, 2, 2)) Array.Print("Swap 2x2:", *D) if bitplane_output: E = [Array.Zero(N // 4, 16) for i in range(4)] Blit(lambda a, b: ((a >> 1) & m3) | (b & ~m3), N // 4, 1, Channel(D, 1, 3), Channel(D, 0, 3), Channel(E[0], 0, 0)) Blit(lambda a, b: ((a >> 1) & m3) | (b & ~m3), N // 4, 1, Channel(D, 3, 3), Channel(D, 2, 3), Channel(E[2], 0, 0)) Blit(lambda a, b: ((a << 1) & ~m3) | (b & m3), N // 4, 1, Channel(D, 0, 3), Channel(D, 1, 3), Channel(E[1], 0, 0)) Blit(lambda a, b: ((a << 1) & ~m3) | (b & m3), N // 4, 1, Channel(D, 2, 3), Channel(D, 3, 3), Channel(E[3], 0, 0)) print("Bitplanes:") Array.Print("[0]:", *E[0]) Array.Print("[1]:", *E[1]) Array.Print("[2]:", *E[2]) Array.Print("[3]:", *E[3]) else: E = Array.Zero(N, 16) Blit(lambda a, b: ((a >> 1) & m3) | (b & ~m3), N // 2, 1, Channel(D, 1, 1), Channel(D, 0, 1), Channel(E, 0, 1)) Blit(lambda a, b: ((a << 1) & ~m3) | (b & m3), N // 2, 1, Channel(D, 0, 1), Channel(D, 1, 1), Channel(E, 1, 1)) Array.Print("Swap 1x1:", *E) c2p()
7d12e7d80c8ed791e46ff25eecae84f45ca96ce4
364774e29ef2474552ea3839de0951e63cbae0a6
/wouso/core/scoring/tests.py
b9f08a25a6acc568d2b0a577c8f8e1b0628e6943
[ "Apache-2.0" ]
permissive
rosedu/wouso
66c50ef750cf79d6959768f7df93cc08607cc266
ed34c62ac925db719388f27fe5acb40376d8d0c1
refs/heads/master
2022-10-29T14:28:51.818073
2022-09-24T18:54:04
2022-09-24T18:54:04
2,965,476
121
97
NOASSERTION
2019-11-15T09:33:50
2011-12-12T16:15:01
Python
UTF-8
Python
false
false
8,440
py
tests.py
from django.test import TestCase from django.db.models.query import QuerySet from django.contrib.auth.models import User from wouso.core.config.models import IntegerListSetting from wouso.core.game.models import Game from wouso.core import scoring, signals from wouso.core.tests import WousoTest from wouso.core.user.models import Player from models import Formula, Coin, History from sm import FormulaParsingError, setup_scoring, CORE_POINTS, check_setup, update_points, calculate class ScoringTestCase(TestCase): def setUp(self): self.user, new = User.objects.get_or_create(username='33') self.game = Game.get_instance() self.coin = Coin.add('_test') def tearDown(self): #self.user.delete() self.game.delete() self.coin.delete() def testHistoryFor(self): no_history = scoring.history_for(self.user, self.game, external_id=999) self.assertEqual(len(no_history), 0) def testScoreSimple(self): scoring.score_simple(self.user.get_profile(), self.coin, game=self.game, external_id=2, amount=10) multiple = scoring.history_for(self.user, self.game, external_id=2) self.assertTrue(isinstance(multiple, QuerySet)) self.assertEqual(len(multiple), 1) history = list(multiple)[0] self.assertTrue(isinstance(history, History)) self.assertEqual(history.amount, 10) def testCalculate(self): formula = Formula.add('_test_formula', expression='_test=5', owner=self.game) # Call by name ret = scoring.calculate('_test_formula') self.assertTrue(isinstance(ret, dict)) # Call by object ret = scoring.calculate(formula) self.assertTrue(isinstance(ret, dict)) self.assertEqual(ret['_test'], 5) formula2 = Formula.add('_test_formula2', expression='_test=5*3', owner=self.game) ret = scoring.calculate(formula2) self.assertTrue(isinstance(ret, dict)) self.assertEqual(ret['_test'], 15) # Multiple coins formula2.expression = '_test=5*3; points=4' ret = scoring.calculate(formula2) self.assertTrue(isinstance(ret, dict)) self.assertEqual(ret['_test'], 15) self.assertEqual(ret['points'], 4) # Fail safe formula2.expression = '_test=5*cucu' try: ret = scoring.calculate(formula2) # no error? wtf self.assertFalse(True) except Exception as e: self.assertTrue(isinstance(e, FormulaParsingError)) def testScore(self): formula = Formula.add('_test_formula_sc', expression='_test=13', owner=self.game) scoring.score(self.user.get_profile(), self.game, formula, external_id=3) hs = scoring.history_for(self.user, self.game, external_id=3) self.assertTrue(isinstance(hs, QuerySet)) history = list(hs)[0] # check if specific coin has been updated self.assertEqual(history.coin, self.coin) self.assertEqual(history.amount, 13) class UpdateScoringTest(WousoTest): def test_update_points_level_upgrade_first_time(self): level_up_points = 80 IntegerListSetting.get('level_limits').set_value(str(level_up_points)) Coin.add('points') Coin.add('gold') Formula.add('level-gold', expression='gold=10*{level}', owner=None) # Upgrade player's level player = self._get_player() player.points = level_up_points + 1 player.level_no = 1 player.save() update_points(player, None) coins = History.user_coins(player.user) self.assertEqual(coins['gold'], 10 * player.max_level) def test_update_points_level_downgrade(self): level_up_points = 80 IntegerListSetting.get('level_limits').set_value(str(level_up_points)) Coin.add('points') Coin.add('gold') Formula.add('level-gold', expression='gold=10*{level}', owner=None) # Upgrade player's level player = self._get_player() player.points = level_up_points + 1 player.level_no = 1 player.save() update_points(player, None) # Downgrade player's level player.points = level_up_points - 1 player.save() update_points(player, None) coins = History.user_coins(player.user) self.assertEqual(coins['gold'], 10 * player.max_level) def test_update_points_level_upgrade_back(self): level_up_points = 80 IntegerListSetting.get('level_limits').set_value(str(level_up_points)) Coin.add('points') Coin.add('gold') Formula.add('level-gold', expression='gold=10*{level}', owner=None) # Upgrade player's level player = self._get_player() player.points = level_up_points + 1 player.level_no = 1 player.save() update_points(player, None) # Downgrade player's level player.points = level_up_points - 1 player.save() update_points(player, None) #Upgrade player's level back player.points = level_up_points + 1 player.save() update_points(player, None) coins = History.user_coins(player.user) self.assertEqual(coins['gold'], 10 * player.max_level) class ScoringHistoryTest(WousoTest): def test_user_coins(self): Coin.add('points') Coin.add('gold') player = self._get_player() scoring.score_simple(player, 'points', 10) self.assertIn('points', History.user_coins(player.user)) def test_user_points(self): coin = Coin.add('points') player = self._get_player() scoring.score_simple(player, 'points', 10) up = History.user_points(user=player.user) self.assertTrue('wouso' in up) self.assertTrue(coin.name in up['wouso']) self.assertEqual(up['wouso'][coin.name], 10) def test_accessors(self): player = self._get_player() self.assertEqual(scoring.user_coins(player), scoring.user_coins(player.user)) def test_sync_methods(self): player = self._get_player() coin = Coin.add('points') History.objects.create(user=player.user, coin=coin, amount=10) self.assertEqual(player.points, 0) scoring.sync_user(player) self.assertEqual(player.points, 10) History.objects.create(user=player.user, coin=coin, amount=10) self.assertEqual(player.points, 10) scoring.sync_all_user_points() player = Player.objects.get(pk=player.pk) self.assertEqual(player.points, 20) class ScoringSetupTest(TestCase): def test_check_setup(self): setup_scoring() self.assertTrue(check_setup()) def test_setup(self): setup_scoring() for c in CORE_POINTS: self.assertTrue(Coin.get(c)) class ScoringFirstLogin(WousoTest): def test_first_login_points(self): f = Formula.add('start-points', expression='points=10') Coin.add('points') player = self._get_player() self.assertEqual(player.points, 0) # this won't work, since the activity is sent in our custom view #self.client.login(username=player.user.username, password='test') # using this instead signals.addActivity.send(sender=None, user_from=player, action="login", game=None, public=False) player = Player.objects.get(pk=player.pk) self.assertEqual(player.points, 10) class ScoringTestFunctions(TestCase): def test_fibbonaci_formula(self): formula = Formula.add('test-fib', expression='points=fib(0)') value = calculate(formula)['points'] self.assertEqual(value, 0) formula.expression = 'points=fib(1)' formula.save() value = calculate(formula)['points'] self.assertEqual(value, 1) formula.expression = 'points=fib(2)' formula.save() value = calculate(formula)['points'] self.assertEqual(value, 1) formula.expression = 'points=fib(3)' formula.save() value = calculate(formula)['points'] self.assertEqual(value, 2) formula.expression = 'points=fib(4)' formula.save() value = calculate(formula)['points'] self.assertEqual(value, 3)
d11ed7408c2a7ee52c656653f559319f87ef6281
fd6f11eeba5e7191a115b2f39c930145d7ab83d8
/FingersExtras/Python/cycle through CC lanes.py
336e5e383f9c376d3d4fe5155f25112dee3bf2c9
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
reaper-oss/sws
30792fd38d7e969b0e4fe20ca9b256989452a959
a3693ad52ed16fe95ac0a570971656b6c9337f26
refs/heads/master
2023-09-02T01:43:13.746682
2022-10-11T22:21:17
2023-01-16T13:30:10
21,614,326
360
86
MIT
2023-08-23T11:43:23
2014-07-08T13:48:01
C++
UTF-8
Python
false
false
82
py
cycle through CC lanes.py
cmdId = RPR_NamedCommandLookup("_FNG_CYCLE_CC_LANE") RPR_Main_OnCommand(cmdId, 0)
f5f392f829b283355bdbc4720b6bef269b3bb826
96dcea595e7c16cec07b3f649afd65f3660a0bad
/homeassistant/components/plex/view.py
ba883883ddc850064cdfac66f4e0607ef00e7577
[ "Apache-2.0" ]
permissive
home-assistant/core
3455eac2e9d925c92d30178643b1aaccf3a6484f
80caeafcb5b6e2f9da192d0ea6dd1a5b8244b743
refs/heads/dev
2023-08-31T15:41:06.299469
2023-08-31T14:50:53
2023-08-31T14:50:53
12,888,993
35,501
20,617
Apache-2.0
2023-09-14T21:50:15
2013-09-17T07:29:48
Python
UTF-8
Python
false
false
1,626
py
view.py
"""Implement a view to provide proxied Plex thumbnails to the media browser.""" from __future__ import annotations from http import HTTPStatus import logging from aiohttp import web from aiohttp.hdrs import CACHE_CONTROL from aiohttp.typedefs import LooseHeaders from homeassistant.components.http import KEY_AUTHENTICATED, HomeAssistantView from homeassistant.components.media_player import async_fetch_image from .const import SERVERS from .helpers import get_plex_data _LOGGER = logging.getLogger(__name__) class PlexImageView(HomeAssistantView): """Media player view to serve a Plex image.""" name = "api:plex:image" url = "/api/plex_image_proxy/{server_id}/{media_content_id}" async def get( self, request: web.Request, server_id: str, media_content_id: str, ) -> web.Response: """Start a get request.""" if not request[KEY_AUTHENTICATED]: return web.Response(status=HTTPStatus.UNAUTHORIZED) hass = request.app["hass"] if (server := get_plex_data(hass)[SERVERS].get(server_id)) is None: return web.Response(status=HTTPStatus.NOT_FOUND) if (image_url := server.thumbnail_cache.get(media_content_id)) is None: return web.Response(status=HTTPStatus.NOT_FOUND) data, content_type = await async_fetch_image(_LOGGER, hass, image_url) if data is None: return web.Response(status=HTTPStatus.SERVICE_UNAVAILABLE) headers: LooseHeaders = {CACHE_CONTROL: "max-age=3600"} return web.Response(body=data, content_type=content_type, headers=headers)
b34fea38f0d0ff53416073fa9160a8264cc34462
d91d19da3589c3f69a834bbb9834386e80f100e0
/datashader/data_libraries/cudf.py
343a0639e0fe4d564290f8411b27a9f41b9f91cc
[]
permissive
holoviz/datashader
11d518371e974c02ba3843871e3e0905e0c83956
b510594eb771d14cff3b69efca8ddd37ca3a1046
refs/heads/main
2023-08-18T13:55:24.214980
2023-08-17T08:45:48
2023-08-17T08:45:48
48,504,165
1,040
133
BSD-3-Clause
2023-09-11T09:51:30
2015-12-23T18:02:20
Python
UTF-8
Python
false
false
343
py
cudf.py
from __future__ import annotations from datashader.data_libraries.pandas import default from datashader.core import bypixel import cudf @bypixel.pipeline.register(cudf.DataFrame) def cudf_pipeline(df, schema, canvas, glyph, summary, *, antialias=False): return default(glyph, df, schema, canvas, summary, antialias=antialias, cuda=True)
a2ae09cefa0426601090d026bbbde91a0411655e
f85fd70c36571999d503343cf9e94c479339e980
/ansible/modules/hashivault/hashivault_identity_entity_alias.py
6e6f1ef7b1050fe7316fdde9a624f4f513958be4
[ "MIT" ]
permissive
TerryHowe/ansible-modules-hashivault
2b1f219e69f7beb8c947ddc4907b7b1836c9e765
8ac45bb025a33de6027dca88e8870a67e154cae4
refs/heads/main
2023-09-01T01:31:18.124112
2023-08-14T14:04:53
2023-08-14T14:04:53
57,915,238
453
198
MIT
2023-08-14T14:04:55
2016-05-02T19:22:57
Python
UTF-8
Python
false
false
7,527
py
hashivault_identity_entity_alias.py
#!/usr/bin/env python from ansible.module_utils.hashivault import hashivault_argspec from ansible.module_utils.hashivault import hashivault_auth_client from ansible.module_utils.hashivault import hashivault_init from ansible.module_utils.hashivault import hashiwrapper ANSIBLE_METADATA = {'status': ['stableinterface'], 'supported_by': 'community', 'version': '1.1'} DOCUMENTATION = ''' --- module: hashivault_identity_entity_alias version_added: "3.13.0" short_description: Hashicorp Vault entity alias manage module description: - Module to manage identity entity aliases in Hashicorp Vault. options: name: description: - Name of the alias. Name should be the identifier of the client in the authentication source. alias_id: description: - ID of the entity alias. If set, updates the corresponding entity alias. entity_name: description: - Entity name to which this alias belongs to. canonical_id: description: - Entity ID to which this alias belongs to. mount_accessor: description: - Accessor of the mount to which the alias should belong to. state: description: - whether crete/update or delete the entity extends_documentation_fragment: hashivault ''' EXAMPLES = ''' --- - hosts: localhost tasks: - hashivault_identity_entity_alias: name: 'bob' entity_name: 'bob' ''' def main(): argspec = hashivault_argspec() argspec['name'] = dict(required=True, type='str', default=None) argspec['alias_id'] = dict(required=False, type='str', default=None) argspec['entity_name'] = dict(required=False, type='str', default=None) argspec['canonical_id'] = dict(required=False, type='str', default=None) argspec['mount_accessor'] = dict(required=False, type='str', default=None) argspec['state'] = dict(required=False, choices=['present', 'absent'], default='present') module = hashivault_init(argspec) result = hashivault_identity_entity_alias(module.params) if result.get('failed'): module.fail_json(**result) else: module.exit_json(**result) def hashivault_identity_entity_alias_update(client, alias_id, alias_name, canonical_id, mount_accessor): try: alias_details = client.secrets.identity.read_entity_alias(alias_id=alias_id) except Exception as e: return {'failed': True, 'msg': str(e)} if alias_details['data']['canonical_id'] == canonical_id: return {'changed': False} try: client.secrets.identity.update_entity_alias( alias_id=alias_id, name=alias_name, canonical_id=canonical_id, mount_accessor=mount_accessor ) except Exception as e: return {'failed': True, 'msg': str(e)} return {'changed': True} def hashivault_identity_entity_alias_create(client, alias_name, canonical_id, mount_accessor): try: list_of_aliases = client.secrets.identity.list_entity_aliases() except Exception: try: alias_details = client.secrets.identity.create_or_update_entity_alias( name=alias_name, canonical_id=canonical_id, mount_accessor=mount_accessor ) except Exception as e: return {'failed': True, 'msg': str(e)} return {'changed': True, 'data': alias_details['data']} for key, value in dict(list_of_aliases['data']['key_info']).items(): if value['mount_accessor'] == mount_accessor and value['name'] == alias_name: return hashivault_identity_entity_alias_update(client, alias_id=key, alias_name=alias_name, canonical_id=canonical_id, mount_accessor=mount_accessor) else: try: client.secrets.identity.create_or_update_entity_alias(name=alias_name, canonical_id=canonical_id, mount_accessor=mount_accessor) except Exception as e: return {'failed': True, 'msg': str(e)} return {'changed': True} def hashivault_identity_entity_alias_delete(client, alias_id, alias_name, mount_accessor, canonical_id): try: list_of_aliases = client.secrets.identity.list_entity_aliases() except Exception: return {'changed': False} else: if alias_id is not None: if alias_id not in list_of_aliases['data']['keys']: return {'changed': False} client.secrets.identity.delete_entity_alias(alias_id=alias_id) return {'changed': True} elif alias_name is not None: for key, value in dict(list_of_aliases['data']['key_info']).items(): if value['mount_accessor'] == mount_accessor and \ value['name'] == alias_name and \ value['canonical_id'] == canonical_id: client.secrets.identity.delete_entity_alias(alias_id=key) return {'changed': True} return {'changed': False} return {'failed': True, 'msg': 'Either alias_id or name must be provided'} @hashiwrapper def hashivault_identity_entity_alias(params): client = hashivault_auth_client(params) alias_name = params.get('name') alias_id = params.get('alias_id') state = params.get('state') mount_accessor = params.get('mount_accessor') authtype = params.get('authtype') entity_name = params.get('entity_name') canonical_id = params.get('canonical_id') # Get mount_accessor if not provided if mount_accessor is None: auth_method_details = client.read(path="/sys/auth/") try: mount_accessor = auth_method_details['data'][authtype + "/"]['accessor'] except Exception: return {'failed': True, 'msg': 'Auth method %s not found. Use mount_accessor?' % authtype} # Get canonical_id if not provided if canonical_id is None: if entity_name is None: return {'failed': True, 'msg': 'Either canonical_id or entity_name must be provided'} else: try: entity_details = client.secrets.identity.read_entity_by_name( name=entity_name ) except Exception: return {'failed': True, 'msg': 'No entity with name %s' % entity_name} canonical_id = entity_details['data']['id'] if state == 'present': if alias_id is not None: return hashivault_identity_entity_alias_update(client, alias_id=alias_id, alias_name=alias_name, mount_accessor=mount_accessor, canonical_id=canonical_id) elif alias_name is not None: return hashivault_identity_entity_alias_create(client, alias_name=alias_name, mount_accessor=mount_accessor, canonical_id=canonical_id) else: return {'failed': True, 'msg': 'Either alias_id or name must be provided'} elif state == 'absent': return hashivault_identity_entity_alias_delete(client, alias_id=alias_id, alias_name=alias_name, mount_accessor=mount_accessor, canonical_id=canonical_id) return {'failed': True, 'msg': 'Unknown state'} if __name__ == '__main__': main()
52f29a16942e8b6e31be5f85b096e2bb78d9f43b
bbd69601912a3361d788efd03a47f9d4e3bac09e
/demo/agw/PyGauge.py
fa05939284c18ea67a2d395b8e05bf9032fcffa4
[]
no_license
wxWidgets/Phoenix
56929484460a0399a8f1d9582bc77c20aa14748d
a1184286703cf24c4b88e5bc14cf2979c1b1ea00
refs/heads/master
2023-09-01T07:10:17.437093
2023-08-31T05:38:01
2023-08-31T05:38:01
5,078,061
2,268
677
null
2023-09-09T17:06:59
2012-07-17T06:22:25
Python
UTF-8
Python
false
false
5,761
py
PyGauge.py
#!/usr/bin/env python import wx import os import sys try: dirName = os.path.dirname(os.path.abspath(__file__)) except: dirName = os.path.dirname(os.path.abspath(sys.argv[0])) sys.path.append(os.path.split(dirName)[0]) try: from agw import pygauge as PG except ImportError: # if it's not there locally, try the wxPython lib. try: import wx.lib.agw.pygauge as PG except: raise Exception("This demo requires wxPython version greater than 2.9.0.0") class PyGaugeDemo(wx.Panel): def __init__(self, parent, log): wx.Panel.__init__(self, parent) self.log = log self.mainPanel = wx.Panel(self) self.mainPanel.SetBackgroundColour(wx.WHITE) self.gauge1 = PG.PyGauge(self.mainPanel, -1, size=(100,25),style=wx.GA_HORIZONTAL) self.gauge1.SetValue(80) self.gauge1.SetBackgroundColour(wx.WHITE) self.gauge1.SetBorderColor(wx.BLACK) self.gauge2 = PG.PyGauge(self.mainPanel, -1, size=(100,25),style=wx.GA_HORIZONTAL) self.gauge2.SetValue([20,80]) self.gauge2.SetBarColor([wx.Colour(162,255,178),wx.Colour(159,176,255)]) self.gauge2.SetBackgroundColour(wx.WHITE) self.gauge2.SetBorderColor(wx.BLACK) self.gauge2.SetBorderPadding(2) self.gauge2.Update([30,0],2000) self.gauge3 = PG.PyGauge(self.mainPanel, -1, size=(100,25),style=wx.GA_HORIZONTAL) self.gauge3.SetValue(50) self.gauge3.SetBarColor(wx.GREEN) self.gauge3.SetBackgroundColour(wx.WHITE) self.gauge3.SetBorderColor(wx.BLACK) self.backColour = wx.ColourPickerCtrl(self.mainPanel, colour=self.gauge3.GetBackgroundColour()) self.borderColour = wx.ColourPickerCtrl(self.mainPanel, colour=self.gauge3.GetBorderColour()) self.barColour = wx.ColourPickerCtrl(self.mainPanel, colour=self.gauge3.GetBarColour()) self.gaugeValue = wx.TextCtrl(self.mainPanel, -1, str(self.gauge3.GetValue()), style=wx.TE_PROCESS_ENTER) self.gaugeRange = wx.TextCtrl(self.mainPanel, -1, str(self.gauge3.GetRange()), style=wx.TE_PROCESS_ENTER) self.gaugePadding = wx.TextCtrl(self.mainPanel, -1, str(self.gauge3.GetBorderPadding()), style=wx.TE_PROCESS_ENTER) self.DoLayout() self.BindEvents() def DoLayout(self): frameSizer = wx.BoxSizer(wx.VERTICAL) mainSizer = wx.BoxSizer(wx.VERTICAL) colourSizer = wx.FlexGridSizer(2, 6, 1, 10) label1 = wx.StaticText(self.mainPanel, -1, "Welcome to the PyGauge demo for wxPython!") mainSizer.Add(label1, 0, wx.EXPAND|wx.LEFT|wx.RIGHT|wx.TOP, 10) mainSizer.Add(self.gauge1, 0, wx.ALL, 20) mainSizer.Add(self.gauge2, 0, wx.ALL, 20) mainSizer.Add(self.gauge3, 0, wx.ALL, 20) labelBack = wx.StaticText(self.mainPanel, -1, "Background Colour") labelHover = wx.StaticText(self.mainPanel, -1, "Border Colour") labelText = wx.StaticText(self.mainPanel, -1, "Bar Colour") labelValue = wx.StaticText(self.mainPanel, -1, "Gauge Value ") labelRange = wx.StaticText(self.mainPanel, -1, "Gauge Range") labelPadding = wx.StaticText(self.mainPanel, -1, "Border Padding") colourSizer.Add(labelBack) colourSizer.Add(labelHover) colourSizer.Add(labelText) colourSizer.Add(labelValue) colourSizer.Add(labelRange) colourSizer.Add(labelPadding) colourSizer.Add(self.backColour, 0, wx.EXPAND) colourSizer.Add(self.borderColour, 0, wx.EXPAND) colourSizer.Add(self.barColour, 0, wx.EXPAND) colourSizer.Add(self.gaugeValue, 0, wx.EXPAND) colourSizer.Add(self.gaugeRange, 0, wx.EXPAND) colourSizer.Add(self.gaugePadding, 0, wx.EXPAND) mainSizer.Add(colourSizer, 0, wx.EXPAND|wx.LEFT|wx.RIGHT, 10) boldFont = wx.SystemSettings.GetFont(wx.SYS_DEFAULT_GUI_FONT) boldFont.SetWeight(wx.FONTWEIGHT_BOLD) for child in self.mainPanel.GetChildren(): if isinstance(child, wx.StaticText): child.SetFont(boldFont) self.mainPanel.SetSizer(mainSizer) mainSizer.Layout() frameSizer.Add(self.mainPanel, 1, wx.EXPAND) self.SetSizer(frameSizer) frameSizer.Layout() def BindEvents(self): self.Bind(wx.EVT_COLOURPICKER_CHANGED, self.OnPickColour) self.Bind(wx.EVT_TEXT_ENTER, self.OnEnter, self.gaugeValue) self.Bind(wx.EVT_TEXT_ENTER, self.OnEnter, self.gaugeRange) self.Bind(wx.EVT_TEXT_ENTER, self.OnEnter, self.gaugePadding) def OnEnter(self,event): obj = event.GetEventObject() if obj == self.gaugeValue: self.gauge3.SetValue(int(self.gaugeValue.GetValue())) if obj == self.gaugeRange: self.gauge3.SetRange(int(self.gaugeRange.GetValue())) if obj == self.gaugePadding: self.gauge3.SetBorderPadding(int(self.gaugePadding.GetValue())) self.gauge3.Refresh() def OnPickColour(self, event): obj = event.GetEventObject() colour = event.GetColour() if obj == self.backColour: self.gauge3.SetBackgroundColour(colour) elif obj == self.borderColour: self.gauge3.SetBorderColour(colour) else: self.gauge3.SetBarColour(colour) self.gauge3.Refresh() #---------------------------------------------------------------------- def runTest(frame, nb, log): win = PyGaugeDemo(nb, log) return win #---------------------------------------------------------------------- overview = PG.__doc__ if __name__ == '__main__': import sys,os import run run.main(['', os.path.basename(sys.argv[0])] + sys.argv[1:])
37cd38f593e436022fe5eb9e6997d2f794f8c355
2a1b8a671aceda6bc446f8ce26400aa84fa444a6
/Packs/DeprecatedContent/Scripts/HTMLDocsAutomation/HTMLDocsAutomation_test.py
cb8eba43672bdb9fe20fde0c7aa8fa65d92cc3ab
[ "MIT" ]
permissive
demisto/content
6d4722d46f0ff0beea2748e9f7de585bf91a78b4
890def5a0e0ae8d6eaa538148249ddbc851dbb6b
refs/heads/master
2023-09-04T00:02:25.618032
2023-09-03T21:56:22
2023-09-03T21:56:22
60,525,392
1,023
1,921
MIT
2023-09-14T20:55:24
2016-06-06T12:17:02
Python
UTF-8
Python
false
false
7,637
py
HTMLDocsAutomation_test.py
from CommonServerPython import * import os import demistomock as demisto RETURN_ERROR_TARGET = 'HTMLDocsAutomation.return_error' def test_get_yaml_obj(mocker): from HTMLDocsAutomation import get_yaml_obj return_error_mock = mocker.patch(RETURN_ERROR_TARGET) # sanity file_path = os.path.join('test_data', 'ANYRUN_yml.txt') mocker.patch.object(demisto, 'getFilePath', return_value={'path': file_path}) data = get_yaml_obj('12345') # error count should not change assert return_error_mock.call_count == 0 # call_args last call with a tuple of args list and kwargs assert data['commonfields']['id'] == 'ANYRUN' # invalid yml mocker.patch.object(demisto, 'getFilePath', return_value={'path': os.path.join('test_data', 'not_yml_file.txt')}) get_yaml_obj('234') assert return_error_mock.call_count == 1 # call_args last call with a tuple of args list and kwargs err_msg = return_error_mock.call_args[0][0] assert err_msg == 'Failed to open integration file: not a yml file' # no such file mocker.patch.object(demisto, 'getFilePath', side_effect=ValueError('no such file')) get_yaml_obj('234') assert return_error_mock.call_count == 2 # call_args last call with a tuple of args list and kwargs err_msg = return_error_mock.call_args[0][0] assert err_msg == 'Failed to open integration file: no such file' def test_extract_command(): from HTMLDocsAutomation import extract_command # no args cmd, args = extract_command('!no-args-command') assert cmd == '!no-args-command' assert args == {} # sanity cmd, args = extract_command('!command ip=8.8.8.8') expected = {'ip': '8.8.8.8'} assert cmd == '!command' assert len(expected) == len(args) for k, v in expected.items(): assert args[k] == v # edge cases cmd, args = extract_command('!command SomeParam=8.8.8.8 dash-arg="args" special_chars="1qazxsw2 EW3- *3d" ' 'backTick=`hello "hello" \'hello\'` triple_quotes="""this is a multi quotes"""') expected = { 'SomeParam': '8.8.8.8', 'dash-arg': 'args', 'special_chars': '1qazxsw2 EW3- *3d', 'backTick': 'hello "hello" \'hello\'', 'triple_quotes': 'this is a multi quotes' } assert cmd == '!command' assert len(expected) == len(args) for k, v in expected.items(): assert args[k] == v cmd, args = extract_command('!command SomeParam="""hello\nthis is multiline"""') expected = { 'SomeParam': 'hello\nthis is multiline', } assert cmd == '!command' assert len(expected) == len(args) for k, v in expected.items(): assert args[k] == v def test_generate_commands_section(): from HTMLDocsAutomation import generate_commands_section yml_data = { 'script': { 'commands': [ {'deprecated': True, 'name': 'deprecated-cmd', 'description': 'desc'}, {'deprecated': False, 'name': 'non-deprecated-cmd', 'description': 'desc1'}, {'name': 'non-deprecated-cmd2', 'description': 'desc2.'} ] } } section, errors = generate_commands_section(yml_data, {}, True) expected_section = '''<h2>Commands</h2> <p> You can execute these commands from the Demisto CLI, as part of an automation, or in a playbook. After you successfully execute a command, a DBot message appears in the War Room with the command details. </p> <ol> <li><a href="#non-deprecated-cmd" target="_self">desc1: non-deprecated-cmd</a></li> <li><a href="#non-deprecated-cmd2" target="_self">desc2: non-deprecated-cmd2</a></li> </ol> <h3 id="non-deprecated-cmd">1. non-deprecated-cmd</h3> <hr> <p>desc1</p> <h5>Base Command</h5> <p> <code>non-deprecated-cmd</code> </p> <h5>Required Permissions</h5> <p>The following permissions are required for this command.</p> <ul> <li>permission 1</li> <li>permission 2</li> </ul> <h5>Input</h5> There are no input arguments for this command. <p>&nbsp;</p> <h5>Context Output</h5> There are no context output for this command. <p>&nbsp;</p> <h5>Command Example</h5> <p> <code> </code> </p> <h5>Human Readable Output</h5> <p> <!-- remove the following comments to manually add an image: --> <!-- <a href="insert URL to your image" target="_blank" rel="noopener noreferrer"><img src="insert URL to your image" alt="image" width="749" height="412"></a> --> </p> <h3 id="non-deprecated-cmd2">2. non-deprecated-cmd2</h3> <hr> <p>desc2.</p> <h5>Base Command</h5> <p> <code>non-deprecated-cmd2</code> </p> <h5>Required Permissions</h5> <p>The following permissions are required for this command.</p> <ul> <li>permission 1</li> <li>permission 2</li> </ul> <h5>Input</h5> There are no input arguments for this command. <p>&nbsp;</p> <h5>Context Output</h5> There are no context output for this command. <p>&nbsp;</p> <h5>Command Example</h5> <p> <code> </code> </p> <h5>Human Readable Output</h5> <p> <!-- remove the following comments to manually add an image: --> <!-- <a href="insert URL to your image" target="_blank" rel="noopener noreferrer"><img src="insert URL to your image" alt="image" width="749" height="412"></a> --> </p> ''' assert section == expected_section assert len(errors) == 2 # no example for both commands def test_to_html_table(): from HTMLDocsAutomation import to_html_table data = [ ['hello', 'hello', 'hello'], ['world', 'world', 'world'], ['!', '!', '!'], ] expected = '''<table style="width:750px" border="2" cellpadding="6"> <thead> <tr> <th><strong>header1</strong></th> <th><strong>header2</strong></th> <th><strong>header3</strong></th> </tr> </thead> <tbody> <tr> <td>hello</td> <td>hello</td> <td>hello</td> </tr> <tr> <td>world</td> <td>world</td> <td>world</td> </tr> <tr> <td>!</td> <td>!</td> <td>!</td> </tr> </tbody> </table> ''' assert to_html_table(['header1', 'header2', 'header3'], data) == expected def test_human_readable_example_to_html(): from HTMLDocsAutomation import human_readable_example_to_html data = [ { 'header1': 'hello', 'header2': 'hello', }, { 'header1': 'world', 'header2': 'world', }, ] md = tableToMarkdown('Title', data, headers=['header1', 'header2']) expected = '''<h3>Title</h3> <table style="width:750px" border="2" cellpadding="6"> <thead> <tr> <th><strong>header1</strong></th> <th><strong>header2</strong></th> </tr> </thead> <tbody> <tr> <td> hello </td> <td> hello </td> </tr> <tr> <td> world </td> <td> world </td> </tr> </tbody> </table> ''' assert human_readable_example_to_html(md) == expected md = md + '\n# Headline\nsome text\nanother line of text\n' + md expected = expected + '\n<h1>Headline</h1>\n<p>\nsome text\nanother line of text\n</p>\n' + expected assert human_readable_example_to_html(md) == expected # md = '''Key | Value # - | - # city | Mountain View # country | US # hostname | dns.google # ip | 8.8.8.8 # loc | 37.3860,-122.0838 # org | AS15169 Google LLC # postal | 94035 # readme | https://ipinfo.io/missingauth # region | California # {"lat": 37.386, "lng": -122.0838}''' # # print(human_readable_example_to_html(md))
9275a61fcd2898573e14a2a89e38f0790b56d20d
c5a69158ac5966d8ba8f3b2e2fb4c35d49a0658d
/onelinerizer/__init__.py
819e70addddb3290dffdeb3c906eab23eb0bcb75
[ "MIT" ]
permissive
csvoss/onelinerizer
d47202733f1b6935146b05027381bea9fbde0d04
bad341f261d35e56872b4c22297a44dc6d5cfab3
refs/heads/master
2022-07-06T05:51:02.018368
2022-01-15T18:43:08
2022-01-15T18:43:08
29,375,764
1,126
102
MIT
2018-10-20T00:41:35
2015-01-17T01:32:08
Python
UTF-8
Python
false
false
38
py
__init__.py
from .onelinerizer import onelinerize
3317fe74c9c02d020ed6ce2cb00bc8c81bbb445f
857938ac2024b1e37f32a6631e85e179ae04b601
/src/python/test/test_simplex_tree_serialization.py
9ba78a5b9ce29bc1ccbe2c5fc9f0c91661442c81
[ "MIT" ]
permissive
GUDHI/gudhi-devel
a2b08232a2ea66047b7a626d85dff0d50decc71c
2f76d9416e145282adcd8264438480008bd59f77
refs/heads/master
2023-08-31T13:44:17.776336
2023-08-29T20:20:16
2023-08-29T20:20:16
174,304,137
212
69
MIT
2023-09-14T15:34:48
2019-03-07T08:34:04
C++
UTF-8
Python
false
false
747
py
test_simplex_tree_serialization.py
""" This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT. See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details. Author(s): Vincent Rouvreau Copyright (C) 2023 Inria Modification(s): - YYYY/MM Author: Description of the modification """ from gudhi import SimplexTree import numpy as np import pickle import pytest def test_pickle_simplex_tree(): st = SimplexTree.create_from_array(np.random.rand(10, 10)) for dim in [1, 2, 3]: st.expansion(dim) with open('stree.pkl','wb') as f: pickle.dump(st, f) with open('stree.pkl','rb') as f: st_copy = pickle.load(f) assert st == st_copy
4d1b30493599806c44c45eaff7580e650510e392
cad91ae76d2746a6c28ddda0f33a58f9d461378f
/TensorFlow/Detection/SSD/models/research/object_detection/builders/dataset_builder.py
b71c054a739a3c137d267b3d4b2dde8078c5d0b0
[ "Apache-2.0" ]
permissive
NVIDIA/DeepLearningExamples
fe677521e7e2a16e3cb0b77e358f9aab72f8c11a
a5388a45f71a949639b35cc5b990bd130d2d8164
refs/heads/master
2023-08-31T20:57:08.798455
2023-08-23T10:09:12
2023-08-23T10:09:12
131,881,622
11,838
3,124
null
2023-08-28T16:57:33
2018-05-02T17:04:05
Jupyter Notebook
UTF-8
Python
false
false
6,836
py
dataset_builder.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """tf.data.Dataset builder. Creates data sources for DetectionModels from an InputReader config. See input_reader.proto for options. Note: If users wishes to also use their own InputReaders with the Object Detection configuration framework, they should define their own builder function that wraps the build function. """ import functools import tensorflow as tf import horovod.tensorflow as hvd from object_detection.data_decoders import tf_example_decoder from object_detection.protos import input_reader_pb2 def make_initializable_iterator(dataset): """Creates an iterator, and initializes tables. This is useful in cases where make_one_shot_iterator wouldn't work because the graph contains a hash table that needs to be initialized. Args: dataset: A `tf.data.Dataset` object. Returns: A `tf.data.Iterator`. """ iterator = dataset.make_initializable_iterator() tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer) return iterator def read_dataset(file_read_func, input_files, config): """Reads a dataset, and handles repetition and shuffling. Args: file_read_func: Function to use in tf.contrib.data.parallel_interleave, to read every individual file into a tf.data.Dataset. input_files: A list of file paths to read. config: A input_reader_builder.InputReader object. Returns: A tf.data.Dataset of (undecoded) tf-records based on config. """ # Shard, shuffle, and read files. filenames = tf.gfile.Glob(input_files) if not filenames: raise ValueError('Invalid input path specified in ' '`input_reader_config`.') num_readers = config.num_readers if num_readers > len(filenames): num_readers = len(filenames) tf.logging.warning('num_readers has been reduced to %d to match input file ' 'shards.' % num_readers) filename_dataset = tf.data.Dataset.from_tensor_slices(filenames) if config.shuffle: filename_dataset = filename_dataset.shuffle( config.filenames_shuffle_buffer_size) elif num_readers > 1: tf.logging.warning('`shuffle` is false, but the input data stream is ' 'still slightly shuffled since `num_readers` > 1.') filename_dataset = filename_dataset.repeat(config.num_epochs or None) records_dataset = filename_dataset.apply( tf.contrib.data.parallel_interleave( file_read_func, cycle_length=num_readers, block_length=config.read_block_length, sloppy=config.shuffle)) if config.shuffle: records_dataset = records_dataset.shuffle(config.shuffle_buffer_size) return records_dataset def build(input_reader_config, batch_size=None, transform_input_data_fn=None, multi_gpu=True): """Builds a tf.data.Dataset. Builds a tf.data.Dataset by applying the `transform_input_data_fn` on all records. Applies a padded batch to the resulting dataset. Args: input_reader_config: A input_reader_pb2.InputReader object. batch_size: Batch size. If batch size is None, no batching is performed. transform_input_data_fn: Function to apply transformation to all records, or None if no extra decoding is required. Returns: A tf.data.Dataset based on the input_reader_config. Raises: ValueError: On invalid input reader proto. ValueError: If no input paths are specified. """ if not isinstance(input_reader_config, input_reader_pb2.InputReader): raise ValueError('input_reader_config not of type ' 'input_reader_pb2.InputReader.') if input_reader_config.WhichOneof('input_reader') == 'tf_record_input_reader': config = input_reader_config.tf_record_input_reader if not config.input_path: raise ValueError('At least one input path must be specified in ' '`input_reader_config`.') label_map_proto_file = None if input_reader_config.HasField('label_map_path'): label_map_proto_file = input_reader_config.label_map_path decoder = tf_example_decoder.TfExampleDecoder( load_instance_masks=input_reader_config.load_instance_masks, instance_mask_type=input_reader_config.mask_type, label_map_proto_file=label_map_proto_file, use_display_name=input_reader_config.use_display_name, num_additional_channels=input_reader_config.num_additional_channels) def process_fn(value): """Sets up tf graph that decodes, transforms and pads input data.""" processed_tensors = decoder.decode(value) if transform_input_data_fn is not None: processed_tensors = transform_input_data_fn(processed_tensors) return processed_tensors dataset = read_dataset( functools.partial(tf.data.TFRecordDataset, buffer_size=8 * 1000 * 1000), config.input_path[:], input_reader_config) if multi_gpu: dataset = dataset.shard(hvd.size(), hvd.rank()) # TODO(rathodv): make batch size a required argument once the old binaries # are deleted. if batch_size: num_parallel_calls = batch_size * input_reader_config.num_parallel_batches else: num_parallel_calls = input_reader_config.num_parallel_map_calls dataset = dataset.map( process_fn, num_parallel_calls=num_parallel_calls) if batch_size: dataset = dataset.apply( tf.contrib.data.batch_and_drop_remainder(batch_size)) dataset = dataset.prefetch(input_reader_config.num_prefetch_batches) return dataset raise ValueError('Unsupported input_reader_config.')
53207fbb49532c4da6d3d8c8a185a800fbe6a3f7
3bcc6467f68abaa8dca7a8c2a544875df42e4164
/fastai/tabular/transform.py
d7bc255eaf5fd92467b9db28e67590c4981e4356
[ "MIT", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
jantic/DeOldify
82cd4a520b21ebe12ac7f587297001c4ad7ebc56
141e873e42eb5e40665d20349f4b8e9a267ba1c4
refs/heads/master
2023-08-09T07:20:08.480890
2023-04-16T16:39:31
2023-04-16T16:39:31
155,636,246
17,137
2,637
MIT
2023-07-21T02:35:25
2018-10-31T23:32:34
Python
UTF-8
Python
false
false
9,761
py
transform.py
"Cleaning and feature engineering functions for structured data" from ..torch_core import * from pandas.api.types import is_numeric_dtype from datetime import date, datetime import calendar __all__ = ['add_datepart', 'cont_cat_split', 'Categorify', 'FillMissing', 'FillStrategy', 'Normalize', 'TabularProc', 'add_elapsed_times', 'make_date', 'add_cyclic_datepart'] def make_date(df:DataFrame, date_field:str): "Make sure `df[field_name]` is of the right date type." field_dtype = df[date_field].dtype if isinstance(field_dtype, pd.core.dtypes.dtypes.DatetimeTZDtype): field_dtype = np.datetime64 if not np.issubdtype(field_dtype, np.datetime64): df[date_field] = pd.to_datetime(df[date_field], infer_datetime_format=True) def cyclic_dt_feat_names(time:bool=True, add_linear:bool=False)->List[str]: "Return feature names of date/time cycles as produced by `cyclic_dt_features`." fs = ['cos','sin'] attr = [f'{r}_{f}' for r in 'weekday day_month month_year day_year'.split() for f in fs] if time: attr += [f'{r}_{f}' for r in 'hour clock min sec'.split() for f in fs] if add_linear: attr.append('year_lin') return attr def cyclic_dt_features(d:Union[date,datetime], time:bool=True, add_linear:bool=False)->List[float]: "Calculate the cos and sin of date/time cycles." tt,fs = d.timetuple(), [np.cos, np.sin] day_year,days_month = tt.tm_yday, calendar.monthrange(d.year, d.month)[1] days_year = 366 if calendar.isleap(d.year) else 365 rs = d.weekday()/7, (d.day-1)/days_month, (d.month-1)/12, (day_year-1)/days_year feats = [f(r * 2 * np.pi) for r in rs for f in fs] if time and isinstance(d, datetime) and type(d) != date: rs = tt.tm_hour/24, tt.tm_hour%12/12, tt.tm_min/60, tt.tm_sec/60 feats += [f(r * 2 * np.pi) for r in rs for f in fs] if add_linear: if type(d) == date: feats.append(d.year + rs[-1]) else: secs_in_year = (datetime(d.year+1, 1, 1) - datetime(d.year, 1, 1)).total_seconds() feats.append(d.year + ((d - datetime(d.year, 1, 1)).total_seconds() / secs_in_year)) return feats def add_cyclic_datepart(df:DataFrame, field_name:str, prefix:str=None, drop:bool=True, time:bool=False, add_linear:bool=False): "Helper function that adds trigonometric date/time features to a date in the column `field_name` of `df`." make_date(df, field_name) field = df[field_name] prefix = ifnone(prefix, re.sub('[Dd]ate$', '', field_name)) series = field.apply(partial(cyclic_dt_features, time=time, add_linear=add_linear)) columns = [prefix + c for c in cyclic_dt_feat_names(time, add_linear)] df_feats = pd.DataFrame([item for item in series], columns=columns, index=series.index) for column in columns: df[column] = df_feats[column] if drop: df.drop(field_name, axis=1, inplace=True) return df def add_datepart(df:DataFrame, field_name:str, prefix:str=None, drop:bool=True, time:bool=False): "Helper function that adds columns relevant to a date in the column `field_name` of `df`." make_date(df, field_name) field = df[field_name] prefix = ifnone(prefix, re.sub('[Dd]ate$', '', field_name)) attr = ['Year', 'Month', 'Week', 'Day', 'Dayofweek', 'Dayofyear', 'Is_month_end', 'Is_month_start', 'Is_quarter_end', 'Is_quarter_start', 'Is_year_end', 'Is_year_start'] if time: attr = attr + ['Hour', 'Minute', 'Second'] for n in attr: df[prefix + n] = getattr(field.dt, n.lower()) df[prefix + 'Elapsed'] = field.astype(np.int64) // 10 ** 9 if drop: df.drop(field_name, axis=1, inplace=True) return df def _get_elapsed(df:DataFrame,field_names:Collection[str], date_field:str, base_field:str, prefix:str): for f in field_names: day1 = np.timedelta64(1, 'D') last_date,last_base,res = np.datetime64(),None,[] for b,v,d in zip(df[base_field].values, df[f].values, df[date_field].values): if last_base is None or b != last_base: last_date,last_base = np.datetime64(),b if v: last_date = d res.append(((d-last_date).astype('timedelta64[D]') / day1)) df[prefix + f] = res return df def add_elapsed_times(df:DataFrame, field_names:Collection[str], date_field:str, base_field:str): field_names = listify(field_names) #Make sure date_field is a date and base_field a bool df[field_names] = df[field_names].astype('bool') make_date(df, date_field) work_df = df[field_names + [date_field, base_field]] work_df = work_df.sort_values([base_field, date_field]) work_df = _get_elapsed(work_df, field_names, date_field, base_field, 'After') work_df = work_df.sort_values([base_field, date_field], ascending=[True, False]) work_df = _get_elapsed(work_df, field_names, date_field, base_field, 'Before') for a in ['After' + f for f in field_names] + ['Before' + f for f in field_names]: work_df[a] = work_df[a].fillna(0).astype(int) for a,s in zip([True, False], ['_bw', '_fw']): work_df = work_df.set_index(date_field) tmp = (work_df[[base_field] + field_names].sort_index(ascending=a) .groupby(base_field).rolling(7, min_periods=1).sum()) tmp.drop(base_field,1,inplace=True) tmp.reset_index(inplace=True) work_df.reset_index(inplace=True) work_df = work_df.merge(tmp, 'left', [date_field, base_field], suffixes=['', s]) work_df.drop(field_names,1,inplace=True) return df.merge(work_df, 'left', [date_field, base_field]) def cont_cat_split(df, max_card=20, dep_var=None)->Tuple[List,List]: "Helper function that returns column names of cont and cat variables from given df." cont_names, cat_names = [], [] for label in df: if label == dep_var: continue if df[label].dtype == int and df[label].unique().shape[0] > max_card or df[label].dtype == float: cont_names.append(label) else: cat_names.append(label) return cont_names, cat_names @dataclass class TabularProc(): "A processor for tabular dataframes." cat_names:StrList cont_names:StrList def __call__(self, df:DataFrame, test:bool=False): "Apply the correct function to `df` depending on `test`." func = self.apply_test if test else self.apply_train func(df) def apply_train(self, df:DataFrame): "Function applied to `df` if it's the train set." raise NotImplementedError def apply_test(self, df:DataFrame): "Function applied to `df` if it's the test set." self.apply_train(df) class Categorify(TabularProc): "Transform the categorical variables to that type." def apply_train(self, df:DataFrame): "Transform `self.cat_names` columns in categorical." self.categories = {} for n in self.cat_names: df.loc[:,n] = df.loc[:,n].astype('category').cat.as_ordered() self.categories[n] = df[n].cat.categories def apply_test(self, df:DataFrame): "Transform `self.cat_names` columns in categorical using the codes decided in `apply_train`." for n in self.cat_names: df.loc[:,n] = pd.Categorical(df[n], categories=self.categories[n], ordered=True) FillStrategy = IntEnum('FillStrategy', 'MEDIAN COMMON CONSTANT') @dataclass class FillMissing(TabularProc): "Fill the missing values in continuous columns." fill_strategy:FillStrategy=FillStrategy.MEDIAN add_col:bool=True fill_val:float=0. def apply_train(self, df:DataFrame): "Fill missing values in `self.cont_names` according to `self.fill_strategy`." self.na_dict = {} for name in self.cont_names: if pd.isnull(df[name]).sum(): if self.add_col: df[name+'_na'] = pd.isnull(df[name]) if name+'_na' not in self.cat_names: self.cat_names.append(name+'_na') if self.fill_strategy == FillStrategy.MEDIAN: filler = df[name].median() elif self.fill_strategy == FillStrategy.CONSTANT: filler = self.fill_val else: filler = df[name].dropna().value_counts().idxmax() df[name] = df[name].fillna(filler) self.na_dict[name] = filler def apply_test(self, df:DataFrame): "Fill missing values in `self.cont_names` like in `apply_train`." for name in self.cont_names: if name in self.na_dict: if self.add_col: df[name+'_na'] = pd.isnull(df[name]) if name+'_na' not in self.cat_names: self.cat_names.append(name+'_na') df[name] = df[name].fillna(self.na_dict[name]) elif pd.isnull(df[name]).sum() != 0: raise Exception(f"""There are nan values in field {name} but there were none in the training set. Please fix those manually.""") class Normalize(TabularProc): "Normalize the continuous variables." def apply_train(self, df:DataFrame): "Compute the means and stds of `self.cont_names` columns to normalize them." self.means,self.stds = {},{} for n in self.cont_names: assert is_numeric_dtype(df[n]), (f"""Cannot normalize '{n}' column as it isn't numerical. Are you sure it doesn't belong in the categorical set of columns?""") self.means[n],self.stds[n] = df[n].mean(),df[n].std() df[n] = (df[n]-self.means[n]) / (1e-7 + self.stds[n]) def apply_test(self, df:DataFrame): "Normalize `self.cont_names` with the same statistics as in `apply_train`." for n in self.cont_names: df[n] = (df[n]-self.means[n]) / (1e-7 + self.stds[n])
ece677ecdddd910127494826a5515ac6a342b119
0e0ddc095823c54877c143adacbfcdd6355261de
/libqtile/widget/countdown.py
90915477edd88739d85cdcf680ab1b889dc71027
[ "MIT" ]
permissive
qtile/qtile
b19108ca632871104a0783a4afbe7350a17b97db
3f8a00082ad880042d396477d9445954e8d29cf2
refs/heads/master
2023-09-01T19:31:09.419767
2023-09-01T19:10:00
2023-09-01T19:10:00
47,476
4,203
986
MIT
2023-09-11T21:21:56
2008-08-30T00:16:40
Python
UTF-8
Python
false
false
2,363
py
countdown.py
# Copyright (c) 2014 Sean Vig # Copyright (c) 2014 roger # Copyright (c) 2014 Tycho Andersen # Copyright (c) 2014 Adi Sieker # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from datetime import datetime from libqtile.widget import base class Countdown(base.InLoopPollText): """A simple countdown timer text widget""" defaults = [ ( "format", "{D}d {H}h {M}m {S}s", "Format of the displayed text. Available variables:" "{D} == days, {H} == hours, {M} == minutes, {S} seconds.", ), ("update_interval", 1.0, "Update interval in seconds for the clock"), ("date", datetime.now(), "The datetime for the end of the countdown"), ] def __init__(self, **config): base.InLoopPollText.__init__(self, **config) self.add_defaults(Countdown.defaults) def poll(self): now = datetime.now() days = hours = minutes = seconds = 0 if not self.date < now: delta = self.date - now days = delta.days hours, rem = divmod(delta.seconds, 3600) minutes, seconds = divmod(rem, 60) data = { "D": "%02d" % days, "H": "%02d" % hours, "M": "%02d" % minutes, "S": "%02d" % seconds, } return self.format.format(**data)
8d43a82a2f85d9de3fdf789c38ec585ce839d1d5
2b5ffa18e7198e45fa77674b96dac8d91159fed7
/djangae/contrib/locking/admin.py
404efa8382b32e384caa19ce7c6cc19b6c45adbc
[ "BSD-3-Clause" ]
permissive
potatolondon/djangae
73681d0c8302ac216f74bc00b980de368e8d4280
bef308632790bb6f87e71bb91183f57bad6bd149
refs/heads/master
2023-09-01T15:27:51.995232
2023-08-30T14:40:48
2023-08-30T14:40:48
10,217,788
474
155
BSD-3-Clause
2023-02-08T01:05:31
2013-05-22T10:55:55
Python
UTF-8
Python
false
false
106
py
admin.py
from django.contrib import admin from .models import DatastoreLock admin.site.register(DatastoreLock)
b7fc38352e74a9feef42b7e92207b28ca7659157
6fdb4eaf5b0e6dbd7db4bf947547541e9aebf110
/update-server/otupdate/common/ssh_key_management.py
64ad03210de417beafa1b667399e3f8479b94899
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
Opentrons/opentrons
874321e01149184960eeaeaa31b1d21719a1ceda
026b523c8c9e5d45910c490efb89194d72595be9
refs/heads/edge
2023-09-02T02:51:49.579906
2023-08-31T16:02:45
2023-08-31T16:02:45
38,644,841
326
174
Apache-2.0
2023-09-14T21:47:20
2015-07-06T20:41:01
Python
UTF-8
Python
false
false
7,213
py
ssh_key_management.py
""" ssh_key_management: Endpoints for managing SSH keys on the robot """ import contextlib import functools import hashlib import ipaddress import logging import os from typing import ( Any, Generator, IO, List, Tuple, ) from aiohttp import web from .handler_type import Handler LOG = logging.getLogger(__name__) def require_linklocal(handler: Handler) -> Handler: """Ensure the decorated is only called if the request is linklocal. The host ip address should be in the X-Host-IP header (provided by nginx) """ @functools.wraps(handler) async def decorated(request: web.Request) -> web.Response: ipaddr_str = request.headers.get("x-host-ip") invalid_req_data = { "error": "bad-interface", "message": ( f"The endpoint {request.rel_url}" f" can only be used from link-local connections." f" Make sure you're connected to this robot directly by cable" f" and using this robot's wired IP address" f" (not its wireless IP address)." ), } if not ipaddr_str: return web.json_response( # type: ignore[no-untyped-call,no-any-return] data=invalid_req_data, status=403 ) try: addr = ipaddress.ip_address(ipaddr_str) except ValueError: LOG.exception(f"Couldn't parse host ip address {ipaddr_str}") raise if not addr.is_link_local: return web.json_response( # type: ignore[no-untyped-call,no-any-return] data=invalid_req_data, status=403 ) return await handler(request) return decorated @contextlib.contextmanager def authorized_keys(mode: str = "r") -> Generator[IO[Any], None, None]: """Open the authorized_keys file. Separate function for mocking. :param mode: As :py:meth:`open` """ path = "/var/home/.ssh/authorized_keys" if not os.path.exists(path): os.makedirs(os.path.dirname(path)) open(path, "w").close() with open(path, mode) as ak: yield ak def get_keys() -> List[Tuple[str, str]]: """Return a list of tuples of [md5(pubkey), pubkey]""" with authorized_keys() as ak: return [ (hashlib.new("md5", line.encode()).hexdigest(), line) for line in ak.read().split("\n") if line.strip() ] def remove_by_hash(hashval: str) -> None: """Remove the key whose md5 sum matches hashval. :raises: KeyError if the hashval wasn't found """ key_details = get_keys() with authorized_keys("w") as ak: for keyhash, key in key_details: if keyhash != hashval: ak.write(f"{key}\n") break else: raise KeyError(hashval) def key_present(hashval: str) -> bool: """Check if the key whose md5 is hashval is in authorized_keys :returns: ``True`` if the key is present, ``False`` otherwise """ return hashval in [keyhash for keyhash, _ in get_keys()] @require_linklocal async def list_keys(request: web.Request) -> web.Response: """List keys in the authorized_keys file. GET /server/ssh_keys -> 200 OK {"public_keys": [{"key_md5": md5 hex digest, "key": key string}]} (or 403 if not from the link-local connection) """ return web.json_response( # type: ignore[no-untyped-call,no-any-return] { "public_keys": [ {"key_md5": details[0], "key": details[1]} for details in get_keys() ] }, status=200, ) @require_linklocal async def add(request: web.Request) -> web.Response: """Add a public key to the authorized_keys file. POST /server/ssh_keys {"key": key string} -> 201 Created If the key string doesn't look like an openssh public key, rejects with 400 """ def key_error(error: str, message: str) -> web.Response: return web.json_response( # type: ignore[no-untyped-call,no-any-return] data={"error": error, "message": message}, status=400 ) body = await request.json() if "key" not in body or not isinstance(body["key"], str): return key_error("no-key", 'No "key" element in body') pubkey = body["key"] # Do some fairly minor sanitization; dropbear will ignore invalid keys but # we still don’t want to have a bunch of invalid data in there pubkey_parts = pubkey.split() if len(pubkey_parts) == 0: return key_error("bad-key", "Key is empty") alg = pubkey_parts[0] # We don’t allow dss so this has to be rsa or ecdsa and shouldn’t start # with restrictions if alg != "ssh-rsa" and not alg.startswith("ecdsa"): LOG.warning(f"weird keyfile uploaded: starts with {alg}") return key_error("bad-key", f"Key starts with invalid algorithm {alg}") if "\n" in pubkey[:-1]: LOG.warning("Newlines in keyfile that shouldn't be there") return key_error("bad-key", "Key has a newline") # This is a more or less correct key we can write if "\n" == pubkey[-1]: pubkey = pubkey[:-1] hashval = hashlib.new("md5", pubkey.encode()).hexdigest() if not key_present(hashval): with authorized_keys("a") as ak: ak.write(f"{pubkey}\n") return web.json_response( # type: ignore[no-untyped-call,no-any-return] data={"message": f"Added key {hashval}", "key_md5": hashval}, status=201 ) @require_linklocal async def clear(request: web.Request) -> web.Response: """Clear all public keys from authorized_keys DELETE /server/ssh_keys -> 200 OK if successful (or 403 if not from the link-local connection) """ with authorized_keys("w") as ak: ak.write("\n".join([]) + "\n") return web.json_response( # type: ignore[no-untyped-call,no-any-return] data={ "message": "Keys cleared. " "Restart robot to take effect", "restart_url": "/server/restart", }, status=200, ) @require_linklocal async def remove(request: web.Request) -> web.Response: """Remove a public key from authorized_keys DELETE /server/ssh_keys/:key_md5_hexdigest -> 200 OK if the key was found -> 404 Not Found otherwise """ requested_hash = request.match_info["key_md5"] new_keys: List[str] = [] found = False for keyhash, key in get_keys(): if keyhash == requested_hash: found = True else: new_keys.append(key) if not found: return web.json_response( # type: ignore[no-untyped-call,no-any-return] data={ "error": "invalid-key-hash", "message": f"No such key md5 {requested_hash}", }, status=404, ) with authorized_keys("w") as ak: ak.write("\n".join(new_keys) + "\n") return web.json_response( # type: ignore[no-untyped-call,no-any-return] data={ "message": f"Key {requested_hash} deleted. " "Restart robot to take effect", "restart_url": "/server/restart", }, status=200, )
2d5ccfc1c0cd6c6748227f3d6c70180752f1a96b
f2034c76a11ce6296131d2bab89a5dae7d59edfe
/python/dllib/src/bigdl/dllib/feature/dataset/movielens.py
c798769af64e0ff32e0108cfad0b37cf1fd82996
[ "Apache-2.0" ]
permissive
intel-analytics/BigDL
e22cd917eecc7340bda3df4356acba0623a62ef6
4ffa012a426e0d16ed13b707b03d8787ddca6aa4
refs/heads/main
2023-08-22T06:31:37.923091
2023-08-22T02:58:42
2023-08-22T02:58:42
66,823,715
4,913
1,327
Apache-2.0
2023-09-14T10:41:50
2016-08-29T07:59:50
Jupyter Notebook
UTF-8
Python
false
false
1,900
py
movielens.py
# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import zipfile import numpy as np from bigdl.dllib.feature.dataset import base SOURCE_URL = 'http://files.grouplens.org/datasets/movielens/' def read_data_sets(data_dir): """ Parse or download movielens 1m data if train_dir is empty. :param data_dir: The directory storing the movielens data :return: a 2D numpy array with user index and item index in each row """ WHOLE_DATA = 'ml-1m.zip' local_file = base.maybe_download(WHOLE_DATA, data_dir, SOURCE_URL + WHOLE_DATA) zip_ref = zipfile.ZipFile(local_file, 'r') extracted_to = os.path.join(data_dir, "ml-1m") if not os.path.exists(extracted_to): print("Extracting %s to %s" % (local_file, data_dir)) zip_ref.extractall(data_dir) zip_ref.close() rating_files = os.path.join(extracted_to, "ratings.dat") rating_list = [i.strip().split("::") for i in open(rating_files, "r").readlines()] movielens_data = np.array(rating_list).astype(int) return movielens_data def get_id_pairs(data_dir): movielens_data = read_data_sets(data_dir) return movielens_data[:, 0:2] def get_id_ratings(data_dir): movielens_data = read_data_sets(data_dir) return movielens_data[:, 0:3] if __name__ == "__main__": movielens_data = read_data_sets("/tmp/movielens/")
d0e44a8cdd8c1f11566dd014a6c31c8f04768efb
f2d478767381afe660940cb94f760f476b977d74
/natasha/const.py
b9393b0a91a571055ee86497bfc18e8fd068bf0e
[ "MIT" ]
permissive
natasha/natasha
7b434d797a76d740fed8133b4b0241a9096f794b
ebe33ff1be333af0059aa34da825dfd4abb15dc2
refs/heads/master
2023-08-02T08:37:09.681688
2023-07-24T10:07:57
2023-07-24T10:07:57
64,834,778
1,013
107
MIT
2023-07-24T10:13:22
2016-08-03T09:49:51
Python
UTF-8
Python
false
false
37
py
const.py
PER = 'PER' LOC = 'LOC' ORG = 'ORG'
796e38cc575a37fa7993ec3d7075ffb81e10a0d9
a9ed175e2cf09ea29fe72b90dc4186ff9515c9b0
/tests/integration/suite/test_istio.py
049428186e6d2f3f8a08a29c951a9753433ed6d3
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
rancher/rancher
96d67163506fa4ab219dca4d86d9bfebacb68a6d
90fc68836fd8d1bd2996283500f954ace40203ba
refs/heads/release/v2.8
2023-08-29T06:23:12.480919
2023-08-28T21:35:36
2023-08-28T21:35:36
26,337,322
21,773
3,508
Apache-2.0
2023-09-14T19:51:31
2014-11-07T20:49:31
Go
UTF-8
Python
false
false
5,482
py
test_istio.py
import os import pytest import subprocess from .common import random_str from .conftest import cluster_and_client, ClusterContext kube_fname = os.path.join(os.path.dirname(os.path.realpath(__file__)), "k8s_kube_config") istio_crd_url = "https://raw.githubusercontent.com/istio/istio/1.1.5" \ "/install/kubernetes/helm/istio-init/files/crd-10.yaml" @pytest.mark.skip(reason='skipping for now, enable with istio 1.22 fix') @pytest.mark.nonparallel def test_virtual_service(admin_pc): client = admin_pc.client ns = admin_pc.cluster.client.create_namespace( name=random_str(), projectId=admin_pc.project.id) name = random_str() client.create_virtualService( name=name, namespaceId=ns.id, hosts=["test"], http=[{ "route": [ { "destination": { "host": "test", "subset": "v1" } } ] }], ) virtualServices = client.list_virtualService( namespaceId=ns.id ) assert len(virtualServices) == 1 client.delete(virtualServices.data[0]) client.delete(ns) @pytest.mark.skip(reason='skipping for now, enable with istio 1.22 fix') @pytest.mark.nonparallel def test_destination_rule(admin_pc): client = admin_pc.client ns = admin_pc.cluster.client.create_namespace( name=random_str(), projectId=admin_pc.project.id) name = random_str() client.create_destinationRule( name=name, namespaceId=ns.id, host="test", subsets=[{ "name": "v1", "labels": { "version": "v1", } }], ) destinationRules = client.list_destinationRule( namespaceId=ns.id ) assert len(destinationRules) == 1 client.delete(destinationRules.data[0]) client.delete(ns) # consistentHash has a "oneOf" only openAPI validation on it, # and our types were passing multiple options which failed. # This test ensures you can pass a single option. # See: https://github.com/rancher/rancher/issues/25515 @pytest.mark.skip(reason='skipping for now, enable with istio 1.22 fix') @pytest.mark.nonparallel def test_destination_rule_on_cookie(admin_pc, remove_resource): client = admin_pc.client ns = admin_pc.cluster.client.create_namespace( name=random_str(), projectId=admin_pc.project.id) remove_resource(ns) name = random_str() cookie_name = name + "_cookie" dr = client.create_destinationRule( name=name, namespaceId=ns.id, host="test", subsets=[{ "name": "v1", "labels": { "version": "v1", } }], trafficPolicy={ "loadBalancer": { "consistentHash": { "httpCookie": { "ttl": "0s", "name": cookie_name, } } } } ) remove_resource(dr) destinationRules = client.list_destinationRule( namespaceId=ns.id ) assert len(destinationRules) == 1 assert destinationRules.data[0].trafficPolicy.loadBalancer\ .consistentHash.httpCookie.name == cookie_name @pytest.mark.skip(reason='skipping for now, enable with istio 1.22 fix') @pytest.mark.nonparallel def test_gateway(admin_pc): client = admin_pc.client ns = admin_pc.cluster.client.create_namespace( name=random_str(), projectId=admin_pc.project.id) name = random_str() client.create_gateway( name=name, namespaceId=ns.id, servers=[{ "hosts": [ "*", ], "port": { "number": 443, "name": "https", "protocol": "HTTPS", }, "tls": { "mode": "SIMPLE", "serverCertificate": "/etc/certs/server.pem", "privateKey": "/etc/certs/privatekey.pem", } }], ) gateways = client.list_gateway( namespaceId=ns.id ) assert len(gateways) == 1 client.delete(gateways.data[0]) client.delete(ns) @pytest.fixture(scope='module', autouse="True") def install_crd(admin_mc): cluster, client = cluster_and_client('local', admin_mc.client) cc = ClusterContext(admin_mc, cluster, client) create_kubeconfig(cc.cluster) try: return subprocess.check_output( 'kubectl apply ' + ' --kubeconfig ' + kube_fname + ' -f ' + istio_crd_url, stderr=subprocess.STDOUT, shell=True, ) except subprocess.CalledProcessError as err: print('kubectl error: ' + str(err.output)) raise err def teardown_module(module): try: return subprocess.check_output( 'kubectl delete ' + ' --kubeconfig ' + kube_fname + ' -f ' + istio_crd_url, stderr=subprocess.STDOUT, shell=True, ) except subprocess.CalledProcessError as err: print('kubectl error: ' + str(err.output)) raise err def create_kubeconfig(cluster): generateKubeConfigOutput = cluster.generateKubeconfig() print(generateKubeConfigOutput.config) file = open(kube_fname, "w") file.write(generateKubeConfigOutput.config) file.close()
c0f971a88b7bb01c06bbf5d7f5953a9c3f26f39f
84724b34b3f1e84dc53cbca5f3660590dbc34a9f
/nova/api/validation/validators.py
b0e9478d35e268d2a531b74483065dee4a7133fc
[ "Apache-2.0" ]
permissive
openstack/nova
2c24b64e3677595611715bae6dda14edd3f90a24
065c5906d2da3e2bb6eeb3a7a15d4cd8d98b35e9
refs/heads/master
2023-08-28T15:10:05.126314
2023-08-25T20:31:27
2023-08-25T20:31:27
790,031
2,287
2,320
Apache-2.0
2023-07-08T02:10:29
2010-07-22T02:04:27
Python
UTF-8
Python
false
false
13,318
py
validators.py
# Copyright 2013 NEC Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Internal implementation of request Body validating middleware. """ import re import string import jsonschema from jsonschema import exceptions as jsonschema_exc import netaddr from oslo_serialization import base64 from oslo_utils import timeutils from oslo_utils import uuidutils import rfc3986 from nova.api.validation import parameter_types from nova import exception from nova.i18n import _ @jsonschema.FormatChecker.cls_checks('regex') def _validate_regex_format(instance): if not instance or not isinstance(instance, str): return False try: re.compile(instance) except re.error: return False return True @jsonschema.FormatChecker.cls_checks('date-time') def _validate_datetime_format(instance): try: timeutils.parse_isotime(instance) except ValueError: return False else: return True @jsonschema.FormatChecker.cls_checks('base64') def _validate_base64_format(instance): try: if isinstance(instance, str): instance = instance.encode('utf-8') base64.decode_as_bytes(instance) except TypeError: # The name must be string type. If instance isn't string type, the # TypeError will be raised at here. return False return True @jsonschema.FormatChecker.cls_checks('cidr') def _validate_cidr_format(cidr): try: netaddr.IPNetwork(cidr) except netaddr.AddrFormatError: return False if '/' not in cidr: return False if re.search(r'\s', cidr): return False return True @jsonschema.FormatChecker.cls_checks('uuid') def _validate_uuid_format(instance): return uuidutils.is_uuid_like(instance) @jsonschema.FormatChecker.cls_checks('uri') def _validate_uri(instance): uri = rfc3986.uri_reference(instance) validator = rfc3986.validators.Validator().require_presence_of( 'scheme', 'host', ).check_validity_of( 'scheme', 'userinfo', 'host', 'path', 'query', 'fragment', ) try: validator.validate(uri) except rfc3986.exceptions.RFC3986Exception: return False return True @jsonschema.FormatChecker.cls_checks('name_with_leading_trailing_spaces', exception.InvalidName) def _validate_name_with_leading_trailing_spaces(instance): regex = parameter_types.valid_name_leading_trailing_spaces_regex try: if re.search(regex.regex, instance): return True except TypeError: # The name must be string type. If instance isn't string type, the # TypeError will be raised at here. pass raise exception.InvalidName(reason=regex.reason) @jsonschema.FormatChecker.cls_checks('name', exception.InvalidName) def _validate_name(instance): regex = parameter_types.valid_name_regex try: if re.search(regex.regex, instance): return True except TypeError: # The name must be string type. If instance isn't string type, the # TypeError will be raised at here. pass raise exception.InvalidName(reason=regex.reason) @jsonschema.FormatChecker.cls_checks('az_name_with_leading_trailing_spaces', exception.InvalidName) def _validate_az_name_with_leading_trailing_spaces(instance): regex = parameter_types.valid_az_name_leading_trailing_spaces_regex try: if re.search(regex.regex, instance): return True except TypeError: # The name must be string type. If instance isn't string type, the # TypeError will be raised at here. pass raise exception.InvalidName(reason=regex.reason) @jsonschema.FormatChecker.cls_checks('az_name', exception.InvalidName) def _validate_az_name(instance): regex = parameter_types.valid_az_name_regex try: if re.search(regex.regex, instance): return True except TypeError: # The name must be string type. If instance isn't string type, the # TypeError will be raised at here. pass raise exception.InvalidName(reason=regex.reason) @jsonschema.FormatChecker.cls_checks('keypair_name_20', exception.InvalidName) def _validate_keypair_name_20(keypair_name): safe_chars = "_- " + string.digits + string.ascii_letters return _validate_keypair_name(keypair_name, safe_chars) @jsonschema.FormatChecker.cls_checks('keypair_name_292', exception.InvalidName) def _validate_keypair_name_292(keypair_name): safe_chars = "@._- " + string.digits + string.ascii_letters return _validate_keypair_name(keypair_name, safe_chars) def _validate_keypair_name(keypair_name, safe_chars): clean_value = "".join(x for x in keypair_name if x in safe_chars) if clean_value != keypair_name: reason = _("Only expected characters: [%s]") % safe_chars raise exception.InvalidName(reason=reason) return True def _soft_validate_additional_properties(validator, additional_properties_value, instance, schema): """This validator function is used for legacy v2 compatible mode in v2.1. This will skip all the additional properties checking but keep check the 'patternProperties'. 'patternProperties' is used for metadata API. If there are not any properties on the instance that are not specified in the schema, this will return without any effect. If there are any such extra properties, they will be handled as follows: - if the validator passed to the method is not of type "object", this method will return without any effect. - if the 'additional_properties_value' parameter is True, this method will return without any effect. - if the schema has an additionalProperties value of True, the extra properties on the instance will not be touched. - if the schema has an additionalProperties value of False and there aren't patternProperties specified, the extra properties will be stripped from the instance. - if the schema has an additionalProperties value of False and there are patternProperties specified, the extra properties will not be touched and raise validation error if pattern doesn't match. """ if (not validator.is_type(instance, "object") or additional_properties_value): return properties = schema.get("properties", {}) patterns = "|".join(schema.get("patternProperties", {})) extra_properties = set() for prop in instance: if prop not in properties: if patterns: if not re.search(patterns, prop): extra_properties.add(prop) else: extra_properties.add(prop) if not extra_properties: return if patterns: error = "Additional properties are not allowed (%s %s unexpected)" if len(extra_properties) == 1: verb = "was" else: verb = "were" yield jsonschema_exc.ValidationError( error % (", ".join(repr(extra) for extra in extra_properties), verb)) else: for prop in extra_properties: del instance[prop] class FormatChecker(jsonschema.FormatChecker): """A FormatChecker can output the message from cause exception We need understandable validation errors messages for users. When a custom checker has an exception, the FormatChecker will output a readable message provided by the checker. """ def check(self, instance, format): """Check whether the instance conforms to the given format. :argument instance: the instance to check :type: any primitive type (str, number, bool) :argument str format: the format that instance should conform to :raises: :exc:`FormatError` if instance does not conform to format """ if format not in self.checkers: return # For safety reasons custom checkers can be registered with # allowed exception types. Anything else will fall into the # default formatter. func, raises = self.checkers[format] result, cause = None, None try: result = func(instance) except raises as e: cause = e if not result: msg = "%r is not a %r" % (instance, format) raise jsonschema_exc.FormatError(msg, cause=cause) class _SchemaValidator(object): """A validator class This class is changed from Draft4Validator to validate minimum/maximum value of a string number(e.g. '10'). This changes can be removed when we tighten up the API definition and the XML conversion. Also FormatCheckers are added for checking data formats which would be passed through nova api commonly. """ validator = None validator_org = jsonschema.Draft4Validator def __init__(self, schema, relax_additional_properties=False, is_body=True): self.is_body = is_body validators = { 'minimum': self._validate_minimum, 'maximum': self._validate_maximum, } if relax_additional_properties: validators[ 'additionalProperties'] = _soft_validate_additional_properties validator_cls = jsonschema.validators.extend(self.validator_org, validators) format_checker = FormatChecker() self.validator = validator_cls(schema, format_checker=format_checker) def validate(self, *args, **kwargs): try: self.validator.validate(*args, **kwargs) except jsonschema.ValidationError as ex: if isinstance(ex.cause, exception.InvalidName): detail = ex.cause.format_message() elif len(ex.path) > 0: if self.is_body: # NOTE: For whole OpenStack message consistency, this error # message has been written as the similar format of # WSME. detail = _("Invalid input for field/attribute %(path)s. " "Value: %(value)s. %(message)s") % { 'path': ex.path.pop(), 'value': ex.instance, 'message': ex.message} else: # NOTE: Use 'ex.path.popleft()' instead of 'ex.path.pop()', # due to the structure of query parameters is a dict # with key as name and value is list. So the first # item in the 'ex.path' is the key, and second item # is the index of list in the value. We need the # key as the parameter name in the error message. # So pop the first value out of 'ex.path'. detail = _("Invalid input for query parameters %(path)s. " "Value: %(value)s. %(message)s") % { 'path': ex.path.popleft(), 'value': ex.instance, 'message': ex.message} else: detail = ex.message raise exception.ValidationError(detail=detail) except TypeError as ex: # NOTE: If passing non string value to patternProperties parameter, # TypeError happens. Here is for catching the TypeError. detail = str(ex) raise exception.ValidationError(detail=detail) def _number_from_str(self, instance): try: value = int(instance) except (ValueError, TypeError): try: value = float(instance) except (ValueError, TypeError): return None return value def _validate_minimum(self, validator, minimum, instance, schema): instance = self._number_from_str(instance) if instance is None: return return self.validator_org.VALIDATORS['minimum'](validator, minimum, instance, schema) def _validate_maximum(self, validator, maximum, instance, schema): instance = self._number_from_str(instance) if instance is None: return return self.validator_org.VALIDATORS['maximum'](validator, maximum, instance, schema)
679ea57cb930205fd254f2b5ea2f977d5f5fb6e0
9f84d91a8ae3df53b07fe3267992fba00a99ac9e
/test/nn/conv/cugraph/test_cugraph_gat_conv.py
307b9a780af682322226bf4050f7985f929c640c
[ "MIT" ]
permissive
pyg-team/pytorch_geometric
ebea601eae228f3905465b5c2349d3fb3bb5cb26
a52af694b8ce6a80811e20966fe6d08a3e7511fe
refs/heads/master
2023-08-31T04:13:40.943308
2023-08-30T12:48:42
2023-08-30T12:48:42
106,024,057
6,775
1,563
MIT
2023-09-14T17:10:18
2017-10-06T16:03:03
Python
UTF-8
Python
false
false
2,158
py
test_cugraph_gat_conv.py
import pytest import torch from torch_geometric.nn import CuGraphGATConv, GATConv from torch_geometric.testing import onlyCUDA, withPackage @onlyCUDA @withPackage('pylibcugraphops>=23.02') @pytest.mark.parametrize('bias', [True, False]) @pytest.mark.parametrize('bipartite', [True, False]) @pytest.mark.parametrize('concat', [True, False]) @pytest.mark.parametrize('heads', [1, 2, 3]) @pytest.mark.parametrize('max_num_neighbors', [8, None]) def test_gat_conv_equality(bias, bipartite, concat, heads, max_num_neighbors): in_channels, out_channels = (5, 2) kwargs = dict(bias=bias, concat=concat) size = (10, 8) if bipartite else (10, 10) x = torch.rand(size[0], in_channels, device='cuda') edge_index = torch.tensor([ [7, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7], ], device='cuda') conv1 = GATConv(in_channels, out_channels, heads, add_self_loops=False, **kwargs).cuda() conv2 = CuGraphGATConv(in_channels, out_channels, heads, **kwargs).cuda() with torch.no_grad(): conv2.lin.weight.data[:, :] = conv1.lin_src.weight.data conv2.att.data[:heads * out_channels] = conv1.att_src.data.flatten() conv2.att.data[heads * out_channels:] = conv1.att_dst.data.flatten() if bipartite: out1 = conv1((x, x[:size[1]]), edge_index) else: out1 = conv1(x, edge_index) csc = CuGraphGATConv.to_csc(edge_index, size) out2 = conv2(x, csc, max_num_neighbors=max_num_neighbors) assert torch.allclose(out1, out2, atol=1e-3) grad_output = torch.rand_like(out1) out1.backward(grad_output) out2.backward(grad_output) assert torch.allclose(conv1.lin_src.weight.grad, conv2.lin.weight.grad, atol=1e-3) assert torch.allclose(conv1.att_src.grad.flatten(), conv2.att.grad[:heads * out_channels], atol=1e-3) assert torch.allclose(conv1.att_dst.grad.flatten(), conv2.att.grad[heads * out_channels:], atol=1e-3) if bias: assert torch.allclose(conv1.bias.grad, conv2.bias.grad, atol=1e-3)
b05447e4e0a84f56ca92d36cd19f9eee08ec602c
989ab792e4675cb52df0c5864b51512ba8725ac2
/symfit/core/support.py
58a4376f4034d8e6333a47e80926ddd6df2c13a9
[ "MIT" ]
permissive
tBuLi/symfit
6519edb124f5fed60722d0fe0ad718a54592d181
f484129e53fbc76fca1f61ce62bc6589083e8fc4
refs/heads/master
2023-05-24T21:38:04.299166
2023-05-08T13:10:58
2023-05-08T13:10:58
24,005,390
225
23
MIT
2023-03-14T10:35:23
2014-09-13T20:48:28
Python
UTF-8
Python
false
false
11,776
py
support.py
# SPDX-FileCopyrightText: 2014-2020 Martin Roelfs # # SPDX-License-Identifier: MIT """ This module contains support functions and convenience methods used throughout symfit. Some are used predominantly internally, others are designed for users. """ from __future__ import print_function from collections import OrderedDict import warnings import re import keyword import numpy as np from sympy.utilities.lambdify import lambdify import sympy from sympy.tensor import Idx from sympy import symbols, MatrixExpr from sympy.core.expr import Expr from symfit.core.argument import Parameter, Variable import symfit.core.printing # Overwrites some numpy printing import inspect from functools import wraps class deprecated(object): """ Decorator to raise a DeprecationWarning. """ def __init__(self, replacement=None): """ :param replacement: The function which should now be used instead. """ self.replacement = replacement def __call__(self, func): @wraps(func) def deprecated_func(*args, **kwargs): warnings.warn(DeprecationWarning( '`{}` has been deprecated.'.format(func.__name__) + ' Use `{}` instead.'.format(self.replacement)) if self.replacement else '' ) return func(*args, **kwargs) return deprecated_func def seperate_symbols(func): """ Seperate the symbols in symbolic function func. Return them in alphabetical order. :param func: scipy symbolic function. :return: (vars, params), a tuple of all variables and parameters, each sorted in alphabetical order. :raises TypeError: only symfit Variable and Parameter are allowed, not sympy Symbols. """ params = [] vars = [] for symbol in func.free_symbols: if not str(symbol).isidentifier(): continue # E.g. Indexed objects might print to A[i, j] if isinstance(symbol, Parameter): params.append(symbol) elif isinstance(symbol, Idx): # Idx objects are not seen as parameters or vars. pass elif isinstance(symbol, (MatrixExpr, Expr)): vars.append(symbol) else: raise TypeError('model contains an unknown symbol type, {}'.format(type(symbol))) for der in func.atoms(sympy.Derivative): # Used by jacobians and hessians, where derivatives are treated as # Variables. This way of writing it is purposefully discriminatory # against derivatives wrt variables, since such derivatives should be # performed explicitly in the case of jacs/hess, and are treated # differently in the case of ODEModels. if der.expr in vars and all(isinstance(s, Parameter) for s in der.variables): vars.append(der) params.sort(key=lambda symbol: symbol.name) vars.sort(key=lambda symbol: symbol.name) return vars, params def sympy_to_py(func, args): """ Turn a symbolic expression into a Python lambda function, which has the names of the variables and parameters as it's argument names. :param func: sympy expression :param args: variables and parameters in this model :return: lambda function to be used for numerical evaluation of the model. """ # replace the derivatives with printable variables. derivatives = {var: Variable(var.name) for var in args if isinstance(var, sympy.Derivative)} func = func.xreplace(derivatives) args = [derivatives[var] if isinstance(var, sympy.Derivative) else var for var in args] lambdafunc = lambdify(args, func, dummify=False) # Check if the names of the lambda function are what we expect signature = inspect.signature(lambdafunc) sig_parameters = OrderedDict(signature.parameters) for arg, lambda_arg in zip(args, sig_parameters): if arg.name != lambda_arg: break else: # Lambdifying succesful! return lambdafunc # If we are here (very rare), then one of the lambda arg is still a Dummy. # In this case we will manually handle the naming. lambda_names = sig_parameters.keys() arg_names = [arg.name for arg in args] conversion = dict(zip(arg_names, lambda_names)) # Wrap the lambda such that arg names are translated into the correct dummy # symbol names @wraps(lambdafunc) def wrapped_lambdafunc(*ordered_args, **kwargs): converted_kwargs = {conversion[k]: v for k, v in kwargs.items()} return lambdafunc(*ordered_args, **converted_kwargs) # Update the signature of wrapped_lambdafunc to math our args new_sig_parameters = OrderedDict() for arg_name, dummy_name in conversion.items(): if arg_name == dummy_name: # Already has the correct name new_sig_parameters[arg_name] = sig_parameters[arg_name] else: # Change the dummy inspect.Parameter to the correct name param = sig_parameters[dummy_name] param = param.replace(name=arg_name) new_sig_parameters[arg_name] = param wrapped_lambdafunc.__signature__ = signature.replace( parameters=new_sig_parameters.values() ) return wrapped_lambdafunc def sympy_to_scipy(func, vars, params): """ Convert a symbolic expression to one scipy digs. Not used by ``symfit`` any more. :param func: sympy expression :param vars: variables :param params: parameters :return: Scipy-style function to be used for numerical evaluation of the model. """ lambda_func = sympy_to_py(func, vars, params) def f(x, p): """ Scipy style function. :param x: list of arrays, NxM :param p: tuple of parameter values. """ x = np.atleast_2d(x) y = [x[i] for i in range(len(x))] if len(x[0]) else [] try: ans = lambda_func(*(y + list(p))) except TypeError: # Possibly this is a constant function in which case it only has Parameters. ans = lambda_func(*list(p))# * np.ones(x_shape) return ans return f def variables(names, **kwargs): """ Convenience function for the creation of multiple variables. For more control, consider using ``symbols(names, cls=Variable, **kwargs)`` directly. :param names: string of variable names. Example: x, y = variables('x, y') :param kwargs: kwargs to be passed onto :func:`sympy.core.symbol.symbols` :return: iterable of :class:`symfit.core.argument.Variable` objects """ return symbols(names, cls=Variable, seq=True, **kwargs) def parameters(names, **kwargs): """ Convenience function for the creation of multiple parameters. For more control, consider using ``symbols(names, cls=Parameter, **kwargs)`` directly. The `Parameter` attributes `value`, `min`, `max` and `fixed` can also be provided directly. If given as a single value, the same value will be set for all `Parameter`'s. When a sequence, it must be of the same length as the number of parameters created. Example:: x1, x2 = parameters('x1, x2', value=[2.0, 1.3], min=0.0) :param names: string of parameter names. Example: a, b = parameters('a, b') :param kwargs: kwargs to be passed onto :func:`sympy.core.symbol.symbols`. `value`, `min` and `max` will be handled separately if they are sequences. :return: iterable of :class:`symfit.core.argument.Parameter` objects """ sequence_fields = ['value', 'min', 'max', 'fixed'] sequences = {} for attr in sequence_fields: try: iter(kwargs[attr]) except (TypeError, KeyError): # Not iterable or not provided pass else: sequences[attr] = kwargs.pop(attr) if 'min' in sequences and 'max' in sequences: for min, max in zip(sequences['min'], sequences['max']): if min > max: raise ValueError('The value of `min` should be less than or' ' equal to the value of `max`.') params = symbols(names, cls=Parameter, seq=True, **kwargs) for key, values in sequences.items(): try: assert len(values) == len(params) except AssertionError: raise ValueError( '`len` of keyword-argument `{}` does not match the number of ' '`Parameter`s created.'.format(attr) ) except TypeError: # Iterator do not have a `len` but are allowed. pass finally: for param, value in zip(params, values): setattr(param, key, value) return params class cached_property(property): """ A property which cashes the output of the first ever call and always returns that value from then on, unless delete is called on the attribute. This is typically used in converting `sympy` code into `scipy` compatible code, which is computationally a very expensive step we would like to perform only once. Does not allow setting of the attribute. """ base_str = '_cached' def __init__(self, *args, **kwargs): super(cached_property, self).__init__(*args, **kwargs) self.cache_attr = '{}_{}'.format(self.base_str, self.fget.__name__) def __get__(self, obj, objtype=None): """ In case of a first call, this will call the decorated function and return it's output. On every subsequent call, the same output will be returned. :param obj: the parent object this property is attached to. :param objtype: :return: Output of the first call to the decorated function. """ try: return getattr(obj, self.cache_attr) except AttributeError: # Call the wrapped function with the obj instance as argument setattr(obj, self.cache_attr, self.fget(obj)) return getattr(obj, self.cache_attr) def __delete__(self, obj): """ Calling delete on the attribute will delete the cache. :param obj: parent object. """ try: delattr(obj, self.cache_attr) except AttributeError: pass def jacobian(expr, symbols): """ Derive a symbolic expr w.r.t. each symbol in symbols. This returns a symbolic jacobian vector. :param expr: A sympy Expr. :param symbols: The symbols w.r.t. which to derive. """ jac = [] for symbol in symbols: # Differentiate to every param f = sympy.diff(expr, symbol) jac.append(f) return jac def key2str(target): """ In ``symfit`` there are many dicts with symbol: value pairs. These can not be used immediately as \*\*kwargs, even though this would make a lot of sense from the context. This function wraps such dict to make them usable as \*\*kwargs immediately. :param target: `Mapping` to be made save :return: `Mapping` of str(symbol): value pairs. """ return target.__class__((str(symbol), value) for symbol, value in target.items()) def D(*args, **kwargs): # ToDo: Investigate sympy's inheritance properly to see if I can give a # .name atribute to Derivative objects or subclasses. return sympy.Derivative(*args, **kwargs) def name(self): """ Save name which can be used for alphabetic sorting and can be turned into a kwarg. """ base_str = 'd{}{}_'.format(self.derivative_count if self.derivative_count > 1 else '', self.expr) for var, count in self.variable_count: base_str += 'd{}{}'.format(var, count if count > 1 else '') return base_str sympy.Derivative.name = property(name)
53a9397649c4f88e2f900fd1eba7f8e98e9a3529
f7c975bef40f90a1a291b97466e1c81dfe69bae6
/notifiers/notifier.py
6c10c3170ff714fbda273503e4e11da451a3949e
[ "BSD-3-Clause" ]
permissive
duo-labs/secret-bridge
24f2ea9e8a3ad1b6befeae0fd183e772ea5ff645
c4f8d6e8b1cceae6edfab6f8827f375e4853257c
refs/heads/master
2023-08-15T03:40:15.622855
2023-02-17T17:25:35
2023-02-17T17:25:35
201,492,192
181
44
BSD-3-Clause
2023-07-25T21:14:10
2019-08-09T15:18:28
Python
UTF-8
Python
false
false
215
py
notifier.py
from abc import ABC, abstractmethod class Notifier(ABC): def __init__(self): pass @abstractmethod def process(self, findings, detector_name): """Process a found secret.""" pass
076a4ed30977eae1b82d15a4e134202e7bc135b8
cf482a354ef3287f8d80163d12dfd6207220007a
/python/multicorn/imapfdw.py
7a267ac4801a5f977c2662289d639515760fc571
[ "PostgreSQL" ]
permissive
Segfault-Inc/Multicorn
f3996a9a01782dafc3ec5dbddf9c03fa40ab9a39
3b4da7f9f4ea339e71c6bb7df22d441c980b5aef
refs/heads/master
2023-07-31T04:02:13.289966
2020-08-18T13:56:06
2022-04-05T06:33:40
1,851,271
167
42
PostgreSQL
2023-09-04T18:50:12
2011-06-05T18:37:51
Python
UTF-8
Python
false
false
11,082
py
imapfdw.py
""" Purpose ------- This fdw can be used to access mails from an IMAP mailbox. Column names are mapped to IMAP headers, and two special columns may contain the mail payload and its flags. .. api_compat:: :read: Dependencies ------------- imaplib Options -------- ``host`` (required) The IMAP host to connect to. ``port`` (required) The IMAP host port to connect to. ``login`` (required) The login to connect with. ``password`` (required) The password to connect with. The login and password options should be set as a user mapping options, so as not to be stored in plaintext. See `the create user mapping documentation`_ .. _the create user mapping documentation: http://www.postgresql.org/docs/9.1/static/sql-createusermapping.html ``payload_column`` The name of the column which will store the payload. ``flags_column`` The name of the column which will store the IMAP flags, as an array of strings. ``ssl`` Wether to use ssl or not ``imap_server_charset`` The name of the charset used for IMAP search commands. Defaults to UTF8. For the cyrus IMAP server, it should be set to "utf-8". ``internal_date_column`` The column to use as the INTERNALDATE imap header. Server side filtering --------------------- The imap fdw tries its best to convert postgresql quals into imap filters. The following quals are pushed to the server: - equal, not equal, like, not like comparison - = ANY, = NOT ANY ntThese conditions are matched against the headers, or the body itself. The imap FDW will fetch only what is needed by the query: you should thus avoid requesting the payload_column if you don't need it. """ from . import ForeignDataWrapper, ANY, ALL from .utils import log_to_postgres, ERROR, WARNING from imaplib import IMAP4 import re from multicorn.compat import basestring_ from email.header import decode_header from imapclient import IMAPClient from itertools import islice try: from itertools import zip_longest except ImportError: from itertools import izip_longest as zip_longest from functools import reduce STANDARD_FLAGS = { 'seen': 'Seen', 'flagged': 'Flagged', 'delete': 'Deleted', 'draft': 'Draft', 'recent': 'Recent' } SEARCH_HEADERS = ['BCC', 'CC', 'FROM', 'TO'] def compact_fetch(messages): """Compact result in ranges. For example, [1, 2, 3, 4, 10, 11, 12, 14, 17, 18, 19, 21, 92] can be compacted in ['1:4', '10:12', '14', '17:19', '21', '92'] """ first_i = messages[0] for (i, inext) in zip_longest(messages, islice(messages, 1, None)): if inext == i + 1: continue elif first_i != i: yield '%s:%s' % (first_i, i) first_i = inext else: yield "%s" % i first_i = inext class NoMatchPossible(Exception): """An exception raised when the conditions can NOT be met by any message, ever.""" def make_or(values): """Create an imap OR filter based on a list of conditions to be or'ed""" values = [x for x in values if x not in (None, '()')] if values: if len(values) > 1: return reduce(lambda x, y: '(OR %s %s)' % (x, y), values) else: return values[0] class ImapFdw(ForeignDataWrapper): """An imap foreign data wrapper """ def __init__(self, options, columns): super(ImapFdw, self).__init__(options, columns) self._imap_agent = None self.host = options.get('host', None) if self.host is None: log_to_postgres('You MUST set the imap host', ERROR) self.port = options.get('port', None) self.ssl = options.get('ssl', False) self.login = options.get('login', None) self.password = options.get('password', None) self.folder = options.get('folder', 'INBOX') self.imap_server_charset = options.get('imap_server_charset', 'UTF8') self.columns = columns self.payload_column = options.get('payload_column', None) self.flags_column = options.get('flags_column', None) self.internaldate_column = options.get('internaldate_column', None) def get_rel_size(self, quals, columns): """Inform the planner that it can be EXTREMELY costly to use the payload column, and that a query on Message-ID will return only one row.""" width = len(columns) * 100 nb_rows = 1000000 if self.payload_column in columns: width += 100000000000 nb_rows = nb_rows / (10 ** len(quals)) for qual in quals: if qual.field_name.lower() == 'in-reply-to' and\ qual.operator == '=': nb_rows = 10 if (qual.field_name.lower() == 'message-id' and qual.operator == '='): nb_rows = 1 break return (nb_rows, width) def _create_agent(self): self._imap_agent = IMAPClient(self.host, self.port, ssl=self.ssl) if self.login: self._imap_agent.login(self.login, self.password) self._imap_agent.select_folder(self.folder) @property def imap_agent(self): if self._imap_agent is None: self._create_agent() try: self._imap_agent.select_folder(self.folder) except IMAP4.abort: self._create_agent() return self._imap_agent def get_path_keys(self): """Helps the planner by supplying a list of list of access keys, as well as a row estimate for each one.""" return [(('Message-ID',), 1), (('From',), 100), (('To',), 100), (('In-Reply-To',), 10)] def _make_condition(self, key, operator, value): if operator not in ('~~', '!~~', '=', '<>', '@>', '&&', '~~*', '!~~*'): # Do not manage special operators return '' if operator in ('~~', '!~~', '~~*', '!~~*') and\ isinstance(value, basestring_): # 'Normalize' the sql like wildcards if value.startswith(('%', '_')): value = value[1:] if value.endswith(('%', '_')): value = value[:-1] if re.match(r'.*[^\\][_%]', value): return '' value = value.replace('\\%', '%').replace('\\_', '_') prefix = '' if operator in ('!~~', '<>', '!~~*'): if key == self.flags_column: prefix = 'UN' else: prefix = 'NOT ' if isinstance(value, basestring_): if value.lower() in STANDARD_FLAGS: prefix = '' value = value.upper() if key == self.flags_column: if operator == '@>': # Contains on flags return ' '.join(['%s%s' % (prefix, (STANDARD_FLAGS.get(atom.lower(), '%s %s' % ('KEYWORD', atom)))) for atom in value]) elif operator == '&&': # Overlaps on flags => Or values = ['(%s%s)' % (prefix, (STANDARD_FLAGS.get(atom.lower(), '%s %s' % ('KEYWORD', atom)))) for atom in value] return make_or(values) else: value = '\\\\%s' % value elif key == self.payload_column: value = 'TEXT "%s"' % value elif key in SEARCH_HEADERS: value = '%s "%s"' % (key, value) else: # Special case for Message-ID and In-Reply-To: # zero-length strings are forbidden so dont bother # searching them if not value: raise NoMatchPossible() prefix = 'HEADER ' value = '%s "%s"' % (key, value) return '%s%s' % (prefix, value) def extract_conditions(self, quals): """Build an imap search criteria string from a list of quals""" conditions = [] for qual in quals: # Its a list, so we must translate ANY to OR, and ALL to AND if qual.list_any_or_all == ANY: values = [ '(%s)' % self._make_condition(qual.field_name, qual.operator[0], value) for value in qual.value] conditions.append(make_or(values)) elif qual.list_any_or_all == ALL: conditions.extend([ self._make_condition(qual.field_name, qual.operator[0], value) for value in qual.value]) else: # its not a list, so everything is fine conditions.append(self._make_condition( qual.field_name, qual.operator, qual.value)) conditions = [x for x in conditions if x not in (None, '()')] return conditions def execute(self, quals, columns): # The header dictionary maps columns to their imap search string col_to_imap = {} headers = [] for column in list(columns): if column == self.payload_column: col_to_imap[column] = 'BODY[TEXT]' elif column == self.flags_column: col_to_imap[column] = 'FLAGS' elif column == self.internaldate_column: col_to_imap[column] = 'INTERNALDATE' else: col_to_imap[column] = ('BODY[HEADER.FIELDS (%s)]' % column.upper()) headers.append(column) try: conditions = self.extract_conditions(quals) or ['ALL'] except NoMatchPossible: matching_mails = [] else: matching_mails = self.imap_agent.search( charset=self.imap_server_charset, criteria=conditions) if matching_mails: data = self.imap_agent.fetch(list(compact_fetch(matching_mails)), list(col_to_imap.values())) item = {} for msg in data.values(): for column, key in col_to_imap.items(): item[column] = msg[key] if column in headers: item[column] = item[column].split(':', 1)[-1].strip() values = decode_header(item[column]) for decoded_header, charset in values: # Values are of the from "Header: value" if charset: try: item[column] = decoded_header.decode( charset) except LookupError: log_to_postgres('Unknown encoding: %s' % charset, WARNING) else: item[column] = decoded_header yield item
e4a939ef2861568ede1ab113be296febcf92c67b
f9f074c44b67a11d4630b5e1cc15e016e8d73cc8
/factory-ai-vision/EdgeSolution/modules/WebModule/backend/vision_on_edge/azure_pd_deploy_status/migrations/0003_remove_deploystatus_performance.py
05f91a474583fca3500af70d47efb8b700f3f5ba
[ "MIT" ]
permissive
Azure-Samples/azure-intelligent-edge-patterns
361694680c7e48d3761c5416175788355b684dcd
1d2f42cbf9f21157c1e1abf044b26160dfed5b16
refs/heads/master
2023-05-26T13:15:47.085088
2023-02-28T17:25:53
2023-02-28T17:25:53
186,706,933
193
164
MIT
2023-02-28T17:25:55
2019-05-14T22:02:41
JavaScript
UTF-8
Python
false
false
289
py
0003_remove_deploystatus_performance.py
# Generated by Django 3.0.8 on 2020-08-28 07:46 from django.db import migrations class Migration(migrations.Migration): dependencies = [("azure_pd_deploy_status", "0002_auto_20200828_0616")] operations = [migrations.RemoveField(model_name="deploystatus", name="performance")]
f792ded71cdd879f85ba047710ad2913c9074511
d6bcc2a87c2e419528c0edc98ebd3d3717a16716
/test/lib/ufe/testRotatePivot.py
e0ba3df8275e8970b8ec286bd3e6f8b63403b717
[ "DOC" ]
permissive
Autodesk/maya-usd
ac9e03f39132c6b221032f21dc98805b4aa52d31
dc1c13a3f8012b2a99a45e46fb30250fd4b82487
refs/heads/dev
2023-09-05T07:39:58.640296
2023-09-01T19:56:30
2023-09-01T19:56:30
198,889,624
692
208
null
2023-09-14T20:49:17
2019-07-25T19:25:28
Mathematica
UTF-8
Python
false
false
10,199
py
testRotatePivot.py
#!/usr/bin/env python # # Copyright 2019 Autodesk # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import mayaUsd.lib import fixturesUtils import mayaUtils import ufeUtils from maya import cmds from maya import standalone from maya.api import OpenMaya as om from pxr import UsdGeom, Vt, Gf import ufe from math import degrees from math import radians from math import sin import os import unittest def v3dToMPoint(v): return om.MPoint(v.x(), v.y(), v.z()) def assertMPointAlmostEqual(testCase, a, b, places=7): testCase.assertAlmostEqual(a.x, b.x) testCase.assertAlmostEqual(a.y, b.y) testCase.assertAlmostEqual(a.z, b.z) testCase.assertAlmostEqual(a.w, b.w) # Index into MMatrix linearly as a 16-element vector, starting at row 0. def ndx(i, j): return i*4+j class RotatePivotTestCase(unittest.TestCase): '''Verify the Transform3d UFE rotate pivot interface. UFE Feature : Transform3d Maya Feature : rotate pivot Action : Set the rotate pivot. Applied On Selection : - No selection - Given node as param - Single Selection : Not tested. - Multiple Selection [Mixed, Non-Maya] : Not tested. Undo/Redo Test : UFE undoable command only. Expect Results To Test : - Maya Dag object world space position. - USD object world space position. Edge Cases : - None. ''' pluginsLoaded = False @classmethod def setUpClass(cls): fixturesUtils.readOnlySetUpClass(__file__, loadPlugin=False) if not cls.pluginsLoaded: cls.pluginsLoaded = mayaUtils.isMayaUsdPluginLoaded() @classmethod def tearDownClass(cls): standalone.uninitialize() def setUp(self): ''' Called initially to set up the maya test environment ''' # Load plugins self.assertTrue(self.pluginsLoaded) # Open twoSpheres.ma scene in testSamples mayaUtils.openTwoSpheresScene() def checkPos(self, m, p): self.assertAlmostEqual(m[ndx(3,0)], p[0]) self.assertAlmostEqual(m[ndx(3,1)], p[1]) self.assertAlmostEqual(m[ndx(3,2)], p[2]) def testRotatePivot(self): # mayaSphere is at (10, 0, 10) in local space, and since it has no # parent, in world space as well. spherePath = om.MSelectionList().add('mayaSphere').getDagPath(0) sphereFn = om.MFnTransform(spherePath) rotZ = radians(45) rot = om.MEulerRotation(0, 0, rotZ) # Pivot around x=0. pivot = om.MPoint(-10, 0, 0) sphereFn.setRotatePivot(pivot, om.MSpace.kTransform, False) sphereFn.setRotation(rot, om.MSpace.kTransform) # MFnTransform and MTransformationMatrix always return the individual # components of the matrix, including translation, which is unaffected # by pivot changes, as expected. The fully-multiplied result is in the # computed MMatrix. xyWorldValue = sin(rotZ) * 10 sphereMatrix = sphereFn.transformation().asMatrix() self.checkPos(sphereMatrix, [xyWorldValue, xyWorldValue, 10]) # Do the same with the USD object, through UFE. # USD sphere is at (10, 0, 0) in local space, and since its parents # have an identity transform, in world space as well. usdSpherePath = ufe.PathString.path( '|usdSphereParent|usdSphereParentShape,/sphereXform/sphere') usdSphereItem = ufe.Hierarchy.createItem(usdSpherePath) t3d = ufe.Transform3d.transform3d(usdSphereItem) t3d.rotatePivot(pivot[0], pivot[1], pivot[2]) usdPivot = t3d.rotatePivot() assertMPointAlmostEqual(self, v3dToMPoint(usdPivot), pivot) t3d.rotate(degrees(rot[0]), degrees(rot[1]), degrees(rot[2])) sphereMatrix = om.MMatrix(t3d.inclusiveMatrix().matrix) self.checkPos(sphereMatrix, [xyWorldValue, xyWorldValue, 0]) t3d.rotatePivot(0, 0, 0) usdPivot = t3d.rotatePivot() assertMPointAlmostEqual(self, v3dToMPoint(usdPivot), om.MPoint(0, 0, 0)) sphereMatrix = om.MMatrix(t3d.inclusiveMatrix().matrix) self.checkPos(sphereMatrix, [10, 0, 0]) # Use a UFE undoable command to set the pivot. rotatePivotCmd = t3d.rotatePivotCmd() rotatePivotCmd.set(pivot[0], pivot[1], pivot[2]) usdPivot = t3d.rotatePivot() assertMPointAlmostEqual(self, v3dToMPoint(usdPivot), pivot) sphereMatrix = om.MMatrix(t3d.inclusiveMatrix().matrix) self.checkPos(sphereMatrix, [xyWorldValue, xyWorldValue, 0]) rotatePivotCmd.undo() usdPivot = t3d.rotatePivot() assertMPointAlmostEqual(self, v3dToMPoint(usdPivot), om.MPoint(0, 0, 0)) sphereMatrix = om.MMatrix(t3d.inclusiveMatrix().matrix) self.checkPos(sphereMatrix, [10, 0, 0]) # redo() cannot be tested, as it currently is intentionally not # implemented, because the Maya move command handles undo by directly # calling the translate() method. This is fragile, # implementation-specific, and should be changed. PPT, 3-Sep-2020. @unittest.skipUnless(mayaUtils.mayaMajorVersion() >= 2022, 'Requires Maya fixes only available in Maya 2022 or greater.') def testRotatePivotCmd(self): rotZ = radians(45) rot = om.MEulerRotation(0, 0, rotZ) # Pivot around x=0. pivot = om.MPoint(-10, 0, 0) pivotTranslate = om.MPoint(0, 0, 0) xyWorldValue = sin(rotZ) * 10 rotatedPosition = [xyWorldValue, xyWorldValue, 0] # USD sphere is at (10, 0, 0) in local space, and since its parents # have an identity transform, in world space as well. spherePath = ufe.PathString.path( '|usdSphereParent|usdSphereParentShape,/sphereXform') sphereItem = ufe.Hierarchy.createItem(spherePath) ufe.GlobalSelection.get().append(sphereItem) # Create a Transform3d interface to read from USD. t3d = ufe.Transform3d.transform3d(sphereItem) # Start with a non-zero initial rotate pivot. This is required to test # MAYA-105345, otherwise a zero initial rotate pivot produces the # correct result through an unintended code path. t3d.rotatePivot(2, 0, 0) usdPivot = t3d.rotatePivot() assertMPointAlmostEqual(self, v3dToMPoint(usdPivot), om.MPoint(2, 0, 0)) t3d.rotatePivot(0, 0, 0) # Start with a non-zero initial rotation. This is required to test # MAYA-112175, otherwise a zero initial rotation means rotate pivot # translation will be empty and we get the correct result by accident. if (mayaUtils.mayaMajorVersion() >= 2023): cmds.rotate(0, 0, 90) print(type(pivot)) pivot = om.MPoint(0, 10, 0) print(type(pivot)) pivotTranslate = om.MPoint(-10, -10, 0) rotatedPosition = [xyWorldValue, -xyWorldValue, 0] cmds.move(-10, 0, 0, relative=True, ufeRotatePivot=True) usdPivot = t3d.rotatePivot() assertMPointAlmostEqual(self, v3dToMPoint(usdPivot), pivot) usdRotatePivotTranslation = t3d.rotatePivotTranslation() assertMPointAlmostEqual(self, v3dToMPoint(usdRotatePivotTranslation), pivotTranslate) cmds.undo() usdPivot = t3d.rotatePivot() assertMPointAlmostEqual(self, v3dToMPoint(usdPivot), om.MPoint(0, 0, 0)) usdRotatePivotTranslation = t3d.rotatePivotTranslation() assertMPointAlmostEqual(self, v3dToMPoint(usdRotatePivotTranslation), om.MPoint(0, 0, 0)) cmds.redo() usdPivot = t3d.rotatePivot() assertMPointAlmostEqual(self, v3dToMPoint(usdPivot), pivot) cmds.rotate(degrees(rot[0]), degrees(rot[1]), degrees(rot[2])) sphereMatrix = om.MMatrix(t3d.inclusiveMatrix().matrix) self.checkPos(sphereMatrix, rotatedPosition) if (mayaUtils.mayaMajorVersion() >= 2023): cmds.undo() cmds.move(10, 10, 0, absolute=True) sphereMatrix = om.MMatrix(t3d.inclusiveMatrix().matrix) self.checkPos(sphereMatrix, [10, 10, 0]) cmds.move(10, 10, 0, absolute=True, rotatePivotRelative=True) sphereMatrix = om.MMatrix(t3d.inclusiveMatrix().matrix) self.checkPos(sphereMatrix, [20, 10, 0]) def testRotatePivotMatrixOp(self): '''Setting the rotate pivot on a prim with a matrix op.''' # Create a scene with an xform that has a matrix op. import mayaUsd_createStageWithNewLayer mayaUsd_createStageWithNewLayer.createStageWithNewLayer() proxyShapePathStr = '|stage1|stageShape1' stage = mayaUsd.lib.GetPrim(proxyShapePathStr).GetStage() xform = stage.DefinePrim('/Xform1', 'Xform') xformable = UsdGeom.Xformable(xform) transformOp = xformable.AddTransformOp() transformOp.Set(Gf.Matrix4d(1.0)) self.assertEqual(xformable.GetXformOpOrderAttr().Get(), Vt.TokenArray([ "xformOp:transform"])) xformItem = ufeUtils.createItem(proxyShapePathStr + ',/Xform1') sn = ufe.GlobalSelection.get() sn.clear() sn.append(xformItem) # Set the rotate and scale pivot. Since the matrix op does not support # these, this will create a Maya fallback transform stack after the # matrix op. cmds.move(3, 2, 1, r=True, urp=True, usp=True) # Read back the rotate pivot using the Transform3d interface. t3d = ufe.Transform3d.transform3d(xformItem) self.assertEqual(t3d.rotatePivot().vector, [3, 2, 1]) if __name__ == '__main__': unittest.main(verbosity=2)
20f38fd80d1be3b0f628849d069b5049c0d2abea
d4a88b3b102e20e727cae8fbd4167dcb4b57d1ec
/pymunk/examples/using_sprites.py
6e7364a329a53753cc5661d37b36d037fab87b5b
[ "MIT" ]
permissive
viblo/pymunk
ca64888e45706db431788368ff8464edf2912d5f
20ac14f665fb38b4ef1bef5acea36a3d612dd0d5
refs/heads/master
2023-08-27T16:37:14.740653
2023-08-16T19:26:16
2023-08-16T19:26:16
13,273,472
855
255
MIT
2023-01-13T10:13:47
2013-10-02T14:36:46
Python
UTF-8
Python
false
false
3,794
py
using_sprites.py
"""Very basic example of using a sprite image to draw a shape more similar how you would do it in a real game instead of the simple line drawings used by the other examples. """ __version__ = "$Id:$" __docformat__ = "reStructuredText" import math import random from typing import List import os.path import pygame import pymunk from pymunk import Vec2d def flipy(y): """Small hack to convert chipmunk physics to pygame coordinates""" return -y + 600 def main(): pygame.init() screen = pygame.display.set_mode((600, 600)) clock = pygame.time.Clock() running = True ### Physics stuff space = pymunk.Space() space.gravity = Vec2d(0.0, -900.0) ## logo logo_img = pygame.image.load( os.path.join( os.path.dirname(os.path.abspath(__file__)), "pymunk_logo_googlecode.png" ) ) logos: List[pymunk.Shape] = [] ### Static line static_lines = [ pymunk.Segment(space.static_body, (11.0, 280.0), (407.0, 246.0), 0.0), pymunk.Segment(space.static_body, (407.0, 246.0), (407.0, 343.0), 0.0), ] for l in static_lines: l.friction = 0.5 space.add(*static_lines) ticks_to_next_spawn = 10 while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False elif event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE: running = False elif event.type == pygame.KEYDOWN and event.key == pygame.K_p: pygame.image.save(screen, "using_sprites.png") ticks_to_next_spawn -= 1 if ticks_to_next_spawn <= 0: ticks_to_next_spawn = 100 x = random.randint(20, 400) y = 500 angle = random.random() * math.pi vs = [(-23, 26), (23, 26), (0, -26)] mass = 10 moment = pymunk.moment_for_poly(mass, vs) body = pymunk.Body(mass, moment) shape = pymunk.Poly(body, vs) shape.friction = 0.5 body.position = x, y body.angle = angle space.add(body, shape) logos.append(shape) ### Update physics dt = 1.0 / 60.0 for x in range(1): space.step(dt) ### Draw stuff screen.fill(pygame.Color("black")) for logo_shape in logos: # image draw p = logo_shape.body.position p = Vec2d(p.x, flipy(p.y)) # we need to rotate 180 degrees because of the y coordinate flip angle_degrees = math.degrees(logo_shape.body.angle) + 180 rotated_logo_img = pygame.transform.rotate(logo_img, angle_degrees) offset = Vec2d(*rotated_logo_img.get_size()) / 2 p = p - offset screen.blit(rotated_logo_img, (round(p.x), round(p.y))) # debug draw ps = [ p.rotated(logo_shape.body.angle) + logo_shape.body.position for p in logo_shape.get_vertices() ] ps = [(round(p.x), round(flipy(p.y))) for p in ps] ps += [ps[0]] pygame.draw.lines(screen, pygame.Color("red"), False, ps, 1) for line in static_lines: body = line.body pv1 = body.position + line.a.rotated(body.angle) pv2 = body.position + line.b.rotated(body.angle) p1 = round(pv1.x), round(flipy(pv1.y)) p2 = round(pv2.x), round(flipy(pv2.y)) pygame.draw.lines(screen, pygame.Color("lightgray"), False, [p1, p2], 2) ### Flip screen pygame.display.flip() clock.tick(50) pygame.display.set_caption("fps: " + str(clock.get_fps())) if __name__ == "__main__": main()
b592f69985a923a502c11dc905bab7864818a6e2
c618bbf2719431999b1007461df0865bab60c883
/dali/test/python/reader/test_webdataset_requirements.py
17462ee1eb9892ade28dba898ef90404ecd1ad0a
[ "Apache-2.0" ]
permissive
NVIDIA/DALI
3d0d061135d19e092647e6522046b2ff23d4ef03
92ebbe5c20e460050abd985acb590e6c27199517
refs/heads/main
2023-09-04T01:53:59.033608
2023-09-01T13:45:03
2023-09-01T13:45:03
135,768,037
4,851
648
Apache-2.0
2023-09-12T18:00:22
2018-06-01T22:18:01
C++
UTF-8
Python
false
false
16,230
py
test_webdataset_requirements.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from glob import glob import math import nvidia.dali as dali from test_utils import compare_pipelines, get_dali_extra_path from nose_utils import assert_raises from nose.tools import assert_equal from webdataset_base import (generate_temp_extract, generate_temp_index_file, webdataset_raw_pipeline, file_reader_pipeline) from webdataset_base import test_batch_size # noqa:F401, this is a parameter used in tests def test_return_empty(): num_samples = 1000 tar_file_path = os.path.join(get_dali_extra_path(), "db/webdataset/MNIST/missing.tar") index_file = generate_temp_index_file(tar_file_path) extract_dir = generate_temp_extract(tar_file_path) equivalent_files = glob(extract_dir.name + "/*") equivalent_files = sorted(equivalent_files, key=(lambda s: int(s[s.rfind("/") + 1 : s.rfind(".")]))) # noqa: 203 compare_pipelines( webdataset_raw_pipeline( tar_file_path, index_file.name, ["jpg", "txt"], batch_size=test_batch_size, device_id=0, num_threads=1, missing_component_behavior="empty", ), file_reader_pipeline(equivalent_files, ["jpg", []], batch_size=test_batch_size, device_id=0, num_threads=1), test_batch_size, math.ceil(num_samples / test_batch_size), ) def test_skip_sample(): num_samples = 500 tar_file_path = os.path.join(get_dali_extra_path(), "db/webdataset/MNIST/missing.tar") index_file = generate_temp_index_file(tar_file_path) extract_dir = generate_temp_extract(tar_file_path) equivalent_files = list( filter( lambda s: int(s[s.rfind("/") + 1 : s.rfind(".")]) < 2500, # noqa: 203 sorted(glob(extract_dir.name + "/*"), key=lambda s: int(s[s.rfind("/") + 1 : s.rfind(".")])), # noqa: 203 )) compare_pipelines( webdataset_raw_pipeline( tar_file_path, index_file.name, ["jpg", "cls"], missing_component_behavior="skip", batch_size=test_batch_size, device_id=0, num_threads=1, ), file_reader_pipeline(equivalent_files, ["jpg", "cls"], batch_size=test_batch_size, device_id=0, num_threads=1), test_batch_size, math.ceil(num_samples / test_batch_size), ) wds_pipeline = webdataset_raw_pipeline( tar_file_path, index_file.name, ["jpg", "cls"], missing_component_behavior="skip", batch_size=test_batch_size, device_id=0, num_threads=1, ) wds_pipeline.build() assert_equal(list(wds_pipeline.epoch_size().values())[0], num_samples) def test_raise_error_on_missing(): tar_file_path = os.path.join(get_dali_extra_path(), "db/webdataset/MNIST/missing.tar") index_file = generate_temp_index_file(tar_file_path) wds_pipeline = webdataset_raw_pipeline( tar_file_path, index_file.name, ["jpg", "cls"], missing_component_behavior="error", batch_size=test_batch_size, device_id=0, num_threads=1, ) assert_raises(RuntimeError, wds_pipeline.build, glob="Underful sample detected") def test_different_components(): num_samples = 1000 tar_file_path = os.path.join(get_dali_extra_path(), "db/webdataset/MNIST/scrambled.tar") index_file = generate_temp_index_file(tar_file_path) extract_dir = generate_temp_extract(tar_file_path) equivalent_files = glob(extract_dir.name + "/*") equivalent_files = sorted(equivalent_files, key=(lambda s: int(s[s.rfind("/") + 1 : s.rfind(".")]))) # noqa: 203 compare_pipelines( webdataset_raw_pipeline( tar_file_path, index_file.name, ["jpg", "txt;cls"], batch_size=test_batch_size, device_id=0, num_threads=1, ), file_reader_pipeline(equivalent_files, ["jpg", {"txt", "cls"}], batch_size=test_batch_size, device_id=0, num_threads=1), test_batch_size, math.ceil(num_samples / test_batch_size), ) def test_dtypes(): num_samples = 100 tar_file_path = os.path.join(get_dali_extra_path(), "db/webdataset/sample-tar/dtypes.tar") index_file = generate_temp_index_file(tar_file_path) wds_pipeline = webdataset_raw_pipeline( tar_file_path, index_file.name, ["float16", "int32", "float64"], dtypes=[dali.types.FLOAT16, dali.types.INT32, dali.types.FLOAT64], batch_size=test_batch_size, device_id=0, num_threads=1, ) wds_pipeline.build() for sample_idx in range(num_samples): if sample_idx % test_batch_size == 0: f16, i32, f64 = wds_pipeline.run() assert (f16.as_array()[sample_idx % test_batch_size] == [float(sample_idx)] * 10).all() assert (i32.as_array()[sample_idx % test_batch_size] == [int(sample_idx)] * 10).all() assert (f64.as_array()[sample_idx % test_batch_size] == [float(sample_idx)] * 10).all() def test_wds_sharding(): num_samples = 3000 tar_file_paths = [ os.path.join(get_dali_extra_path(), "db/webdataset/MNIST/devel-0.tar"), os.path.join(get_dali_extra_path(), "db/webdataset/MNIST/devel-1.tar"), os.path.join(get_dali_extra_path(), "db/webdataset/MNIST/devel-2.tar"), ] index_files = [generate_temp_index_file(tar_file_path) for tar_file_path in tar_file_paths] extract_dirs = [generate_temp_extract(tar_file_path) for tar_file_path in tar_file_paths] equivalent_files = sum( list( sorted(glob(extract_dir.name + "/*"), key=lambda s: int(s[s.rfind("/") + 1 : s.rfind(".")])) # noqa: 203 for extract_dir in extract_dirs), [], ) compare_pipelines( webdataset_raw_pipeline( tar_file_paths, [index_file.name for index_file in index_files], ["jpg", "cls"], batch_size=test_batch_size, device_id=0, num_threads=1, ), file_reader_pipeline( equivalent_files, ["jpg", "cls"], batch_size=test_batch_size, device_id=0, num_threads=1, ), test_batch_size, math.ceil(num_samples / test_batch_size), ) def test_sharding(): num_samples = 1000 tar_file_path = os.path.join(get_dali_extra_path(), "db/webdataset/MNIST/devel-0.tar") index_file = generate_temp_index_file(tar_file_path) extract_dir = generate_temp_extract(tar_file_path) equivalent_files = sorted(glob(extract_dir.name + "/*"), key=lambda s: int(s[s.rfind("/") + 1 : s.rfind(".")])) # noqa: 203 num_shards = 100 for shard_id in range(num_shards): compare_pipelines( webdataset_raw_pipeline( tar_file_path, index_file.name, ["jpg", "cls"], num_shards=num_shards, shard_id=shard_id, batch_size=test_batch_size, device_id=0, num_threads=1, ), file_reader_pipeline( equivalent_files, ["jpg", "cls"], num_shards=num_shards, shard_id=shard_id, batch_size=test_batch_size, device_id=0, num_threads=1, ), test_batch_size, math.ceil(num_samples / num_shards / test_batch_size) * 2, ) def test_pax_format(): num_samples = 1000 tar_file_path = os.path.join(get_dali_extra_path(), "db/webdataset/MNIST/devel-0.tar") pax_tar_file_path = os.path.join(get_dali_extra_path(), "db/webdataset/pax/devel-0.tar") index_file = generate_temp_index_file(tar_file_path) num_shards = 100 for shard_id in range(num_shards): compare_pipelines( webdataset_raw_pipeline( tar_file_path, index_file.name, ["jpg", "cls"], num_shards=num_shards, shard_id=shard_id, batch_size=test_batch_size, device_id=0, num_threads=1, ), webdataset_raw_pipeline( pax_tar_file_path, None, ext=["jpg", "cls"], num_shards=num_shards, shard_id=shard_id, batch_size=test_batch_size, device_id=0, num_threads=1, ), test_batch_size, math.ceil(num_samples / num_shards / test_batch_size) * 2, ) def test_case_sensitive_container_format(): num_samples = 1000 tar_file_path = os.path.join(get_dali_extra_path(), "db/webdataset/MNIST/devel-0.tar") case_insensitive_tar_file_path = os.path.join(get_dali_extra_path(), "db/webdataset/case_insensitive/devel-0.tar") index_file = generate_temp_index_file(tar_file_path) num_shards = 100 with assert_raises(RuntimeError, glob="Underful sample detected at"): for shard_id in range(num_shards): compare_pipelines( webdataset_raw_pipeline( tar_file_path, index_file.name, ["jpg", "cls"], num_shards=num_shards, shard_id=shard_id, batch_size=test_batch_size, device_id=0, num_threads=1, ), webdataset_raw_pipeline( case_insensitive_tar_file_path, None, ext=["jpg", "cls"], missing_component_behavior="error", num_shards=num_shards, shard_id=shard_id, batch_size=test_batch_size, device_id=0, num_threads=1, ), test_batch_size, math.ceil(num_samples / num_shards / test_batch_size) * 2, ) def test_case_sensitive_arg_format(): num_samples = 1000 tar_file_path = os.path.join(get_dali_extra_path(), "db/webdataset/MNIST/devel-0.tar") index_file = generate_temp_index_file(tar_file_path) num_shards = 100 with assert_raises(RuntimeError, glob="Underful sample detected at"): for shard_id in range(num_shards): compare_pipelines( webdataset_raw_pipeline( tar_file_path, index_file.name, ["jpg", "cls"], num_shards=num_shards, shard_id=shard_id, batch_size=test_batch_size, device_id=0, num_threads=1, ), webdataset_raw_pipeline( tar_file_path, index_file.name, ext=["Jpg", "cls"], missing_component_behavior="error", num_shards=num_shards, shard_id=shard_id, batch_size=test_batch_size, device_id=0, num_threads=1, ), test_batch_size, math.ceil(num_samples / num_shards / test_batch_size) * 2, ) def test_case_insensitive_container_format(): num_samples = 1000 tar_file_path = os.path.join(get_dali_extra_path(), "db/webdataset/MNIST/devel-0.tar") case_insensitive_tar_file_path = os.path.join(get_dali_extra_path(), "db/webdataset/case_insensitive/devel-0.tar") index_file = generate_temp_index_file(tar_file_path) num_shards = 100 for shard_id in range(num_shards): compare_pipelines( webdataset_raw_pipeline( tar_file_path, index_file.name, ["jpg", "cls"], num_shards=num_shards, shard_id=shard_id, batch_size=test_batch_size, device_id=0, num_threads=1, ), webdataset_raw_pipeline( case_insensitive_tar_file_path, None, ext=["jpg", "cls"], case_sensitive_extensions=False, num_shards=num_shards, shard_id=shard_id, batch_size=test_batch_size, device_id=0, num_threads=1, ), test_batch_size, math.ceil(num_samples / num_shards / test_batch_size) * 2, ) def test_case_insensitive_arg_format(): num_samples = 1000 tar_file_path = os.path.join(get_dali_extra_path(), "db/webdataset/MNIST/devel-0.tar") index_file = generate_temp_index_file(tar_file_path) num_shards = 100 for shard_id in range(num_shards): compare_pipelines( webdataset_raw_pipeline( tar_file_path, index_file.name, ["jpg", "cls"], num_shards=num_shards, shard_id=shard_id, batch_size=test_batch_size, device_id=0, num_threads=1, ), webdataset_raw_pipeline( tar_file_path, index_file.name, ext=["Jpg", "cls"], case_sensitive_extensions=False, num_shards=num_shards, shard_id=shard_id, batch_size=test_batch_size, device_id=0, num_threads=1, ), test_batch_size, math.ceil(num_samples / num_shards / test_batch_size) * 2, ) def test_index_generation(): num_samples = 3000 tar_file_paths = [ os.path.join(get_dali_extra_path(), "db/webdataset/MNIST/devel-0.tar"), os.path.join(get_dali_extra_path(), "db/webdataset/MNIST/devel-1.tar"), os.path.join(get_dali_extra_path(), "db/webdataset/MNIST/devel-2.tar"), ] extract_dirs = [generate_temp_extract(tar_file_path) for tar_file_path in tar_file_paths] equivalent_files = sum( list( sorted(glob(extract_dir.name + "/*"), key=lambda s: int(s[s.rfind("/") + 1 : s.rfind(".")])) # noqa: 203 for extract_dir in extract_dirs), [], ) num_shards = 100 for shard_id in range(num_shards): compare_pipelines( webdataset_raw_pipeline( tar_file_paths, [], ["jpg", "cls"], missing_component_behavior="error", num_shards=num_shards, shard_id=shard_id, batch_size=test_batch_size, device_id=0, num_threads=1, ), file_reader_pipeline( equivalent_files, ["jpg", "cls"], num_shards=num_shards, shard_id=shard_id, batch_size=test_batch_size, device_id=0, num_threads=1, ), test_batch_size, math.ceil(num_samples / num_shards / test_batch_size) * 2, )
68b211e8c998cf85dfe9f6050666bf307bf54e15
341414ede1071e23dd3870e291b6f74f1d02a3bb
/hickle/tests/test_legacy_load.py
7c0222433f5a7c1e0ccc168562a7079ed63eb479
[ "MIT" ]
permissive
telegraphic/hickle
2ef897a9aafee1b1e5c7dd715beda8ea9d08d837
2b9142389417153d25bdcb6ec1eaf2fd318cee28
refs/heads/master
2023-08-20T18:25:48.898776
2023-07-20T01:35:48
2023-07-20T01:35:48
4,468,869
466
89
NOASSERTION
2023-07-20T01:35:49
2012-05-28T09:04:16
Python
UTF-8
Python
false
false
2,450
py
test_legacy_load.py
# %% IMPORTS # Built-in imports import glob from os import path import warnings import pytest import scipy.sparse import numpy as np # Package imports import h5py # hickle imports import hickle as hkl # %% FUNCTION DEFINITIONS def test_legacy_load(): dirpath = path.dirname(__file__) filelist = sorted(glob.glob(path.join(dirpath, 'legacy_hkls/*3_[0-9]_[0-9].hkl'))) # Make all warnings show warnings.simplefilter("always") for filename in filelist: with pytest.warns( UserWarning, match = r"Input\s+argument\s+'file_obj'\s+appears\s+to\s+be\s+a\s+file\s+made" r"\s+with\s+hickle\s+v3.\s+Using\s+legacy\s+load..." ): try: print(filename) a = hkl.load(filename,path='test') except Exception: with h5py.File(filename) as a: print(a.attrs.items()) print(a.items()) for key, item in a.items(): print(item.attrs.items()) raise @pytest.mark.no_compression def test_4_0_0_load(): """ test that files created by hickle 4.0.x can be loaded by hickle 4.1.x properly """ dirpath = path.dirname(__file__) filelist = sorted(glob.glob(path.join(dirpath, 'legacy_hkls/*4.[0-9].[0-9].hkl'))) from hickle.tests.generate_legacy_4_0_0 import generate_py_object compare_with,needs_compare = generate_py_object() # strange but without forcing garbage collection here h5py might produce # strange assuming a race related RuntimeError when h5py file is closed by # hickle.load(). Unless observed in wildlife this is only triggered by fast successive # calls of h5py methods. import gc gc.collect() for filename in filelist: content = hkl.load(filename) if filename != needs_compare: continue for item_id,content_item,compare_item in ( (i,content[i],compare_with[i]) for i in range(len(compare_with)) ): if scipy.sparse.issparse(content_item): assert np.allclose(content_item.toarray(),compare_item.toarray()) continue try: assert content_item == compare_item except ValueError: assert np.all(content_item == compare_item) # %% MAIN SCRIPT if __name__ == "__main__": test_legacy_load() test_4_0_0_load()
7f15e9e829393765395a71b2d5d3fc662e1b4dbb
3dc647cd07a7361ed401e40d2b7cce8c826c8f6c
/Lib/test/subprocessdata/fd_status.py
d12bd95abee61ceeb8f944736fc9c4e87ddfbd09
[ "CC-BY-4.0", "MIT", "Python-2.0" ]
permissive
RustPython/RustPython
5ddce4a9848b9de8c041ffd2634f83c0105d3f39
b864e5da1f18897fc884180b7093df5aa170024f
refs/heads/main
2023-09-04T12:38:29.458699
2023-09-03T12:33:42
2023-09-03T12:33:42
135,201,145
15,815
1,302
MIT
2023-09-14T08:11:45
2018-05-28T19:27:01
Rust
UTF-8
Python
false
false
835
py
fd_status.py
"""When called as a script, print a comma-separated list of the open file descriptors on stdout. Usage: fd_stats.py: check all file descriptors fd_status.py fd1 fd2 ...: check only specified file descriptors """ import errno import os import stat import sys if __name__ == "__main__": fds = [] if len(sys.argv) == 1: try: _MAXFD = os.sysconf("SC_OPEN_MAX") except: _MAXFD = 256 test_fds = range(0, _MAXFD) else: test_fds = map(int, sys.argv[1:]) for fd in test_fds: try: st = os.fstat(fd) except OSError as e: if e.errno == errno.EBADF: continue raise # Ignore Solaris door files if not stat.S_ISDOOR(st.st_mode): fds.append(fd) print(','.join(map(str, fds)))
eee41147c28e3cbee6aa3d78e0969aa066ad3a51
636849fc7edd9dcb095cf3410a121ab37de69f02
/SoftLayer/CLI/hardware/notification_add.py
3592a9d24519f478af2f24acb5cb0d4be753f990
[ "MIT" ]
permissive
softlayer/softlayer-python
bcb09306c3367fdbd2f1407f770c4959729b074c
5798373055d9f34dfd531d81638a64d0a7901a13
refs/heads/master
2023-08-23T19:32:36.990701
2023-08-21T03:29:44
2023-08-21T03:29:44
622,291
126
182
MIT
2023-09-14T15:04:48
2010-04-21T20:36:31
Python
UTF-8
Python
false
false
1,282
py
notification_add.py
"""Create a user hardware notification entry.""" # :license: MIT, see LICENSE for more details. import click import SoftLayer from SoftLayer.CLI import environment from SoftLayer.CLI import exceptions from SoftLayer.CLI import formatting @click.command(cls=SoftLayer.CLI.command.SLCommand, ) @click.argument('identifier') @click.option('--users', multiple=True, required=True, help='UserId to be notified on monitoring failure.') @environment.pass_env def cli(env, identifier, users): """Create a user hardware notification entry.""" hardware = SoftLayer.HardwareManager(env.client) table = formatting.KeyValueTable(['Id', 'Hostmane', 'Username', 'Email', 'FirstName', 'Lastname']) table.align['Id'] = 'r' table.align['Username'] = 'l' for user in users: notification = hardware.add_notification(identifier, user) if notification: table.add_row([notification['id'], notification['hardware']['fullyQualifiedDomainName'], notification['user']['username'], notification['user']['email'], notification['user']['firstName'], notification['user']['lastName']]) else: raise exceptions.CLIAbort(f"User not found: {user}.") env.fout(table)
9289c5be9120d6769c5caeaa0a347b690e23b708
d0dcd3d2dd1f561a4fa52910884acdaa15a69a2b
/startop/scripts/app_startup/lib/app_runner_test.py
33d233b03aab8cf985a5d010b1e77e9486c68b13
[ "LicenseRef-scancode-unicode", "Apache-2.0" ]
permissive
LineageOS/android_frameworks_base
dfd3aebe9e241e073ba42986eaa44cd78878ea75
0101ae8a47ff484d43af3dde506d19cde4590f65
refs/heads/lineage-19.1
2023-08-31T16:18:48.850305
2023-06-03T01:09:31
2023-08-08T00:55:35
75,641,757
471
2,457
NOASSERTION
2022-10-02T20:14:41
2016-12-05T15:58:41
Java
UTF-8
Python
false
false
3,713
py
app_runner_test.py
# Copyright 2019, The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Unit tests for the AppRunner.""" import os import sys from pathlib import Path from app_runner import AppRunner, AppRunnerListener from mock import Mock, call, patch # The path is "frameworks/base/startop/scripts/" sys.path.append(Path(os.path.realpath(__file__)).parents[2]) import lib.cmd_utils as cmd_utils class AppRunnerTestListener(AppRunnerListener): def preprocess(self) -> None: cmd_utils.run_shell_command('pre'), def postprocess(self, pre_launch_timestamp: str) -> None: cmd_utils.run_shell_command('post'), def metrics_selector(self, am_start_output: str, pre_launch_timestamp: str) -> None: return 'TotalTime=123\n' RUNNER = AppRunner(package='music', activity='MainActivity', compiler_filter='speed', timeout=None, simulate=False) def test_configure_compiler_filter(): with patch('lib.cmd_utils.run_shell_command', new_callable=Mock) as mock_run_shell_command: mock_run_shell_command.return_value = (True, 'speed arm64 kUpToDate') RUNNER.configure_compiler_filter() calls = [call(os.path.realpath( os.path.join(RUNNER.DIR, '../query_compiler_filter.py')) + ' --package music')] mock_run_shell_command.assert_has_calls(calls) def test_parse_metrics_output(): input = 'a1=b1\nc1=d1\ne1=f1' ret = RUNNER.parse_metrics_output(input) assert ret == [('a1', 'b1'), ('c1', 'd1'), ('e1', 'f1')] def _mocked_run_shell_command(*args, **kwargs): if args[0] == 'adb shell "date -u +\'%Y-%m-%d %H:%M:%S.%N\'"': return (True, "2019-07-02 23:20:06.972674825") elif args[0] == 'adb shell ps | grep "music" | awk \'{print $2;}\'': return (True, '9999') else: return (True, 'a1=b1\nc1=d1=d2\ne1=f1') @patch('app_startup.lib.adb_utils.blocking_wait_for_logcat_displayed_time') @patch('lib.cmd_utils.run_shell_command') def test_run(mock_run_shell_command, mock_blocking_wait_for_logcat_displayed_time): mock_run_shell_command.side_effect = _mocked_run_shell_command mock_blocking_wait_for_logcat_displayed_time.return_value = 123 test_listener = AppRunnerTestListener() RUNNER.add_callbacks(test_listener) result = RUNNER.run() RUNNER.remove_callbacks(test_listener) calls = [call('pre'), call(os.path.realpath( os.path.join(RUNNER.DIR, '../query_compiler_filter.py')) + ' --package music'), call('adb shell "date -u +\'%Y-%m-%d %H:%M:%S.%N\'"'), call( 'timeout {timeout} "{DIR}/launch_application" "{package}" "{activity}"' .format(timeout=30, DIR=os.path.realpath(os.path.dirname(RUNNER.DIR)), package='music', activity='MainActivity', timestamp='2019-07-02 23:20:06.972674825')), call('post') ] mock_run_shell_command.assert_has_calls(calls) assert result == [('TotalTime', '123')] assert len(RUNNER.listeners) == 0
7279936509fdc6db8ecda89cb3bf30ab6ce039a5
9abd182d02355ddf0b79afd4a35f7127a4a66f7a
/scripts/tracking/siamrpn/benchmark.py
607d97e6e41a480262fd9dfc727a37f39b21054e
[ "Apache-2.0" ]
permissive
dmlc/gluon-cv
e1303086419a5733661d0fcb9095c09d4f2382ad
567775619f3b97d47e7c360748912a4fd883ff52
refs/heads/master
2023-07-19T12:02:36.824294
2023-01-19T00:37:33
2023-01-19T00:37:33
122,896,249
6,064
1,458
Apache-2.0
2023-01-19T00:37:35
2018-02-26T01:33:21
Python
UTF-8
Python
false
false
2,590
py
benchmark.py
""" SiamRPN benchmark Code adapted from https://github.com/STVIR/pysot""" from glob import glob import argparse import os from multiprocessing import Pool from tqdm import tqdm from gluoncv.utils.metrics.tracking import OPEBenchmark from gluoncv.data.otb.tracking import OTBTracking as OTBDataset def parse_args(): """ benchmark test.""" parser = argparse.ArgumentParser(description='tracking evaluation') parser.add_argument('--tracker-path', '-p', type=str, help='test result path') parser.add_argument('--dataset', '-d', default='OTB2015', type=str, help='dataset name') parser.add_argument('--num', '-n', default=1, type=int, help='number of thread to eval') parser.add_argument('--tracker-prefix', '-t', type=str, help='tracker name') parser.add_argument('--show-video-level', '-s', action='store_true') parser.add_argument('--test-dataset', type=str, help='test_json dataset dir') parser.set_defaults(show_video_level=False) opt = parser.parse_args() return opt def main(): """SiamRPN benchmark. evaluation according to txt of test result.now supports benchmark is Success and Precision Currently only supports test OTB 2015 dataset. Parameters ---------- tracker_path : str, txt of test result path. tracker_prefix : str, model name. test_dataset : str, Path to test label json. """ opt = parse_args() tracker_dir = os.path.join(opt.tracker_path, opt.dataset) trackers = glob(os.path.join(opt.tracker_path, opt.dataset, opt.tracker_prefix+'*')) trackers = [x.split('/')[-1] for x in trackers] assert len(trackers) > 0 opt.num = min(opt.num, len(trackers)) dataset = OTBDataset(name=opt.dataset, dataset_root=opt.test_dataset, load_img=False) dataset.set_tracker(tracker_dir, trackers) benchmark = OPEBenchmark(dataset) success_ret = {} with Pool(processes=opt.num) as pool: for ret in tqdm(pool.imap_unordered(benchmark.eval_success, trackers), desc='eval success', total=len(trackers), ncols=100): success_ret.update(ret) precision_ret = {} with Pool(processes=opt.num) as pool: for ret in tqdm(pool.imap_unordered(benchmark.eval_precision, trackers), desc='eval precision', total=len(trackers), ncols=100): precision_ret.update(ret) benchmark.show_result(success_ret, precision_ret, show_video_level=opt.show_video_level) if __name__ == '__main__': main()
f4ec8cfba3862056455190657a0a1b987e4c4861
0032d988541e85c47b5034c20ecf88220dde5a95
/openbook_auth/tests/views/test_proxy_auth.py
7d2e080707bb73a8f274e5d2b68c87eb943081af
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
OkunaOrg/okuna-api
eabd37fef9d2be59b590ed8d72bee084ac377997
f87d8e80d2f182c01dbce68155ded0078ee707e4
refs/heads/master
2022-02-04T21:31:10.577601
2021-12-28T18:20:39
2021-12-28T18:20:39
151,052,951
185
92
MIT
2022-01-13T01:00:40
2018-10-01T07:44:46
Python
UTF-8
Python
false
false
3,974
py
test_proxy_auth.py
from django.urls import reverse from faker import Faker from rest_framework import status from rest_framework.test import APITestCase import logging from openbook_common.tests.helpers import make_authentication_headers_for_user, make_user, make_proxy_blacklisted_domain fake = Faker() logger = logging.getLogger(__name__) class ProxyAuthAPITests(APITestCase): """ ProxyAuthAPI tests """ def test_header_required_for_proxy_auth(self): """ should return 403 if the X-Proxy-Url header is not present """ url = self._get_url() user = make_user() headers = make_authentication_headers_for_user(user) response = self.client.get(url, **headers) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_proxy_auth_allows_non_blacklisted_domain(self): """ should return 403 if the X-Proxy-Url url is not in whitelisted """ url = self._get_url() user = make_user() headers = make_authentication_headers_for_user(user) headers['HTTP_X_PROXY_URL'] = 'https://notblacklisted.com' response = self.client.get(url, **headers) self.assertEqual(response.status_code, status.HTTP_202_ACCEPTED) def test_proxy_auth_disallows_blacklisted_domain(self): """ should return 403 if the X-Proxy-Url url is blacklisted """ url = self._get_url() user = make_user() headers = make_authentication_headers_for_user(user) headers['HTTP_X_PROXY_URL'] = 'https://www.techcrunch.com' make_proxy_blacklisted_domain(domain='techcrunch.com') response = self.client.get(url, **headers) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_proxy_auth_disallows_invalid_domain(self): """ should return 403 if the X-Proxy-Url url is invalid """ url = self._get_url() user = make_user() headers = make_authentication_headers_for_user(user) headers['HTTP_X_PROXY_URL'] = 'https://wwwinvalic.poptaer' response = self.client.get(url, **headers) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_proxy_auth_disallows_blacklisted_root_domain(self): """ should disallow when calling with a blacklisted root domain and return 403 """ url = self._get_url() user = make_user() headers = make_authentication_headers_for_user(user) make_proxy_blacklisted_domain(domain='blogspot.com') headers['HTTP_X_PROXY_URL'] = 'test.blogspot.com' response = self.client.get(url, **headers) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_proxy_auth_disallows_blacklisted_subdomain_domain(self): """ should disallow when calling with a blacklisted subdomain domain and return 403 """ url = self._get_url() user = make_user() headers = make_authentication_headers_for_user(user) make_proxy_blacklisted_domain(domain='test.blogspot.com') headers['HTTP_X_PROXY_URL'] = 'test.blogspot.com' response = self.client.get(url, **headers) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_allows_non_blacklisted_root_domain_with_blacklisted_subdomain(self): """ should allow when calling with a non blacklisted root domain that also has a blacklisted subdomain and return 403 """ url = self._get_url() user = make_user() headers = make_authentication_headers_for_user(user) make_proxy_blacklisted_domain(domain='test.blogspot.com') headers['HTTP_X_PROXY_URL'] = 'blogspot.com' response = self.client.get(url, **headers) self.assertEqual(response.status_code, status.HTTP_202_ACCEPTED) def _get_url(self): return reverse('proxy-auth')
4a560faaf0d5bdd24231600bd2b8b33eb54bdd34
9f2c4290576d17fdb4f0b05f2790a8a300576d44
/scripts/extract.py
9e5bcb35a9d91e792b01a0c8f80e4f81885e1f20
[ "MIT", "CC-BY-4.0", "LicenseRef-scancode-proprietary-license", "CC-BY-3.0" ]
permissive
facebookresearch/esm
1e00896197f3beaacb66bc6eece7da5df1a57e37
2b369911bb5b4b0dda914521b9475cad1656b2ac
refs/heads/main
2023-08-24T21:11:59.756186
2023-06-27T15:29:55
2023-06-27T15:29:55
291,783,502
2,293
510
MIT
2023-09-07T03:14:39
2020-08-31T17:41:48
Python
UTF-8
Python
false
false
5,161
py
extract.py
#!/usr/bin/env python3 -u # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import pathlib import torch from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained, MSATransformer def create_parser(): parser = argparse.ArgumentParser( description="Extract per-token representations and model outputs for sequences in a FASTA file" # noqa ) parser.add_argument( "model_location", type=str, help="PyTorch model file OR name of pretrained model to download (see README for models)", ) parser.add_argument( "fasta_file", type=pathlib.Path, help="FASTA file on which to extract representations", ) parser.add_argument( "output_dir", type=pathlib.Path, help="output directory for extracted representations", ) parser.add_argument("--toks_per_batch", type=int, default=4096, help="maximum batch size") parser.add_argument( "--repr_layers", type=int, default=[-1], nargs="+", help="layers indices from which to extract representations (0 to num_layers, inclusive)", ) parser.add_argument( "--include", type=str, nargs="+", choices=["mean", "per_tok", "bos", "contacts"], help="specify which representations to return", required=True, ) parser.add_argument( "--truncation_seq_length", type=int, default=1022, help="truncate sequences longer than the given value", ) parser.add_argument("--nogpu", action="store_true", help="Do not use GPU even if available") return parser def run(args): model, alphabet = pretrained.load_model_and_alphabet(args.model_location) model.eval() if isinstance(model, MSATransformer): raise ValueError( "This script currently does not handle models with MSA input (MSA Transformer)." ) if torch.cuda.is_available() and not args.nogpu: model = model.cuda() print("Transferred model to GPU") dataset = FastaBatchedDataset.from_file(args.fasta_file) batches = dataset.get_batch_indices(args.toks_per_batch, extra_toks_per_seq=1) data_loader = torch.utils.data.DataLoader( dataset, collate_fn=alphabet.get_batch_converter(args.truncation_seq_length), batch_sampler=batches ) print(f"Read {args.fasta_file} with {len(dataset)} sequences") args.output_dir.mkdir(parents=True, exist_ok=True) return_contacts = "contacts" in args.include assert all(-(model.num_layers + 1) <= i <= model.num_layers for i in args.repr_layers) repr_layers = [(i + model.num_layers + 1) % (model.num_layers + 1) for i in args.repr_layers] with torch.no_grad(): for batch_idx, (labels, strs, toks) in enumerate(data_loader): print( f"Processing {batch_idx + 1} of {len(batches)} batches ({toks.size(0)} sequences)" ) if torch.cuda.is_available() and not args.nogpu: toks = toks.to(device="cuda", non_blocking=True) out = model(toks, repr_layers=repr_layers, return_contacts=return_contacts) logits = out["logits"].to(device="cpu") representations = { layer: t.to(device="cpu") for layer, t in out["representations"].items() } if return_contacts: contacts = out["contacts"].to(device="cpu") for i, label in enumerate(labels): args.output_file = args.output_dir / f"{label}.pt" args.output_file.parent.mkdir(parents=True, exist_ok=True) result = {"label": label} truncate_len = min(args.truncation_seq_length, len(strs[i])) # Call clone on tensors to ensure tensors are not views into a larger representation # See https://github.com/pytorch/pytorch/issues/1995 if "per_tok" in args.include: result["representations"] = { layer: t[i, 1 : truncate_len + 1].clone() for layer, t in representations.items() } if "mean" in args.include: result["mean_representations"] = { layer: t[i, 1 : truncate_len + 1].mean(0).clone() for layer, t in representations.items() } if "bos" in args.include: result["bos_representations"] = { layer: t[i, 0].clone() for layer, t in representations.items() } if return_contacts: result["contacts"] = contacts[i, : truncate_len, : truncate_len].clone() torch.save( result, args.output_file, ) def main(): parser = create_parser() args = parser.parse_args() run(args) if __name__ == "__main__": main()
6648a3c03ed5976e198fecf51480de01a31225d5
93713f46f16f1e29b725f263da164fed24ebf8a8
/Library/lib/python3.7/site-packages/astropy-4.0-py3.7-macosx-10.9-x86_64.egg/astropy/io/misc/asdf/tags/table/table.py
4afaaf3b5fa078b62322e430b2f93c15a3a42c95
[ "BSD-3-Clause" ]
permissive
holzschu/Carnets
b83d15136d25db640cea023abb5c280b26a9620e
1ad7ec05fb1e3676ac879585296c513c3ee50ef9
refs/heads/master
2023-02-20T12:05:14.980685
2023-02-13T15:59:23
2023-02-13T15:59:23
167,671,526
541
36
BSD-3-Clause
2022-11-29T03:08:22
2019-01-26T09:26:46
Python
UTF-8
Python
false
false
4,918
py
table.py
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- import numpy as np from asdf import tagged from asdf import yamlutil from asdf.tags.core.ndarray import NDArrayType from astropy import table from astropy.io.misc.asdf.types import AstropyType, AstropyAsdfType class TableType: """ This class defines to_tree and from_tree methods that are used by both the AstropyTableType and the AsdfTableType defined below. The behavior is differentiated by the ``_compat`` class attribute. When ``_compat==True``, the behavior will conform to the table schema defined by the ASDF Standard. Otherwise, the behavior will conform to the custom table schema defined by Astropy. """ _compat = False @classmethod def from_tree(cls, node, ctx): # This is getting meta, guys meta = node.get('meta', {}) # This enables us to support files that use the table definition from # the ASDF Standard, rather than the custom one that Astropy defines. if cls._compat: columns = [ yamlutil.tagged_tree_to_custom_tree(col, ctx) for col in node['columns'] ] return table.Table(columns, meta=meta) if node.get('qtable', False): t = table.QTable(meta=node.get('meta', {})) else: t = table.Table(meta=node.get('meta', {})) for name, col in zip(node['colnames'], node['columns']): t[name] = yamlutil.tagged_tree_to_custom_tree(col, ctx) return t @classmethod def to_tree(cls, data, ctx): columns = [] for name in data.colnames: thiscol = data[name] column = yamlutil.custom_tree_to_tagged_tree(thiscol, ctx) columns.append(column) node = dict(columns=columns) # Files that use the table definition from the ASDF Standard (instead # of the one defined by Astropy) will not contain these fields if not cls._compat: node['colnames'] = data.colnames node['qtable'] = isinstance(data, table.QTable) if data.meta: node['meta'] = data.meta return node @classmethod def assert_equal(cls, old, new): assert old.meta == new.meta try: NDArrayType.assert_equal(np.array(old), np.array(new)) except (AttributeError, TypeError, ValueError): for col0, col1 in zip(old, new): try: NDArrayType.assert_equal(np.array(col0), np.array(col1)) except (AttributeError, TypeError, ValueError): assert col0 == col1 class AstropyTableType(TableType, AstropyType): """ This tag class reads and writes tables that conform to the custom schema that is defined by Astropy (in contrast to the one that is defined by the ASDF Standard). The primary reason for differentiating is to enable the support of Astropy mixin columns, which are not supported by the ASDF Standard. """ name = 'table/table' types = ['astropy.table.Table'] requires = ['astropy'] class AsdfTableType(TableType, AstropyAsdfType): """ This tag class allows Astropy to read (and write) ASDF files that use the table definition that is provided by the ASDF Standard (instead of the custom one defined by Astropy). This is important to maintain for cross-compatibility. """ name = 'core/table' types = ['astropy.table.Table'] requires = ['astropy'] _compat = True class ColumnType(AstropyAsdfType): name = 'core/column' types = ['astropy.table.Column', 'astropy.table.MaskedColumn'] requires = ['astropy'] handle_dynamic_subclasses = True @classmethod def from_tree(cls, node, ctx): data = yamlutil.tagged_tree_to_custom_tree( node['data'], ctx) name = node['name'] description = node.get('description') unit = node.get('unit') meta = node.get('meta', None) return table.Column( data=data._make_array(), name=name, description=description, unit=unit, meta=meta) @classmethod def to_tree(cls, data, ctx): node = { 'data': yamlutil.custom_tree_to_tagged_tree( data.data, ctx), 'name': data.name } if data.description: node['description'] = data.description if data.unit: node['unit'] = yamlutil.custom_tree_to_tagged_tree( data.unit, ctx) if data.meta: node['meta'] = data.meta return node @classmethod def assert_equal(cls, old, new): assert old.meta == new.meta assert old.description == new.description assert old.unit == new.unit NDArrayType.assert_equal(np.array(old), np.array(new))
a3b18b3a77cd32ce389c1c87cf508d8428237f82
c1ab5fc6d37749cf7dd693a8f6d5475dfa54cd45
/kubernetes/__init__.py
0704940b912a928e2881f9252a8f009e6af8c611
[ "Apache-2.0" ]
permissive
kubernetes-client/python
2d10e5d7c1358aa4473c1fcd54d2c5a1085cf56e
68d5a1479e7d735ea454021bc54e453c9b31baf7
refs/heads/master
2023-09-01T11:23:54.508420
2023-08-31T21:04:31
2023-08-31T21:04:31
72,473,727
5,792
3,654
Apache-2.0
2023-09-13T18:34:16
2016-10-31T20:08:03
Python
UTF-8
Python
false
false
853
py
__init__.py
# Copyright 2022 The Kubernetes Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __project__ = 'kubernetes' # The version is auto-updated. Please do not edit. __version__ = "28.0.0+snapshot" from . import client from . import config from . import dynamic from . import watch from . import stream from . import utils from . import leaderelection
63464b74383dae369a5336cae4c4305593c8acc1
ab40571d5051ad53c0f205fa797ba36eac516d06
/language/bert_extraction/steal_bert_classifier/embedding_perturbations/mixup_bert_embeddings.py
2f73a450d2c5b4a3be97e9d4ce9301ad8b3d8825
[ "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
google-research/language
e941b1a92ab46d40d8d03bb0c314905cb6902ce2
ac9447064195e06de48cc91ff642f7fffa28ffe8
refs/heads/master
2023-08-24T23:10:13.207294
2023-05-25T20:47:18
2023-05-25T22:29:27
153,201,352
1,567
371
Apache-2.0
2023-07-06T23:03:15
2018-10-16T00:58:14
Python
UTF-8
Python
false
false
6,164
py
mixup_bert_embeddings.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Calculate the interpolations between two sentences using mixup on BERT embeddings using mixup (https://arxiv.org/abs/1710.09412).""" import os from bert import modeling from bert import tokenization from bert_extraction.steal_bert_classifier.embedding_perturbations import embedding_util as em_util from bert_extraction.steal_bert_classifier.models import run_classifier as rc import tensorflow.compat.v1 as tf flags = tf.flags FLAGS = flags.FLAGS flags.DEFINE_string("interpolate_scheme", "beta", "Interpolation scheme between input points.") flags.DEFINE_float("alpha", 0.4, "The alpha value for sampling Beta distribution.") def main(_): tf.logging.set_verbosity(tf.logging.INFO) processors = { "sst-2": rc.SST2Processor, "mnli": rc.MnliProcessor, } tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, FLAGS.init_checkpoint) bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) task_name = FLAGS.task_name.lower() processor = processors[task_name]() label_list = processor.get_labels() predict_examples = processor.get_test_examples(FLAGS.predict_input_file) tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) predict_file = os.path.join(FLAGS.output_dir, "mixup_%s.tf_record" % FLAGS.exp_name) rc.file_based_convert_examples_to_features(predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file) predict_input_fn = rc.file_based_input_fn_builder( input_file=predict_file, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=False) predict_dataset = predict_input_fn({"batch_size": FLAGS.predict_batch_size}) predict_iterator1 = predict_dataset.make_one_shot_iterator() predict_iterator2 = predict_dataset.make_one_shot_iterator() predict_dict1 = predict_iterator1.get_next() predict_dict2 = predict_iterator2.get_next() # Extract only the BERT non-contextual word embeddings, see their outputs embed1_out, embed_var = em_util.run_bert_embeddings( predict_dict1["input_ids"], bert_config) embed2_out, _ = em_util.run_bert_embeddings(predict_dict2["input_ids"], bert_config) if FLAGS.interpolate_scheme == "beta": # Interpolate two embeddings using samples from a beta(alpha, alpha) distro beta_distro = tf.distributions.Beta(FLAGS.alpha, FLAGS.alpha) interpolate = beta_distro.sample() elif FLAGS.interpolate_scheme == "fixed": # Interpolate two embeddings using a fixed interpolation constant interpolate = tf.constant(FLAGS.alpha) new_embed = interpolate * embed1_out + (1 - interpolate) * embed2_out # Get nearest neighbour in embedding space for interpolated embeddings nearest_neighbour, _ = em_util.get_nearest_neighbour( source=new_embed, reference=embed_var) nearest_neighbour = tf.cast(nearest_neighbour, tf.int32) # Check whether nearest neighbour is a new word new_vectors = tf.logical_and( tf.not_equal(nearest_neighbour, predict_dict1["input_ids"]), tf.not_equal(nearest_neighbour, predict_dict2["input_ids"])) # Combine the two input masks token_mask = tf.logical_or( tf.cast(predict_dict1["input_mask"], tf.bool), tf.cast(predict_dict2["input_mask"], tf.bool)) # Mask out new vectors with original tokens mask new_vectors_masked = tf.logical_and(new_vectors, token_mask) tvars = tf.trainable_variables() assignment_map, _ = modeling.get_assignment_map_from_checkpoint( tvars, FLAGS.init_checkpoint) tf.train.init_from_checkpoint(FLAGS.init_checkpoint, assignment_map) sess = tf.Session() sess.run(tf.global_variables_initializer()) total_score = 0 total_tokens = 0 total_steps = len(predict_examples) // FLAGS.predict_batch_size + 1 # Count the total words where new embeddings are produced via interpolation all_predict_input1 = [] all_predict_input2 = [] all_nearest_neighbours = [] for i in range(total_steps): tf.logging.info("%d/%d, total_score = %d / %d", i, total_steps, total_score, total_tokens) pd1, pd2, nn, tm, nvm = sess.run([ predict_dict1, predict_dict2, nearest_neighbour, token_mask, new_vectors_masked ]) # populate global lists of inputs and mix-ups all_nearest_neighbours.extend(nn.tolist()) all_predict_input1.extend(pd1["input_ids"].tolist()) all_predict_input2.extend(pd2["input_ids"].tolist()) total_score += nvm.sum() total_tokens += tm.sum() tf.logging.info("Total score = %d", total_score) with tf.gfile.GFile(FLAGS.predict_output_file, "w") as f: for pd1, pd2, nn in zip(all_predict_input1, all_predict_input2, all_nearest_neighbours): pd1_sent = " ".join(tokenizer.convert_ids_to_tokens(pd1)) pd2_sent = " ".join(tokenizer.convert_ids_to_tokens(pd2)) nn_sent = " ".join(tokenizer.convert_ids_to_tokens(nn)) full_line = pd1_sent + "\t" + pd2_sent + "\t" + nn_sent + "\n" f.write(full_line) if __name__ == "__main__": flags.mark_flag_as_required("output_dir") flags.mark_flag_as_required("data_dir") flags.mark_flag_as_required("task_name") flags.mark_flag_as_required("vocab_file") flags.mark_flag_as_required("bert_config_file") tf.app.run()
5ea9e5a97b900e4d5cfadd19380e24f2b1bb5516
a5a99f646e371b45974a6fb6ccc06b0a674818f2
/RecoBTag/PerformanceDB/python/Pool_MISTAGSSVHEM.py
18f26d600261a52e87deac6f784a1673a9248683
[ "Apache-2.0" ]
permissive
cms-sw/cmssw
4ecd2c1105d59c66d385551230542c6615b9ab58
19c178740257eb48367778593da55dcad08b7a4f
refs/heads/master
2023-08-23T21:57:42.491143
2023-08-22T20:22:40
2023-08-22T20:22:40
10,969,551
1,006
3,696
Apache-2.0
2023-09-14T19:14:28
2013-06-26T14:09:07
C++
UTF-8
Python
false
false
737
py
Pool_MISTAGSSVHEM.py
import FWCore.ParameterSet.Config as cms from CondCore.DBCommon.CondDBCommon_cfi import * PoolDBESSource = cms.ESSource("PoolDBESSource", CondDBCommon, toGet = cms.VPSet( # # working points # cms.PSet( record = cms.string('PerformancePayloadRecord'), tag = cms.string('BTagMISTAGSSVHEMtable_v2_offline'), label = cms.untracked.string('BTagMISTAGSSVHEMtable_v2_offline') ), cms.PSet( record = cms.string('PerformanceWPRecord'), tag = cms.string('BTagMISTAGSSVHEMwp_v2_offline'), label = cms.untracked.string('BTagMISTAGSSVHEMwp_v2_offline') ), )) PoolDBESSource.connect = 'frontier://FrontierProd/CMS_COND_31X_PHYSICSTOOLS'
8463ccd223e8ae8169d898631fb35733b4635923
29b62d060fcb01eca2e319b70f4ca7b5c259d7c4
/alita/serve/server.py
06ec05cf7d0b2b9abad70154422625bf44f7b720
[]
no_license
dwpy/alita
eb4d58372b0d9d2988e63656511c61d8d6f88990
1d8a1565bc771e5ff16b454147cb44eadd19d237
refs/heads/master
2021-06-17T20:42:23.402187
2019-06-12T08:53:19
2019-06-12T08:53:19
174,462,948
119
2
null
2021-06-11T17:49:16
2019-03-08T03:31:05
Python
UTF-8
Python
false
false
19,539
py
server.py
import os import logging import httptools import signal import asyncio import functools import traceback from datetime import datetime from alita.serve.utils import * from urllib.parse import unquote from websockets import handshake, InvalidHandshake, WebSocketCommonProtocol HIGH_WATER_LIMIT = 65536 class ServiceUnavailable: def __init__(self, body=None, status=503, headers=None, content_type="text/plain"): self.content_type = content_type self.body = self._encode_body(body) self.status = status self._cookies = None self.headers = headers or {} def _encode_body(self, data): try: return data.encode() except AttributeError: return str(data or "").encode() async def __call__(self, environ, on_response): on_response(self) def output(self, version="1.1", keep_alive=False, keep_alive_timeout=None): # This is all returned in a kind-of funky way # We tried to make this as fast as possible in pure python body, timeout_header = b"", b"" if keep_alive and keep_alive_timeout is not None: timeout_header = b"Keep-Alive: %d\r\n" % keep_alive_timeout self.headers["Content-Type"] = self.headers.get( "Content-Type", self.content_type ) headers = self._parse_headers() description = b'Service Unavailable' return ( b"HTTP/%b %d %b\r\n" b"Connection: %b\r\n" b"%b" b"%b\r\n" b"%b" ) % ( version.encode(), self.status, description, b"keep-alive" if keep_alive else b"close", timeout_header, headers, body, ) def _parse_headers(self): headers = b"" for name, value in self.headers.items(): try: headers += b"%b: %b\r\n" % ( name.encode(), value.encode("utf-8"), ) except AttributeError: headers += b"%b: %b\r\n" % ( str(name).encode(), str(value).encode("utf-8"), ) return headers class HttpProtocol(asyncio.Protocol): DEFAULT_TYPE = "http" DEFAULT_VERSION = "1.1" def __init__(self, app, config, server_state): self.app = app self.config = config self.loop = config.loop self.logger = config.logger self.access_log = config.access_log and (self.logger.level <= logging.INFO) self.protocol = config.protocol self.root_path = config.root_path self.limit_concurrency = config.limit_concurrency self.keep_alive_timeout = config.keep_alive_timeout self.debug = config.debug # Timeouts self._request_timeout_handler = None self._response_timeout_handler = None self.timeout_keep_alive_task = None self.timeout_keep_alive = config.timeout_keep_alive # Global state self.server_state = server_state self.connections = server_state.connections self.tasks = server_state.tasks self.default_headers = server_state.default_headers + config.default_headers # Per-connection state self.transport = None self.server = None self.client = None self.scheme = None self.parser = None self.websocket = None self.pipeline = [] # Per-request state self.url = None self.environ = None self.body = b"" self.more_body = True self.headers = [] self.expect_100_continue = False self.message_event = asyncio.Event() self.message_event.set() # Protocol interface def connection_made(self, transport): self.connections.add(self) self.transport = transport self.server = get_local_addr(transport) self.client = get_remote_addr(transport) self.scheme = "https" if is_ssl(transport) else "http" if self.logger.level <= logging.DEBUG: self.logger.debug("%s - Connected", self.client) self._request_timeout_handler = self.loop.call_later( self.config.request_timeout, self.request_timeout_callback ) def connection_lost(self, exc): self.connections.discard(self) if self.logger.level <= logging.DEBUG: self.logger.debug("%s - Disconnected", self.client) self.message_event.set() def request_timeout_callback(self): self.shutdown() def response_timeout_callback(self): self.shutdown() def cancel_timeout_keep_alive_task(self): if self.timeout_keep_alive_task is not None: self.timeout_keep_alive_task.cancel() self.timeout_keep_alive_task = None if self._request_timeout_handler is not None: self._request_timeout_handler.cancel() self._request_timeout_handler = None if self._response_timeout_handler is not None: self._response_timeout_handler.cancel() self._response_timeout_handler = None def data_received(self, data): self.cancel_timeout_keep_alive_task() try: if self.parser is None: self.headers = [] self.parser = httptools.HttpRequestParser(self) self.parser.feed_data(data) except httptools.parser.errors.HttpParserError as exc: msg = "Invalid HTTP request received." if self.debug: msg += "\n" + traceback.format_exc() self.logger.error(msg) self.on_response(msg) except httptools.HttpParserUpgrade as exc: #self.handle_upgrade() pass def handle_upgrade(self): upgrade_value = None for name, value in self.headers: if name == b"upgrade": upgrade_value = value.lower() if upgrade_value != b"websocket" or self.protocol is None: msg = "Unsupported upgrade request." self.logger.warning(msg) content = [STATUS_TEXT[400]] for name, value in self.default_headers: content.extend([name, b": ", value, b"\r\n"]) content.extend( [ b"content-type: text/plain; charset=utf-8\r\n", b"content-length: " + str(len(msg)).encode("ascii") + b"\r\n", b"connection: close\r\n", b"\r\n", msg.encode("ascii"), ] ) self.transport.write(b"".join(content)) self.transport.close() return self.connections.discard(self) method = self.environ["method"].encode() output = [method, b" ", self.url, b" HTTP/1.1\r\n"] for name, value in self.environ["headers"]: output += [name, b": ", value, b"\r\n"] output.append(b"\r\n") protocol = self.protocol( app=self.app, config=self.config, server_state=self.server_state ) protocol.connection_made(self.transport) protocol.data_received(b"".join(output)) self.transport.set_protocol(protocol) # Parser callbacks def on_url(self, url): parsed_url = httptools.parse_url(url) path = parsed_url.path.decode("ascii") if "%" in path: path = unquote(path) self.url = url self.expect_100_continue = False self.environ = { "url": url.decode(), "parsed_url": parsed_url, "type": self.DEFAULT_TYPE, "http_version": self.DEFAULT_VERSION, "server": self.server, "client": self.client, "scheme": self.scheme, "ip": self.server[0], "port": int(self.server[1]), "path": path, "query_string": (parsed_url.query if parsed_url.query else b"").decode(), } def on_header(self, name: bytes, value: bytes): name = name.lower() if name == b"expect" and value.lower() == b"100-continue": self.expect_100_continue = True self.headers.append((name.decode("ascii"), value.decode("ascii"))) def on_headers_complete(self): http_version = self.parser.get_http_version() if http_version != self.DEFAULT_VERSION: self.environ["http_version"] = http_version self.environ.update( protocol=self, method=self.parser.get_method().decode("ascii"), transport=self.transport, logger=self.logger, root_path=self.root_path, access_log=self.access_log, expect_100_continue=self.expect_100_continue, keep_alive=http_version != "1.0", keep_alive_timeout=self.keep_alive_timeout, headers=self.headers, default_headers=self.default_headers, ) def on_body(self, body: bytes): self.body += body if len(self.body) > HIGH_WATER_LIMIT: self.transport.pause_reading() self.message_event.set() def on_message_complete(self): self.more_body = False self.message_event.set() self.cancel_timeout_keep_alive_task() self.environ.update(body=self.body.decode()) self.process_request() def log_response(self, response): if self.access_log: self.logger.info('[access] %s - - [%s] "%s %s" %s -', self.environ['ip'], datetime.now().strftime("%Y-%m-%d %H:%M:%S"), self.environ['method'], self.environ['path'], response.status) def process_request(self): # Standard case - start processing the request. # Handle 503 responses when 'limit_concurrency' is exceeded. self._response_timeout_handler = self.loop.call_later( self.config.response_timeout, self.response_timeout_callback ) if self.limit_concurrency is not None and ( len(self.connections) >= self.limit_concurrency or len(self.tasks) >= self.limit_concurrency ): app = ServiceUnavailable() message = "Exceeded concurrency limit." self.logger.warning(message) else: app = self.app task = self.loop.create_task(app(self.environ, self.on_response)) task.add_done_callback(self.tasks.discard) self.tasks.add(task) async def on_response(self, response): # Callback for pipelined HTTP requests to be started. self.server_state.total_requests += 1 if isinstance(response, str): output_content = response else: response.set_protocol(self) output_content = await response.output( self.environ["http_version"], self.environ["keep_alive"], self.environ["keep_alive_timeout"] ) self.transport.write(output_content) self.log_response(response) self.cancel_timeout_keep_alive_task() if not self.transport.is_closing(): self.transport.close() self.transport = None else: # Set a short Keep-Alive timeout. self.timeout_keep_alive_task = self.loop.call_later( self.timeout_keep_alive, self.timeout_keep_alive_handler ) def shutdown(self): """ Called by the server to commence a graceful shutdown. """ if not self.transport.is_closing(): self.transport.close() def pause_writing(self): """ Called by the transport when the write buffer exceeds the high water mark. """ self.message_event.clear() def resume_writing(self): """ Called by the transport when the write buffer drops below the low water mark. """ self.message_event.set() async def drain(self): await self.message_event.wait() def timeout_keep_alive_handler(self): """ Called on a keep-alive connection if no new data is received after a short delay. """ self.shutdown() def push_data(self, data): self.transport.write(data) def close(self): """ Force close the connection. """ if self.transport is not None: self.transport.close() self.transport = None class WebSocketProtocol(HttpProtocol): def request_timeout_callback(self): if self.websocket is None: super().request_timeout_callback() def response_timeout_callback(self): if self.websocket is None: super().response_timeout_callback() def timeout_keep_alive_handler(self): if self.websocket is None: super().timeout_keep_alive_handler() def connection_lost(self, exc): if self.websocket is not None: self.websocket.connection_lost(exc) super().connection_lost(exc) def data_received(self, data): if self.websocket is not None: self.websocket.data_received(data) else: try: super().data_received(data) except httptools.HttpParserUpgrade: pass def write_response(self, response): if self.websocket is not None: self.transport.close() else: super().on_response(response) async def websocket_handshake(self, request, subprotocols=None): headers = {} try: key = handshake.check_request(request.headers) handshake.build_response(headers, key) except InvalidHandshake: msg = "Invalid websocket request received." if self.debug: msg += "\n" + traceback.format_exc() self.logger.error(msg) self.on_response(msg) raise RuntimeError(msg) subprotocol = None if subprotocols and "Sec-Websocket-Protocol" in request.headers: # select a subprotocol client_subprotocols = [ p.strip() for p in request.headers["Sec-Websocket-Protocol"].split(",") ] for p in client_subprotocols: if p in subprotocols: subprotocol = p headers["Sec-Websocket-Protocol"] = subprotocol break # write the 101 response back to the client rv = b"HTTP/1.1 101 Switching Protocols\r\n" for k, v in headers.items(): rv += k.encode("utf-8") + b": " + v.encode("utf-8") + b"\r\n" rv += b"\r\n" request.transport.write(rv) # hook up the websocket protocol self.websocket = WebSocketCommonProtocol( timeout=self.config.ws_timeout, max_size=self.config.ws_max_size, max_queue=self.config.ws_max_queue, read_limit=self.config.ws_read_limit, write_limit=self.config.ws_write_limit, ) self.websocket.subprotocol = subprotocol self.websocket.connection_made(request.transport) self.websocket.connection_open() return self.websocket class ServerState: """ Shared servers state that is available between all protocol instances. """ def __init__(self, total_requests=0, connections=None, tasks=None, default_headers=None): self.total_requests = total_requests self.connections = connections or set() self.tasks = tasks or set() self.default_headers = default_headers or [] class Server(object): def __init__(self, app, config, server_state=None): self.app = app self.config = config self.started = False self.loop = config.loop self.logger = config.logger self.socket = config.socket self.servers = [] self.server_state = server_state or ServerState() self.app.loop = self.loop if self.config.debug: self.loop.set_debug(True) def install_signal_handlers(self): try: for sig in (signal.SIGINT, signal.SIGTERM): self.loop.add_signal_handler(sig, self.loop.stop) except NotImplementedError: self.logger.warning("loop.add_signal_handler not implemented on this platform.") def run(self): protocol = self.config.protocol if protocol is None: protocol = WebSocketProtocol if self.app.is_websocket else HttpProtocol server = functools.partial( protocol, app=self.app, config=self.config, server_state=self.server_state ) asyncio_server_kwargs = ( self.config.asyncio_server_kwargs if self.config.asyncio_server_kwargs else {} ) server_coroutine = self.loop.create_server( server, self.config.host, self.config.port, ssl=self.config.ssl, reuse_port=self.config.reuse_port, sock=self.socket, backlog=self.config.backlog, **asyncio_server_kwargs ) if self.config.run_async: return server_coroutine try: http_server = self.loop.run_until_complete(server_coroutine) except BaseException: self.logger.exception("Unable to start server") return self.install_signal_handlers() pid = os.getpid() try: self.started = True self.servers = [server] self.logger.info("Starting worker [%s]", pid) message = "Server running on http://%s:%d (Press CTRL+C to quit)" self.logger.info(message % (self.config.host, self.config.port)) self.loop.run_forever() finally: self.logger.info("Stopping worker [%s]", pid) # Wait for event loop to finish and all connections to drain http_server.close() self.loop.run_until_complete(http_server.wait_closed()) # Complete all tasks on the loop for connection in self.server_state.connections: connection.shutdown() # Gracefully shutdown timeout. # We should provide graceful_shutdown_timeout, # instead of letting connection hangs forever. # Let's roughly calcucate time. start_shutdown = 0 while self.server_state.connections and ( start_shutdown < self.config.graceful_shutdown_timeout): self.loop.run_until_complete(asyncio.sleep(0.1)) start_shutdown = start_shutdown + 0.1 # Force close non-idle connection after waiting for # graceful_shutdown_timeout coros = [] for conn in self.server_state.connections: if hasattr(conn, "websocket") and conn.websocket: coros.append(conn.websocket.close_connection()) else: conn.close() _shutdown = asyncio.gather(*coros, loop=self.loop) self.loop.run_until_complete(_shutdown) self.loop.close() __all__ = [ "HttpProtocol", "Server", "ServerState" ]
3a49ba44fb6bbc19202f2c2e8b98671ff0f93d14
2337351b228818e41be3002bd38f68f77c2aa074
/inv/migrations/0029_interface_profile_match_label.py
ffd4479b399ab6023755deed3272fdd125509e4e
[ "BSD-3-Clause" ]
permissive
nocproject/noc
57d40c680a1499374463e472434f9595ed6d1374
6e6d71574e9b9d822bec572cc629a0ea73604a59
refs/heads/master
2023-08-31T01:11:33.544573
2023-08-30T17:31:11
2023-08-30T17:31:11
107,815,776
105
33
BSD-3-Clause
2023-07-31T07:57:45
2017-10-21T21:04:33
Python
UTF-8
Python
false
false
3,095
py
0029_interface_profile_match_label.py
# ---------------------------------------------------------------------- # Add InterfaceProfile match label to interfaces # ---------------------------------------------------------------------- # Copyright (C) 2007-2022 The NOC Project # See LICENSE for details # ---------------------------------------------------------------------- # Third-party modules import bson from pymongo import UpdateMany, InsertOne # NOC modules from noc.core.migration.base import BaseMigration class Migration(BaseMigration): depends_on = [("inv", "0021_labels")] def migrate(self): bulk = [] labels = [] labels_bulk = [ InsertOne( { "_id": bson.ObjectId(), "name": "noc::interface_profile::*", "description": "Match Label for InterfaceProfile", "bg_color1": 15105570, "bg_color2": 15965202, "is_protected": False, "propagate": True, } ) ] for ip in self.mongo_db["noc.interface_profiles"].find({}, {"_id": 1, "name": 1}): labels.append(f"noc::interface_profile::{ip['name']}::=") bulk += [ UpdateMany( {"profile": ip["_id"]}, {"$addToSet": {"effective_labels": f"noc::interface_profile::{ip['name']}::="}}, ) ] for ll in labels: labels_bulk += [ InsertOne( { "_id": bson.ObjectId(), "name": ll, "description": "Match Label for InterfaceProfile", "bg_color1": 15105570, "bg_color2": 15965202, "is_protected": False, # Label scope "enable_agent": False, "enable_service": False, "enable_serviceprofile": False, "enable_managedobject": False, "enable_managedobjectprofile": False, "enable_administrativedomain": False, "enable_authprofile": False, "enable_commandsnippet": False, # "enable_allocationgroup": False, "enable_networksegment": False, "enable_object": False, "enable_objectmodel": False, "enable_platform": False, "enable_resourcegroup": False, "enable_sensorprofile": False, # Exposition scope "expose_metric": False, "expose_managedobject": False, } ) ] if bulk: self.mongo_db["noc.interfaces"].bulk_write(bulk) if labels_bulk: self.mongo_db["labels"].bulk_write(labels_bulk)
adc92cccf95dc090c5ebfca098a39c6002184b04
f80ef3a3cf859b13e8af8433af549b6b1043bf6e
/pyobjc-framework-CloudKit/PyObjCTest/test_ckerror.py
e8f579520edb97a5423081da155f90f617d6c47b
[ "MIT" ]
permissive
ronaldoussoren/pyobjc
29dc9ca0af838a56105a9ddd62fb38ec415f0b86
77b98382e52818690449111cd2e23cd469b53cf5
refs/heads/master
2023-09-01T05:15:21.814504
2023-06-13T20:00:17
2023-06-13T20:00:17
243,933,900
439
49
null
2023-06-25T02:49:07
2020-02-29T08:43:12
Python
UTF-8
Python
false
false
3,120
py
test_ckerror.py
from PyObjCTools.TestSupport import TestCase, min_os_level import CloudKit class TestCKError(TestCase): def test_enum_types(self): self.assertIsEnumType(CloudKit.CKErrorCode) @min_os_level("10.10") def testConstants(self): self.assertIsInstance(CloudKit.CKErrorDomain, str) self.assertIsInstance(CloudKit.CKPartialErrorsByItemIDKey, str) self.assertIsInstance(CloudKit.CKRecordChangedErrorAncestorRecordKey, str) self.assertIsInstance(CloudKit.CKRecordChangedErrorServerRecordKey, str) self.assertIsInstance(CloudKit.CKRecordChangedErrorClientRecordKey, str) self.assertIsInstance(CloudKit.CKErrorRetryAfterKey, str) self.assertEqual(CloudKit.CKErrorInternalError, 1) self.assertEqual(CloudKit.CKErrorPartialFailure, 2) self.assertEqual(CloudKit.CKErrorNetworkUnavailable, 3) self.assertEqual(CloudKit.CKErrorNetworkFailure, 4) self.assertEqual(CloudKit.CKErrorBadContainer, 5) self.assertEqual(CloudKit.CKErrorServiceUnavailable, 6) self.assertEqual(CloudKit.CKErrorRequestRateLimited, 7) self.assertEqual(CloudKit.CKErrorMissingEntitlement, 8) self.assertEqual(CloudKit.CKErrorNotAuthenticated, 9) self.assertEqual(CloudKit.CKErrorPermissionFailure, 10) self.assertEqual(CloudKit.CKErrorUnknownItem, 11) self.assertEqual(CloudKit.CKErrorInvalidArguments, 12) self.assertEqual(CloudKit.CKErrorResultsTruncated, 13) self.assertEqual(CloudKit.CKErrorServerRecordChanged, 14) self.assertEqual(CloudKit.CKErrorServerRejectedRequest, 15) self.assertEqual(CloudKit.CKErrorAssetFileNotFound, 16) self.assertEqual(CloudKit.CKErrorAssetFileModified, 17) self.assertEqual(CloudKit.CKErrorIncompatibleVersion, 18) self.assertEqual(CloudKit.CKErrorConstraintViolation, 19) self.assertEqual(CloudKit.CKErrorOperationCancelled, 20) self.assertEqual(CloudKit.CKErrorChangeTokenExpired, 21) self.assertEqual(CloudKit.CKErrorBatchRequestFailed, 22) self.assertEqual(CloudKit.CKErrorZoneBusy, 23) self.assertEqual(CloudKit.CKErrorBadDatabase, 24) self.assertEqual(CloudKit.CKErrorQuotaExceeded, 25) self.assertEqual(CloudKit.CKErrorZoneNotFound, 26) self.assertEqual(CloudKit.CKErrorLimitExceeded, 27) self.assertEqual(CloudKit.CKErrorUserDeletedZone, 28) self.assertEqual(CloudKit.CKErrorTooManyParticipants, 29) self.assertEqual(CloudKit.CKErrorAlreadyShared, 30) self.assertEqual(CloudKit.CKErrorReferenceViolation, 31) self.assertEqual(CloudKit.CKErrorManagedAccountRestricted, 32) self.assertEqual(CloudKit.CKErrorParticipantMayNeedVerification, 33) self.assertEqual(CloudKit.CKErrorServerResponseLost, 34) self.assertEqual(CloudKit.CKErrorAssetNotAvailable, 35) self.assertEqual(CloudKit.CKErrorAccountTemporarilyUnavailable, 36) @min_os_level("12.0") def testConstants12_0(self): self.assertIsInstance(CloudKit.CKErrorUserDidResetEncryptedDataKey, str)
401f6ea62f9ea281afde1c4fc33bece1280f2d77
fbbe424559f64e9a94116a07eaaa555a01b0a7bb
/H2O/ArchiveH2O/future/tests/base.py
9f4607b691501b83cb36bc92e9fc7d66b049b85f
[ "MIT" ]
permissive
ryfeus/lambda-packs
6544adb4dec19b8e71d75c24d8ed789b785b0369
cabf6e4f1970dc14302f87414f170de19944bac2
refs/heads/master
2022-12-07T16:18:52.475504
2022-11-29T13:35:35
2022-11-29T13:35:35
71,386,735
1,283
263
MIT
2022-11-26T05:02:14
2016-10-19T18:22:39
Python
UTF-8
Python
false
false
19,706
py
base.py
from __future__ import print_function, absolute_import import os import tempfile import unittest import sys import re import warnings import io from textwrap import dedent from future.utils import bind_method, PY26, PY3, PY2, PY27 from future.moves.subprocess import check_output, STDOUT, CalledProcessError if PY26: import unittest2 as unittest def reformat_code(code): """ Removes any leading \n and dedents. """ if code.startswith('\n'): code = code[1:] return dedent(code) def order_future_lines(code): """ Returns the code block with any ``__future__`` import lines sorted, and then any ``future`` import lines sorted, then any ``builtins`` import lines sorted. This only sorts the lines within the expected blocks. See test_order_future_lines() for an example. """ # We need .splitlines(keepends=True), which doesn't exist on Py2, # so we use this instead: lines = code.split('\n') uufuture_line_numbers = [i for i, line in enumerate(lines) if line.startswith('from __future__ import ')] future_line_numbers = [i for i, line in enumerate(lines) if line.startswith('from future') or line.startswith('from past')] builtins_line_numbers = [i for i, line in enumerate(lines) if line.startswith('from builtins')] assert code.lstrip() == code, ('internal usage error: ' 'dedent the code before calling order_future_lines()') def mymax(numbers): return max(numbers) if len(numbers) > 0 else 0 def mymin(numbers): return min(numbers) if len(numbers) > 0 else float('inf') assert mymax(uufuture_line_numbers) <= mymin(future_line_numbers), \ 'the __future__ and future imports are out of order' # assert mymax(future_line_numbers) <= mymin(builtins_line_numbers), \ # 'the future and builtins imports are out of order' uul = sorted([lines[i] for i in uufuture_line_numbers]) sorted_uufuture_lines = dict(zip(uufuture_line_numbers, uul)) fl = sorted([lines[i] for i in future_line_numbers]) sorted_future_lines = dict(zip(future_line_numbers, fl)) bl = sorted([lines[i] for i in builtins_line_numbers]) sorted_builtins_lines = dict(zip(builtins_line_numbers, bl)) # Replace the old unsorted "from __future__ import ..." lines with the # new sorted ones: new_lines = [] for i in range(len(lines)): if i in uufuture_line_numbers: new_lines.append(sorted_uufuture_lines[i]) elif i in future_line_numbers: new_lines.append(sorted_future_lines[i]) elif i in builtins_line_numbers: new_lines.append(sorted_builtins_lines[i]) else: new_lines.append(lines[i]) return '\n'.join(new_lines) class VerboseCalledProcessError(CalledProcessError): """ Like CalledProcessError, but it displays more information (message and script output) for diagnosing test failures etc. """ def __init__(self, msg, returncode, cmd, output=None): self.msg = msg self.returncode = returncode self.cmd = cmd self.output = output def __str__(self): return ("Command '%s' failed with exit status %d\nMessage: %s\nOutput: %s" % (self.cmd, self.returncode, self.msg, self.output)) class FuturizeError(VerboseCalledProcessError): pass class PasteurizeError(VerboseCalledProcessError): pass class CodeHandler(unittest.TestCase): """ Handy mixin for test classes for writing / reading / futurizing / running .py files in the test suite. """ def setUp(self): """ The outputs from the various futurize stages should have the following headers: """ # After stage1: # TODO: use this form after implementing a fixer to consolidate # __future__ imports into a single line: # self.headers1 = """ # from __future__ import absolute_import, division, print_function # """ self.headers1 = reformat_code(""" from __future__ import absolute_import from __future__ import division from __future__ import print_function """) # After stage2 --all-imports: # TODO: use this form after implementing a fixer to consolidate # __future__ imports into a single line: # self.headers2 = """ # from __future__ import (absolute_import, division, # print_function, unicode_literals) # from future import standard_library # from future.builtins import * # """ self.headers2 = reformat_code(""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from future import standard_library standard_library.install_aliases() from builtins import * """) self.interpreters = [sys.executable] self.tempdir = tempfile.mkdtemp() + os.path.sep pypath = os.getenv('PYTHONPATH') if pypath: self.env = {'PYTHONPATH': os.getcwd() + os.pathsep + pypath} else: self.env = {'PYTHONPATH': os.getcwd()} def convert(self, code, stages=(1, 2), all_imports=False, from3=False, reformat=True, run=True, conservative=False): """ Converts the code block using ``futurize`` and returns the resulting code. Passing stages=[1] or stages=[2] passes the flag ``--stage1`` or ``stage2`` to ``futurize``. Passing both stages runs ``futurize`` with both stages by default. If from3 is False, runs ``futurize``, converting from Python 2 to both 2 and 3. If from3 is True, runs ``pasteurize`` to convert from Python 3 to both 2 and 3. Optionally reformats the code block first using the reformat() function. If run is True, runs the resulting code under all Python interpreters in self.interpreters. """ if reformat: code = reformat_code(code) self._write_test_script(code) self._futurize_test_script(stages=stages, all_imports=all_imports, from3=from3, conservative=conservative) output = self._read_test_script() if run: for interpreter in self.interpreters: _ = self._run_test_script(interpreter=interpreter) return output def compare(self, output, expected, ignore_imports=True): """ Compares whether the code blocks are equal. If not, raises an exception so the test fails. Ignores any trailing whitespace like blank lines. If ignore_imports is True, passes the code blocks into the strip_future_imports method. If one code block is a unicode string and the other a byte-string, it assumes the byte-string is encoded as utf-8. """ if ignore_imports: output = self.strip_future_imports(output) expected = self.strip_future_imports(expected) if isinstance(output, bytes) and not isinstance(expected, bytes): output = output.decode('utf-8') if isinstance(expected, bytes) and not isinstance(output, bytes): expected = expected.decode('utf-8') self.assertEqual(order_future_lines(output.rstrip()), expected.rstrip()) def strip_future_imports(self, code): """ Strips any of these import lines: from __future__ import <anything> from future <anything> from future.<anything> from builtins <anything> or any line containing: install_hooks() or: install_aliases() Limitation: doesn't handle imports split across multiple lines like this: from __future__ import (absolute_import, division, print_function, unicode_literals) """ output = [] # We need .splitlines(keepends=True), which doesn't exist on Py2, # so we use this instead: for line in code.split('\n'): if not (line.startswith('from __future__ import ') or line.startswith('from future ') or line.startswith('from builtins ') or 'install_hooks()' in line or 'install_aliases()' in line # but don't match "from future_builtins" :) or line.startswith('from future.')): output.append(line) return '\n'.join(output) def convert_check(self, before, expected, stages=(1, 2), all_imports=False, ignore_imports=True, from3=False, run=True, conservative=False): """ Convenience method that calls convert() and compare(). Reformats the code blocks automatically using the reformat_code() function. If all_imports is passed, we add the appropriate import headers for the stage(s) selected to the ``expected`` code-block, so they needn't appear repeatedly in the test code. If ignore_imports is True, ignores the presence of any lines beginning: from __future__ import ... from future import ... for the purpose of the comparison. """ output = self.convert(before, stages=stages, all_imports=all_imports, from3=from3, run=run, conservative=conservative) if all_imports: headers = self.headers2 if 2 in stages else self.headers1 else: headers = '' self.compare(output, headers + reformat_code(expected), ignore_imports=ignore_imports) def unchanged(self, code, **kwargs): """ Convenience method to ensure the code is unchanged by the futurize process. """ self.convert_check(code, code, **kwargs) def _write_test_script(self, code, filename='mytestscript.py'): """ Dedents the given code (a multiline string) and writes it out to a file in a temporary folder like /tmp/tmpUDCn7x/mytestscript.py. """ if isinstance(code, bytes): code = code.decode('utf-8') # Be explicit about encoding the temp file as UTF-8 (issue #63): with io.open(self.tempdir + filename, 'wt', encoding='utf-8') as f: f.write(dedent(code)) def _read_test_script(self, filename='mytestscript.py'): with io.open(self.tempdir + filename, 'rt', encoding='utf-8') as f: newsource = f.read() return newsource def _futurize_test_script(self, filename='mytestscript.py', stages=(1, 2), all_imports=False, from3=False, conservative=False): params = [] stages = list(stages) if all_imports: params.append('--all-imports') if from3: script = 'pasteurize.py' else: script = 'futurize.py' if stages == [1]: params.append('--stage1') elif stages == [2]: params.append('--stage2') else: assert stages == [1, 2] if conservative: params.append('--conservative') # No extra params needed # Absolute file path: fn = self.tempdir + filename call_args = [sys.executable, script] + params + ['-w', fn] try: output = check_output(call_args, stderr=STDOUT, env=self.env) except CalledProcessError as e: with open(fn) as f: msg = ( 'Error running the command %s\n' '%s\n' 'Contents of file %s:\n' '\n' '%s') % ( ' '.join(call_args), 'env=%s' % self.env, fn, '----\n%s\n----' % f.read(), ) ErrorClass = (FuturizeError if 'futurize' in script else PasteurizeError) raise ErrorClass(msg, e.returncode, e.cmd, output=e.output) return output def _run_test_script(self, filename='mytestscript.py', interpreter=sys.executable): # Absolute file path: fn = self.tempdir + filename try: output = check_output([interpreter, fn], env=self.env, stderr=STDOUT) except CalledProcessError as e: with open(fn) as f: msg = ( 'Error running the command %s\n' '%s\n' 'Contents of file %s:\n' '\n' '%s') % ( ' '.join([interpreter, fn]), 'env=%s' % self.env, fn, '----\n%s\n----' % f.read(), ) if not hasattr(e, 'output'): # The attribute CalledProcessError.output doesn't exist on Py2.6 e.output = None raise VerboseCalledProcessError(msg, e.returncode, e.cmd, output=e.output) return output # Decorator to skip some tests on Python 2.6 ... skip26 = unittest.skipIf(PY26, "this test is known to fail on Py2.6") def expectedFailurePY3(func): if not PY3: return func return unittest.expectedFailure(func) def expectedFailurePY26(func): if not PY26: return func return unittest.expectedFailure(func) def expectedFailurePY27(func): if not PY27: return func return unittest.expectedFailure(func) def expectedFailurePY2(func): if not PY2: return func return unittest.expectedFailure(func) # Renamed in Py3.3: if not hasattr(unittest.TestCase, 'assertRaisesRegex'): unittest.TestCase.assertRaisesRegex = unittest.TestCase.assertRaisesRegexp # From Py3.3: def assertRegex(self, text, expected_regex, msg=None): """Fail the test unless the text matches the regular expression.""" if isinstance(expected_regex, (str, unicode)): assert expected_regex, "expected_regex must not be empty." expected_regex = re.compile(expected_regex) if not expected_regex.search(text): msg = msg or "Regex didn't match" msg = '%s: %r not found in %r' % (msg, expected_regex.pattern, text) raise self.failureException(msg) if not hasattr(unittest.TestCase, 'assertRegex'): bind_method(unittest.TestCase, 'assertRegex', assertRegex) class _AssertRaisesBaseContext(object): def __init__(self, expected, test_case, callable_obj=None, expected_regex=None): self.expected = expected self.test_case = test_case if callable_obj is not None: try: self.obj_name = callable_obj.__name__ except AttributeError: self.obj_name = str(callable_obj) else: self.obj_name = None if isinstance(expected_regex, (bytes, str)): expected_regex = re.compile(expected_regex) self.expected_regex = expected_regex self.msg = None def _raiseFailure(self, standardMsg): msg = self.test_case._formatMessage(self.msg, standardMsg) raise self.test_case.failureException(msg) def handle(self, name, callable_obj, args, kwargs): """ If callable_obj is None, assertRaises/Warns is being used as a context manager, so check for a 'msg' kwarg and return self. If callable_obj is not None, call it passing args and kwargs. """ if callable_obj is None: self.msg = kwargs.pop('msg', None) return self with self: callable_obj(*args, **kwargs) class _AssertWarnsContext(_AssertRaisesBaseContext): """A context manager used to implement TestCase.assertWarns* methods.""" def __enter__(self): # The __warningregistry__'s need to be in a pristine state for tests # to work properly. for v in sys.modules.values(): if getattr(v, '__warningregistry__', None): v.__warningregistry__ = {} self.warnings_manager = warnings.catch_warnings(record=True) self.warnings = self.warnings_manager.__enter__() warnings.simplefilter("always", self.expected) return self def __exit__(self, exc_type, exc_value, tb): self.warnings_manager.__exit__(exc_type, exc_value, tb) if exc_type is not None: # let unexpected exceptions pass through return try: exc_name = self.expected.__name__ except AttributeError: exc_name = str(self.expected) first_matching = None for m in self.warnings: w = m.message if not isinstance(w, self.expected): continue if first_matching is None: first_matching = w if (self.expected_regex is not None and not self.expected_regex.search(str(w))): continue # store warning for later retrieval self.warning = w self.filename = m.filename self.lineno = m.lineno return # Now we simply try to choose a helpful failure message if first_matching is not None: self._raiseFailure('"{}" does not match "{}"'.format( self.expected_regex.pattern, str(first_matching))) if self.obj_name: self._raiseFailure("{} not triggered by {}".format(exc_name, self.obj_name)) else: self._raiseFailure("{} not triggered".format(exc_name)) def assertWarns(self, expected_warning, callable_obj=None, *args, **kwargs): """Fail unless a warning of class warnClass is triggered by callable_obj when invoked with arguments args and keyword arguments kwargs. If a different type of warning is triggered, it will not be handled: depending on the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception. If called with callable_obj omitted or None, will return a context object used like this:: with self.assertWarns(SomeWarning): do_something() An optional keyword argument 'msg' can be provided when assertWarns is used as a context object. The context manager keeps a reference to the first matching warning as the 'warning' attribute; similarly, the 'filename' and 'lineno' attributes give you information about the line of Python code from which the warning was triggered. This allows you to inspect the warning after the assertion:: with self.assertWarns(SomeWarning) as cm: do_something() the_warning = cm.warning self.assertEqual(the_warning.some_attribute, 147) """ context = _AssertWarnsContext(expected_warning, self, callable_obj) return context.handle('assertWarns', callable_obj, args, kwargs) if not hasattr(unittest.TestCase, 'assertWarns'): bind_method(unittest.TestCase, 'assertWarns', assertWarns)
47436d3a5d300f28cdca3d7d9d9168b7cb8b6110
0760fb4901a75766921a205b55686d6d6f049b30
/python/ray/serve/tests/test_autoscaling_metrics.py
36046cb88474e2816040dd122c2cb7de4d0abfaf
[ "MIT", "BSD-3-Clause", "Apache-2.0" ]
permissive
ray-project/ray
a4bb6940b08b59a61ef0b8e755a52d8563a2f867
edba68c3e7cf255d1d6479329f305adb7fa4c3ed
refs/heads/master
2023-08-31T03:36:48.164405
2023-08-31T03:20:38
2023-08-31T03:20:38
71,932,349
29,482
5,669
Apache-2.0
2023-09-14T21:48:14
2016-10-25T19:38:30
Python
UTF-8
Python
false
false
5,146
py
test_autoscaling_metrics.py
import time import ray from ray import serve from ray._private.test_utils import wait_for_condition from ray.serve._private.autoscaling_metrics import InMemoryMetricsStore from ray.serve._private.common import ReplicaState, DeploymentID class TestInMemoryMetricsStore: def test_basics(self): s = InMemoryMetricsStore() s.add_metrics_point({"m1": 1}, timestamp=1) s.add_metrics_point({"m1": 2}, timestamp=2) assert s.window_average("m1", window_start_timestamp_s=0) == 1.5 assert s.max("m1", window_start_timestamp_s=0) == 2 def test_out_of_order_insert(self): s = InMemoryMetricsStore() s.add_metrics_point({"m1": 1}, timestamp=1) s.add_metrics_point({"m1": 5}, timestamp=5) s.add_metrics_point({"m1": 3}, timestamp=3) s.add_metrics_point({"m1": 2}, timestamp=2) s.add_metrics_point({"m1": 4}, timestamp=4) assert s.window_average("m1", window_start_timestamp_s=0) == 3 assert s.max("m1", window_start_timestamp_s=0) == 5 def test_window_start_timestamp(self): s = InMemoryMetricsStore() assert s.window_average("m1", window_start_timestamp_s=0) is None assert s.max("m1", window_start_timestamp_s=0) is None s.add_metrics_point({"m1": 1}, timestamp=2) assert s.window_average("m1", window_start_timestamp_s=0) == 1 assert ( s.window_average("m1", window_start_timestamp_s=10, do_compact=False) is None ) def test_compaction_window(self): s = InMemoryMetricsStore() s.add_metrics_point({"m1": 1}, timestamp=1) s.add_metrics_point({"m1": 2}, timestamp=2) assert ( s.window_average("m1", window_start_timestamp_s=0, do_compact=False) == 1.5 ) s.window_average("m1", window_start_timestamp_s=1.1, do_compact=True) # First record should be removed. assert s.window_average("m1", window_start_timestamp_s=0, do_compact=False) == 2 def test_compaction_max(self): s = InMemoryMetricsStore() s.add_metrics_point({"m1": 1}, timestamp=2) s.add_metrics_point({"m1": 2}, timestamp=1) assert s.max("m1", window_start_timestamp_s=0, do_compact=False) == 2 s.window_average("m1", window_start_timestamp_s=1.1, do_compact=True) assert s.window_average("m1", window_start_timestamp_s=0, do_compact=False) == 1 def test_multiple_metrics(self): s = InMemoryMetricsStore() s.add_metrics_point({"m1": 1, "m2": -1}, timestamp=1) s.add_metrics_point({"m1": 2, "m2": -2}, timestamp=2) assert s.window_average("m1", window_start_timestamp_s=0) == 1.5 assert s.max("m1", window_start_timestamp_s=0) == 2 assert s.max("m2", window_start_timestamp_s=0) == -1 def test_e2e(serve_instance): @serve.deployment( autoscaling_config={ "metrics_interval_s": 0.1, "min_replicas": 1, "max_replicas": 2, "target_num_ongoing_requests_per_replica": 1, "upscale_delay_s": 0, "downscale_delay_s": 0, "look_back_period_s": 1, }, # We will send over a lot of queries. This will make sure replicas are # killed quickly during cleanup. graceful_shutdown_timeout_s=1, max_concurrent_queries=25, version="v1", ) class A: def __call__(self): time.sleep(0.1) handle = serve.run(A.bind()) dep_id = DeploymentID("A", "default") [handle.remote() for _ in range(50)] # Wait for metrics to propagate def get_data(): data = ray.get( serve_instance._controller._dump_autoscaling_metrics_for_testing.remote() )[dep_id] print(data) return data wait_for_condition(lambda: len(get_data()) > 0) print("Autoscaling metrics started recording on controller.") # Many queries should be inflight. def last_timestamp_value_high(): data = get_data() metrics = list(data.values()) assert len(metrics) == 2 assert metrics[0] > 0 and metrics[1] > 0 assert sum(metrics) > 25 return True wait_for_condition(last_timestamp_value_high) print("Confirmed there are metrics from 2 replicas, and many queries are inflight.") def check_running_replicas(expected): replicas = ray.get( serve_instance._controller._dump_replica_states_for_testing.remote(dep_id) ) running_replicas = replicas.get([ReplicaState.RUNNING]) assert len(running_replicas) == expected return True # After traffic stops, num replica should drop to 1 wait_for_condition(check_running_replicas, expected=1, timeout=15) print("Num replicas dropped to 1.") # The metrics stored on controller should only have info on the remaining replica wait_for_condition(lambda: len(get_data()) == 1) print("Metrics stored on the controller reduced to 1 replica.") if __name__ == "__main__": import sys import pytest sys.exit(pytest.main(["-v", "-s", __file__]))
48f3fc913720773338a5653f8ccea3792d64640a
a5a99f646e371b45974a6fb6ccc06b0a674818f2
/CondFormats/EcalObjects/test/fillEcalTimeCorrections_cfg.py
1b0750739387989796a693a56397b84833f3dee4
[ "Apache-2.0" ]
permissive
cms-sw/cmssw
4ecd2c1105d59c66d385551230542c6615b9ab58
19c178740257eb48367778593da55dcad08b7a4f
refs/heads/master
2023-08-23T21:57:42.491143
2023-08-22T20:22:40
2023-08-22T20:22:40
10,969,551
1,006
3,696
Apache-2.0
2023-09-14T19:14:28
2013-06-26T14:09:07
C++
UTF-8
Python
false
false
3,083
py
fillEcalTimeCorrections_cfg.py
import FWCore.ParameterSet.Config as cms process = cms.Process("InitialData") process.load("CondCore.DBCommon.CondDBCommon_cfi") process.CondDBCommon.connect = 'sqlite_file:/tmp/ecal_timebias_corrections.db' process.source = cms.Source("EmptyIOVSource", lastValue = cms.uint64(1), timetype = cms.string('runnumber'), firstValue = cms.uint64(1), interval = cms.uint64(1) ) process.PoolDBOutputService = cms.Service("PoolDBOutputService", process.CondDBCommon, timetype = cms.untracked.string('runnumber'), toPut = cms.VPSet(cms.PSet( record = cms.string('EcalTimeBiasCorrectionsRcd'), tag = cms.string('initial') )) ) process.timebias = cms.EDAnalyzer("EcalTimeBiasCorrectionsFillInitial", EBtimeCorrAmplitudeBins = cms.vdouble( 7.9, 8.9, 10, 11.2, 12.5, 14.1, 15.8, 17.7, 19.9, 22.3, 25, 28.1, 31.5, 35.3, 39.7, 44.5, 49.9, 56, 62.8, 70.5, 79.1, 88.8, 99.6, 111.7, 125.4, 140.7, 157.9, 177.1, 198.7, 223, 250.2, 280.7, 315, 353.4, 396.5, 444.9, 499.2, 560.1, 628.4, 705.1, 791.1, 887.7, 996, 1117.5, 1253.9, 1406.8, 1578.5, 1771.1, 1987.2, 2229.7, 2501.8, 2807, 3149.5, 3533.8, 3895.9, 3896, 4311.8, 4837.9, 5428.2, 6090.6, 6833.7, 7667.5, 8603.1, 9652.9, 10830, 12152, 13635, 15298, 17165, 19260, 21610), EBtimeCorrShiftBins = cms.vdouble( -1.770, -1.770, -1.770, -1.770, -1.666, -1.430, -1.233, -1.012, -0.866, -0.736, -0.640, -0.561, -0.505, -0.452, -0.405, -0.363, -0.335, -0.305, -0.279, -0.260, -0.239, -0.220, -0.204, -0.191, -0.186, -0.177, -0.158, -0.137, -0.126, -0.115, -0.104, -0.096, -0.085, -0.064, -0.056, -0.036, -0.020, -0.006, -0.020, -0.009, -0.020, 0.005, 0.053, 0.076, 0.093, 0.137, 0.143, 0.171, 0.222, 0.229, 0.271, 0.298, 0.312, 0.307, 0.254 , -0.997 ,-0.859 , -0.819, -0.775, -0.589, -0.428, -0.288, -0.434, -0.277, -0.210, -0.179, -0.134, 0.362, 0.152, -0.282, -0.382), EEtimeCorrAmplitudeBins = cms.vdouble( 15.7, 17.6, 19.7, 22.1, 24.8, 27.9, 31.3, 35.1, 39.4, 44.2, 49.6, 55.6, 62.4, 70, 78.6, 88.1, 98.9, 111, 124.5, 139.7, 156.7, 175.9, 197.3, 221.4, 248.4, 278.7, 312.7, 350.9, 393.7, 441.7, 495.6, 556.1, 624, 700.1, 785.5, 881.4, 988.9, 1109.6, 1245, 1396.9, 1567.3, 1758.6, 1973.1, 2213.9, 2484, 2787.1, 3127.2, 3508.8, 3936.9, 4417.3, 4956.3, 5561.1, 6239.6, 7001, 7522.8, 8440.7, 9470.6, 10626), EEtimeCorrShiftBins = cms.vdouble( -0.896, -0.896, -0.896, -0.896, -0.563, -0.392, -0.287, -0.203, -0.135, -0.100, -0.068, -0.050, -0.060, -0.052, -0.055, -0.050, -0.052, -0.056, -0.055, -0.056, -0.048, -0.037, -0.038, -0.037, -0.025, -0.026, -0.024, -0.013, -0.003, 0.005, 0.020, 0.026, 0.008, 0.007, -0.006, 0.024, 0.045, 0.062, 0.085, 0.088 , 0.111 , 0.139, 0.156, 0.176, 0.210, 0.242, 0.267, 0.301, 0.318, 0.278, 0.287, 0.218, 0.305, 0.245, 0.184, -0.159, -0.095, 0.037), ) process.p = cms.Path(process.timebias)
627ef439da49e942b663fdecccd3beb825aae6ef
0a9ef5c24d912ab52b9a80ed97b5bb1240f6369e
/lastversion/utils.py
116cb3fba33d7c92bbc2c5e6a812fea7c9ab1b7b
[ "GPL-1.0-or-later", "BSD-2-Clause" ]
permissive
dvershinin/lastversion
797e7e7f548d61fc3f3e43e0b383049d409ff58a
e300d10d40c637fb0c405cb43926721f3048fbc4
refs/heads/master
2023-08-15T09:28:23.209254
2023-07-15T13:00:38
2023-07-15T13:00:38
187,117,077
312
34
BSD-2-Clause
2023-02-24T04:57:00
2019-05-17T00:00:09
Python
UTF-8
Python
false
false
10,860
py
utils.py
import io import logging import os import platform import re import sys import tarfile import errno import distro import requests import tqdm from six.moves import urllib log = logging.getLogger(__name__) class ApiCredentialsError(Exception): """Raised when there's an API error related to credentials""" class BadProjectError(Exception): """Raised when no such project exists""" # matches os.name to known extensions that are meant *mostly* to run on it, and not other os.name-s os_extensions = { 'nt': ('.exe', '.msi', '.msi.asc', '.msi.sha256'), 'posix': ('.tgz', '.tar.gz') } extension_distros = { 'deb': ['ubuntu', 'debian'], 'rpm': ['rhel', 'centos', 'fedora', 'amazon', 'cloudlinux'], 'apk': ['alpine'], 'dmg': ['darwin'] } # matches *start* of sys.platform value to words in asset name platform_markers = { 'win': ['windows', 'win'], 'linux': ['linux'], 'darwin': ['osx', 'darwin'], 'freebsd': ['freebsd', 'netbsd', 'openbsd'] } # this is all too simple for now non_amd64_markers = ['i386', 'i686', 'arm', 'arm64', '386', 'ppc64', 'armv7', 'armv7l', 'mips64', 'ppc64', 'mips64le', 'ppc64le', 'aarch64', 'armhf', 'armv7hl'] def asset_does_not_belong_to_machine(asset): """ Checks whether a given asset name is likely unusable on this machine An asset belongs to machine as long as this returns False :param asset: :type asset: str :return: :rtype: """ # replace underscore with dash so that our shiny word boundary regexes won't break asset = asset.replace('_', '-') # bail if asset's extension "belongs" to other OS-es (simple) for os_name, ext in os_extensions.items(): if os.name != os_name and asset.endswith(ext): return True for pf, pf_words in platform_markers.items(): if not sys.platform.startswith(pf): for pfWord in pf_words: r = re.compile(r'\b{}(\d+)?\b'.format(pfWord), flags=re.IGNORECASE) matches = r.search(asset) if matches: return True if sys.platform.startswith('linux'): # Weeding out non-matching Linux distros for ext, ext_distros in extension_distros.items(): if asset.endswith("." + ext) and distro.id() not in ext_distros: return True # weed out non-64 bit stuff from x86_64 bit OS # caution: may be false positive with 32 bit Python on 64-bit OS if platform.machine() in ['x86_64', 'AMD64']: for non_amd64_word in non_amd64_markers: r = re.compile(r'\b{}\b'.format(non_amd64_word), flags=re.IGNORECASE) if r.search(asset): return True r = re.compile(r'\barm\d+\b', flags=re.IGNORECASE) if r.search(asset): return True return False # monkey patching older requests library's response class, so it can use context manager # https://github.com/psf/requests/issues/4136 def requests_response_patched_enter(self): return self # noinspection PyUnusedLocal def requests_response_patched_exit(self, *args): self.close() if not hasattr(requests.Response, '__exit__'): requests.Response.__enter__ = requests_response_patched_enter requests.Response.__exit__ = requests_response_patched_exit def extract_appimage_desktop_file(appimage_path): """Extracts the desktop file from an AppImage Args: appimage_path (str): Path to the AppImage Returns: str: Path to the extracted desktop file """ import shutil import subprocess import tempfile temp_dir = tempfile.mkdtemp() # Extract the contents of the AppImage file to a temporary directory subprocess.call([appimage_path, "--appimage-extract"], cwd=temp_dir) # Search the temporary directory for the .desktop file desktop_file = None for root, dirs, files in os.walk(temp_dir): for file in files: if file.endswith(".desktop"): desktop_file = os.path.join(root, file) break if desktop_file: break # Copy the .desktop file to the current directory if desktop_file: shutil.copy(desktop_file, ".") # Remove the temporary directory shutil.rmtree(temp_dir) def get_content_disposition_filename(response): """Get the preferred filename from the `Content-Disposition` header. Examples: `attachment; filename="emulationstation-de-2.0.0-x64.deb"; filename*=UTF-8''emulationstation-de-2.0.0-x64.deb` """ filename = None content_disp = response.headers.get('content-disposition') if not content_disp or not content_disp.startswith('attachment;'): return None for m in re.finditer(r"filename(?P<priority>\*)?=((?P<encoding>[\S-]+)'')?(?P<filename>[^;]*)", content_disp): filename = m.group('filename') encoding = m.group('encoding') if encoding: filename = urllib.parse.unquote(filename) filename = filename.encode(encoding).decode('utf-8') if m.group('priority'): break return filename def download_file(url, local_filename=None): """Download a URL to the given filename. Args: url (str): URL to download from local_filename (:obj:`str`, optional): Destination filename Defaults to current directory plus base name of the URL. Returns: str: Destination filename, on success """ if local_filename is None: local_filename = url.split('/')[-1] try: # NOTE the stream=True parameter below with requests.get(url, stream=True) as r: r.raise_for_status() if '.' not in local_filename and 'Content-Disposition' in r.headers: disp_filename = get_content_disposition_filename(r) if disp_filename: local_filename = disp_filename # content-length may be empty, default to 0 file_size = int(r.headers.get('Content-Length', 0)) bar_size = 1024 # fetch 8 KB at a time chunk_size = 8192 # how many bars are there in a chunk? chunk_bar_size = chunk_size / bar_size # bars are by KB num_bars = int(file_size / bar_size) # noinspection PyTypeChecker pbar = tqdm.tqdm( disable=None, # disable on non-TTY total=num_bars, unit='KB', desc='Downloading {}'.format(local_filename), leave=True # progressbar stays ) with open(local_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=chunk_size): if chunk: # filter out keep-alive new chunks f.write(chunk) # we fetch 8 KB, so we update progress by +8x pbar.update(chunk_bar_size) pbar.set_description('Downloaded {}'.format(local_filename)) pbar.close() except KeyboardInterrupt: pbar.close() os.remove(local_filename) log.warning('Cancelled') sys.exit(1) return local_filename def is_within_directory(directory, target): abs_directory = os.path.abspath(directory) abs_target = os.path.abspath(target) prefix = os.path.commonprefix([abs_directory, abs_target]) return prefix == abs_directory def safe_extract(tar, path=".", members=None): """Safe extract .tar.gz to workaround CVE-2007-4559. CVE-2007-4559 Args: tar (): path (): members (): """ for member in tar.getmembers(): member_path = os.path.join(path, member.name) if not is_within_directory(path, member_path): raise Exception("Attempted Path Traversal in Tar File") tar.extractall(path, members) def extract_file(url): """Extract an archive while stripping the top level dir.""" smart_members = [] try: with requests.get(url, stream=True) as r: r.raise_for_status() # Download the file in chunks and save it to a memory buffer # content-length may be empty, default to 0 file_size = int(r.headers.get('Content-Length', 0)) bar_size = 1024 # fetch 8 KB at a time chunk_size = 8192 # how many bars are there in a chunk? chunk_bar_size = chunk_size / bar_size # bars are by KB num_bars = int(file_size / bar_size) buffer = io.BytesIO() # noinspection PyTypeChecker with tqdm.tqdm( disable=None, # disable on non-TTY total=num_bars, unit='KB', desc=url.split('/')[-1] ) as pbar: for chunk in r.iter_content(chunk_size=chunk_size): if chunk: buffer.write(chunk) pbar.update(chunk_bar_size) # Process the file in memory (e.g. extract its contents) buffer.seek(0) # Process the buffer (e.g. extract its contents) mode = 'r:gz' if url.endswith('.tar.xz'): mode = 'r:xz' with tarfile.open(fileobj=buffer, mode=mode) as tar_file: all_members = tar_file.getmembers() if not all_members: log.critical('No or not an archive') root_dir = all_members[0].path root_dir_with_slash_len = len(root_dir) + 1 for member in tar_file.getmembers(): if member.path.startswith(root_dir + "/"): member.path = member.path[root_dir_with_slash_len:] smart_members.append(member) safe_extract(tar_file, members=smart_members) except KeyboardInterrupt: pbar.close() log.warning('Cancelled') sys.exit(1) def rpm_installed_version(name): """Get the installed version of a package with the given name. Args: name (str): Package name Returns: string: Version of the installed packaged, or None """ try: import rpm except ImportError: return False ts = rpm.TransactionSet() mi = ts.dbMatch('name', name) if mi: for h in mi: return h['version'] return None def ensure_directory_exists(directory_path): """ Ensure that the given directory exists. Workaround for `exist_ok=True` not being available in Python 2.7. Args: directory_path (str): Returns: """ try: os.makedirs(directory_path) except OSError as e: if e.errno != errno.EEXIST: raise
ebd0ac700d0192cdab1a0208848457c9cbaa8477
cf35a104dabc3d3647df66aff9db32d18b002e1b
/alternative_wmiircs/python/pyxp/fields.py
c7f0d617528c6fdce9ce25c3455b1dbe9a3f9f7a
[ "MIT" ]
permissive
0intro/wmii
ba2dff4be1a049c7d4475218a914585a3f810ab5
024f29d1058b58aa4ee6b956500a78f69355fb53
refs/heads/main
2023-07-11T18:08:43.660898
2023-06-25T18:57:45
2023-06-25T18:57:45
74,551,919
110
17
null
null
null
null
UTF-8
Python
false
false
4,084
py
fields.py
from datetime import datetime import operator class Field(object): idx = 0 def __init__(self): Field.idx += 1 self.id = Field.idx def repr(self): return self.__class__.__name__ def __repr__(self): if hasattr(self, 'name'): return '<Field %s "%s">' % (self.repr(), self.name) return super(Field, self).__repr__() class Int(Field): encoders = {} decoders = {} @classmethod def encoder(cls, n): if n not in cls.encoders: exec ('def enc(n):\n' + ' assert n == n & 0x%s, "Arithmetic overflow"\n' + ' return "".join((%s,))' ) % ('ff' * n, ','.join('chr((n >> %d) & 0xff)' % (i * 8) for i in range(0, n))) cls.encoders[n] = enc return cls.encoders[n] @classmethod def decoder(cls, n): if n not in cls.decoders: cls.decoders[n] = eval('lambda data, offset: ' + '|'.join('ord(data[offset + %d]) << %d' % (i, i * 8) for i in range(0, n))) return cls.decoders[n] def __init__(self, size): super(Int, self).__init__() self.size = size self.encode = self.encoder(size) self.decode = self.decoder(size) if self.__class__ == Int: self.marshall = self.encode def unmarshall(self, data, offset): return self.size, self.decode(data, offset) def marshall(self, val): return self.encode(val) def repr(self): return '%s(%d)' % (self.__class__.__name__, self.size) class Size(Int): def __init__(self, size, extra=0): super(Size, self).__init__(size) self.extra = extra def marshall(self, val): return lambda vals, i: self.encode( reduce(lambda n, i: n + len(vals[i]), range(i + 1, len(vals)), self.extra)) class Date(Int): def __init__(self): super(Date, self).__init__(4) def unmarshall(self, data, offset): val = self.decode(data, offset) return 4, datetime.fromtimestamp(val) def marshall(self, val): return self.encode(int(val.strftime('%s'))) class Data(Int): def __init__(self, size=2): super(Data, self).__init__(size) def unmarshall(self, data, offset): n = self.decode(data, offset) offset += self.size assert offset + n <= len(data), "String too long to unpack" return self.size + n, data[offset:offset + n] def marshall(self, val): if isinstance(val, unicode): val = val.encode('UTF-8') return [self.encode(len(val)), val] # Note: Py3K strings are Unicode by default. They can't store binary # data. class String(Data): def unmarshall(self, data, offset): off, val = super(String, self).unmarshall(data, offset) return off, val.decode('UTF-8') def marshall(self, val): if isinstance(val, str): # Check for valid UTF-8 str.decode('UTF-8') else: val = val.encode('UTF-8') return super(String, self).marshall(val) class Array(Int): def __init__(self, size, spec): super(Array, self).__init__(size) self.spec = spec def unmarshall(self, data, offset): start = offset n = self.decode(data, offset) offset += self.size res = [] for i in range(0, n): size, val = self.spec.unmarshall(data, offset) if isinstance(val, list): res += val else: res.append(val) offset += size return offset - start, res def marshall(self, vals): res = [self.encode(len(vals))] for val in vals: val = self.spec.marshall(val) if isinstance(val, list): res += val else: res.append(val) return res # vim:se sts=4 sw=4 et:
ae64eabd9c19d984aee4a2b6cd33855809c3e5e4
a115d1ea106a890a877d902efc70e3f806525de8
/maskrcnn_benchmark/modeling/roi_heads/keypoint_head/inference.py
1f6fe2be3efb883ebd7fe86ccfd00377f1e55c5c
[ "Python-2.0", "MIT" ]
permissive
KaihuaTang/Scene-Graph-Benchmark.pytorch
7b59051e78d566f1b94836280ca91a61e2503bb4
4b6b71a90d4198d9dae574d42b062a5e534da291
refs/heads/master
2023-08-04T18:32:27.979660
2022-07-29T06:16:23
2022-07-29T06:16:23
241,830,209
1,002
261
MIT
2023-07-30T08:37:14
2020-02-20T08:23:54
Jupyter Notebook
UTF-8
Python
false
false
4,468
py
inference.py
import torch from torch import nn class KeypointPostProcessor(nn.Module): def __init__(self, keypointer=None): super(KeypointPostProcessor, self).__init__() self.keypointer = keypointer def forward(self, x, boxes): mask_prob = x scores = None if self.keypointer: mask_prob, scores = self.keypointer(x, boxes) assert len(boxes) == 1, "Only non-batched inference supported for now" boxes_per_image = [box.bbox.size(0) for box in boxes] mask_prob = mask_prob.split(boxes_per_image, dim=0) scores = scores.split(boxes_per_image, dim=0) results = [] for prob, box, score in zip(mask_prob, boxes, scores): bbox = BoxList(box.bbox, box.size, mode="xyxy") for field in box.fields(): bbox.add_field(field, box.get_field(field)) prob = PersonKeypoints(prob, box.size) prob.add_field("logits", score) bbox.add_field("keypoints", prob) results.append(bbox) return results # TODO remove and use only the Keypointer import numpy as np import cv2 def heatmaps_to_keypoints(maps, rois): """Extract predicted keypoint locations from heatmaps. Output has shape (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob) for each keypoint. """ # This function converts a discrete image coordinate in a HEATMAP_SIZE x # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain # consistency with keypoints_to_heatmap_labels by using the conversion from # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a # continuous coordinate. offset_x = rois[:, 0] offset_y = rois[:, 1] widths = rois[:, 2] - rois[:, 0] heights = rois[:, 3] - rois[:, 1] widths = np.maximum(widths, 1) heights = np.maximum(heights, 1) widths_ceil = np.ceil(widths) heights_ceil = np.ceil(heights) # NCHW to NHWC for use with OpenCV maps = np.transpose(maps, [0, 2, 3, 1]) min_size = 0 # cfg.KRCNN.INFERENCE_MIN_SIZE num_keypoints = maps.shape[3] xy_preds = np.zeros((len(rois), 3, num_keypoints), dtype=np.float32) end_scores = np.zeros((len(rois), num_keypoints), dtype=np.float32) for i in range(len(rois)): if min_size > 0: roi_map_width = int(np.maximum(widths_ceil[i], min_size)) roi_map_height = int(np.maximum(heights_ceil[i], min_size)) else: roi_map_width = widths_ceil[i] roi_map_height = heights_ceil[i] width_correction = widths[i] / roi_map_width height_correction = heights[i] / roi_map_height roi_map = cv2.resize( maps[i], (roi_map_width, roi_map_height), interpolation=cv2.INTER_CUBIC ) # Bring back to CHW roi_map = np.transpose(roi_map, [2, 0, 1]) # roi_map_probs = scores_to_probs(roi_map.copy()) w = roi_map.shape[2] pos = roi_map.reshape(num_keypoints, -1).argmax(axis=1) x_int = pos % w y_int = (pos - x_int) // w # assert (roi_map_probs[k, y_int, x_int] == # roi_map_probs[k, :, :].max()) x = (x_int + 0.5) * width_correction y = (y_int + 0.5) * height_correction xy_preds[i, 0, :] = x + offset_x[i] xy_preds[i, 1, :] = y + offset_y[i] xy_preds[i, 2, :] = 1 end_scores[i, :] = roi_map[np.arange(num_keypoints), y_int, x_int] return np.transpose(xy_preds, [0, 2, 1]), end_scores from maskrcnn_benchmark.structures.bounding_box import BoxList from maskrcnn_benchmark.structures.keypoint import PersonKeypoints class Keypointer(object): """ Projects a set of masks in an image on the locations specified by the bounding boxes """ def __init__(self, padding=0): self.padding = padding def __call__(self, masks, boxes): # TODO do this properly if isinstance(boxes, BoxList): boxes = [boxes] assert len(boxes) == 1 result, scores = heatmaps_to_keypoints( masks.detach().cpu().numpy(), boxes[0].bbox.cpu().numpy() ) return torch.from_numpy(result).to(masks.device), torch.as_tensor(scores, device=masks.device) def make_roi_keypoint_post_processor(cfg): keypointer = Keypointer() keypoint_post_processor = KeypointPostProcessor(keypointer) return keypoint_post_processor
aae442a6ae4ba29396a31fc309ef43feb54a47b1
b4b031f59c62dfd4b27b757eeb1ecd98941e04df
/django_drf_filepond/migrations/0010_temp_chunked_biginteger.py
a10043f25554dc8610da40ac5324a2ed8c6fc486
[ "BSD-3-Clause" ]
permissive
ImperialCollegeLondon/django-drf-filepond
7566df0ee21211f914f9bc8196c7e82ef8e370c1
aec7581a25de7bc545457a4bb546f3f5a5ac805f
refs/heads/main
2023-08-02T22:03:49.895305
2023-04-25T10:05:50
2023-04-25T10:05:50
158,591,739
101
41
BSD-3-Clause
2023-07-24T14:29:56
2018-11-21T18:39:40
Python
UTF-8
Python
false
false
608
py
0010_temp_chunked_biginteger.py
# Generated by Django 3.0.5 on 2021-06-25 16:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('django_drf_filepond', '0009_temporaryuploadchunked_offset_utime'), ] operations = [ migrations.AlterField( model_name='temporaryuploadchunked', name='offset', field=models.BigIntegerField(default=0), ), migrations.AlterField( model_name='temporaryuploadchunked', name='total_size', field=models.BigIntegerField(default=0), ), ]
62d18606655983ded23b0eb890e0e9dec88c2e3a
3d589d1c56b55fbd2b45b03564b8a9442ebf142b
/examples/catvdog/run.py
da98df4ad9e30ea434cc81cb8d0a694b2c337609
[ "Apache-2.0" ]
permissive
spotify/klio
1aff27412e92c9d699259e5ab1eaeb39dc3e9571
e625565708ed846201d2e05f782c0ce585554346
refs/heads/develop
2023-05-25T14:33:28.348335
2022-03-23T20:34:09
2022-03-23T20:34:09
285,928,366
815
57
Apache-2.0
2023-05-24T21:07:09
2020-08-07T22:02:58
Python
UTF-8
Python
false
false
1,701
py
run.py
# Copyright 2019-2020 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import apache_beam as beam from klio.transforms import helpers import transforms def run(input_pcol, config): """Main entrypoint in running a job's transform(s). Run any Beam transforms that need to happen after a message is consumed from PubSub from an upstream job (if not an apex job), and before publishing a message to any downstream job (if needed/configured). Args: input_pcol: A Beam PCollection returned from ``beam.io.ReadFromPubSub``. config (klio.KlioConfig): Job-related configuration as defined in ``klio-job.yaml``. Returns: A Beam PCollection that will be passed to ``beam.io.WriteToPubSub``. """ output_data = ( input_pcol | beam.ParDo(transforms.CatVDogOutputCheck()).with_outputs() ) output_force = output_data.found | helpers.KlioFilterForce() to_input_check = ( (output_data.not_found, output_force.process) | beam.Flatten() ) to_process = to_input_check | helpers.KlioGcsCheckInputExists() return to_process.found | beam.ParDo(transforms.CatVDog())
bfffce116549db51539c57dc939329d911de723d
ca7a8f43442e2c6722ebaf03f0abe9a22575a130
/autolens/exc.py
03037d21fd55d46ddb2191415177ad64862f8517
[ "MIT" ]
permissive
Jammy2211/PyAutoLens
764f2ccdb76b54eea0b4a8f2a0ae077397fb0315
b31b9d7c8a55d7232695761a41383cb1cc30bd76
refs/heads/main
2023-08-23T10:07:14.015683
2023-08-17T15:39:49
2023-08-17T15:39:49
105,440,853
142
37
MIT
2023-09-13T14:08:23
2017-10-01T12:33:03
Python
UTF-8
Python
false
false
2,099
py
exc.py
import autofit as af from autofit.exc import * from autoarray.exc import * from autogalaxy.exc import * class RayTracingException(af.exc.FitException): """ Raises exceptions associated with the `lens/ray_tracing.py` module and `Tracer` class. For example if the multiple image positions do not trace without a threshold of one another, in order to resample inaccurate mass models during a model-fit. This exception inehrits from a `FitException`. This means that if this exception is raised during a model-fit in the analysis class's `log_likelihood_function` that model is resampled and does not terminate the code. """ pass class PositionsException(af.exc.FitException): """ Raises exceptions associated with the positions data in the `point` module. For example if the multiple image positions do not meet certain format requirements. This exception inehrits from a `FitException`. This means that if this exception is raised during a model-fit in the analysis class's `log_likelihood_function` that model is resampled and does not terminate the code. """ pass class PixelizationException(af.exc.FitException): """ Raises exceptions associated with the `inversion/pixelization` modules and `Pixelization` classes. For example if a `Rectangular` mesh has dimensions below 3x3. This exception overwrites `autoarray.exc.PixelizationException` in order to add a `FitException`. This means that if this exception is raised during a model-fit in the analysis class's `log_likelihood_function` that model is resampled and does not terminate the code. """ pass class PointExtractionException(Exception): """ Raises exceptions associated with the extraction of quantities in the `point` module, where the name of a `PointSource` profile often relates to a model-component. For example if one tries to extract a profile `point_1` but there is no corresponding `PointSource` profile named `point_1`. """ pass
74709bf3e566cd87e6d835a4e32f419031b0b7d1
4f50373a5aada7b188ab8ae7ea04d3aef5c7cebf
/papermerge/test/contrib/admin/test_views_index.py
3e0d869c1382f7a6ecd555d009621db01330e29f
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
ciur/papermerge
f860a9ee5aa64ae51b6e37c09c37327391f87455
79f1d152701f984957f9dee58e8196fc3924871c
refs/heads/master
2023-04-13T17:15:28.292949
2022-12-12T06:56:42
2022-12-12T06:56:42
232,151,602
2,148
264
Apache-2.0
2022-04-04T18:51:49
2020-01-06T17:34:15
Python
UTF-8
Python
false
false
5,699
py
test_views_index.py
from django.test import TestCase from django.test import Client from django.urls import reverse from django.http import HttpResponseRedirect from papermerge.core.models import Document from papermerge.test.utils import ( create_root_user, ) class AnonymouseUserIndexAccessView(TestCase): def setUp(self): # user exists, but not signed in self.testcase_user = create_root_user() self.client = Client() def test_index(self): ret = self.client.get(reverse('admin:index')) self.assertEqual( ret.status_code, HttpResponseRedirect.status_code ) class TestAdvancedSearchView(TestCase): """ AV = advanced search """ def setUp(self): self.testcase_user = create_root_user() self.client = Client() self.client.login(testcase_user=self.testcase_user) def test_basic_av_by_tag(self): """ In advaced search user can search by tag(s) """ doc1 = Document.objects.create_document( title="doc1", user=self.testcase_user, page_count=2, file_name="koko.pdf", size='1111', lang='ENG', ) doc2 = Document.objects.create_document( title="doc2", user=self.testcase_user, page_count=2, file_name="kuku.pdf", size='1111', lang='ENG', ) doc1.tags.add( "green", "blue", tag_kwargs={'user': self.testcase_user} ) doc2.tags.add( "blue", tag_kwargs={'user': self.testcase_user} ) ret = self.client.get( reverse('admin:search'), {'tag': 'green'} ) self.assertEqual( ret.status_code, 200 ) self.assertEqual( len(ret.context['results_docs']), 1 ) doc_ = ret.context['results_docs'][0] self.assertEqual( doc_.id, doc1.id ) def test_basic_av_by_tags_op_all(self): """ In advaced search user can search by tag(s) tags_op can be 'all' or 'any'. tags_op=all: find all documents which contain all tags """ doc1 = Document.objects.create_document( title="doc1", user=self.testcase_user, page_count=2, file_name="koko.pdf", size='1111', lang='ENG', ) doc2 = Document.objects.create_document( title="doc2", user=self.testcase_user, page_count=2, file_name="kuku.pdf", size='1111', lang='ENG', ) doc3 = Document.objects.create_document( title="doc3", user=self.testcase_user, page_count=2, file_name="momo.pdf", size='1111', lang='ENG', ) doc1.tags.add( "green", "blue", tag_kwargs={'user': self.testcase_user} ) doc2.tags.add( "blue", tag_kwargs={'user': self.testcase_user} ) doc3.tags.add( "green", "blue", "red", tag_kwargs={'user': self.testcase_user} ) base_url = reverse('admin:search') args = "tag=green&tag=blue&tags_op=all" url = f"{base_url}?{args}" ret = self.client.get(url) self.assertEqual( ret.status_code, 200 ) self.assertEqual( len(ret.context['results_docs']), 2 ) result_ids = set( [doc_.id for doc_ in ret.context['results_docs']] ) self.assertEqual( result_ids, set([doc1.id, doc3.id]) ) def test_basic_av_by_tags_op_any(self): """ In advaced search user can search by tag(s) tags_op can be 'all' or 'any'. tags_op=any: find all documents which contain any tags of the mentioned tags """ doc1 = Document.objects.create_document( title="doc1", user=self.testcase_user, page_count=2, file_name="koko.pdf", size='1111', lang='ENG', ) doc2 = Document.objects.create_document( title="doc2", user=self.testcase_user, page_count=2, file_name="kuku.pdf", size='1111', lang='ENG', ) doc3 = Document.objects.create_document( title="doc3", user=self.testcase_user, page_count=2, file_name="momo.pdf", size='1111', lang='ENG', ) doc1.tags.add( "red", tag_kwargs={'user': self.testcase_user} ) doc2.tags.add( "green", tag_kwargs={'user': self.testcase_user} ) doc3.tags.add( "blue", tag_kwargs={'user': self.testcase_user} ) base_url = reverse('admin:search') args = "tag=red&tag=green&tags_op=any" url = f"{base_url}?{args}" ret = self.client.get(url) self.assertEqual( ret.status_code, 200 ) self.assertEqual( len(ret.context['results_docs']), 2 ) result_ids = set( [doc_.id for doc_ in ret.context['results_docs']] ) self.assertEqual( result_ids, set([doc1.id, doc2.id]) )
c4226dc89d9d638c3b87f41527e03d879886b1c6
39568e19301a7a112398be542154950af25591de
/hw/ip/otbn/dv/otbnsim/test/conftest.py
3e63f98c6b62c62d8729b9873c97fcce90afa42f
[ "CC-BY-4.0", "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
lowRISC/opentitan
493995bc7cf7cb3aee486a5203af3fd62bba3bfc
51f6017b8425b14d5a4aa9abace8fe5a25ef08c8
refs/heads/master
2023-08-31T22:05:09.425796
2023-08-14T14:52:15
2023-08-31T20:31:13
204,516,692
2,077
634
Apache-2.0
2023-09-14T21:16:21
2019-08-26T16:30:16
SystemVerilog
UTF-8
Python
false
false
274
py
conftest.py
# Copyright lowRISC contributors. # Licensed under the Apache License, Version 2.0, see LICENSE for details. # SPDX-License-Identifier: Apache-2.0 import os import sys # Make tested code available for import sys.path.append(os.path.join(os.path.dirname(__file__), '../'))
493a5bfd20a1a622b2ab11bcd26e7179a313c5a8
1eca7ab68f713f9134549be8cff40d953d784326
/empire/server/core/host_service.py
7bf1b11e74f388f40916ea3d3cf250e886d90c6b
[ "BSD-3-Clause" ]
permissive
BC-SECURITY/Empire
65576ac931635cded054912a02ed5d02a1b41f8d
5b2ad2c2e9b9f996e40c484215dfea36fefc808d
refs/heads/main
2023-09-04T05:00:52.366894
2023-08-27T22:08:54
2023-08-27T22:08:54
199,975,883
3,651
601
BSD-3-Clause
2023-09-08T05:50:26
2019-08-01T04:22:31
PowerShell
UTF-8
Python
false
false
404
py
host_service.py
from sqlalchemy.orm import Session from empire.server.core.db import models class HostService(object): def __init__(self, main_menu): self.main_menu = main_menu @staticmethod def get_all(db: Session): return db.query(models.Host).all() @staticmethod def get_by_id(db: Session, uid: int): return db.query(models.Host).filter(models.Host.id == uid).first()
21eecae92442a3d64b05931afb22add2c1060c0f
767c07db1fb131047af3d9b0a065b8fdc8aac9ab
/55-SQL/py_json.py
1711ed4e3eca092af590a33c4761913ce5817f08
[]
no_license
DUanalytics/pyAnalytics
e52c5469da30a5f436ec0f3120d9f15fb82fd9b3
107a08bebe46ea51afccfeae4a666213bb405d41
refs/heads/master
2023-07-08T04:32:54.758902
2023-07-03T14:37:04
2023-07-03T14:37:04
202,094,535
394
31
null
null
null
null
UTF-8
Python
false
false
3,272
py
py_json.py
#json #----------------------------- #% import json path='/duwork/downloads/pydata/ch02/usagov_bitly_data2012-03-16-1331923249.txt' open(path).readline() records=[json.loads(line) for line in open(path)] records[0]['tz'] print(records[0]['tz']) #time_zones=[rec['tz'] for rec in records] # error time_zones=[rec['tz'] for rec in records if 'tz' in rec] # time_zones[:10] print(time_zones[:10]) # Counting def get_counts(sequence): counts={} for x in sequence: if x in counts: counts[x] +=1 else: counts[x] =1 return counts from collections import defaultdict def get_counts2(sequence): counts=defaultdict(int) for x in sequence: count[x] += 1 return counts counts= get_counts(time_zones) print('Total Time Zones Cities', len(time_zones)) counts['America/New_York'] print('New York Count', counts['America/New_York']) print('Sao Paulo Count', counts['America/Sao_Paulo']) # Top Ten Time Zones and their count def top_counts(count_dict, n=10): value_key_pairs = [(count,tz) for tz, count in count_dict.items()] value_key_pairs.sort() return value_key_pairs[-n:] print("Top Ten TZ", top_counts(counts)) from collections import Counter counts = Counter(time_zones) print(counts.most_common(10)) # Counting Time zones with Pandas from pandas import DataFrame, Series frame = DataFrame(records) print(frame) print(frame['tz'][:10]) tz_counts = frame['tz'].value_counts() print(tz_counts[:10]) # Frequency Table clean_tz = frame['tz'].fillna('Missing') clean_tz[clean_tz==''] = 'Unknown' tz_counts = clean_tz.value_counts() print("No Counts", tz_counts[:10]) import numpy as np import matplotlib as plt plt.interactive(True) print("Drawing Plot") tz_counts[:10].plot(kind='barh',rot=0) plt.interactive(True) plt.pyplot.show() #plt.interactive(False) #plt.pyplot.show() print(frame['a'][1]) print(frame['a'][50]) import pandas results = Series([x.split()[0] for x in frame.a.dropna()]) print(results[:5]) cframe = frame[frame.a.notnull()] operating_system = np.where(cframe['a'].str.contains('Windows'), 'Windows','Not Windows') print(operating_system[:15]) print(cframe['a']) by_tz_os = cframe.groupby(['tz',operating_system]) agg_counts = by_tz_os.size().unstack().fillna(0) print(agg_counts[:10]) # Sort in Ascending Order indexer = agg_counts.sum(1).argsort() print(indexer[:10]) count_subset = agg_counts.take(indexer)[-10:] #count_subset = agg_counts.take(indexer) import matplotlib print(count_subset) #print(matplotlib.get_backend()) #matplotlib.use('TkAgg') #print(matplotlib.get_backend()) #plt.interactive(False) # Change to True count_subset.plot(kind='barh',stacked=True) import matplotlib.pyplot as p p.plot(range(20),range(20)) p.show() #Out[2]: [<matplotlib.lines.Line2D object at 0xa64932c>] p.show() #import matplotlib.pyplot as p #vi /home/du/.local/lib/python3.6/site-packages/matplotlib/mpl-data/matplotlibrc results = Series([x.split()[0] for x in frame.a.dropna()]) print('Results are ', results[:5]) print('Results are --', results.value_counts()[:8]) cframe = frame[frame.a.notnull()] operating_system = np.where(cframe['a'].str.contains('Windows'),'Windows','Non Windows') print(operating_system[:5])
7e1300ef3cd69ba832ff122e005690e979b8f6a0
15eb68a30bd1bcd8c153ce3c8774e09ef3f4135d
/NightlyTests/tensorflow/eager/test_keras_transformer.py
32d01c62fc627fe6045264f005ebf7e1caf41792
[ "BSD-3-Clause" ]
permissive
quic/aimet
77a984af68fc3c46d98c707d18a14c95a3efdacf
5a406e657082b6a4f6e4bf48f0e46e085cb1e351
refs/heads/develop
2023-08-21T12:51:10.500286
2023-08-18T18:35:39
2023-08-18T18:35:39
257,688,216
1,676
339
NOASSERTION
2023-09-08T06:59:39
2020-04-21T18:57:10
Python
UTF-8
Python
false
false
4,857
py
test_keras_transformer.py
# /usr/bin/env python3.8 # ============================================================================= # @@-COPYRIGHT-START-@@ # # Copyright (c) 2022, Qualcomm Innovation Center, Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # SPDX-License-Identifier: BSD-3-Clause # # @@-COPYRIGHT-END-@@ # ============================================================================= import json import pytest from tensorflow import keras import tensorflow as tf import numpy as np from aimet_tensorflow.keras.quantsim import QuantizationSimModel @pytest.mark.skip("Disable tests that requires eager execution") def test_quantizable_mha_export_backwards_pass(): vocab_size = 20000 # Only consider the top 20k words maxlen = 200 # Only consider the first 200 words of each movie review embed_dim = 32 # Embedding size for each token num_heads = 2 # Number of attention heads ff_dim = 32 # Hidden layer size in feed forward network inside transformer inputs = keras.layers.Input(shape=(maxlen,)) # Embedding Layer positions = tf.range(start=0, limit=maxlen, delta=1) positions = keras.layers.Embedding(input_dim=maxlen, output_dim=embed_dim)(positions) x = keras.layers.Embedding(input_dim=vocab_size, output_dim=embed_dim)(inputs) x = x + positions # Transformer Block x = keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)(x, x) x = keras.layers.Dropout(0.1)(x) x = keras.layers.LayerNormalization(epsilon=1e-6)(x) x = keras.layers.Dense(ff_dim, activation="relu")(x) x = keras.layers.Dense(embed_dim)(x) x = keras.layers.Dropout(0.1)(x) x = keras.layers.LayerNormalization(epsilon=1e-6)(x) # Output layers x = keras.layers.GlobalAveragePooling1D()(x) x = keras.layers.Dropout(0.1)(x) x = keras.layers.Dense(20, activation="relu")(x) x = keras.layers.Dropout(0.1)(x) outputs = keras.layers.Dense(2, activation="softmax")(x) functional_model = keras.Model(inputs=inputs, outputs=outputs) # STAGE 3 MODEL - model created using QuantSim quantized_model = QuantizationSimModel(functional_model) train_inputs = np.random.randint(1, 20000, (1024, 200)) train_outputs = np.random.randint(0, 2, (1024,)) val_inputs = np.random.randint(1, 20000, (256, 200)) val_outputs = np.random.randint(0, 2, (256,)) quantized_model.compute_encodings(lambda m, _: m(val_inputs), None) quantized_model.export('./data', 'pre_qat_mha') for wrapper in quantized_model.quant_wrappers(): for quantizer in wrapper.input_quantizers: quantizer.enable() for quantizer in wrapper.output_quantizers: quantizer.enable() with open("./data/pre_qat_mha.encodings", "r") as encodings_file: pre_encodings = json.load(encodings_file) quantized_model.model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) quantized_model.model.fit( train_inputs, train_outputs, batch_size=32, epochs=1, validation_data=(val_inputs, val_outputs) ) quantized_model.compute_encodings(lambda m, _: m(val_inputs), None) quantized_model.export('./data', 'post_qat_mha') with open("./data/post_qat_mha.encodings", "r") as encodings_file: post_encodings = json.load(encodings_file) assert pre_encodings != post_encodings
42ac747defdb68af125dda3849d769438813009f
0b134572e3ac3903ebb44df6d4138cbab9d3327c
/app/grandchallenge/workstations/migrations/0010_workstationimage_latest_shimmed_version.py
d0543be23d18f9b7555f93316391de96b726e399
[ "Apache-2.0" ]
permissive
comic/grand-challenge.org
660de3bafaf8f4560317f1dfd9ae9585ec272896
dac25f93b395974b32ba2a8a5f9e19b84b49e09d
refs/heads/main
2023-09-01T15:57:14.790244
2023-08-31T14:23:04
2023-08-31T14:23:04
4,557,968
135
53
Apache-2.0
2023-09-14T13:41:03
2012-06-05T09:26:39
Python
UTF-8
Python
false
false
447
py
0010_workstationimage_latest_shimmed_version.py
# Generated by Django 3.2.13 on 2022-06-02 08:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("workstations", "0009_alter_workstation_logo"), ] operations = [ migrations.AddField( model_name="workstationimage", name="latest_shimmed_version", field=models.CharField(default="", editable=False, max_length=8), ), ]
e65c49e77495d83236cb468f3c91cdcb2c223a47
ed75170ffe743eea5f2fedd518c21b61de55f879
/test/bats/BATSSeedFinder_test.py
10fa1851571ab4c0645c77344eb4d8087c0bb868
[ "MIT" ]
permissive
intive-DataScience/tbats
d294fe6d3dcb4ec0b2fc0db5e6aaaae08ade14b5
184bd635e1aea6bd1dd0ac7fa2339257b9ca6bdb
refs/heads/master
2023-04-30T02:25:00.961248
2023-04-17T10:20:31
2023-04-17T10:20:31
162,722,338
162
21
MIT
2022-12-09T07:30:53
2018-12-21T14:19:21
Python
UTF-8
Python
false
false
8,858
py
BATSSeedFinder_test.py
import numpy as np import pytest from tbats.bats.Components import Components from tbats.abstract.ComponentMatrix import ComponentMatrix from tbats.bats.SeedFinder import SeedFinder class TestBATSSeedFinder(object): @pytest.mark.parametrize( "seasonal_periods, expected_mask", [ [ # no periods means no mask [], [], ], [ # one period always produces a mask with one zero [6], [0], ], [ # two periods with no common divisor produce a mask of zeroes [3, 7], [0, 0], ], [ # If one period is a subperiod of the other, the mask contains 1 for the smaller period [3, 5, 6, 24], [1, 0, 1, 0], ], [ # If one period is a subperiod of the other, the mask contains 1 for the smaller period [2, 5, 15, 16], [1, 1, 0, 0], ], [ # If two periods have a common divisor then mask for the larger one contains this divisor [4, 6], [0, -2], ], [ # If more than two periods have a common divisor then mask for the largest one contains divisor from smallest period [12, 42, 44], [0, -6, -4], # -4 instead of -2 ], [ # If more than two periods have a common divisor then mask for the larger one contains divisor from smaller period [9, 16, 24], [0, 0, -3], # -3 instead of -4 ], [ # being a subperiod is more important than having a divisor [4, 6, 12], [1, 1, 0], ], [ # divisors and periods together [4, 5, 10, 14, 15], [0, 1, -2, -2, -5], ], [ # divisors and periods together [7, 9, 11, 12, 22, 30, 33], [0, 0, 1, -3, -2, -3, -3], ], [ # divisors and periods together [7, 9, 11, 12, 22, 30, 44], [0, 0, 1, -3, 1, -3, -4], ], ] ) def test_prepare_mask(self, seasonal_periods, expected_mask): mask = SeedFinder.prepare_mask(seasonal_periods) assert np.array_equal(expected_mask, mask) @pytest.mark.parametrize( "seasonal_periods, w_tilda, expected", [ [ # no periods means nothing to cut [], [1], np.zeros((0, 1)), ], [ # cut last param for each season [2], [ [1, 1, 2], # alpha, 2 seasonal params [1, 3, 4], ], [ [1], [3], ], ], [ # two periods, one is a sub-period of the other, cut the sub-period out entirely [2, 4], [ [1, 1, 2, 0.1, 0.2, 0.3, 0.4], [1, 3, 4, 0.5, 0.6, 0.7, 0.8], ], [ [0.1, 0.2, 0.3], [0.5, 0.6, 0.7], ], ], [ # two periods with common divisor, cut out whole divisor from the larger one [4, 6], # divisor = 2 [ [1, 1.1, 2, 3.1, 4, 0.1, 0.2, 0.3, 0.41, 0.5, 0.6], [1, 1.2, 2, 3.2, 4, 0.1, 0.2, 0.3, 0.42, 0.5, 0.6], [1, 1.3, 2, 3.3, 4, 0.1, 0.2, 0.3, 0.43, 0.5, 0.6], ], [ [1.1, 2, 3.1, 0.1, 0.2, 0.3, 0.41], [1.2, 2, 3.2, 0.1, 0.2, 0.3, 0.42], [1.3, 2, 3.3, 0.1, 0.2, 0.3, 0.43], ], ], [ # period 2 has a common divisor with period 6, period 2 is a sub-period of 4 and 6 [2, 4, 6], [ [1, 0.01, 0.02, 0.11, 0.2, 0.31, 0.4, 11, 2, 3, 41, 5, 6], [1, 0.01, 0.02, 0.12, 0.2, 0.32, 0.4, 12, 2, 3, 42, 5, 6], ], [ [0.11, 0.2, 0.31, 11, 2, 3, 41], [0.12, 0.2, 0.32, 12, 2, 3, 42], ], ], ] ) def test_prepare_seasonal_params(self, seasonal_periods, w_tilda, expected): components = Components(seasonal_periods=seasonal_periods) w_tilda = ComponentMatrix(w_tilda, components) adj = SeedFinder(components) new_seasonal_params, _ = adj.prepare_seasonal_params(w_tilda) assert np.array_equal(expected, new_seasonal_params) @pytest.mark.parametrize( "component_params, w_tilda, expected", [ [ dict(), # default params [ [1], # 1 only [1], ], [ [1], # 1 only [1], ], ], [ dict(use_trend=True), [ [1, 1.1], # 1, beta [1, 2.1], [1, 3.1], ], [ [1, 1.1], # 1, beta [1, 2.1], [1, 3.1], ], ], [ # ARMA should not be included in linear regression dict(use_arma_errors=True, p=2, q=1), [ [1, 1.1, 1.2, 1.3], # 1, p1, p2, q1 [2, 2.1, 2.2, 2.3], [3, 3.1, 3.2, 3.3], ], [ [1], # 1, [2], [3], ], ], [ # one season, should simply remove last seasonal parameter dict(seasonal_periods=(3)), [ [1, 1.1, 1.2, 1.3], # 1, s1, s2, s3 ], [ [1, 1.1, 1.2], # 1, s1, s2 ], ], [ # two seasons, where one is a sub-season of the other, sub-season should be removed from params dict(seasonal_periods=(2, 4)), [ [1, 1.1, 1.2, 2.1, 2.2, 2.3, 2.4], # 1, s11, s12, s21, s22, s23, s24 ], [ [1, 2.1, 2.2, 2.3], # 1, s21, s22, s23 ], ], [ # two seasons, where one has a common divisor of 2 with the other, # params for longer period should be shrunk by the divisor=2 dict(seasonal_periods=(4, 6)), [ [1, 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6], ], [ [1, 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 2.4], ], ], ] ) def test_conversions(self, component_params, w_tilda, expected): components = Components(**component_params) converter = SeedFinder(components) matrix = converter.to_matrix_for_linear_regression(w_tilda) assert np.array_equal(expected, matrix) @pytest.mark.parametrize( "component_params, lr_coefs, expected_x0", [ [ dict(), # default params [1.], [1.], ], [ # ARMA coefs should be added back as zeros dict(use_trend=True, use_damped_trend=True, use_arma_errors=True, p=1, q=2), [0.6, 0.5], # alpha, beta [0.6, 0.5, 0., 0., 0.], ], [ # Parameters for single season should sum to 0, last param should be added back dict(seasonal_periods=(3)), [0.6, 2, 4], # alpha, s1, s2 [0.6, 0, 2, -2], # alpha, s1, s2, s3 ], [ # When one season is a sub-season of other it should be added back as zeros dict(seasonal_periods=(3, 6)), [0.6, 2, 4, 6, 8, 10], # alpha, s21, s22, ..., s25 [0.6, 0, 0, 0, -3, -1, 1, 3, 5, -5], # alpha, s11, s12, s13, s21, ..., s25, s26 ], [ # When there is a divisor of 2 between two seasons, the longer season should receive 2 params back dict(seasonal_periods=(4, 6)), [0.6, 2, 4, 6, 1, 2, 3, 6], # alpha, s11, s12, s13, s21, s22, s23, ..., s24 [0.6, -1, 1, 3, -3, -1, 0, 1, 4, -2, -2], # alpha, s11, s12, s13,, s14, s21, ..., s25, s26 ], ] ) def test_back_conversions(self, component_params, lr_coefs, expected_x0): components = Components(**component_params) converter = SeedFinder(components) x0 = converter.from_linear_regression_coefs_to_x0(lr_coefs) assert np.array_equal(expected_x0, x0)
8ea38a43ad69538696419d4316bf86f1159d0b29
9a0eb3e292d57b59198c7c66a994372ced9cfa5b
/nodes/1.x/python/System.UserName.py
ac95a8e8027d8e96e5f1e00097c907ba5859cc8a
[ "MIT" ]
permissive
andydandy74/ClockworkForDynamo
544ddf0893f5c0072fca7934f4e128001771f767
528400c667c4c3f2b51814af84e85c8fab8a8059
refs/heads/master
2023-08-19T03:07:33.489926
2023-08-13T04:31:17
2023-08-13T04:31:17
15,043,988
184
100
MIT
2023-09-04T18:47:40
2013-12-09T10:11:01
Python
UTF-8
Python
false
false
68
py
System.UserName.py
import clr from System import Environment OUT = Environment.UserName
655fd4faa8ceb97f512b4a08b9be581011fcfc14
279f415dd1e06c594c6c87deda57e201c73c4542
/test/espnet2/schedulers/cosine_anneal_warmup_restart.py
c27bd0e70a74392e989fdade07abab693b8789f8
[ "Apache-2.0" ]
permissive
espnet/espnet
f7ba47271c1a6b1ed606dbbfb04a7f14220bb585
bcd20948db7846ee523443ef9fd78c7a1248c95e
refs/heads/master
2023-08-28T23:43:34.238336
2023-08-23T02:51:39
2023-08-23T02:51:39
114,054,873
7,242
2,244
Apache-2.0
2023-09-14T08:01:11
2017-12-13T00:45:11
Python
UTF-8
Python
false
false
650
py
cosine_anneal_warmup_restart.py
import pytest import torch from espnet2.schedulers.cosine_anneal_warmup_restart import ( CosineAnnealingWarmupRestarts, ) @pytest.mark.parametrize("first_cycle_steps", [10, 20]) def test_CosineAnnealingWarmupRestarts(first_cycle_steps): linear = torch.nn.Linear(2, 2) opt = torch.optim.SGD(linear.parameters(), 0.1) sch = CosineAnnealingWarmupRestarts( opt, first_cycle_steps, cycle_mult=1.0, max_lr=0.1, min_lr=0.001, warmup_steps=0, gamma=1.0, ) lr = opt.param_groups[0]["lr"] opt.step() sch.step() lr2 = opt.param_groups[0]["lr"] assert lr != lr2
cd9b00754f1c2e3ade98b85fcda2f83bd3c6a337
ec5d1ad8418dd62039e1dd8d6d2129ed3d7504de
/mediator/python/chat_room_mediator.py
34ef2674c973b8c91c107761c57a7cf8e3f412cc
[]
no_license
yusufyilmazfr/tasarim-desenleri-turkce-kaynak
88feba7369fd4f2609f9dfe27d314f87a5214a7b
f666e998247d683a9f734f8c8802ab38c7da6915
refs/heads/master
2023-09-01T11:29:07.908507
2023-07-31T07:08:29
2023-07-31T07:08:29
244,465,123
3,298
448
null
2023-08-20T10:37:03
2020-03-02T20:10:59
HTML
UTF-8
Python
false
false
666
py
chat_room_mediator.py
from abstract_chat_room_mediator import AbstractChatRoomMediator from chat_user import ChatUser class ChatRoomMediator(AbstractChatRoomMediator): """ Mediator (IChatRoomMediator) arayüzünü uygular. Colleague (User) nesneleri arasındaki iletişimi koordine eder. UML diyagramındaki ConcreteMediator yapısına denk gelmektedir. """ def __init__(self): self._user_dictionary = {} def send_message(self, message: str, user_id: int): user: ChatUser = self._user_dictionary[user_id] user.receive_message(message) def add_user_in_room(self, user: ChatUser): self._user_dictionary[user.u_id] = user
06b067a75624a672b161513f229f74ad19254b91
b07a323ef3fd85b895b2804b1340c05cde04ceee
/dotmap/__init__.py
671b003c922ad91b9d296d6c70f28d9fb17988da
[ "MIT" ]
permissive
drgrib/dotmap
ccb7ac45794dd7941e3b674b65355630f03bcd25
c7a778a95a01a7a0fd2f816a07c62de2478260c6
refs/heads/master
2023-08-27T05:04:15.168913
2022-04-06T16:26:33
2022-04-06T16:26:33
40,564,835
454
58
MIT
2022-04-06T16:25:06
2015-08-11T20:56:21
Python
UTF-8
Python
false
false
21,040
py
__init__.py
from __future__ import print_function from collections import OrderedDict try: from collections.abc import MutableMapping, Iterable except ImportError: from collections import MutableMapping, Iterable from json import dumps from pprint import pprint from sys import version_info from inspect import ismethod # for debugging def here(item=None): out = 'here' if item != None: out += '({})'.format(item) print(out) __all__ = ['DotMap'] class DotMap(MutableMapping, OrderedDict): def __init__(self, *args, **kwargs): self._map = OrderedDict() self._dynamic = kwargs.pop('_dynamic', True) self._prevent_method_masking = kwargs.pop('_prevent_method_masking', False) _key_convert_hook = kwargs.pop('_key_convert_hook', None) trackedIDs = kwargs.pop('_trackedIDs', {}) if args: d = args[0] # for recursive assignment handling trackedIDs[id(d)] = self src = [] if isinstance(d, MutableMapping): src = self.__call_items(d) elif isinstance(d, Iterable): src = d for k,v in src: if self._prevent_method_masking and k in reserved_keys: raise KeyError('"{}" is reserved'.format(k)) if _key_convert_hook: k = _key_convert_hook(k) if isinstance(v, dict): idv = id(v) if idv in trackedIDs: v = trackedIDs[idv] else: trackedIDs[idv] = v v = self.__class__(v, _dynamic=self._dynamic, _prevent_method_masking = self._prevent_method_masking, _key_convert_hook =_key_convert_hook, _trackedIDs = trackedIDs) if type(v) is list: l = [] for i in v: n = i if isinstance(i, dict): idi = id(i) if idi in trackedIDs: n = trackedIDs[idi] else: trackedIDs[idi] = i n = self.__class__(i, _dynamic=self._dynamic, _key_convert_hook =_key_convert_hook, _prevent_method_masking = self._prevent_method_masking) l.append(n) v = l self._map[k] = v if kwargs: for k,v in self.__call_items(kwargs): if self._prevent_method_masking and k in reserved_keys: raise KeyError('"{}" is reserved'.format(k)) if _key_convert_hook: k = _key_convert_hook(k) self._map[k] = v def __call_items(self, obj): if hasattr(obj, 'iteritems') and ismethod(getattr(obj, 'iteritems')): return obj.iteritems() else: return obj.items() def items(self): return self.iteritems() def iteritems(self): return self.__call_items(self._map) def __iter__(self): return self._map.__iter__() def next(self): return self._map.next() def __setitem__(self, k, v): self._map[k] = v def __getitem__(self, k): if k not in self._map and self._dynamic and k != '_ipython_canary_method_should_not_exist_': # automatically extend to new DotMap self[k] = self.__class__() return self._map[k] def __setattr__(self, k, v): if k in {'_map','_dynamic', '_ipython_canary_method_should_not_exist_', '_prevent_method_masking'}: super(DotMap, self).__setattr__(k,v) elif self._prevent_method_masking and k in reserved_keys: raise KeyError('"{}" is reserved'.format(k)) else: self[k] = v def __getattr__(self, k): if k.startswith('__') and k.endswith('__'): raise AttributeError(k) if k in {'_map','_dynamic','_ipython_canary_method_should_not_exist_'}: return super(DotMap, self).__getattr__(k) try: v = super(self.__class__, self).__getattribute__(k) return v except AttributeError: pass try: return self[k] except KeyError: raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{k}'") from None def __delattr__(self, key): return self._map.__delitem__(key) def __contains__(self, k): return self._map.__contains__(k) def __add__(self, other): if self.empty(): return other else: self_type = type(self).__name__ other_type = type(other).__name__ msg = "unsupported operand type(s) for +: '{}' and '{}'" raise TypeError(msg.format(self_type, other_type)) def __str__(self, seen = None): items = [] seen = {id(self)} if seen is None else seen for k,v in self.__call_items(self._map): # circular assignment case if isinstance(v, self.__class__): if id(v) in seen: items.append('{0}={1}(...)'.format(k, self.__class__.__name__)) else: seen.add(id(v)) items.append('{0}={1}'.format(k, v.__str__(seen))) else: items.append('{0}={1}'.format(k, repr(v))) joined = ', '.join(items) out = '{0}({1})'.format(self.__class__.__name__, joined) return out def __repr__(self): return str(self) def toDict(self, seen = None): if seen is None: seen = {} d = {} seen[id(self)] = d for k,v in self.items(): if issubclass(type(v), DotMap): idv = id(v) if idv in seen: v = seen[idv] else: v = v.toDict(seen = seen) elif type(v) in (list, tuple): l = [] for i in v: n = i if issubclass(type(i), DotMap): idv = id(n) if idv in seen: n = seen[idv] else: n = i.toDict(seen = seen) l.append(n) if type(v) is tuple: v = tuple(l) else: v = l d[k] = v return d def pprint(self, pformat='dict'): if pformat == 'json': print(dumps(self.toDict(), indent=4, sort_keys=True)) else: pprint(self.toDict()) def empty(self): return (not any(self)) # proper dict subclassing def values(self): return self._map.values() # ipython support def __dir__(self): return self.keys() @classmethod def parseOther(self, other): if issubclass(type(other), DotMap): return other._map else: return other def __cmp__(self, other): other = DotMap.parseOther(other) return self._map.__cmp__(other) def __eq__(self, other): other = DotMap.parseOther(other) if not isinstance(other, dict): return False return self._map.__eq__(other) def __ge__(self, other): other = DotMap.parseOther(other) return self._map.__ge__(other) def __gt__(self, other): other = DotMap.parseOther(other) return self._map.__gt__(other) def __le__(self, other): other = DotMap.parseOther(other) return self._map.__le__(other) def __lt__(self, other): other = DotMap.parseOther(other) return self._map.__lt__(other) def __ne__(self, other): other = DotMap.parseOther(other) return self._map.__ne__(other) def __delitem__(self, key): return self._map.__delitem__(key) def __len__(self): return self._map.__len__() def clear(self): self._map.clear() def copy(self): return self.__class__(self) def __copy__(self): return self.copy() def __deepcopy__(self, memo=None): return self.copy() def get(self, key, default=None): return self._map.get(key, default) def has_key(self, key): return key in self._map def iterkeys(self): return self._map.iterkeys() def itervalues(self): return self._map.itervalues() def keys(self): return self._map.keys() def pop(self, key, default=None): return self._map.pop(key, default) def popitem(self): return self._map.popitem() def setdefault(self, key, default=None): return self._map.setdefault(key, default) def update(self, *args, **kwargs): if len(args) != 0: self._map.update(*args) self._map.update(kwargs) def viewitems(self): return self._map.viewitems() def viewkeys(self): return self._map.viewkeys() def viewvalues(self): return self._map.viewvalues() @classmethod def fromkeys(cls, seq, value=None): d = cls() d._map = OrderedDict.fromkeys(seq, value) return d def __getstate__(self): return self.__dict__ def __setstate__(self, d): self.__dict__.update(d) # bannerStr def _getListStr(self,items): out = '[' mid = '' for i in items: mid += ' {}\n'.format(i) if mid != '': mid = '\n' + mid out += mid out += ']' return out def _getValueStr(self,k,v): outV = v multiLine = len(str(v).split('\n')) > 1 if multiLine: # push to next line outV = '\n' + v if type(v) is list: outV = self._getListStr(v) out = '{} {}'.format(k,outV) return out def _getSubMapDotList(self, pre, name, subMap): outList = [] if pre == '': pre = name else: pre = '{}.{}'.format(pre,name) def stamp(pre,k,v): valStr = self._getValueStr(k,v) return '{}.{}'.format(pre, valStr) for k,v in subMap.items(): if isinstance(v,DotMap) and v != DotMap(): subList = self._getSubMapDotList(pre,k,v) outList.extend(subList) else: outList.append(stamp(pre,k,v)) return outList def _getSubMapStr(self, name, subMap): outList = ['== {} =='.format(name)] for k,v in subMap.items(): if isinstance(v, self.__class__) and v != self.__class__(): # break down to dots subList = self._getSubMapDotList('',k,v) # add the divit # subList = ['> {}'.format(i) for i in subList] outList.extend(subList) else: out = self._getValueStr(k,v) # out = '> {}'.format(out) out = '{}'.format(out) outList.append(out) finalOut = '\n'.join(outList) return finalOut def bannerStr(self): lines = [] previous = None for k,v in self.items(): if previous == self.__class__.__name__: lines.append('-') out = '' if isinstance(v, self.__class__): name = k subMap = v out = self._getSubMapStr(name,subMap) lines.append(out) previous = self.__class__.__name__ else: out = self._getValueStr(k,v) lines.append(out) previous = 'other' lines.append('--') s = '\n'.join(lines) return s reserved_keys = {i for i in dir(DotMap) if not i.startswith('__') and not i.endswith('__')} if __name__ == '__main__': # basics print('\n== basics ==') d = { 'a':1, 'b':2, 'subD': {'c':3, 'd':4} } dd = DotMap(d) print(dd) print(len(dd)) print(dd.copy()) print(dd) print(OrderedDict.fromkeys([1,2,3])) print(DotMap.fromkeys([1,2,3], 'a')) print(dd.get('a')) print(dd.get('f',33)) print(dd.get('f')) print(dd.has_key('a')) dd.update([('rat',5),('bum',4)], dog=7,cat=9) dd.update({'lol':1,'ba':2}) print(dd) print for k in dd: print(k) print('a' in dd) print('c' in dd) dd.c.a = 1 print(dd.toDict()) dd.pprint() print print(dd.values()) dm = DotMap(name='Steve', job='programmer') print(dm) print(issubclass(dm.__class__, dict)) am = DotMap() am.some.deep.path.cuz.we = 'can' print(am) del am.some.deep print(am) parentDict = { 'name': 'Father1', 'children': [ {'name': 'Child1'}, {'name': 'Child2'}, {'name': 'Child3'}, ] } parent = DotMap(parentDict) print([x.name for x in parent.children]) # pickle print('\n== pickle ==') import pickle s = pickle.dumps(parent) d = pickle.loads(s) print(d) # init from DotMap print('\n== init from DotMap ==') e = DotMap(d) print(e) # empty print('\n== empty() ==') d = DotMap() print(d.empty()) d.a = 1 print(d.empty()) print() x = DotMap({'a': 'b'}) print(x.b.empty()) # True (and creates empty DotMap) print(x.b) # DotMap() print(x.b.empty()) # also True # _dynamic print('\n== _dynamic ==') d = DotMap() d.still.works print(d) d = DotMap(_dynamic=False) try: d.no.creation print(d) except AttributeError: print('AttributeError caught') d = {'sub':{'a':1}} dm = DotMap(d) print(dm) dm.still.works dm.sub.still.works print(dm) dm2 = DotMap(d,_dynamic=False) try: dm.sub.yes.creation print(dm) dm2.sub.no.creation print(dm) except AttributeError: print('AttributeError caught') # _dynamic print('\n== toDict() ==') conf = DotMap() conf.dep = DotMap(facts=DotMap(operating_systems=DotMap(os_CentOS_7=True), virtual_data_centers=[DotMap(name='vdc1', members=['sp1'], options=DotMap(secret_key='badsecret', description='My First VDC')), DotMap(name='vdc2', members=['sp2'], options=DotMap(secret_key='badsecret', description='My Second VDC'))], install_node='192.168.2.200', replication_group_defaults=DotMap(full_replication=False, enable_rebalancing=False, description='Default replication group description', allow_all_namespaces=False), node_defaults=DotMap(ntp_servers=['192.168.2.2'], ecs_root_user='root', dns_servers=['192.168.2.2'], dns_domain='local', ecs_root_pass='badpassword'), storage_pools=[DotMap(name='sp1', members=['192.168.2.220'], options=DotMap(ecs_block_devices=['/dev/vdb'], description='My First SP')), DotMap(name='sp2', members=['192.168.2.221'], options=DotMap(protected=False, ecs_block_devices=['/dev/vdb'], description='My Second SP'))], storage_pool_defaults=DotMap(cold_storage_enabled=False, protected=False, ecs_block_devices=['/dev/vdc'], description='Default storage pool description'), virtual_data_center_defaults=DotMap(secret_key='badsecret', description='Default virtual data center description'), management_clients=['192.168.2.0/24'], replication_groups=[DotMap(name='rg1', members=['vdc1', 'vdc2'], options=DotMap(description='My RG'))]), lawyers=DotMap(license_accepted=True)) print(conf.dep.toDict()['facts']['replication_groups']) # recursive assignment print('\n== recursive assignment ==') # dict d = dict() d['a'] = 5 print(id(d)) d['recursive'] = d print(d) print(d['recursive']['recursive']['recursive']) # DotMap m = DotMap() m.a = 5 print(id(m)) m.recursive = m print(m.recursive.recursive.recursive) print(m) print(m.toDict()) # kwarg print('\n== kwarg ==') def test(**kwargs): print(kwargs) class D: def keys(self): return ['a', 'b'] def __getitem__(self, key): return 0 a = {'1':'a', '2':'b'} b = DotMap(a, _dynamic=False) o = OrderedDict(a) test(**a) test(**b.toDict()) test(**o) test(**D()) # ordering print('\n== ordering ==') m = DotMap() m.alpha = 1 m.bravo = 2 m.charlie = 3 m.delta = 4 for k,v in m.items(): print(k,v) # subclassing print('\n== subclassing ==') d = DotMap() o = OrderedDict() print(isinstance(d, dict)) print(isinstance(o, dict)) e = DotMap(m) print(e) # deepcopy print('\n== deepcopy ==') import copy t = DotMap() t.a = 1 t.b = 3 f = copy.deepcopy(t) t.a = 2 print(t) print(f) # copy order preservation print('\n== copy order preservation ==') t = DotMap() t.a = 1 t.b = 2 t.c = 3 copies = [] print(id(t)) for i in range(3): copyMap = copy.deepcopy(t) copies.append(copyMap) print(id(copyMap)) print() for copyMap in copies: for k,v in copyMap.items(): print(k,v) print() # bannerStr print('\n== bannerStr ==') t.cities.LA = 1 t.cities.DC = 2 t.cities.London.pop = 'many' t.cities.London.weather = 'rain' haiku = '\n'.join([ "Haikus are easy", "But sometimes they don't make sense", "Refrigerator", ]) t.haiku = haiku t.teams.blue = 1 t.teams.red = 2 t.teams.green = 3 t.colors.blue = 1 t.colors.red = 2 t.colors.green = 3 t.numbers.short = list(range(4)) t.numbers.early = list(range(10)) t.numbers.backwards = list(range(10,-1,-1)) t.deepLog.deeper.Q = list(range(4)) print(t.bannerStr()) # sub-DotMap deepcopy print('\n== sub-DotMap deepcopy ==') import copy l = [] d = {'d1': {'d2': ''}} m = DotMap(d) for i in range(3): x = copy.deepcopy(m) x.d1.d2 = i l.append(x) for m in l: print(m) # tuple toDict print('\n== DotMap tuple toDict ==') m = DotMap({'a': 1, 'b': (11, 22, DotMap({'c': 3}))}) d = m.toDict() print(d) # unpacking tests ''' print('\n== Unpacking ==') d = {'a':1} print({**d}) m = DotMap(a=1) print({**m.toDict()}) m = DotMap(a=1) print({**m}) ''' print('\n== DotMap subclass ==') class MyDotMap(DotMap): def __getitem__(self, k): return super(MyDotMap, self).__getitem__(k) my = MyDotMap() my.x.y.z = 3 print(my) # subclass with existing property class PropertyDotMap(MyDotMap): def __init__(self, *args, **kwargs): super(MyDotMap, self).__init__(*args, **kwargs) self._myprop = MyDotMap({'nested': 123}) @property def first(self): return self._myprop p = PropertyDotMap() print(p.first) print(p.first.nested) p.first.second.third = 456 print(p.first.second.third) print('\n== DotMap method masking ==') # method masking tests d = DotMap(a=1,get='mango') d = DotMap((('a',1),('get','mango'))) d = DotMap({'a':1, 'get': 'mango'}) d = DotMap({'a':1, 'b': {'get': 'mango'}}) d.a = {'get':'mongo'} try: d = DotMap(a=1,get='mango', _prevent_method_masking = True) raise RuntimeError("this should fail with KeyError") except KeyError: print('kwargs method masking ok') try: d = DotMap((('a',1),('get','mango')), _prevent_method_masking = True) raise RuntimeError("this should fail with KeyError") except KeyError: print('iterable method masking ok') try: d = DotMap({'a':1, 'get': 'mango'}, _prevent_method_masking = True) raise RuntimeError("this should fail with KeyError") except KeyError: print('dict method masking ok') try: d = DotMap({'a':1, 'b': {'get': 'mango'}}, _prevent_method_masking = True) raise RuntimeError("this should fail with KeyError") except KeyError: print('nested dict method masking ok') try: d = DotMap({'a':1, 'b': {}}, _prevent_method_masking = True) d.b.get = 7 raise RuntimeError("this should fail with KeyError") except KeyError: print('nested dict attrib masking ok') print('\n== DotMap __init__, toDict, and __str__ with circular references ==') a = { 'name': 'a'} b = { 'name': 'b'} c = { 'name': 'c', 'list': []} # Create circular reference a['b'] = b b['c'] = c c['a'] = a c['list'].append(b) print(a) x = DotMap(a) print(x) y = x.toDict() assert id(y['b']['c']['a']) == id(y) assert id(y['b']['c']['list'][0]) == id(y['b']) print(y) # final print print()
2dd88885bde8cd062ea9de97ba2f860d77946641
a381debad5dbcbfa83b549438ea6294c9e5a122e
/examples/drums.py
cc40c1503edefbe8ee3a81a3b777053c0ec2b9b6
[ "MIT" ]
permissive
pimoroni/explorer-hat
6092ac8ab567a526ed27d7307883f26a6a8015ac
b65417f503d35bb74a2be70bfa72940c561f865f
refs/heads/master
2022-05-01T16:42:00.028028
2022-03-16T10:25:30
2022-03-16T10:25:30
29,976,470
165
77
MIT
2021-11-09T13:00:34
2015-01-28T16:25:05
Python
UTF-8
Python
false
false
1,198
py
drums.py
#!/usr/bin/env python import signal from sys import exit try: import pygame except ImportError: exit("This script requires the pygame module\nInstall with: sudo pip install pygame") import explorerhat print(""" This example turns your Explorer HAT into a drum kit! Hit any touch pad to hear a drum sound. Press CTRL+C to exit. """) LEDS = [4, 17, 27, 5] samples = [ 'sounds/hit.wav', 'sounds/thud.wav', 'sounds/clap.wav', 'sounds/crash.wav', 'sounds/hat.wav', 'sounds/smash.wav', 'sounds/rim.wav', 'sounds/ting.wav' ] pygame.mixer.pre_init(44100, -16, 1, 512) pygame.mixer.init() pygame.mixer.set_num_channels(16) sounds = [] for x in range(8): sounds.append(pygame.mixer.Sound(samples[x])) def handle(ch, evt): if ch > 4: led = ch - 5 else: led = ch - 1 if evt == 'press': explorerhat.light[led].fade(0, 100, 0.1) sounds[ch - 1].play(loops=0) name = samples[ch - 1].replace('sounds/','').replace('.wav','') print("{}!".format(name.capitalize())) else: explorerhat.light[led].off() explorerhat.touch.pressed(handle) explorerhat.touch.released(handle) signal.pause()
7b584639696762a5dc3f7d609287c99ac8ba2c48
069c2295076c482afadfe6351da5ae02be8e18e6
/tests/forms_tests/field_tests/test_combofield.py
d433fdf2b3f789846a3c59bf37217578acdcb3b0
[ "LicenseRef-scancode-other-copyleft", "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause", "GPL-1.0-or-later", "Python-2.0.1", "LicenseRef-scancode-free-unknown", "LicenseRef-scancode-other-permissive", "Python-2.0" ]
permissive
django/django
5eb557f57053631cd4f566f451e43197309dbeeb
c74a6fad5475495756a5bdb18b2cab2b68d429bc
refs/heads/main
2023-09-01T03:43:44.033530
2023-08-31T08:27:32
2023-08-31T08:27:32
4,164,482
73,530
38,187
BSD-3-Clause
2023-09-14T20:03:48
2012-04-28T02:47:18
Python
UTF-8
Python
false
false
1,576
py
test_combofield.py
from django.core.exceptions import ValidationError from django.forms import CharField, ComboField, EmailField from django.test import SimpleTestCase class ComboFieldTest(SimpleTestCase): def test_combofield_1(self): f = ComboField(fields=[CharField(max_length=20), EmailField()]) self.assertEqual("test@example.com", f.clean("test@example.com")) with self.assertRaisesMessage( ValidationError, "'Ensure this value has at most 20 characters (it has 28).'", ): f.clean("longemailaddress@example.com") with self.assertRaisesMessage( ValidationError, "'Enter a valid email address.'" ): f.clean("not an email") with self.assertRaisesMessage(ValidationError, "'This field is required.'"): f.clean("") with self.assertRaisesMessage(ValidationError, "'This field is required.'"): f.clean(None) def test_combofield_2(self): f = ComboField(fields=[CharField(max_length=20), EmailField()], required=False) self.assertEqual("test@example.com", f.clean("test@example.com")) with self.assertRaisesMessage( ValidationError, "'Ensure this value has at most 20 characters (it has 28).'", ): f.clean("longemailaddress@example.com") with self.assertRaisesMessage( ValidationError, "'Enter a valid email address.'" ): f.clean("not an email") self.assertEqual("", f.clean("")) self.assertEqual("", f.clean(None))
66edef2ed3ab76d28d331e964136a06caf1c59d2
90d02fee4d02962c9e3d03314cd1597c70bf2f8c
/asdf/__init__.py
92bbcf0fce2fff803ebd8e41f3793f8279f058fb
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
asdf-format/asdf
08e19f5d603c738b0ae94ccd1a339ff6b8cf4209
a5b2b2d94f2fc71746f896c6d322439a27dd0bdd
refs/heads/main
2023-08-17T17:06:20.828932
2023-08-08T10:53:27
2023-08-08T10:53:27
18,112,754
328
25
BSD-3-Clause
2023-09-13T15:57:22
2014-03-25T19:00:43
Python
UTF-8
Python
false
false
653
py
__init__.py
""" asdf: Python library for reading and writing Advanced Scientific Data Format (ASDF) files """ __all__ = [ "AsdfFile", "Stream", "open", "IntegerType", "ExternalArrayReference", "info", "__version__", "ValidationError", "get_config", "config_context", ] from ._convenience import info from ._version import version as __version__ from .asdf import AsdfFile from .asdf import open_asdf as open from .config import config_context, get_config from .exceptions import ValidationError from .stream import Stream from .tags.core import IntegerType from .tags.core.external_reference import ExternalArrayReference
f1ad7c4a1624a4874ebb29e2dfce82469f6cfe5e
c703b8ac3b5545857f6c95efa2d61eaf7a664021
/setup.py
e6737a062b1e82df9c0638549c27794fe234147a
[ "MIT", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-proprietary-license", "Apache-2.0", "BSD-2-Clause" ]
permissive
iPERDance/iPERCore
d29681d229b3098b3517b1abf4f7ea65f579de73
fcf9a18ffd66bf3fdd3eea4153a3bc4785131848
refs/heads/main
2023-07-30T15:04:15.835396
2023-04-12T14:21:23
2023-04-12T14:21:23
313,664,064
2,520
339
Apache-2.0
2023-05-12T03:26:52
2020-11-17T15:36:25
Python
UTF-8
Python
false
false
15,077
py
setup.py
# Copyright (c) 2020-2021 impersonator.org authors (Wen Liu and Zhixin Piao). All rights reserved. import os from os.path import exists import platform from setuptools import find_packages, setup import subprocess import sys import re TORCH_DIST = "https://download.pytorch.org/whl/torch_stable.html" MMCV_DIST = "https://download.openmmlab.com/mmcv/dist" PIP_VERSION = "20.2.4" # cuda # torch 1.8.1 +cu101 +cu102 +cu111 # torch 1.8.0 +cu101 cu102 +cu111 # torch 1.7.1 +cu101 cu102 +cu110 # torch 1.7.0 +cu101 cu102 +cu110 # torch 1.6.0 +cu101 cu102 VALID_CUDA = [10.1, 10.2, 11.0, 11.1] DEFAULT_LINUX_CUDA_TORCH = { "cu111": "1.8.1", "cu110": "1.7.0", "cu102": "1.7.0", "cu101": "1.7.0" } DEFAULT_WINDOWS_CUDA_TORCH = { "cu102": "1.6.0", "cu101": "1.6.0" } PRECOMPILED_TORCH_CUDA_PAIRS = { "1.8.1+cu111": { "torch": "1.8.1+cu111", "torchvision": "0.9.1+cu111", "mmcv-full": "1.2.0", "mmcv-dist": f"{MMCV_DIST}/cu111/torch1.8.1/index.html" }, "1.8.1+cu102": { "torch": "1.8.1+cu102", "torchvision": "0.9.1+cu102", "mmcv-full": "1.2.0", "mmcv-dist": f"{MMCV_DIST}/cu102/torch1.8.1/index.html" }, "1.8.1+cu101": { "torch": "1.8.1+cu101", "torchvision": "0.9.1+cu101", "mmcv-full": "1.2.0", "mmcv-dist": f"{MMCV_DIST}/cu101/torch1.8.1/index.html" }, "1.7.0+cu110": { "torch": "1.7.0+cu110", "torchvision": "0.8.1+cu110", "mmcv-full": "1.2.0", "mmcv-dist": f"{MMCV_DIST}/cu110/torch1.7.0/index.html" # "mmcv-full": "1.2.0+torch1.7.0+cu110" }, "1.7.0+cu102": { "torch": "1.7.0", "torchvision": "0.8.1", "mmcv-full": "1.2.0", "mmcv-dist": f"{MMCV_DIST}/cu102/torch1.7.0/index.html" # "mmcv-full": "1.2.0+torch1.7.0+cu102" }, "1.7.0+cu101": { "torch": "1.7.0+cu101", "torchvision": "0.8.1+cu101", "mmcv-full": "1.2.0", "mmcv-dist": f"{MMCV_DIST}/cu101/torch1.7.0/index.html" # "mmcv-full": "1.2.0+torch1.7.0+cu101" }, "1.6.0+cu102": { "torch": "1.6.0", "torchvision": "0.7.0", "mmcv-full": "1.2.0", "mmcv-dist": f"{MMCV_DIST}/cu102/torch1.6.0/index.html" # "mmcv-full": "1.1.5+torch1.6.0+cu102" }, "1.6.0+cu101": { "torch": "1.6.0+cu101", "torchvision": "0.7.0+cu101", "mmcv-full": "1.2.0", "mmcv-dist": f"{MMCV_DIST}/cu101/torch1.6.0/index.html" # "mmcv-full": "1.1.5+torch1.6.0+cu101" } } WINDOWS_PRECOMPILED_TORCH_CUDA_PAIRS = { "1.6.0+cu102": { "torch": "https://download.pytorch.org/whl/cu102/torch-1.6.0-cp{PYTHON_VERSION}-cp{PYTHON_ABI_VERSION}-win_amd64.whl", "torchvision": "https://download.pytorch.org/whl/cu102/torchvision-0.7.0-cp{PYTHON_VERSION}-cp{PYTHON_ABI_VERSION}-win_amd64.whl", "mmcv-full": "1.1.5", "mmcv-dist": f"{MMCV_DIST}/cu102/torch1.6.0/index.html" }, "1.6.0+cu101": { "torch": "https://download.pytorch.org/whl/cu101/torch-1.6.0%2Bcu101-cp{PYTHON_VERSION}-cp{PYTHON_ABI_VERSION}-win_amd64.whl", "torchvision": "https://download.pytorch.org/whl/cu101/torchvision-0.7.0%2Bcu101-cp{PYTHON_VERSION}-cp{PYTHON_ABI_VERSION}-win_amd64.whl", "mmcv-full": "1.1.5", "mmcv-dist": f"{MMCV_DIST}/cu101/torch1.6.0/index.html" } } def get_cuda_version() -> float: """ Get the cuda version of the system, make sure that the $CUDA_HOME or the $CUDA_PATH has been added into the system path. Here the cuda version is aaa.b.ccc, and only return the version with aaa.b Returns: version (float): the cuda version. """ global VALID_CUDA # In windows, the cuda_install.exe will set the `CUDA_PATH` to the system environmental variables. if "CUDA_HOME" not in os.environ and "CUDA_PATH" in os.environ: os.environ["CUDA_HOME"] = os.environ["CUDA_PATH"] assert "CUDA_HOME" in os.environ, r"Cannot find the $CUDA_HOME in the environments. Please manually install the " \ r"CUDA >= 10.1, and set the $CUDA_HOME environment variable." cuda_version_file = os.path.join(os.environ["CUDA_HOME"], "version.txt") if os.path.exists(cuda_version_file): # e.g. "CUDA Version 10.1.243", "CUDA Version 10.0.130" with open(cuda_version_file) as f: version_str = f.readline().replace("\n", "").replace("\r", "") # "CUDA Version 10.1.243" -> ["CUDA", "Version", "10.1.243"] -> "10.1.243" version = version_str.split(" ")[2] # "10.1.243" -> "10.1" -> 10.1 version = float(".".join(version.split(".")[0:2])) else: # run `nvcc -V` # """nvcc: NVIDIA (R) Cuda compiler driver # Copyright (c) 2005-2019 NVIDIA Corporation # Built on Sun_Jul_28_19:07:16_PDT_2019 # Cuda compilation tools, release 10.1, V10.1.243 # """ nvcc_out = subprocess.run("nvcc -V", shell=True, stdout=subprocess.PIPE) nvcc_str = nvcc_out.stdout.decode("utf-8") nvcc_cuda = re.findall(r"[.]*([\d]+.[\d]+),[.]*", nvcc_str) if len(nvcc_cuda) == 0: raise RuntimeError(f"nvcc -V error! {nvcc_str}") else: version = float(nvcc_cuda[0]) assert version in VALID_CUDA, f"CUDA Version {version} must in {VALID_CUDA}. " \ f"Please manually install the CUDA meets the requirements." print(f"Cuda version is {version}") return version def get_python_version() -> str: """ Get the python version. The python version is aaa.b.c, and it only returns aaa.b Returns: version (str): """ version = str(platform.python_version()) version = "".join(version.split(".")[0:2]) assert "36" <= version <= "38", f"Currently, it only support the python version with 3.6.+, 3.7.+, 3.8.+" return version def get_torch_version(cuda_version_str, precompile_torch_cuda_paris, default_torch_cuda_mapper) -> str: """ Args: cuda_version_str: precompile_torch_cuda_paris (dict): PRECOMPILED_TORCH_CUDA_PAIRS or WINDOWS_PRECOMPILED_TORCH_CUDA_PAIRS default_torch_cuda_mapper (dict): DEFAULT_LINUX_CUDA_TORCH or DEFAULT_WINDOWS_CUDA_TORCH Returns: torch_version (str): """ if "torch" in os.environ: attempt_torch_version_str = os.environ["torch"] torch_cuda_str = f"{attempt_torch_version_str}+{cuda_version_str}" if torch_cuda_str not in precompile_torch_cuda_paris: torch_version_str = default_torch_cuda_mapper[cuda_version_str] print(f"torch=={attempt_torch_version_str} is incompatible with cuda {cuda_version_str}. " f"The compatible torch-cuda version are {precompile_torch_cuda_paris.keys()}," f"and here we install the torch+cuda=={torch_version_str} + {cuda_version_str}.") else: torch_version_str = attempt_torch_version_str else: torch_version_str = default_torch_cuda_mapper[cuda_version_str] return torch_version_str def platform_dependencies(): """Parse the pre-complied consistent versions of torch, torchvision, mmcv, and CUDA. The torch version must >= 1.6.0, and the CUDA version must >= 10.1. Currently, it only supports Linux and Windows. If the platform is Linux, we will use torch 1.7.0 + CUDA Version. Otherwise if the platform is windows, we will use torch 1.6.0 + CUDA VERSION. Returns: List[List[str]]: list of setup requirements items. """ global TORCH_DIST, PRECOMPILED_TORCH_CUDA_PAIRS, WINDOWS_PRECOMPILED_TORCH_CUDA_PAIRS, \ DEFAULT_LINUX_CUDA_TORCH, DEFAULT_WINDOWS_CUDA_TORCH cuda_version = get_cuda_version() cuda_version_str = "cu" + str(cuda_version).replace(".", "") packages = [] if platform.system().lower() == "windows": python_version = get_python_version() python_abi_version = python_version if python_version != "38": python_abi_version += "m" torch = get_torch_version(cuda_version_str, WINDOWS_PRECOMPILED_TORCH_CUDA_PAIRS, DEFAULT_WINDOWS_CUDA_TORCH) torch_cuda_version = f"{torch}+{cuda_version_str}" numpy_version = "numpy==1.19.3" assert torch_cuda_version in WINDOWS_PRECOMPILED_TORCH_CUDA_PAIRS, \ f"There is no pre-complied pytorch 1.6.0 with CUDA {cuda_version}, " \ f"and you might need to install pytorch 1.6.0 with CUDA {cuda_version} from source." torch_link = WINDOWS_PRECOMPILED_TORCH_CUDA_PAIRS[torch_cuda_version]["torch"] \ .format(PYTHON_VERSION=python_version, PYTHON_ABI_VERSION=python_abi_version) torchvision_link = WINDOWS_PRECOMPILED_TORCH_CUDA_PAIRS[torch_cuda_version]["torchvision"] \ .format(PYTHON_VERSION=python_version, PYTHON_ABI_VERSION=python_abi_version) mmcv_version = WINDOWS_PRECOMPILED_TORCH_CUDA_PAIRS[torch_cuda_version]["mmcv-full"] mmcv_dist = WINDOWS_PRECOMPILED_TORCH_CUDA_PAIRS[torch_cuda_version]["mmcv-dist"] packages.append([f"{torch_link}", "-f", TORCH_DIST]) packages.append([f"{torchvision_link}", "-f", TORCH_DIST]) packages.append([f"mmcv-full=={mmcv_version}", "-f", mmcv_dist]) packages.append(numpy_version) elif platform.system().lower() == "linux": torch = get_torch_version(cuda_version_str, PRECOMPILED_TORCH_CUDA_PAIRS, DEFAULT_LINUX_CUDA_TORCH) torch_cuda_version = f"{torch}+{cuda_version_str}" numpy_version = "numpy>=1.19.3" assert torch_cuda_version in PRECOMPILED_TORCH_CUDA_PAIRS, \ f"There is no pre-complied pytorch {torch} with CUDA {cuda_version} in {TORCH_DIST}, " \ f"and you might need to install pytorch {torch} with CUDA {cuda_version} from source." torch_version = PRECOMPILED_TORCH_CUDA_PAIRS[torch_cuda_version]["torch"] torchvision_version = PRECOMPILED_TORCH_CUDA_PAIRS[torch_cuda_version]["torchvision"] mmcv_version = PRECOMPILED_TORCH_CUDA_PAIRS[torch_cuda_version]["mmcv-full"] mmcv_dist = PRECOMPILED_TORCH_CUDA_PAIRS[torch_cuda_version]["mmcv-dist"] packages.append([f"torch=={torch_version}", "-f", TORCH_DIST]) packages.append([f"torchvision=={torchvision_version}", "-f", TORCH_DIST]) packages.append([f"mmcv-full=={mmcv_version}", "-f", mmcv_dist]) packages.append(numpy_version) else: raise ValueError(f"Currently it only supports 'windows' and 'linux'.") return packages def parse_requirements(fname="requirements.txt", with_version=True): """Parse the package dependencies listed in a requirements file but strips specific versioning information. Args: fname (str): path to requirements file with_version (bool, default=False): if True include version specs Returns: List[str]: list of requirements items CommandLine: python -c "import setup; print(setup.parse_requirements())" """ require_fpath = fname def parse_line(line): """Parse information from a line in a requirements text file.""" if line.startswith("-r "): # Allow specifying requirements in other files target = line.split(" ")[1] for info in parse_require_file(target): yield info else: info = {"line": line} if line.startswith("-e "): info["package"] = line.split("#egg=")[1] elif "@git+" in line: info["package"] = line else: # Remove versioning from the package pat = "(" + "|".join([">=", "==", ">"]) + ")" parts = re.split(pat, line, maxsplit=1) parts = [p.strip() for p in parts] info["package"] = parts[0] if len(parts) > 1: op, rest = parts[1:] if ";" in rest: # Handle platform specific dependencies # http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies version, platform_deps = map(str.strip, rest.split(";")) info["platform_deps"] = platform_deps else: version = rest # NOQA info["version"] = (op, version) yield info def parse_require_file(fpath): with open(fpath, "r") as f: for line in f.readlines(): line = line.strip() if line and not line.startswith("#"): for info in parse_line(line): yield info def gen_packages_items(): if exists(require_fpath): for info in parse_require_file(require_fpath): parts = [info["package"]] if with_version and "version" in info: parts.extend(info["version"]) if not sys.version.startswith("3.4"): # apparently package_deps are broken in 3.4 platform_deps = info.get("platform_deps") if platform_deps is not None: parts.append(";" + platform_deps) item = "".join(parts) yield item packages = list(gen_packages_items()) return packages # 1. install torch, torchvision, and mmcv firstly. torch_torchvision_mmcv = platform_dependencies() # 2. other installed requires install_requires = parse_requirements("requirements/runtime.txt") # 3. build requires build_requiers = parse_requirements("requirements/build.txt") # 4. pip install all of them all_requires = [[f"pip=={PIP_VERSION}"]] + torch_torchvision_mmcv + install_requires + build_requiers pip_executable = [sys.executable, "-m", "pip", "install"] for package_line in all_requires: if isinstance(package_line, str): package_line = [package_line] pip_install_line = pip_executable + package_line print(" ".join(pip_install_line)) subprocess.run(pip_install_line) # 5. setup iPERCore setup( name="iPERCore", version="0.2.0", author="Wen Liu, and Zhixin Piao", author_email="liuwen@shanghaitech.edu.cn", url="https://github.com/iPERDance/iPERCore", description="The core of impersonator++.", packages=find_packages(exclude=("assets",)), python_requires=">=3.6, <=3.8", install_requires=install_requires, entry_points={ "console_scripts": [ "run_imitator = iPERCore.services.run_imitator:run_imitator", "run_swapper = iPERCore.services.run_imitator:run_swapper", "run_viewer = iPERCore.services.run_imitator:run_viewer", ] } )
f73ffa688c47f903e316ab712822adf1dcb8af34
572afc77a246acb9483b47fc9e1839f47005d736
/python/federatedml/model_selection/start_cross_validation.py
94a5ae608671fcc68b88c88e709e84f549d00091
[ "Apache-2.0" ]
permissive
FederatedAI/FATE
7c787c308cca9ff46f287d24569c68de0a1cac07
8767db5ec0cb93784f64b290bc39b7b545c530fb
refs/heads/master
2023-08-17T10:13:00.302529
2023-06-14T07:01:38
2023-06-14T07:01:38
167,349,656
4,942
1,571
Apache-2.0
2023-09-14T07:02:29
2019-01-24T10:32:43
Python
UTF-8
Python
false
false
1,233
py
start_cross_validation.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from federatedml.model_selection.k_fold import KFold from federatedml.util import LOGGER def _get_cv_param(model): model.model_param.cv_param.role = model.role model.model_param.cv_param.mode = model.mode return model.model_param.cv_param def run(model, data_instances, host_do_evaluate=False): if not model.need_run: return data_instances kflod_obj = KFold() cv_param = _get_cv_param(model) output_data = kflod_obj.run(cv_param, data_instances, model, host_do_evaluate) LOGGER.info("Finish KFold run") return output_data
a2c1dc15e3f4fec16c059dedac625866a956e52e
2a1b8a671aceda6bc446f8ce26400aa84fa444a6
/Packs/Accessdata/Scripts/AccessdataCheckProcessExistsInSnapshot/AccessdataCheckProcessExistsInSnapshot_test.py
bb73e96b947aaf4e42819715c34f93fc6343c704
[ "MIT" ]
permissive
demisto/content
6d4722d46f0ff0beea2748e9f7de585bf91a78b4
890def5a0e0ae8d6eaa538148249ddbc851dbb6b
refs/heads/master
2023-09-04T00:02:25.618032
2023-09-03T21:56:22
2023-09-03T21:56:22
60,525,392
1,023
1,921
MIT
2023-09-14T20:55:24
2016-06-06T12:17:02
Python
UTF-8
Python
false
false
2,444
py
AccessdataCheckProcessExistsInSnapshot_test.py
import demistomock as demisto # noqa: F401 from CommonServerPython import * # noqa: F401 def test_main_flow_process_exist(mocker): """ Given: - a process ID that exists. When: - executing the main flow. Then: - Make sure that an entry is returned to the war-room meaning that the process exist """ mocker.patch.object(demisto, 'args', return_value={'filepath': 'path', 'process': 'process-1'}) from AccessdataCheckProcessExistsInSnapshot import main mocked_data = '<?xml version="1.0" encoding="UTF-8" ?><root><Process><Name>process-1<' \ '/Name></Process><Process><Name>process-2</Name></Process></root>' mocker.patch.object(demisto, 'executeCommand') mocker.patch.object(demisto, 'get', return_value=mocked_data) demisto_results_mocker = mocker.patch.object(demisto, 'results') main() assert demisto_results_mocker.called assert demisto_results_mocker.call_args.args[0] == { 'Type': 1, 'ContentsFormat': 'json', 'Contents': {'Name': 'process-1', 'Exists': 'Yes'}, 'HumanReadable': 'Process "process-1" exists: Yes', 'EntryContext': {'Accessdata.Process(val && val.Name == obj.Name)': {'Name': 'process-1', 'Exists': 'Yes'}} } def test_main_flow_process_does_not_exist(mocker): """ Given: - a process ID that does not exist. When: - executing the main flow. Then: - Make sure that an entry is returned to the war-room meaning that the process does not exist """ mocker.patch.object(demisto, 'args', return_value={'filepath': 'path', 'process': 'process-3'}) from AccessdataCheckProcessExistsInSnapshot import main mocked_data = '<?xml version="1.0" encoding="UTF-8" ?><root><Process><Name>process-1<' \ '/Name></Process><Process><Name>process-2</Name></Process></root>' mocker.patch.object(demisto, 'executeCommand') mocker.patch.object(demisto, 'get', return_value=mocked_data) demisto_results_mocker = mocker.patch.object(demisto, 'results') main() assert demisto_results_mocker.called assert demisto_results_mocker.call_args.args[0] == { 'Type': 1, 'ContentsFormat': 'json', 'Contents': {'Name': 'process-3', 'Exists': 'No'}, 'HumanReadable': 'Process "process-3" exists: No', 'EntryContext': {'Accessdata.Process(val && val.Name == obj.Name)': {'Name': 'process-3', 'Exists': 'No'}} }
679a7320b1c92e696db1ad7954f0fde0e41d8f43
d01fa1b6668c66236405b799e39e529d1492af7c
/tests/base.py
b5cac99461884fd4652fd00de39b816e60c8f302
[ "MIT" ]
permissive
chrisdev/wagtail-cookiecutter-foundation
426ffd974aa08ab10e4b0e44d5003476c597f2e4
e7d56ee01eb5976588129d7bd4d5fc6dab2d794a
refs/heads/master
2023-08-31T06:05:43.999253
2022-03-31T18:44:37
2022-03-31T18:44:37
33,870,540
189
72
MIT
2023-09-14T03:30:34
2015-04-13T13:36:50
Python
UTF-8
Python
false
false
2,227
py
base.py
import os import re import shutil import unittest from os.path import exists, dirname, join import sh from cookiecutter.main import cookiecutter class DjangoCookieTestCase(unittest.TestCase): root_dir = dirname(dirname(__file__)) ctx = {} destpath = None def check_paths(self, paths): """ Method to check all paths have correct substitutions, used by other tests cases """ # Construct the cookiecutter search pattern pattern = r'{{(\s?cookiecutter)[.](.*?)}}' re_obj = re.compile(pattern) # Assert that no match is found in any of the files for path in paths: for line in open(path, 'r'): match = re_obj.search(line) self.assertIsNone( match, "cookiecutter variable not replaced in {}".format(path)) def generate_project(self, extra_context=None): ctx = { "project_name": "Wagtail Project", "project_slug": "wagtail_project", "version_control_system": "hg", "author_name": "Your Name", "email": "Your email", "description": "A short description of the project.", "timezone": "UTC", "now": "2015/04/16", "year": "2015", "production_host_name": "example.org", "use_ssl_in_production": "true", "staging_host_name": "staging.example.org", } if extra_context: assert isinstance(extra_context, dict) ctx.update(extra_context) self.ctx = ctx self.destpath = join(self.root_dir, self.ctx['project_slug']) cookiecutter( template='./', checkout=None, no_input=True, extra_context=ctx ) # Build a list containing absolute paths to the generated files paths = [os.path.join(dirpath, file_path) for dirpath, subdirs, files in os.walk(self.destpath) for file_path in files] return paths def clean(self): if exists(self.destpath): shutil.rmtree(self.destpath) sh.cd(self.root_dir) def tearDown(self): self.clean()
bf0bdb886ec78cc67cc844ee859e5f72b77ba65c
e5aff0646237acf3639ac805652143cd8267bf33
/BlenderToolBox/setMat_ceramic.py
9de6d3ccd5c00bbce65c6be1f924fe4e11873e21
[ "Apache-2.0" ]
permissive
HTDerekLiu/BlenderToolbox
42943cf9fee7277d319ff5baffe7810c4c27dfe4
8044e77268ff018514ad1501c291f6deb6a07ec6
refs/heads/master
2023-07-20T05:14:58.736225
2023-07-10T16:33:17
2023-07-10T16:33:17
162,408,776
408
48
null
null
null
null
UTF-8
Python
false
false
1,908
py
setMat_ceramic.py
# Copyright 2020 Hsueh-Ti Derek Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import bpy from . initColorNode import initColorNode def setMat_ceramic(mesh, meshC, subC): mat = bpy.data.materials.new('MeshMaterial') mesh.data.materials.append(mat) mesh.active_material = mat mat.use_nodes = True tree = mat.node_tree # init color node C1Node = initColorNode(tree, meshC) C2Node = initColorNode(tree, subC, [200, 400], [200, 200]) DIF = tree.nodes.new('ShaderNodeBsdfDiffuse') tree.links.new(C1Node.outputs['Color'], DIF.inputs['Color']) SUB1 = tree.nodes.new('ShaderNodeSubsurfaceScattering') SUB1.inputs['Scale'].default_value = 0.3 tree.links.new(C2Node.outputs['Color'], SUB1.inputs['Color']) MIX2 = tree.nodes.new('ShaderNodeMixShader') MIX2.inputs['Fac'].default_value = 0.35 tree.links.new(DIF.outputs['BSDF'], MIX2.inputs[1]) tree.links.new(SUB1.outputs[0], MIX2.inputs[2]) LW = tree.nodes.new('ShaderNodeLayerWeight') LW.inputs['Blend'].default_value = 0.35 GLO = tree.nodes.new('ShaderNodeBsdfGlossy') MIX3 = tree.nodes.new('ShaderNodeMixShader') tree.links.new(LW.outputs[0], MIX3.inputs['Fac']) tree.links.new(MIX2.outputs[0], MIX3.inputs[1]) tree.links.new(GLO.outputs['BSDF'], MIX3.inputs[2]) tree.links.new(MIX3.outputs[0], tree.nodes['Material Output'].inputs['Surface'])
1ca1ee0107dd7c94f13aaf6c9c63de584888ac43
2337351b228818e41be3002bd38f68f77c2aa074
/sa/profiles/Huawei/MA5300/profile.py
25699e5b7ca7e45ef260c36cf43e65c3d717eeca
[ "BSD-3-Clause" ]
permissive
nocproject/noc
57d40c680a1499374463e472434f9595ed6d1374
6e6d71574e9b9d822bec572cc629a0ea73604a59
refs/heads/master
2023-08-31T01:11:33.544573
2023-08-30T17:31:11
2023-08-30T17:31:11
107,815,776
105
33
BSD-3-Clause
2023-07-31T07:57:45
2017-10-21T21:04:33
Python
UTF-8
Python
false
false
3,236
py
profile.py
# --------------------------------------------------------------------- # Vendor: Huawei # OS: MA5300 # --------------------------------------------------------------------- # Copyright (C) 2007-2020 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # Python modules import re # NOC modules from noc.core.profile.base import BaseProfile class Profile(BaseProfile): name = "Huawei.MA5300" pattern_more = [ (rb"--- More:", b" "), (rb"[ ]+---- More \(Press CTRL\+C break\) ---[ ]+", b" "), # [ ]+ use for save \n in output # stream, because more pattern remove from stream (rb"Note: Terminal", b"\n"), (rb"Warning: Battery is low power!", b"\n"), (rb"\{\s<cr>.*\s\}:", b"\n"), (rb"^Are you sure?\[Y/N\]", b"y\n"), (rb"^\{ terminal\<K\> \}\:", b"terminal\n"), (rb"\{ <cr>\|interface<K> \}\:", b"\n"), ] pattern_username = rb"^Username:" pattern_password = rb"^Password:" command_exit = "logout" command_super = b"enable" command_enter_config = "configure terminal" command_leave_config = "end" command_save_config = "save" enable_cli_session = False # With False mixin commands output over script pattern_prompt = rb"(?P<hostname>\S+)(?:\(.*)?#" pattern_unprivileged_prompt = rb"^(?P<hostname>[a-zA-Z0-9-_\.\/()]+)(?:-[a-zA-Z0-9/]+)*>$" pattern_syntax_error = ( rb"(% Unknown command, the error locates at \'^\'| Logged Fail!|" rb"System is busy, please try after a while)" ) rogue_chars = [ re.compile(rb"\x1b\[39D\s+\x1b\[39D"), re.compile(rb"\n\r\s+Line \d+ operating, attempt of the Line -\d+ denied!\n\r"), re.compile(rb"\r\n\s+Note: Terminal users login \(IP: \S+ \)"), re.compile(rb"\r\nWarning: Battery is low power!"), b"\r", ] # to one SNMP GET request snmp_metrics_get_chunk = 30 # Timeout for snmp GET request snmp_metrics_get_timeout = 5 # to one SNMP GET request for get_interface_status_ex snmp_ifstatus_get_chunk = 30 # Timeout for snmp GET request for get_interface_status_ex snmp_ifstatus_get_timeout = 3 _IF_TYPES = { "aux": "other", "loo": "loopback", "m-e": "management", "nul": "null", "vla": "SVI", } @classmethod def get_interface_type(cls, name): return cls._IF_TYPES.get(name[:3].lower(), "unknown") def get_interface_snmp_index(self, name): return None # def setup_session(self, script): # script.cli("terminal type vt100", ignore_errors=True) # script.cli("config", ignore_errors=True) # script.cli("line vty 0 3", ignore_errors=True) # script.cli("history size 0", ignore_errors=True) # script.cli("length 0", ignore_errors=True) # script.cli("exit", ignore_errors=True) # script.cli("cls", ignore_errors=True) # def shutdown_session(self, script): # script.cli("config", ignore_errors=True) # script.cli("line vty 0 3", ignore_errors=True) # script.cli("no length 0", ignore_errors=True) # script.cli("exit", ignore_errors=True)
ff4db2bae209a5a675da2b01b44937a36e829c0b
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/domain/UserInfoAndBenefitQueryResult.py
ab9789977ea9f20388900f6a9fa8b1c495227bc2
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
2,569
py
UserInfoAndBenefitQueryResult.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.BenefitGradePoint import BenefitGradePoint class UserInfoAndBenefitQueryResult(object): def __init__(self): self._balance = None self._benefit_info_list = None self._grade = None @property def balance(self): return self._balance @balance.setter def balance(self, value): self._balance = value @property def benefit_info_list(self): return self._benefit_info_list @benefit_info_list.setter def benefit_info_list(self, value): if isinstance(value, list): self._benefit_info_list = list() for i in value: if isinstance(i, BenefitGradePoint): self._benefit_info_list.append(i) else: self._benefit_info_list.append(BenefitGradePoint.from_alipay_dict(i)) @property def grade(self): return self._grade @grade.setter def grade(self, value): self._grade = value def to_alipay_dict(self): params = dict() if self.balance: if hasattr(self.balance, 'to_alipay_dict'): params['balance'] = self.balance.to_alipay_dict() else: params['balance'] = self.balance if self.benefit_info_list: if isinstance(self.benefit_info_list, list): for i in range(0, len(self.benefit_info_list)): element = self.benefit_info_list[i] if hasattr(element, 'to_alipay_dict'): self.benefit_info_list[i] = element.to_alipay_dict() if hasattr(self.benefit_info_list, 'to_alipay_dict'): params['benefit_info_list'] = self.benefit_info_list.to_alipay_dict() else: params['benefit_info_list'] = self.benefit_info_list if self.grade: if hasattr(self.grade, 'to_alipay_dict'): params['grade'] = self.grade.to_alipay_dict() else: params['grade'] = self.grade return params @staticmethod def from_alipay_dict(d): if not d: return None o = UserInfoAndBenefitQueryResult() if 'balance' in d: o.balance = d['balance'] if 'benefit_info_list' in d: o.benefit_info_list = d['benefit_info_list'] if 'grade' in d: o.grade = d['grade'] return o
302e86ac804a0c5500e8dfb7835d7d43c109a66f
baa2c6f22ff563d417e34692bf3345077eb8fa5f
/IPython/core/tests/test_ultratb.py
c4de95d564a569378809a22cb8556b2023a96d28
[ "BSD-3-Clause" ]
permissive
ipython/ipython
c42ea223b6e391bb7dd39888cb959d4d5d6b21a1
e5103f971233fd66b558585cce7a4f52a716cd56
refs/heads/main
2023-08-30T18:27:18.436521
2023-08-29T12:16:00
2023-08-29T12:16:00
658,518
13,673
4,729
BSD-3-Clause
2023-09-12T20:22:09
2010-05-10T04:46:06
Python
UTF-8
Python
false
false
12,026
py
test_ultratb.py
# encoding: utf-8 """Tests for IPython.core.ultratb """ import io import os.path import platform import re import sys import traceback import unittest from textwrap import dedent from tempfile import TemporaryDirectory from IPython.core.ultratb import ColorTB, VerboseTB from IPython.testing import tools as tt from IPython.testing.decorators import onlyif_unicode_paths from IPython.utils.syspathcontext import prepended_to_syspath file_1 = """1 2 3 def f(): 1/0 """ file_2 = """def f(): 1/0 """ def recursionlimit(frames): """ decorator to set the recursion limit temporarily """ def inner(test_function): def wrapper(*args, **kwargs): rl = sys.getrecursionlimit() sys.setrecursionlimit(frames) try: return test_function(*args, **kwargs) finally: sys.setrecursionlimit(rl) return wrapper return inner class ChangedPyFileTest(unittest.TestCase): def test_changing_py_file(self): """Traceback produced if the line where the error occurred is missing? https://github.com/ipython/ipython/issues/1456 """ with TemporaryDirectory() as td: fname = os.path.join(td, "foo.py") with open(fname, "w", encoding="utf-8") as f: f.write(file_1) with prepended_to_syspath(td): ip.run_cell("import foo") with tt.AssertPrints("ZeroDivisionError"): ip.run_cell("foo.f()") # Make the file shorter, so the line of the error is missing. with open(fname, "w", encoding="utf-8") as f: f.write(file_2) # For some reason, this was failing on the *second* call after # changing the file, so we call f() twice. with tt.AssertNotPrints("Internal Python error", channel='stderr'): with tt.AssertPrints("ZeroDivisionError"): ip.run_cell("foo.f()") with tt.AssertPrints("ZeroDivisionError"): ip.run_cell("foo.f()") iso_8859_5_file = u'''# coding: iso-8859-5 def fail(): """дбИЖ""" 1/0 # дбИЖ ''' class NonAsciiTest(unittest.TestCase): @onlyif_unicode_paths def test_nonascii_path(self): # Non-ascii directory name as well. with TemporaryDirectory(suffix=u'é') as td: fname = os.path.join(td, u"fooé.py") with open(fname, "w", encoding="utf-8") as f: f.write(file_1) with prepended_to_syspath(td): ip.run_cell("import foo") with tt.AssertPrints("ZeroDivisionError"): ip.run_cell("foo.f()") def test_iso8859_5(self): with TemporaryDirectory() as td: fname = os.path.join(td, 'dfghjkl.py') with io.open(fname, 'w', encoding='iso-8859-5') as f: f.write(iso_8859_5_file) with prepended_to_syspath(td): ip.run_cell("from dfghjkl import fail") with tt.AssertPrints("ZeroDivisionError"): with tt.AssertPrints(u'дбИЖ', suppress=False): ip.run_cell('fail()') def test_nonascii_msg(self): cell = u"raise Exception('é')" expected = u"Exception('é')" ip.run_cell("%xmode plain") with tt.AssertPrints(expected): ip.run_cell(cell) ip.run_cell("%xmode verbose") with tt.AssertPrints(expected): ip.run_cell(cell) ip.run_cell("%xmode context") with tt.AssertPrints(expected): ip.run_cell(cell) ip.run_cell("%xmode minimal") with tt.AssertPrints(u"Exception: é"): ip.run_cell(cell) # Put this back into Context mode for later tests. ip.run_cell("%xmode context") class NestedGenExprTestCase(unittest.TestCase): """ Regression test for the following issues: https://github.com/ipython/ipython/issues/8293 https://github.com/ipython/ipython/issues/8205 """ def test_nested_genexpr(self): code = dedent( """\ class SpecificException(Exception): pass def foo(x): raise SpecificException("Success!") sum(sum(foo(x) for _ in [0]) for x in [0]) """ ) with tt.AssertPrints('SpecificException: Success!', suppress=False): ip.run_cell(code) indentationerror_file = """if True: zoon() """ class IndentationErrorTest(unittest.TestCase): def test_indentationerror_shows_line(self): # See issue gh-2398 with tt.AssertPrints("IndentationError"): with tt.AssertPrints("zoon()", suppress=False): ip.run_cell(indentationerror_file) with TemporaryDirectory() as td: fname = os.path.join(td, "foo.py") with open(fname, "w", encoding="utf-8") as f: f.write(indentationerror_file) with tt.AssertPrints("IndentationError"): with tt.AssertPrints("zoon()", suppress=False): ip.magic('run %s' % fname) se_file_1 = """1 2 7/ """ se_file_2 = """7/ """ class SyntaxErrorTest(unittest.TestCase): def test_syntaxerror_no_stacktrace_at_compile_time(self): syntax_error_at_compile_time = """ def foo(): .. """ with tt.AssertPrints("SyntaxError"): ip.run_cell(syntax_error_at_compile_time) with tt.AssertNotPrints("foo()"): ip.run_cell(syntax_error_at_compile_time) def test_syntaxerror_stacktrace_when_running_compiled_code(self): syntax_error_at_runtime = """ def foo(): eval("..") def bar(): foo() bar() """ with tt.AssertPrints("SyntaxError"): ip.run_cell(syntax_error_at_runtime) # Assert syntax error during runtime generate stacktrace with tt.AssertPrints(["foo()", "bar()"]): ip.run_cell(syntax_error_at_runtime) del ip.user_ns['bar'] del ip.user_ns['foo'] def test_changing_py_file(self): with TemporaryDirectory() as td: fname = os.path.join(td, "foo.py") with open(fname, "w", encoding="utf-8") as f: f.write(se_file_1) with tt.AssertPrints(["7/", "SyntaxError"]): ip.magic("run " + fname) # Modify the file with open(fname, "w", encoding="utf-8") as f: f.write(se_file_2) # The SyntaxError should point to the correct line with tt.AssertPrints(["7/", "SyntaxError"]): ip.magic("run " + fname) def test_non_syntaxerror(self): # SyntaxTB may be called with an error other than a SyntaxError # See e.g. gh-4361 try: raise ValueError('QWERTY') except ValueError: with tt.AssertPrints('QWERTY'): ip.showsyntaxerror() import sys if platform.python_implementation() != "PyPy": """ New 3.9 Pgen Parser does not raise Memory error, except on failed malloc. """ class MemoryErrorTest(unittest.TestCase): def test_memoryerror(self): memoryerror_code = "(" * 200 + ")" * 200 ip.run_cell(memoryerror_code) class Python3ChainedExceptionsTest(unittest.TestCase): DIRECT_CAUSE_ERROR_CODE = """ try: x = 1 + 2 print(not_defined_here) except Exception as e: x += 55 x - 1 y = {} raise KeyError('uh') from e """ EXCEPTION_DURING_HANDLING_CODE = """ try: x = 1 + 2 print(not_defined_here) except Exception as e: x += 55 x - 1 y = {} raise KeyError('uh') """ SUPPRESS_CHAINING_CODE = """ try: 1/0 except Exception: raise ValueError("Yikes") from None """ def test_direct_cause_error(self): with tt.AssertPrints(["KeyError", "NameError", "direct cause"]): ip.run_cell(self.DIRECT_CAUSE_ERROR_CODE) def test_exception_during_handling_error(self): with tt.AssertPrints(["KeyError", "NameError", "During handling"]): ip.run_cell(self.EXCEPTION_DURING_HANDLING_CODE) def test_suppress_exception_chaining(self): with tt.AssertNotPrints("ZeroDivisionError"), \ tt.AssertPrints("ValueError", suppress=False): ip.run_cell(self.SUPPRESS_CHAINING_CODE) def test_plain_direct_cause_error(self): with tt.AssertPrints(["KeyError", "NameError", "direct cause"]): ip.run_cell("%xmode Plain") ip.run_cell(self.DIRECT_CAUSE_ERROR_CODE) ip.run_cell("%xmode Verbose") def test_plain_exception_during_handling_error(self): with tt.AssertPrints(["KeyError", "NameError", "During handling"]): ip.run_cell("%xmode Plain") ip.run_cell(self.EXCEPTION_DURING_HANDLING_CODE) ip.run_cell("%xmode Verbose") def test_plain_suppress_exception_chaining(self): with tt.AssertNotPrints("ZeroDivisionError"), \ tt.AssertPrints("ValueError", suppress=False): ip.run_cell("%xmode Plain") ip.run_cell(self.SUPPRESS_CHAINING_CODE) ip.run_cell("%xmode Verbose") class RecursionTest(unittest.TestCase): DEFINITIONS = """ def non_recurs(): 1/0 def r1(): r1() def r3a(): r3b() def r3b(): r3c() def r3c(): r3a() def r3o1(): r3a() def r3o2(): r3o1() """ def setUp(self): ip.run_cell(self.DEFINITIONS) def test_no_recursion(self): with tt.AssertNotPrints("skipping similar frames"): ip.run_cell("non_recurs()") @recursionlimit(200) def test_recursion_one_frame(self): with tt.AssertPrints(re.compile( r"\[\.\.\. skipping similar frames: r1 at line 5 \(\d{2,3} times\)\]") ): ip.run_cell("r1()") @recursionlimit(160) def test_recursion_three_frames(self): with tt.AssertPrints("[... skipping similar frames: "), \ tt.AssertPrints(re.compile(r"r3a at line 8 \(\d{2} times\)"), suppress=False), \ tt.AssertPrints(re.compile(r"r3b at line 11 \(\d{2} times\)"), suppress=False), \ tt.AssertPrints(re.compile(r"r3c at line 14 \(\d{2} times\)"), suppress=False): ip.run_cell("r3o2()") class PEP678NotesReportingTest(unittest.TestCase): ERROR_WITH_NOTE = """ try: raise AssertionError("Message") except Exception as e: try: e.add_note("This is a PEP-678 note.") except AttributeError: # Python <= 3.10 e.__notes__ = ("This is a PEP-678 note.",) raise """ def test_verbose_reports_notes(self): with tt.AssertPrints(["AssertionError", "Message", "This is a PEP-678 note."]): ip.run_cell(self.ERROR_WITH_NOTE) def test_plain_reports_notes(self): with tt.AssertPrints(["AssertionError", "Message", "This is a PEP-678 note."]): ip.run_cell("%xmode Plain") ip.run_cell(self.ERROR_WITH_NOTE) ip.run_cell("%xmode Verbose") #---------------------------------------------------------------------------- # module testing (minimal) def test_handlers(): def spam(c, d_e): (d, e) = d_e x = c + d y = c * d foo(x, y) def foo(a, b, bar=1): eggs(a, b + bar) def eggs(f, g, z=globals()): h = f + g i = f - g return h / i buff = io.StringIO() buff.write('') buff.write('*** Before ***') try: buff.write(spam(1, (2, 3))) except: traceback.print_exc(file=buff) handler = ColorTB(ostream=buff) buff.write('*** ColorTB ***') try: buff.write(spam(1, (2, 3))) except: handler(*sys.exc_info()) buff.write('') handler = VerboseTB(ostream=buff) buff.write('*** VerboseTB ***') try: buff.write(spam(1, (2, 3))) except: handler(*sys.exc_info()) buff.write('')
f25944274674f3337906d1b9be57b3527c35ad5b
af101b467134e10270bb72d02f41f07daa7f57d8
/mmagic/models/editors/deblurganv2/deblurganv2_generator.py
d0f98aaa9a207b702e07aa46c4d4a61b2bc29cc3
[ "Apache-2.0" ]
permissive
open-mmlab/mmagic
4d864853417db300de4dfe7e83ce380fd1557a23
a382f143c0fd20d227e1e5524831ba26a568190d
refs/heads/main
2023-08-31T14:40:24.936423
2023-08-30T05:05:56
2023-08-30T05:05:56
203,999,962
1,370
192
Apache-2.0
2023-09-14T11:39:18
2019-08-23T13:04:29
Jupyter Notebook
UTF-8
Python
false
false
19,475
py
deblurganv2_generator.py
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmagic.registry import MODELS from .deblurganv2_util import MobileNetV2, get_norm_layer, inceptionresnetv2 backbone_list = ['FPNInception', 'FPNMobileNet', 'FPNInceptionSimple'] class FPNHead(nn.Module): """Head for FPNInception,FPNInceptionSimple and FPNMobilenet.""" def __init__(self, num_in, num_mid, num_out): super().__init__() self.block0 = nn.Conv2d( num_in, num_mid, kernel_size=3, padding=1, bias=False) self.block1 = nn.Conv2d( num_mid, num_out, kernel_size=3, padding=1, bias=False) def forward(self, x): """Forward function. Args: x (torch.Tensor ): You can directly input a ``torch.Tensor``. Returns: torch.Tensor : ``torch.tensor`` will be returned. """ x = nn.functional.relu(self.block0(x), inplace=True) x = nn.functional.relu(self.block1(x), inplace=True) return x class FPN_inception(nn.Module): def __init__(self, norm_layer, num_filter=256, pretrained='imagenet'): """Creates an `FPN` instance for feature extraction. Args: num_filter: the number of filters in each output pyramid level pretrained: use ImageNet pre-trained backbone feature extractor """ super().__init__() self.inception = inceptionresnetv2( num_classes=1000, pretrained=pretrained) self.enc0 = self.inception.conv2d_1a self.enc1 = nn.Sequential( self.inception.conv2d_2a, self.inception.conv2d_2b, self.inception.maxpool_3a, ) # 64 self.enc2 = nn.Sequential( self.inception.conv2d_3b, self.inception.conv2d_4a, self.inception.maxpool_5a, ) # 192 self.enc3 = nn.Sequential( self.inception.mixed_5b, self.inception.repeat, self.inception.mixed_6a, ) # 1088 self.enc4 = nn.Sequential( self.inception.repeat_1, self.inception.mixed_7a, ) # 2080 self.td1 = nn.Sequential( nn.Conv2d(num_filter, num_filter, kernel_size=3, padding=1), norm_layer(num_filter), nn.ReLU(inplace=True)) self.td2 = nn.Sequential( nn.Conv2d(num_filter, num_filter, kernel_size=3, padding=1), norm_layer(num_filter), nn.ReLU(inplace=True)) self.td3 = nn.Sequential( nn.Conv2d(num_filter, num_filter, kernel_size=3, padding=1), norm_layer(num_filter), nn.ReLU(inplace=True)) self.pad = nn.ReflectionPad2d(1) self.lateral4 = nn.Conv2d(2080, num_filter, kernel_size=1, bias=False) self.lateral3 = nn.Conv2d(1088, num_filter, kernel_size=1, bias=False) self.lateral2 = nn.Conv2d(192, num_filter, kernel_size=1, bias=False) self.lateral1 = nn.Conv2d(64, num_filter, kernel_size=1, bias=False) self.lateral0 = nn.Conv2d( 32, num_filter // 2, kernel_size=1, bias=False) for param in self.inception.parameters(): param.requires_grad = False def unfreeze(self): for param in self.inception.parameters(): param.requires_grad = True def forward(self, x): """Forward function. Args: x (torch.Tensor ): You can directly input a ``torch.Tensor``. Returns: torch.Tensor : ``torch.tensor`` will be returned. """ # Bottom-up pathway, from ResNet enc0 = self.enc0(x) enc1 = self.enc1(enc0) # 256 enc2 = self.enc2(enc1) # 512 enc3 = self.enc3(enc2) # 1024 enc4 = self.enc4(enc3) # 2048 # Lateral connections lateral4 = self.pad(self.lateral4(enc4)) lateral3 = self.pad(self.lateral3(enc3)) lateral2 = self.lateral2(enc2) lateral1 = self.pad(self.lateral1(enc1)) lateral0 = self.lateral0(enc0) # Top-down pathway pad = (1, 2, 1, 2) # pad last dim by 1 on each side pad1 = (0, 1, 0, 1) map4 = lateral4 map3 = self.td1( lateral3 + nn.functional.upsample(map4, scale_factor=2, mode='nearest')) map2 = self.td2( F.pad(lateral2, pad, 'reflect') + nn.functional.upsample(map3, scale_factor=2, mode='nearest')) map1 = self.td3( lateral1 + nn.functional.upsample(map2, scale_factor=2, mode='nearest')) return F.pad(lateral0, pad1, 'reflect'), map1, map2, map3, map4 class FPNInception(nn.Module): """Feature Pyramid Network (FPN) with four feature maps of resolutions 1/4, 1/8, 1/16, 1/32 and `num_filter` filters for all feature maps.""" def __init__(self, norm_layer, output_ch=3, num_filter=128, num_filter_fpn=256): super().__init__() norm_layer = get_norm_layer(norm_type=norm_layer) self.fpn = FPN_inception( num_filter=num_filter_fpn, norm_layer=norm_layer) # The segmentation heads on top of the FPN self.head1 = FPNHead(num_filter_fpn, num_filter, num_filter) self.head2 = FPNHead(num_filter_fpn, num_filter, num_filter) self.head3 = FPNHead(num_filter_fpn, num_filter, num_filter) self.head4 = FPNHead(num_filter_fpn, num_filter, num_filter) self.smooth = nn.Sequential( nn.Conv2d(4 * num_filter, num_filter, kernel_size=3, padding=1), norm_layer(num_filter), nn.ReLU(), ) self.smooth2 = nn.Sequential( nn.Conv2d(num_filter, num_filter // 2, kernel_size=3, padding=1), norm_layer(num_filter // 2), nn.ReLU(), ) self.final = nn.Conv2d( num_filter // 2, output_ch, kernel_size=3, padding=1) def unfreeze(self): self.fpn.unfreeze() def forward(self, x): """Forward function. Args: x (torch.Tensor ): You can directly input a ``torch.Tensor``. Returns: torch.Tensor : ``torch.tensor`` will be returned. """ map0, map1, map2, map3, map4 = self.fpn(x) map4 = nn.functional.upsample( self.head4(map4), scale_factor=8, mode='nearest') map3 = nn.functional.upsample( self.head3(map3), scale_factor=4, mode='nearest') map2 = nn.functional.upsample( self.head2(map2), scale_factor=2, mode='nearest') map1 = nn.functional.upsample( self.head1(map1), scale_factor=1, mode='nearest') smoothed = self.smooth(torch.cat([map4, map3, map2, map1], dim=1)) smoothed = nn.functional.upsample( smoothed, scale_factor=2, mode='nearest') smoothed = self.smooth2(smoothed + map0) smoothed = nn.functional.upsample( smoothed, scale_factor=2, mode='nearest') final = self.final(smoothed) res = torch.tanh(final) + x return torch.clamp(res, min=-1, max=1) class FPN_inceptionsimple(nn.Module): def __init__(self, norm_layer, num_filters=256): """Creates an `FPN` instance for feature extraction. Args: num_filters: the number of filters in each output pyramid level pretrained: use ImageNet pre-trained backbone feature extractor """ super().__init__() self.inception = inceptionresnetv2( num_classes=1000, pretrained='imagenet') self.enc0 = self.inception.conv2d_1a self.enc1 = nn.Sequential( self.inception.conv2d_2a, self.inception.conv2d_2b, self.inception.maxpool_3a, ) # 64 self.enc2 = nn.Sequential( self.inception.conv2d_3b, self.inception.conv2d_4a, self.inception.maxpool_5a, ) # 192 self.enc3 = nn.Sequential( self.inception.mixed_5b, self.inception.repeat, self.inception.mixed_6a, ) # 1088 self.enc4 = nn.Sequential( self.inception.repeat_1, self.inception.mixed_7a, ) # 2080 self.pad = nn.ReflectionPad2d(1) self.lateral4 = nn.Conv2d(2080, num_filters, kernel_size=1, bias=False) self.lateral3 = nn.Conv2d(1088, num_filters, kernel_size=1, bias=False) self.lateral2 = nn.Conv2d(192, num_filters, kernel_size=1, bias=False) self.lateral1 = nn.Conv2d(64, num_filters, kernel_size=1, bias=False) self.lateral0 = nn.Conv2d( 32, num_filters // 2, kernel_size=1, bias=False) for param in self.inception.parameters(): param.requires_grad = False def unfreeze(self): for param in self.inception.parameters(): param.requires_grad = True def forward(self, x): """Forward function. Args: x (torch.Tensor ): You can directly input a ``torch.Tensor``. Returns: torch.Tensor : ``torch.tensor`` will be returned. """ # Bottom-up pathway, from ResNet enc0 = self.enc0(x) enc1 = self.enc1(enc0) # 256 enc2 = self.enc2(enc1) # 512 enc3 = self.enc3(enc2) # 1024 enc4 = self.enc4(enc3) # 2048 # Lateral connections lateral4 = self.pad(self.lateral4(enc4)) lateral3 = self.pad(self.lateral3(enc3)) lateral2 = self.lateral2(enc2) lateral1 = self.pad(self.lateral1(enc1)) lateral0 = self.lateral0(enc0) # Top-down pathway pad = (1, 2, 1, 2) # pad last dim by 1 on each side pad1 = (0, 1, 0, 1) map4 = lateral4 map3 = lateral3 + nn.functional.upsample( map4, scale_factor=2, mode='nearest') map2 = F.pad(lateral2, pad, 'reflect') + nn.functional.upsample( map3, scale_factor=2, mode='nearest') map1 = lateral1 + nn.functional.upsample( map2, scale_factor=2, mode='nearest') return F.pad(lateral0, pad1, 'reflect'), map1, map2, map3, map4 class FPNInceptionSimple(nn.Module): """Feature Pyramid Network (FPN) with four feature maps of resolutions 1/4, 1/8, 1/16, 1/32 and `num_filter` filters for all feature maps.""" def __init__(self, norm_layer, output_ch=3, num_filter=128, num_filter_fpn=256): super().__init__() norm_layer = get_norm_layer(norm_type=norm_layer) self.fpn = FPN_inceptionsimple( num_filter=num_filter_fpn, norm_layer=norm_layer) # The segmentation heads on top of the FPN self.head1 = FPNHead(num_filter_fpn, num_filter, num_filter) self.head2 = FPNHead(num_filter_fpn, num_filter, num_filter) self.head3 = FPNHead(num_filter_fpn, num_filter, num_filter) self.head4 = FPNHead(num_filter_fpn, num_filter, num_filter) self.smooth = nn.Sequential( nn.Conv2d(4 * num_filter, num_filter, kernel_size=3, padding=1), norm_layer(num_filter), nn.ReLU(), ) self.smooth2 = nn.Sequential( nn.Conv2d(num_filter, num_filter // 2, kernel_size=3, padding=1), norm_layer(num_filter // 2), nn.ReLU(), ) self.final = nn.Conv2d( num_filter // 2, output_ch, kernel_size=3, padding=1) def unfreeze(self): self.fpn.unfreeze() def forward(self, x): """Forward function. Args: x (torch.Tensor ): You can directly input a ``torch.Tensor``. Returns: torch.Tensor : ``torch.tensor`` will be returned. """ map0, map1, map2, map3, map4 = self.fpn(x) map4 = nn.functional.upsample( self.head4(map4), scale_factor=8, mode='nearest') map3 = nn.functional.upsample( self.head3(map3), scale_factor=4, mode='nearest') map2 = nn.functional.upsample( self.head2(map2), scale_factor=2, mode='nearest') map1 = nn.functional.upsample( self.head1(map1), scale_factor=1, mode='nearest') smoothed = self.smooth(torch.cat([map4, map3, map2, map1], dim=1)) smoothed = nn.functional.upsample( smoothed, scale_factor=2, mode='nearest') smoothed = self.smooth2(smoothed + map0) smoothed = nn.functional.upsample( smoothed, scale_factor=2, mode='nearest') final = self.final(smoothed) res = torch.tanh(final) + x return torch.clamp(res, min=-1, max=1) class FPN_mobilenet(nn.Module): def __init__(self, norm_layer, num_filters=128, pretrained=None): """Creates an `FPN` instance for feature extraction. Args: num_filters: the number of filters in each output pyramid level pretrained: use ImageNet pre-trained backbone feature extractor """ super().__init__() net = MobileNetV2(n_class=1000) if pretrained: # Load weights into the project directory if torch.cuda.is_available(): state_dict = torch.load( pretrained) # add map_location='cpu' if no gpu else: state_dict = torch.load(pretrained, map_location='cpu') net.load_state_dict(state_dict) self.features = net.features self.enc0 = nn.Sequential(*self.features[0:2]) self.enc1 = nn.Sequential(*self.features[2:4]) self.enc2 = nn.Sequential(*self.features[4:7]) self.enc3 = nn.Sequential(*self.features[7:11]) self.enc4 = nn.Sequential(*self.features[11:16]) self.td1 = nn.Sequential( nn.Conv2d(num_filters, num_filters, kernel_size=3, padding=1), norm_layer(num_filters), nn.ReLU(inplace=True)) self.td2 = nn.Sequential( nn.Conv2d(num_filters, num_filters, kernel_size=3, padding=1), norm_layer(num_filters), nn.ReLU(inplace=True)) self.td3 = nn.Sequential( nn.Conv2d(num_filters, num_filters, kernel_size=3, padding=1), norm_layer(num_filters), nn.ReLU(inplace=True)) self.lateral4 = nn.Conv2d(160, num_filters, kernel_size=1, bias=False) self.lateral3 = nn.Conv2d(64, num_filters, kernel_size=1, bias=False) self.lateral2 = nn.Conv2d(32, num_filters, kernel_size=1, bias=False) self.lateral1 = nn.Conv2d(24, num_filters, kernel_size=1, bias=False) self.lateral0 = nn.Conv2d( 16, num_filters // 2, kernel_size=1, bias=False) for param in self.features.parameters(): param.requires_grad = False def unfreeze(self): for param in self.features.parameters(): param.requires_grad = True def forward(self, x): """Forward function. Args: x (torch.Tensor ): You can directly input a ``torch.Tensor``. Returns: torch.Tensor : ``torch.tensor`` will be returned. """ # Bottom-up pathway, from ResNet enc0 = self.enc0(x) enc1 = self.enc1(enc0) # 256 enc2 = self.enc2(enc1) # 512 enc3 = self.enc3(enc2) # 1024 enc4 = self.enc4(enc3) # 2048 # Lateral connections lateral4 = self.lateral4(enc4) lateral3 = self.lateral3(enc3) lateral2 = self.lateral2(enc2) lateral1 = self.lateral1(enc1) lateral0 = self.lateral0(enc0) # Top-down pathway map4 = lateral4 map3 = self.td1( lateral3 + nn.functional.upsample(map4, scale_factor=2, mode='nearest')) map2 = self.td2( lateral2 + nn.functional.upsample(map3, scale_factor=2, mode='nearest')) map1 = self.td3( lateral1 + nn.functional.upsample(map2, scale_factor=2, mode='nearest')) return lateral0, map1, map2, map3, map4 class FPNMobileNet(nn.Module): def __init__(self, norm_layer, output_ch=3, num_filter=64, num_filter_fpn=128, pretrained=None): super().__init__() # Feature Pyramid Network (FPN) with four feature maps of resolutions # 1/4, 1/8, 1/16, 1/32 and `num_filters` filters for all feature maps. norm_layer = get_norm_layer(norm_type=norm_layer) self.fpn = FPN_mobilenet( num_filters=num_filter_fpn, norm_layer=norm_layer, pretrained=pretrained) # The segmentation heads on top of the FPN self.head1 = FPNHead(num_filter_fpn, num_filter, num_filter) self.head2 = FPNHead(num_filter_fpn, num_filter, num_filter) self.head3 = FPNHead(num_filter_fpn, num_filter, num_filter) self.head4 = FPNHead(num_filter_fpn, num_filter, num_filter) self.smooth = nn.Sequential( nn.Conv2d(4 * num_filter, num_filter, kernel_size=3, padding=1), norm_layer(num_filter), nn.ReLU(), ) self.smooth2 = nn.Sequential( nn.Conv2d(num_filter, num_filter // 2, kernel_size=3, padding=1), norm_layer(num_filter // 2), nn.ReLU(), ) self.final = nn.Conv2d( num_filter // 2, output_ch, kernel_size=3, padding=1) def unfreeze(self): """unfreeze the fpn network.""" self.fpn.unfreeze() def forward(self, x): """Forward function. Args: x (torch.Tensor ): You can directly input a ``torch.Tensor``. Returns: torch.Tensor : ``torch.tensor`` will be returned. """ map0, map1, map2, map3, map4 = self.fpn(x) map4 = nn.functional.upsample( self.head4(map4), scale_factor=8, mode='nearest') map3 = nn.functional.upsample( self.head3(map3), scale_factor=4, mode='nearest') map2 = nn.functional.upsample( self.head2(map2), scale_factor=2, mode='nearest') map1 = nn.functional.upsample( self.head1(map1), scale_factor=1, mode='nearest') smoothed = self.smooth(torch.cat([map4, map3, map2, map1], dim=1)) smoothed = nn.functional.upsample( smoothed, scale_factor=2, mode='nearest') smoothed = self.smooth2(smoothed + map0) smoothed = nn.functional.upsample( smoothed, scale_factor=2, mode='nearest') final = self.final(smoothed) res = torch.tanh(final) + x return torch.clamp(res, min=-1, max=1) @MODELS.register_module() class DeblurGanV2Generator: """Defines the generator for DeblurGanv2 with the specified arguments.. Args: model (Str): Type of the generator model """ def __new__(cls, backbone, *args, **kwargs): if backbone == 'FPNInception': return FPNInception(*args, **kwargs) elif backbone == 'FPNMobileNet': return FPNMobileNet(*args, **kwargs) elif backbone == 'FPNInceptionSimple': return FPNInceptionSimple(*args, **kwargs) else: raise Exception('Generator model {} not found, ' 'Please use the following models: ' '{}'.format(backbone, backbone_list))
28a171d9353d1b9a3d1d28508b774ae8e59056a9
b684bd6c260a0ad43392d5dec4bd919fed686ed9
/tests/settings.py
480a744ecb4174d92e2508f8662f21f0de97fd81
[ "MIT" ]
permissive
codingjoe/django-stdimage
e90a5d9c21653372cdfa8e366c2ea3389b425f2e
7100350161c540dcd949ab2cb1ea47b1e9de0208
refs/heads/master
2023-08-25T08:45:47.670247
2023-07-31T21:33:00
2023-08-03T07:19:02
15,314,657
285
80
MIT
2023-09-12T11:25:14
2013-12-19T15:08:05
Python
UTF-8
Python
false
false
983
py
settings.py
# -*- encoding: utf-8 -*- from __future__ import unicode_literals import os import tempfile BASE_DIR = os.path.dirname(os.path.abspath(__file__)) DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": ":memory:", } } INSTALLED_APPS = ( "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.sites", "stdimage", "tests", ) DEFAULT_FILE_STORAGE = "tests.storage.MyFileSystemStorage" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "APP_DIRS": True, } ] MIDDLEWARE = MIDDLEWARE_CLASSES = ( "django.contrib.sessions.middleware.SessionMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", ) MEDIA_ROOT = tempfile.mkdtemp() SITE_ID = 1 ROOT_URLCONF = "tests.urls" SECRET_KEY = "foobar" USE_TZ = True
09a088a34576eabf2cf99dd7a807804a296f0599
813f67f6815d0389589b719625c46b2265ca0f87
/starlette_exporter/labels.py
5fcd8807b85109b9adffa74b7c5e0f2a8c6c3553
[ "Apache-2.0" ]
permissive
stephenhillier/starlette_exporter
c0916acb4c592617c31acbb3616a2f48c41aeb45
0de22e78233cf88e746b68db76945965d0bfbedf
refs/heads/master
2023-08-16T17:29:50.915043
2023-08-06T13:50:36
2023-08-06T13:50:36
217,774,698
266
30
Apache-2.0
2023-08-06T13:50:37
2019-10-26T22:04:25
Python
UTF-8
Python
false
false
1,191
py
labels.py
"""utilities for working with labels""" from typing import Callable, Iterable, Optional from starlette.requests import Request def from_header(key: str, allowed_values: Optional[Iterable] = None) -> Callable: """returns a function that retrieves a header value from a request. The returned function can be passed to the `labels` argument of PrometheusMiddleware to label metrics using a header value. `key`: header key `allowed_values`: an iterable (e.g. list or tuple) containing an allowlist of values. Any header value not in allowed_values will result in an empty string being returned. Use this to constrain the potential label values. example: ``` PrometheusMiddleware( labels={ "host": from_header("X-User", allowed_values=("frank", "estelle")) } ) ``` """ def inner(r: Request): v = r.headers.get(key, "") # if allowed_values was supplied, return a blank string if # the value of the header does match any of the values. if allowed_values is not None and v not in allowed_values: return "" return v return inner
3e313b8a04b12610995251a43c3d124fab5cd665
0c932b52ddb40867419dedd394934c059fc4ef7e
/scripts/dcommand.py
8182f547547f4030624748ed78b0341b3ed21d44
[ "MIT" ]
permissive
allenai/allenact
ed614f745cbd8ddb1404af6e8d5e855b5d66908a
9772eeeb7eacc1f9a83c90d1cf549a3f7e783c12
refs/heads/main
2023-09-05T01:33:37.424674
2023-06-13T18:13:57
2023-06-13T18:13:57
233,944,205
266
58
NOASSERTION
2023-07-25T17:05:01
2020-01-14T21:58:30
Python
UTF-8
Python
false
false
2,932
py
dcommand.py
#!/usr/bin/env python3 """Tool to run command on multiple nodes through SSH.""" import argparse import glob import os def get_argument_parser(): """Creates the argument parser.""" # noinspection PyTypeChecker parser = argparse.ArgumentParser( description="dcommand", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--runs_on", required=False, type=str, default=None, help="Comma-separated IP addresses of machines. If empty, the tool will scan for lists of IP addresses" " in `screen_ids_file`s in the `~/.allenact` directory.", ) parser.add_argument( "--ssh_cmd", required=False, type=str, default="ssh {addr}", help="SSH command. Useful to utilize a pre-shared key with 'ssh -i path/to/mykey.pem ubuntu@{addr}'.", ) parser.add_argument( "--command", required=False, default="nvidia-smi | head -n 35", type=str, help="Command to be run through ssh onto each machine", ) return parser def get_args(): """Creates the argument parser and parses any input arguments.""" parser = get_argument_parser() args = parser.parse_args() return args def wrap_double(text): return f'"{text}"' def wrap_single(text): return f"'{text}'" def wrap_single_nested(text, quote=r"'\''"): return f"{quote}{text}{quote}" if __name__ == "__main__": args = get_args() all_addresses = [] if args.runs_on is not None: all_addresses = args.runs_on.split(",") else: all_files = sorted( glob.glob(os.path.join(os.path.expanduser("~"), ".allenact", "*.killfile")), reverse=True, ) if len(all_files) == 0: print( f"No screen_ids_file found under {os.path.join(os.path.expanduser('~'), '.allenact')}" ) for killfile in all_files: with open(killfile, "r") as f: # Each line contains 'IP_address screen_ID' nodes = [tuple(line[:-1].split(" ")) for line in f.readlines()] all_addresses.extend(node[0] for node in nodes) use_addresses = "" while use_addresses not in ["y", "n"]: use_addresses = input( f"Run on {all_addresses} from {killfile}? [Y/n] " ).lower() if use_addresses == "": use_addresses = "y" if use_addresses == "n": all_addresses.clear() else: break print(f"Running on IP addresses {all_addresses}") for it, addr in enumerate(all_addresses): ssh_command = f"{args.ssh_cmd.format(addr=addr)} {wrap_single(args.command)}" print(f"{it} {addr} SSH command {ssh_command}") os.system(ssh_command) print("DONE")
734202481a4ecdf99acaa0ce19031b4a320b7681
3a6a211ea0d32405497fbd6486c490bb147e25f9
/third_party/webtest/webtest/utils.py
e6b1cf8ad209ceb856f25cbb5617d4f99cc9d6b2
[ "MIT", "BSD-3-Clause" ]
permissive
catapult-project/catapult
e2cbdd5eb89f3b1492fc8752494e62ea1df4bae0
53102de187a48ac2cfc241fef54dcbc29c453a8e
refs/heads/main
2021-05-25T07:37:22.832505
2021-05-24T08:01:49
2021-05-25T06:07:38
33,947,548
2,032
742
BSD-3-Clause
2022-08-26T16:01:18
2015-04-14T17:49:05
HTML
UTF-8
Python
false
false
4,214
py
utils.py
# -*- coding: utf-8 -*- import re import six from json import dumps from webtest.compat import urlencode class NoDefault(object): """Sentinel to uniquely represent no default value.""" def __repr__(self): return '<NoDefault>' NoDefault = NoDefault() def json_method(method): """Do a %(method)s request. Very like the :class:`~webtest.TestApp.%(lmethod)s` method. ``params`` are dumped to json and put in the body of the request. Content-Type is set to ``application/json``. Returns a :class:`webtest.TestResponse` object. """ def wrapper(self, url, params=NoDefault, **kw): content_type = 'application/json' if params is not NoDefault: params = dumps(params, cls=self.JSONEncoder) kw.update( params=params, content_type=content_type, upload_files=None, ) return self._gen_request(method, url, **kw) subst = dict(lmethod=method.lower(), method=method) wrapper.__doc__ = json_method.__doc__ % subst wrapper.__name__ = str('%(lmethod)s_json' % subst) return wrapper def stringify(value): if isinstance(value, six.text_type): return value elif isinstance(value, six.binary_type): return value.decode('utf8') else: return str(value) entity_pattern = re.compile(r"&(\w+|#\d+|#[xX][a-fA-F0-9]+);") def encode_params(params, content_type): if params is NoDefault: return '' if isinstance(params, dict) or hasattr(params, 'items'): params = list(params.items()) if isinstance(params, (list, tuple)): if content_type: content_type = content_type.lower() if 'charset=' in content_type: charset = content_type.split('charset=')[1] charset = charset.strip('; ').lower() encoded_params = [] for k, v in params: if isinstance(v, six.text_type): v = v.encode(charset) encoded_params.append((k, v)) params = encoded_params params = urlencode(params, doseq=True) return params def make_pattern(pat): """Find element pattern can be a regex or a callable.""" if pat is None: return None if isinstance(pat, six.binary_type): pat = pat.decode('utf8') if isinstance(pat, six.text_type): pat = re.compile(pat) if hasattr(pat, 'search'): return pat.search if hasattr(pat, '__call__'): return pat raise ValueError( "Cannot make callable pattern object out of %r" % pat) class _RequestCookieAdapter(object): """ cookielib.CookieJar support for webob.Request """ def __init__(self, request): self._request = request self.origin_req_host = request.host def is_unverifiable(self): return True # sure? Why not? @property def unverifiable(self): # NOQA # This is undocumented method that Python 3 cookielib uses return True def get_full_url(self): return self._request.url def get_host(self): return self.origin_req_host get_origin_req_host = get_host def add_unredirected_header(self, key, header): self._request.headers[key] = header def has_header(self, key): return key in self._request.headers def get_type(self): return self._request.scheme @property def type(self): # NOQA # This is undocumented method that Python 3 cookielib uses return self.get_type() def header_items(self): # pragma: no cover # This is unused on most python versions return self._request.headers.items() class _ResponseCookieAdapter(object): """ cookielib.CookieJar support for webob.Response """ def __init__(self, response): self._response = response def info(self): return self def getheaders(self, header): return self._response.headers.getall(header) def get_all(self, headers, default): # NOQA # This is undocumented method that Python 3 cookielib uses return self._response.headers.getall(headers)
33d186848df999925085d997081f4b01d643756d
e22eeb5256e17a96a98b3ff25433aec2d641cd2c
/openstack/tests/unit/accelerator/v2/test_device.py
c354d522253ed753dea1277a9bf37c7b8dbef2a7
[ "Apache-2.0" ]
permissive
openstack/openstacksdk
b4b95fd7869653feea5a3b783e9a5c588235c039
d474eb84c605c429bb9cccb166cabbdd1654d73c
refs/heads/master
2023-09-03T22:50:03.398512
2023-07-27T14:09:35
2023-08-29T16:28:46
16,223,378
124
130
Apache-2.0
2023-09-06T02:52:47
2014-01-25T02:48:00
Python
UTF-8
Python
false
false
2,030
py
test_device.py
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import uuid from openstack.accelerator.v2 import device from openstack.tests.unit import base EXAMPLE = { 'id': '1', 'uuid': uuid.uuid4(), 'created_at': '2019-08-09T12:14:57.233772', 'updated_at': '2019-08-09T12:15:57.233772', 'type': 'test_type', 'vendor': '0x8086', 'model': 'test_model', 'std_board_info': '{"product_id": "0x09c4"}', 'vendor_board_info': 'test_vb_info', } class TestDevice(base.TestCase): def test_basic(self): sot = device.Device() self.assertEqual('device', sot.resource_key) self.assertEqual('devices', sot.resources_key) self.assertEqual('/devices', sot.base_path) self.assertFalse(sot.allow_create) self.assertTrue(sot.allow_fetch) self.assertFalse(sot.allow_commit) self.assertFalse(sot.allow_delete) self.assertTrue(sot.allow_list) def test_make_it(self): sot = device.Device(**EXAMPLE) self.assertEqual(EXAMPLE['id'], sot.id) self.assertEqual(EXAMPLE['uuid'], sot.uuid) self.assertEqual(EXAMPLE['type'], sot.type) self.assertEqual(EXAMPLE['vendor'], sot.vendor) self.assertEqual(EXAMPLE['model'], sot.model) self.assertEqual(EXAMPLE['std_board_info'], sot.std_board_info) self.assertEqual(EXAMPLE['vendor_board_info'], sot.vendor_board_info) self.assertEqual(EXAMPLE['created_at'], sot.created_at) self.assertEqual(EXAMPLE['updated_at'], sot.updated_at)
9dd82380d808a4afb48af1116ba1490823d4d92f
11cd362cdd78c2fc48042ed203614b201ac94aa6
/apps/jobbrowser/src/jobbrowser/api2.py
b51fe0f7dc1e159df56d9d94fe8cf172b0203c5f
[ "CC-BY-3.0", "LicenseRef-scancode-other-copyleft", "LicenseRef-scancode-unknown-license-reference", "ZPL-2.0", "Unlicense", "LGPL-3.0-only", "CC0-1.0", "LicenseRef-scancode-other-permissive", "CNRI-Python", "LicenseRef-scancode-warranty-disclaimer", "GPL-2.0-or-later", "Python-2.0", "GPL-3.0-only", "CC-BY-4.0", "LicenseRef-scancode-jpython-1.1", "AFL-2.1", "JSON", "WTFPL", "MIT", "LicenseRef-scancode-generic-exception", "LicenseRef-scancode-jython", "GPL-3.0-or-later", "LicenseRef-scancode-python-cwi", "BSD-3-Clause", "LGPL-3.0-or-later", "Zlib", "LicenseRef-scancode-free-unknown", "Classpath-exception-2.0", "LicenseRef-scancode-proprietary-license", "GPL-1.0-or-later", "LGPL-2.0-or-later", "MPL-2.0", "ISC", "GPL-2.0-only", "ZPL-2.1", "BSL-1.0", "Apache-2.0", "LGPL-2.0-only", "LicenseRef-scancode-public-domain", "Xnet", "BSD-2-Clause" ]
permissive
cloudera/hue
b42343d0e03d2936b5a9a32f8ddb3e9c5c80c908
dccb9467675c67b9c3399fc76c5de6d31bfb8255
refs/heads/master
2023-08-31T06:49:25.724501
2023-08-28T20:45:00
2023-08-28T20:45:00
732,593
5,655
2,244
Apache-2.0
2023-09-14T03:05:41
2010-06-21T19:46:51
JavaScript
UTF-8
Python
false
false
6,172
py
api2.py
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import sys from urllib.request import Request, urlopen from django.http import HttpResponse from desktop.lib.i18n import smart_unicode from desktop.lib.django_util import JsonResponse from desktop.views import serve_403_error from jobbrowser.apis.base_api import get_api from jobbrowser.apis.query_store import query_store_proxy, stream_download_bundle from jobbrowser.conf import DISABLE_KILLING_JOBS, USE_PROXY if sys.version_info[0] > 2: from django.utils.translation import gettext as _ else: from django.utils.translation import ugettext as _ LOG = logging.getLogger() def api_error_handler(func): def decorator(*args, **kwargs): response = {} try: return func(*args, **kwargs) except Exception as e: LOG.exception('Error running %s' % func) response['status'] = -1 response['message'] = smart_unicode(e) finally: if response: return JsonResponse(response) return decorator @api_error_handler def jobs(request, interface=None): response = {'status': -1} cluster = json.loads(request.POST.get('cluster', '{}')) interface = interface or json.loads(request.POST.get('interface')) filters = dict([(key, value) for _filter in json.loads( request.POST.get('filters', '[]')) for key, value in list(_filter.items()) if value ]) if interface == 'queries-hive': filters = json.loads(request.body) jobs = get_api(request.user, interface, cluster=cluster).apps(filters) response['apps'] = jobs['apps'] response['total'] = jobs.get('total') response['status'] = 0 if interface == 'queries-hive': return JsonResponse(response['apps']) else: return JsonResponse(response) @api_error_handler def job(request, interface=None): response = {'status': -1} cluster = json.loads(request.POST.get('cluster', '{}')) interface = interface or json.loads(request.POST.get('interface')) if interface == 'queries-hive': app_id = json.loads(request.body)['queryId'] else: app_id = json.loads(request.POST.get('app_id')) if interface == 'schedules': filters = dict([(key, value) for _filter in json.loads( request.POST.get('filters', '[]')) for key, value in list(_filter.items()) if value ]) offset = json.loads(request.POST.get('pagination', '{"offset": 1}')).get('offset') response_app = get_api(request.user, interface, cluster=cluster).app(app_id, offset=offset, filters=filters) else: response_app = get_api(request.user, interface, cluster=cluster).app(app_id) if response_app.get('status') == -1 and response_app.get('message'): response.update(response_app) else: response['app'] = response_app response['status'] = 0 if interface == 'queries-hive': return JsonResponse(response['app']) else: return JsonResponse(response) @api_error_handler def action(request, interface=None, action=None): response = {'status': -1, 'message': ''} cluster = json.loads(request.POST.get('cluster', '{}')) interface = json.loads(request.POST.get('interface')) app_ids = json.loads(request.POST.get('app_ids')) operation = json.loads(request.POST.get('operation')) if operation.get('action') == 'kill' and DISABLE_KILLING_JOBS.get(): return serve_403_error(request) response['operation'] = operation response.update( get_api(request.user, interface, cluster=cluster).action(app_ids, operation) ) return JsonResponse(response) @api_error_handler def logs(request): response = {'status': -1} cluster = json.loads(request.POST.get('cluster', '{}')) interface = json.loads(request.POST.get('interface')) app_id = json.loads(request.POST.get('app_id')) app_type = json.loads(request.POST.get('type')) log_name = json.loads(request.POST.get('name')) response['logs'] = get_api(request.user, interface, cluster=cluster).logs( app_id, app_type, log_name, json.loads(request.GET.get('is_embeddable', 'false').lower()) ) response['status'] = 0 return JsonResponse(response) @api_error_handler def profile(request): response = {'status': -1} cluster = json.loads(request.POST.get('cluster', '{}')) interface = json.loads(request.POST.get('interface')) app_id = json.loads(request.POST.get('app_id')) app_type = json.loads(request.POST.get('app_type')) app_property = json.loads(request.POST.get('app_property')) app_filters = dict([ (key, value) for _filter in json.loads(request.POST.get('app_filters', '[]')) for key, value in list(_filter.items()) if value ]) api = get_api(request.user, interface, cluster=cluster) api._set_request(request) # For YARN resp = api.profile(app_id, app_type, app_property, app_filters) if isinstance(resp, HttpResponse): return resp else: response[app_property] = resp response['status'] = 0 return JsonResponse(response) @api_error_handler def query_store_api(request, path=None): response = {'status': -1} if USE_PROXY.get(): response = query_store_proxy(request, path) else: if path == 'api/query/search': filters = json.loads(request.body) resp = get_api(request.user, interface='queries-hive').apps(filters['search']) response = resp['apps'] return JsonResponse(response) @api_error_handler def query_store_download_bundle(request, id=None): return stream_download_bundle(request, id)
cea5c23229df01446da78f6892265a0ad343d46c
439f48720042970a7f9b156fbe9442b3ca66cbd9
/omrdatasettools/CapitanImageGenerator.py
b14847e8c02dc501394e4f127b91b64baa4fd0ef
[ "MIT", "CC-BY-SA-3.0", "GPL-2.0-only", "LicenseRef-scancode-public-domain", "CC-BY-NC-SA-4.0", "GPL-1.0-or-later", "AGPL-3.0-only", "CC-BY-SA-4.0" ]
permissive
apacha/OMR-Datasets
93e73a020044f3432c2239070acd1eb5ae914229
e950865749e3f7ec20a54db1594f76842f65cc40
refs/heads/main
2022-12-02T20:35:58.915823
2022-11-27T21:58:25
2022-11-27T21:58:25
97,099,904
261
47
MIT
2022-11-27T12:39:50
2017-07-13T08:38:39
Python
UTF-8
Python
false
false
11,627
py
CapitanImageGenerator.py
import argparse import os from typing import List import numpy from PIL import Image, ImageDraw from tqdm import tqdm from omrdatasettools.Point2D import Point2D from omrdatasettools.ExportPath import ExportPath from omrdatasettools.Rectangle import Rectangle class SimplePoint2D(object): def __init__(self, x: float, y: float) -> None: self.x = x self.y = y class CapitanSymbol: def __init__(self, content: str, stroke: List[SimplePoint2D], image_data: numpy.ndarray, symbol_class: str, dimensions: Rectangle) -> None: super().__init__() self.dimensions = dimensions self.symbol_class = symbol_class self.content = content self.stroke = stroke self.image_data = image_data @staticmethod def initialize_from_string(content: str) -> 'CapitanSymbol': """ Create and initializes a new symbol from a string :param content: The content of a symbol as read from the text-file in the form <label>:<sequence>:<image> :return: The initialized symbol :rtype: CapitanSymbol """ if content is None or content is "": return None parts = content.split(":") min_x = 100000 max_x = 0 min_y = 100000 max_y = 0 symbol_name = parts[0] sequence = parts[1] image_numbers = parts[2].split(',') image_data = numpy.asarray(image_numbers, numpy.uint8).reshape((30, 30)) stroke = [] for point_string in sequence.split(";"): if point_string is "": continue # Skip the last element, that is due to a trailing ; in each line point_x, point_y = point_string.split(",") x = float(point_x) y = float(point_y) stroke.append(SimplePoint2D(x, y)) max_x = max(max_x, x) min_x = min(min_x, x) max_y = max(max_y, y) min_y = min(min_y, y) dimensions = Rectangle(Point2D(min_x, min_y), int(max_x - min_x + 1), int(max_y - min_y + 1)) return CapitanSymbol(content, stroke, image_data, symbol_name, dimensions) def draw_capitan_score_bitmap(self, export_path: ExportPath) -> None: """ Draws the 30x30 symbol into the given file :param export_path: The path, where the symbols should be created on disk """ with Image.fromarray(self.image_data, mode='L') as image: image.save(export_path.get_full_path()) def draw_capitan_stroke_onto_canvas(self, export_path: ExportPath, stroke_thickness: int, margin: int): """ Draws the symbol strokes onto a canvas :param export_path: The path, where the symbols should be created on disk :param stroke_thickness: :param margin: """ width = int(self.dimensions.width + 2 * margin) height = int(self.dimensions.height + 2 * margin) offset = Point2D(self.dimensions.origin.x - margin, self.dimensions.origin.y - margin) image = Image.new('RGB', (width, height), "white") # create a new white image draw = ImageDraw.Draw(image) black = (0, 0, 0) for i in range(0, len(self.stroke) - 1): start_point = self.__subtract_offset(self.stroke[i], offset) end_point = self.__subtract_offset(self.stroke[i + 1], offset) distance = self.__euclidean_distance(start_point, end_point) if distance > 1600: # User moved more than 40 pixels - probably we should not draw a line here continue draw.line((start_point.x, start_point.y, end_point.x, end_point.y), black, stroke_thickness) del draw image.save(export_path.get_full_path()) image.close() @staticmethod def __euclidean_distance(a: SimplePoint2D, b: SimplePoint2D) -> float: return (a.x - b.x) * (a.x - b.x) + abs(a.y - b.y) * abs(a.y - b.y) @staticmethod def __manhatten_distance(a: SimplePoint2D, b: SimplePoint2D) -> float: return abs(a.x - b.x) + abs(a.y - b.y) @staticmethod def __subtract_offset(a: SimplePoint2D, b: SimplePoint2D) -> SimplePoint2D: return SimplePoint2D(a.x - b.x, a.y - b.y) class CapitanImageGenerator: def create_capitan_images(self, raw_data_directory: str, destination_directory: str, stroke_thicknesses: List[int]) -> None: """ Creates a visual representation of the Capitan strokes by parsing all text-files and the symbols as specified by the parameters by drawing lines that connect the points from each stroke of each symbol. :param raw_data_directory: The directory, that contains the raw capitan dataset :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically :param stroke_thicknesses: The thickness of the pen, used for drawing the lines in pixels. If multiple are specified, multiple images will be generated that have a different suffix, e.g. 1-16-3.png for the 3-px version and 1-16-2.png for the 2-px version of the image 1-16 """ symbols = self.load_capitan_symbols(raw_data_directory) self.draw_capitan_stroke_images(symbols, destination_directory, stroke_thicknesses) self.draw_capitan_score_images(symbols, destination_directory) def load_capitan_symbols(self, raw_data_directory: str) -> List[CapitanSymbol]: data_path = os.path.join(raw_data_directory, "BimodalHandwrittenSymbols", "data") with open(data_path) as file: data = file.read() symbol_strings = data.splitlines() symbols = [] for symbol_string in tqdm(symbol_strings, desc="Loading symbols from strings"): symbol = CapitanSymbol.initialize_from_string(symbol_string) symbols.append(symbol) return symbols def draw_capitan_stroke_images(self, symbols: List[CapitanSymbol], destination_directory: str, stroke_thicknesses: List[int]) -> None: """ Creates a visual representation of the Capitan strokes by drawing lines that connect the points from each stroke of each symbol. :param symbols: The list of parsed Capitan-symbols :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically :param stroke_thicknesses: The thickness of the pen, used for drawing the lines in pixels. If multiple are specified, multiple images will be generated that have a different suffix, e.g. 1-16-3.png for the 3-px version and 1-16-2.png for the 2-px version of the image 1-16 """ total_number_of_symbols = len(symbols) * len(stroke_thicknesses) output = "Generating {0} images with {1} symbols in {2} different stroke thicknesses ({3})".format( total_number_of_symbols, len(symbols), len(stroke_thicknesses), stroke_thicknesses) print(output) print("In directory {0}".format(os.path.abspath(destination_directory)), flush=True) progress_bar = tqdm(total=total_number_of_symbols, mininterval=0.25, desc="Rendering strokes") capitan_file_name_counter = 0 for symbol in symbols: capitan_file_name_counter += 1 target_directory = os.path.join(destination_directory, symbol.symbol_class) os.makedirs(target_directory, exist_ok=True) raw_file_name_without_extension = "capitan-{0}-{1}-stroke".format(symbol.symbol_class, capitan_file_name_counter) for stroke_thickness in stroke_thicknesses: export_path = ExportPath(destination_directory, symbol.symbol_class, raw_file_name_without_extension, 'png', stroke_thickness) symbol.draw_capitan_stroke_onto_canvas(export_path, stroke_thickness, 0) progress_bar.update(1) progress_bar.close() def draw_capitan_score_images(self, symbols: List[CapitanSymbol], destination_directory: str) -> None: """ Draws the image data contained in each symbol :param symbols: The list of parsed Capitan-symbols :param destination_directory: The directory, in which the symbols should be generated into. One sub-folder per symbol category will be generated automatically :param stroke_thicknesses: The thickness of the pen, used for drawing the lines in pixels. If multiple are specified, multiple images will be generated that have a different suffix, e.g. 1-16-3.png for the 3-px version and 1-16-2.png for the 2-px version of the image 1-16 """ total_number_of_symbols = len(symbols) output = "Generating {0} images from Capitan symbols".format(len(symbols)) print(output) print("In directory {0}".format(os.path.abspath(destination_directory)), flush=True) progress_bar = tqdm(total=total_number_of_symbols, mininterval=0.25, desc="Rendering images") capitan_file_name_counter = 0 for symbol in symbols: capitan_file_name_counter += 1 target_directory = os.path.join(destination_directory, symbol.symbol_class) os.makedirs(target_directory, exist_ok=True) raw_file_name_without_extension = "capitan-{0}-{1}-score".format(symbol.symbol_class, capitan_file_name_counter) export_path = ExportPath(destination_directory, symbol.symbol_class, raw_file_name_without_extension, 'png') symbol.draw_capitan_score_bitmap(export_path) progress_bar.update(1) progress_bar.close() @staticmethod def add_arguments_for_homus_image_generator(parser: argparse.ArgumentParser): parser.add_argument("-s", "--stroke_thicknesses", dest="stroke_thicknesses", default="3", help="Stroke thicknesses for drawing the generated bitmaps. May define comma-separated list" " of multiple stroke thicknesses, e.g. '1,2,3'") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--raw_dataset_directory", type=str, default="../data/capitan_raw", help="The directory, where the raw HOMUS dataset can be found (the text-files that contain the strokes)") parser.add_argument( "--image_dataset_directory", type=str, default="../data/images", help="The directory, where the generated bitmaps will be created") image_generator = CapitanImageGenerator() image_generator.add_arguments_for_homus_image_generator(parser) flags, unparsed = parser.parse_known_args() image_generator.create_capitan_images(flags.raw_dataset_directory, flags.image_dataset_directory, [int(s) for s in flags.stroke_thicknesses.split(',')])
47e483eec18ded57f36b3c4f03bf5f7dae8b311f
ef44147ba4e396987d165d95728c3d9acd531ec0
/.travis/refresh_license.py
bcd4888f4db2e1715782c51dc5f7a378a549e3ad
[ "MIT" ]
permissive
lexus2k/lcdgfx
e92e5832e883067d6411cb461cb8d4cf6e05d9f2
0f772e5a90b559d3b24b3f2a6239ac76bc038cce
refs/heads/master
2023-08-30T11:05:06.476852
2023-08-19T08:59:40
2023-08-19T08:59:40
204,888,210
307
49
MIT
2023-07-04T14:57:24
2019-08-28T08:49:49
C++
UTF-8
Python
false
false
6,428
py
refresh_license.py
import os import datetime import hashlib exclude_paths = [ './.git', './.github', './.travis', './tools/templates', ] include_files = [ '.cpp', '.c', '.inl', '.py', '.h', ] code = [] hash_db = {} def get_hash(data): hash_md5 = hashlib.md5() hash_md5.update(data.encode()) return hash_md5.hexdigest() def open_hash_db(name): if not os.path.exists(name): return False with open(name) as f: lines = f.readlines() for l in lines: k = l.split(':')[0] v = l.split(':')[1].strip() hash_db[k] = v return True def save_hash_db(name): with open(name, "w") as f: for v in hash_db.keys(): f.write(v + ":" + hash_db[v] + "\n") return True def update_hash_in_db(name, h): hash_db[name] = h def get_hash_from_db(name): if name in hash_db: return hash_db[name] return None def is_file_modified(name): with open(name) as f: lines = f.readlines() # Calculate hash for the file new_hash = str(get_hash(''.join(lines))) old_hash = get_hash_from_db(name) if old_hash is not None: if old_hash != new_hash: file_modified = True else: file_modified = False else: file_modified = False return (file_modified, new_hash) def check_and_update_license(name, new_license = False): with open(name) as f: lines = f.readlines() (file_modified, new_hash) = is_file_modified(name) copyright_exists = False for i in range(min(10,len(lines))): if "Copyright" in lines[i]: now = datetime.datetime.now() # Copyright 2022 (C) Alexey Dynda ccc = "(C)" if "(c)" in lines[i]: ccc = "(c)" if "Copyright {}".format(ccc) in lines[i]: YEAR = lines[i].split("Copyright {}".format(ccc))[1].split(',')[0].strip() else: YEAR = lines[i].split("Copyright")[1].split(ccc)[0].strip() if YEAR.endswith(','): YEAR = YEAR[:-1] if not YEAR.endswith("{}".format(now.year)): if YEAR.endswith("-{}".format(now.year-1)): YEAR = YEAR[:-5] YEAR += "-{}".format(now.year) elif YEAR.endswith("{}".format(now.year-1)): YEAR += "-{}".format(now.year) else: YEAR += ",{}".format(now.year) copyright_exists = True insert_position = 0 if not copyright_exists: now = datetime.datetime.now() YEAR = "{}".format(now.year) else: # Cut old license start = -1 end = -1 for i in range(len(lines) - 1): if start < 0 and i > 10: copyright_exists = False break if start < 0 and (lines[i] == "/*\n" or lines[i] == "#\n" or lines[i] == "\"\"\"\n"): start = i continue if start >= 0 and start < 6 and (lines[i] == "*/\n" or lines[i] == " */\n" or (lines[i] == "#\n" and lines[i+1] == "\n") or (lines[i] == "\"\"\"\n" and lines[i+1] == "\n")): end = i break if start >= 0 and end >=0: temp = [] if start > 0: temp = lines[:start-1] temp.extend(lines[end+1:]) lines = temp insert_position = start if copyright_exists and not file_modified and not new_license: # We do not need to modify the license update_hash_in_db(name, new_hash) return if not copyright_exists and name.endswith(".py") and len(lines) > 0 and lines[0].startswith('#'): insert_position = 1 license = [e + '\n' for e in TEXT.format("Copyright {} (C) Alexey Dynda".format(YEAR)).split('\n')] if not copyright_exists: license.append("\n") if name.endswith(".py"): for i in range(len(license)): if license[i] != "\n": license[i] = " " + license[i] license.insert(0, "\"\"\"\n") license.append("\"\"\"\n") if not copyright_exists: license.append("\n") else: for i in range(len(license)): if license[i] != "\n": license[i] = " " + license[i] license.insert(0, "/*\n") license.append("*/\n") if not copyright_exists: license.append("\n") for t in reversed(license): lines.insert(insert_position,t) with open(name, "w") as f: for l in lines: f.write(l) new_hash = str(get_hash(''.join(lines))) update_hash_in_db(name, new_hash) # print(''.join(lines)) for root, dirs, files in os.walk("."): path = root.split(os.sep) skip = False for d in exclude_paths: if root.startswith( d ): skip = True if not skip: for file in files: for f in include_files: p = root + '/' + file if p.endswith( f ): code.append( p ) break TEXT = ''' MIT License {} Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' open_hash_db('.hash_db') for c in code: # print(c) check_and_update_license(c, False) save_hash_db('.hash_db')
cd035ce301827d37f8fbeb6e76d984eb14d1788e
78e9d3d12e96fd37817e510b7b272d0d08ec4053
/models/networks.py
6be74fb043df12a223771c681e40023f83ed39ba
[]
no_license
ly015/intrinsic_flow
15e3926ccc269d3f37d37ceb74d1a3b2ff41823c
94ea8f0b6c2e9d6380a29055eaa5b0068e894a25
refs/heads/master
2022-01-31T05:58:35.091723
2022-01-17T03:58:21
2022-01-17T03:58:21
178,152,311
158
26
null
2022-01-17T03:58:22
2019-03-28T07:45:22
Python
UTF-8
Python
false
false
34,715
py
networks.py
from __future__ import division import torch import torchvision import torch.nn as nn import torch.nn.functional as F import os import numpy as np from modules import * from skimage.measure import compare_ssim, compare_psnr import functools ############################################## # Image generation networks: Unet and DualUnet ############################################## def conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0, dilation=1, bias=False, norm_layer=nn.BatchNorm2d): model = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias), norm_layer(out_channels), ) return model def channel_mapping(in_channels, out_channels, norm_layer=nn.BatchNorm2d, bias=False): return conv(in_channels, out_channels, kernel_size=1, norm_layer=norm_layer, bias=bias) class ResidualBlock(nn.Module): ''' Derived from Variational UNet. ''' def __init__(self, dim, dim_a, norm_layer=nn.BatchNorm2d, use_bias=False, activation=nn.ReLU(False), use_dropout=False, no_end_norm=False): super(ResidualBlock, self).__init__() self.use_dropout = use_dropout self.activation = activation if dim_a <= 0 or dim_a is None: # w/o additional input if no_end_norm: self.conv = conv(in_channels=dim, out_channels=dim, kernel_size=3, padding=1, norm_layer=Identity, bias=True) else: self.conv = conv(in_channels=dim, out_channels=dim, kernel_size=3, padding=1, norm_layer=norm_layer, bias=use_bias) else: # w/ additional input self.conv_a = channel_mapping(in_channels=dim_a, out_channels=dim,norm_layer=norm_layer, bias=use_bias) if no_end_norm: self.conv = conv(in_channels=dim*2, out_channels=dim, kernel_size=3, padding=1, norm_layer=Identity, bias=True) else: self.conv = conv(in_channels=dim*2, out_channels=dim, kernel_size=3, padding=1, norm_layer=norm_layer, bias=use_bias) def forward(self, x, a=None): if a is None: # w/o additional input residual = x else: # w/ additional input a = self.conv_a(self.activation(a)) residual = torch.cat((x, a), dim=1) residual = self.conv(self.activation(residual)) out = x + residual if self.use_dropout: out = F.dropout(out, p=0.5, training=self.training) return out class GateBlock(nn.Module): def __init__(self, dim, dim_a,activation=nn.ReLU(False)): super(GateBlock, self).__init__() self.activation = activation self.conv = nn.Conv2d(in_channels=dim_a, out_channels=dim, kernel_size=1) def forward(self, x, a): ''' x: (bsz, dim, h, w) a: (bsz, dim_a, h, w) ''' a = self.activation(a) g = F.sigmoid(self.conv(a)) return x*g class UnetGenerator(nn.Module): ''' A variation of Unet that use residual blocks instead of convolution layer at each scale ''' def __init__(self, input_nc, output_nc, nf=64, max_nf=256, num_scales=7, n_residual_blocks=2, norm='batch', activation=nn.ReLU(False), use_dropout=False, gpu_ids=[]): super(UnetGenerator, self).__init__() self.input_nc = input_nc self.output_nc = output_nc self.nf = nf self.max_nf = max_nf self.num_scales = num_scales self.n_residual_blocks = n_residual_blocks self.norm = norm self.gpu_ids = gpu_ids self.use_dropout = use_dropout if norm == 'batch': norm_layer = nn.BatchNorm2d use_bias = False elif norm == 'instance': norm_layer = nn.InstanceNorm2d use_bias = True else: raise NotImplementedError() self.pre_conv = channel_mapping(input_nc, nf, norm_layer, use_bias) for l in range(num_scales): c_in = min(nf * (l+1), max_nf) c_out = min(nf * (l+2), max_nf) # encoding layers for i in range(n_residual_blocks): self.__setattr__('enc_%d_res_%d'%(l, i), ResidualBlock(c_in, None, norm_layer, use_bias, activation, use_dropout=False)) downsample = nn.Sequential( activation, nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(c_out) ) self.__setattr__('enc_%d_downsample'%l, downsample) # decoding layers upsample = nn.Sequential( activation, nn.Conv2d(c_out, c_in*4, kernel_size=3, padding=1, bias=use_bias), nn.PixelShuffle(2), norm_layer(c_in) ) self.__setattr__('dec_%d_upsample'%l, upsample) for i in range(n_residual_blocks): self.__setattr__('dec_%d_res_%d'%(l, i), ResidualBlock(c_in, c_in, norm_layer, use_bias, activation, use_dropout)) self.dec_output = nn.Sequential( nn.ReflectionPad2d(3), nn.Conv2d(nf, output_nc, kernel_size=7, padding=0, bias=True) ) def forward(self, x, single_device=False): if len(self.gpu_ids) > 1 and (not single_device): return nn.parallel.data_parallel(self, x, module_kwargs={'single_device':True}) else: hiddens = [] x = self.pre_conv(x) # encode for l in range(self.num_scales): for i in range(self.n_residual_blocks): x = self.__getattr__('enc_%d_res_%d'%(l,i))(x) hiddens.append(x) x = self.__getattr__('enc_%d_downsample'%l)(x) # decode for l in range(self.num_scales-1,-1,-1): x = self.__getattr__('dec_%d_upsample'%l)(x) for i in range(self.n_residual_blocks-1,-1,-1): h = hiddens.pop() x = self.__getattr__('dec_%d_res_%d'%(l, i))(x,h) out = self.dec_output(x) return out class UnetGenerator_MultiOutput(nn.Module): ''' A variation of UnetGenerator that support multiple output branches ''' def __init__(self, input_nc, output_nc = [3], nf=64, max_nf=256, num_scales=7, n_residual_blocks=2, norm='batch', activation=nn.ReLU(False), use_dropout=False, gpu_ids=[]): super(UnetGenerator_MultiOutput, self).__init__() self.input_nc = input_nc self.output_nc = output_nc if isinstance(output_nc, list) else [output_nc] self.nf = nf self.max_nf = max_nf self.num_scales = num_scales self.n_residual_blocks = n_residual_blocks self.norm = norm self.gpu_ids = gpu_ids self.use_dropout = use_dropout if norm == 'batch': norm_layer = nn.BatchNorm2d use_bias = False elif norm == 'instance': norm_layer = nn.InstanceNorm2d use_bias = True else: raise NotImplementedError() self.pre_conv = channel_mapping(input_nc, nf, norm_layer, use_bias) for l in range(num_scales): c_in = min(nf * (l+1), max_nf) c_out = min(nf * (l+2), max_nf) # encoding layers for i in range(n_residual_blocks): self.__setattr__('enc_%d_res_%d'%(l, i), ResidualBlock(c_in, None, norm_layer, use_bias, activation, use_dropout=False)) downsample = nn.Sequential( activation, nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(c_out) ) self.__setattr__('enc_%d_downsample'%l, downsample) # decoding layers upsample = nn.Sequential( activation, nn.Conv2d(c_out, c_in*4, kernel_size=3, padding=1, bias=use_bias), nn.PixelShuffle(2), norm_layer(c_in) ) self.__setattr__('dec_%d_upsample'%l, upsample) for i in range(n_residual_blocks): self.__setattr__('dec_%d_res_%d'%(l, i), ResidualBlock(c_in, c_in, norm_layer, use_bias, activation, use_dropout)) for i, c_out in enumerate(output_nc): dec_output_i = nn.Sequential( channel_mapping(nf, nf, norm_layer, use_bias), activation, nn.ReflectionPad2d(3), nn.Conv2d(nf, c_out, kernel_size=7, padding=0, bias=True) ) self.__setattr__('dec_output_%d'%i, dec_output_i) def forward(self, x, single_device=False): if len(self.gpu_ids) > 1 and (not single_device): return nn.parallel.data_parallel(self, x, module_kwargs={'single_device':True}) else: hiddens = [] x = self.pre_conv(x) # encode for l in range(self.num_scales): for i in range(self.n_residual_blocks): x = self.__getattr__('enc_%d_res_%d'%(l,i))(x) hiddens.append(x) x = self.__getattr__('enc_%d_downsample'%l)(x) # decode for l in range(self.num_scales-1,-1,-1): x = self.__getattr__('dec_%d_upsample'%l)(x) for i in range(self.n_residual_blocks-1,-1,-1): h = hiddens.pop() x = self.__getattr__('dec_%d_res_%d'%(l, i))(x,h) out = [] for i in range(len(self.output_nc)): out.append(self.__getattr__('dec_output_%d'%i)(x)) return out class DualUnetGenerator(nn.Module): ''' A variation of Unet architecture, similar to deformable gan. It contains two encoders: one for target pose and one for appearance. The feature map of appearance encoder will be warped to target pose, guided by input flow. There are skip connections from both encoders to the decoder. ''' def __init__(self, pose_nc, appearance_nc, output_nc, aux_output_nc=[], nf=32, max_nf=128, num_scales=7, num_warp_scales=5, n_residual_blocks=2, norm='batch', vis_mode='none', activation=nn.ReLU(False), use_dropout=False, no_end_norm=False, gpu_ids=[]): ''' vis_mode: ['none', 'hard_gate', 'soft_gate', 'residual'] no_end_norm: remove normalization layer at the start and the end. ''' super(DualUnetGenerator, self).__init__() self.pose_nc = pose_nc self.appearance_nc = appearance_nc self.output_nc = output_nc self.nf = nf self.max_nf = max_nf self.num_scales = num_scales self.num_warp_scales = num_warp_scales # at higher scales, warping will not be applied because the resolution of the feature map is too small self.n_residual_blocks = n_residual_blocks self.norm = norm self.gpu_ids = gpu_ids self.use_dropout = use_dropout self.vis_mode = vis_mode self.vis_expand_mult = 2 # expanded multiple when perform vis_expand self.aux_output_nc = aux_output_nc self.no_end_norm = no_end_norm if norm == 'batch': norm_layer = nn.BatchNorm2d use_bias = False elif norm == 'instance': norm_layer = nn.InstanceNorm2d use_bias = True else: raise NotImplementedError() #################################### # input encoder #################################### if not no_end_norm: self.encp_pre_conv = channel_mapping(pose_nc, nf, norm_layer, use_bias) self.enca_pre_conv = channel_mapping(appearance_nc, nf, norm_layer, use_bias) else: self.encp_pre_conv = channel_mapping(pose_nc, nf, Identity, True) self.enca_pre_conv = channel_mapping(appearance_nc, nf, Identity, True) for l in range(num_scales): c_in = min(nf * (l+1), max_nf) c_out = min(nf * (l+2), max_nf) #################################### # pose encoder #################################### # resblocks for i in range(n_residual_blocks): self.__setattr__('encp_%d_res_%d'%(l, i), ResidualBlock(c_in, None, norm_layer, use_bias, activation, use_dropout=False)) # down sample p_downsample = nn.Sequential( activation, nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(c_out) ) self.__setattr__('encp_%d_downsample'%l, p_downsample) #################################### # appearance encoder #################################### for i in range(n_residual_blocks): # resblocks self.__setattr__('enca_%d_res_%d'%(l, i), ResidualBlock(c_in, None, norm_layer, use_bias, activation, use_dropout=False)) # visibility gating if l < num_warp_scales: if vis_mode == 'hard_gate': pass elif vis_mode == 'soft_gate': self.__setattr__('enca_%d_vis_%d'%(l, i), GateBlock(c_in, c_in*self.vis_expand_mult, activation)) elif vis_mode == 'residual': self.__setattr__('enca_%d_vis_%d'%(l, i), ResidualBlock(c_in, c_in*self.vis_expand_mult, norm_layer, use_bias, activation, use_dropout=False)) elif vis_mode == 'res_no_vis': self.__setattr__('enca_%d_vis_%d'%(l, i), ResidualBlock(c_in, None, norm_layer, use_bias, activation, use_dropout=False)) # down sample a_downsample = nn.Sequential( activation, nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(c_out) ) self.__setattr__('enca_%d_downsample'%l, p_downsample) #################################### # decoder #################################### # resblocks if l == num_scales-1: self.dec_fuse = channel_mapping(c_out*2, c_out, norm_layer, use_bias) # a fusion layer at the bottle neck # upsample upsample = nn.Sequential( activation, nn.Conv2d(c_out, c_in*4, kernel_size=3, padding=1, bias=use_bias), nn.PixelShuffle(2), norm_layer(c_in) ) self.__setattr__('dec_%d_upsample'%l, upsample) for i in range(n_residual_blocks): if l == num_scales-1 and i == n_residual_blocks-1: self.__setattr__('dec_%d_res_%d'%(l,i), ResidualBlock(c_in, c_in*2, norm_layer, use_bias, activation, use_dropout, no_end_norm=no_end_norm)) else: self.__setattr__('dec_%d_res_%d'%(l,i), ResidualBlock(c_in, c_in*2, norm_layer, use_bias, activation, use_dropout)) #################################### # output decoder #################################### self.dec_output = nn.Sequential( nn.ReflectionPad2d(3), nn.Conv2d(nf, output_nc, kernel_size=7, padding=0, bias=True) ) for i, a_nc in enumerate(aux_output_nc): dec_aux_output = nn.Sequential( nn.ReflectionPad2d(3), nn.Conv2d(nf, a_nc, kernel_size=7, padding=0, bias=True) ) self.__setattr__('dec_aux_output_%d'%i, dec_aux_output) def _vis_expand(self, feat, vis): ''' expand feature from n channels to n*vis_expand_mult channels ''' feat_exp = [feat*(vis==i).float() for i in range(self.vis_expand_mult)] return torch.cat(feat_exp, dim=1) def forward(self, x_p, x_a, flow=None, vis=None, output_feats=False, single_device=False): ''' x_p: (bsz, pose_nc, h, w), pose input x_a: (bsz, appearance_nc, h, w), appearance input vis: (bsz, 1, h, w), 0-visible, 1-invisible, 2-background flow: (bsz, 2, h, w) or None. if flow==None, feature warping will not be performed ''' if len(self.gpu_ids)>1 and (not single_device): if flow is not None: assert vis is not None return nn.parallel.data_parallel(self, (x_p, x_a, flow, vis), module_kwargs={'single_device':True, 'output_feats':output_feats}) else: return nn.parallel.data_parallel(self, (x_p, x_a), module_kwargs={'flow':None, 'vis':None, 'single_device':True, 'output_feats':output_feats}) else: use_fw = flow is not None if use_fw: vis = vis.round() hidden_p = [] hidden_a = [] # encoding p x_p = self.encp_pre_conv(x_p) for l in range(self.num_scales): for i in range(self.n_residual_blocks): x_p = self.__getattr__('encp_%d_res_%d'%(l,i))(x_p) hidden_p.append(x_p) x_p = self.__getattr__('encp_%d_downsample'%l)(x_p) # encoding a x_a = self.enca_pre_conv(x_a) for l in range(self.num_scales): for i in range(self.n_residual_blocks): x_a = self.__getattr__('enca_%d_res_%d'%(l,i))(x_a) # feature warping if use_fw and l < self.num_warp_scales: if i == 0: # compute flow and vis once at each scale flow_l = F.avg_pool2d(flow, kernel_size=2**l).div_(2**l) if l > 0 else flow vis_l = -F.max_pool2d(-vis, kernel_size=2**l) if l > 0 else vis# the priority is visible>invisible>background x_w = warp_acc_flow(x_a, flow_l) if self.vis_mode == 'none': pass elif self.vis_mode == 'hard_gate': x_w = x_w * (vis_l<2).float() elif self.vis_mode == 'soft_gate': x_we = self._vis_expand(x_w, vis_l) x_w = self.__getattr__('enca_%d_vis_%d'%(l, i))(x_w, x_we) elif self.vis_mode == 'residual': x_we = self._vis_expand(x_w, vis_l) x_w = self.__getattr__('enca_%d_vis_%d'%(l, i))(x_w, x_we) elif self.vis_mode == 'res_no_vis': x_w = self.__getattr__('enca_%d_vis_%d'%(l, i))(x_w) hidden_a.append(x_w) else: hidden_a.append(x_a) x_a = self.__getattr__('enca_%d_downsample'%l)(x_a) # bottleneck fusion x = self.dec_fuse(torch.cat((x_p, x_a), dim=1)) feats = [x] # decoding for l in range(self.num_scales-1, -1, -1): x = self.__getattr__('dec_%d_upsample'%l)(x) feats = [x] + feats for i in range(self.n_residual_blocks-1, -1, -1): h_p = hidden_p.pop() h_a = hidden_a.pop() x = self.__getattr__('dec_%d_res_%d'%(l, i))(x, torch.cat((h_p, h_a), dim=1)) out = self.dec_output(x) if self.aux_output_nc or output_feats: aux_out = [] if self.aux_output_nc: for i in range(len(self.aux_output_nc)): aux_out.append(self.__getattr__('dec_aux_output_%d'%i)(x)) if output_feats: aux_out.append(feats) return out, aux_out else: return out class UnetDecoder(nn.Module): ''' Decoder that decodes hierarachical features. Support multi-task output. Used as an external decoder of a DualUnetGenerator network ''' def __init__(self, output_nc=[], nf=32, max_nf=128, num_scales=7, n_residual_blocks=2, norm='batch', activation=nn.ReLU(False), gpu_ids=[]): super(UnetDecoder, self).__init__() output_nc = output_nc if isinstance(output_nc, list) else [output_nc] self.output_nc = output_nc self.nf = nf self.max_nf = max_nf self.num_scales = num_scales self.n_residual_blocks = n_residual_blocks self.norm = norm self.gpu_ids = gpu_ids if norm == 'batch': norm_layer = nn.BatchNorm2d use_bias = False elif norm == 'instance': norm_layer = nn.InstanceNorm2d use_bias = True else: raise NotImplementedError() #################### # hierarchical decoding layers #################### for l in range(num_scales): c_in = min(nf*(l+1), max_nf) # lower feature dim c_out = min(nf*(l+2), max_nf) # higher feature dim upsample = nn.Sequential( activation, nn.Conv2d(c_out, c_in*4, kernel_size=3, padding=1, bias=use_bias), nn.PixelShuffle(2), norm_layer(c_in) ) self.__setattr__('dec_%d_upsample'%l, upsample) for i in range(n_residual_blocks): self.__setattr__('dec_%d_res_%d'%(l,i), ResidualBlock(c_in, c_in if i==0 else None, norm_layer, use_bias, activation)) #################### # output decoders #################### for i, c_out in enumerate(output_nc): dec_output_i = nn.Sequential( channel_mapping(nf, nf, norm_layer, use_bias), activation, nn.ReflectionPad2d(3), nn.Conv2d(nf, c_out, kernel_size=7) ) self.__setattr__('dec_output_%d'%i, dec_output_i) def forward(self, feats, single_device=False): if len(self.gpu_ids) > 1 and (not single_device): nn.parallel.data_parallel(self, feats, module_kwargs={'single_device':True}) else: x, hiddens = feats[-1], feats[:-1] # decode for l in range(self.num_scales-1, -1, -1): x = self.__getattr__('dec_%d_upsample'%l)(x) for i in range(self.n_residual_blocks): if i == 0: h = hiddens.pop() x = self.__getattr__('dec_%d_res_%d'%(l,i))(x,h) else: x = self.__getattr__('dec_%d_res_%d'%(l,i))(x) out = [] for i in range(len(self.output_nc)): out.append(self.__getattr__('dec_output_%d'%i)(x)) return out ############################################## # Flow networks ############################################## class FlowUnetSkipConnectionBlock(nn.Module): def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d): super(FlowUnetSkipConnectionBlock, self).__init__() self.outermost = outermost self.innermost = innermost if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d if input_nc is None: input_nc = outer_nc downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) downrelu = nn.LeakyReLU(0.2, True) downnorm = norm_layer(inner_nc) uprelu = nn.ReLU(True) upnorm = norm_layer(outer_nc) if outermost: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1) down = [downconv, downnorm] up = [uprelu, upconv, upnorm] elif innermost: upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv] up = [uprelu, upconv, upnorm] else: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv, downnorm] up = [uprelu, upconv, upnorm] self.down = nn.Sequential(*down) self.up = nn.Sequential(*up) self.submodule = submodule self.predict_flow = nn.Sequential( nn.LeakyReLU(0.1), nn.Conv2d(outer_nc, 2, kernel_size=3, stride=1, padding=1)) def forward(self, x): if self.outermost: x_ = self.down(x) x_, x_pyramid, flow_pyramid = self.submodule(x_) x_ = self.up(x_) x_out = x_ elif self.innermost: x_pyramid = [] flow_pyramid = [] x_ = self.up(self.down(x)) x_out = torch.cat((x, x_), dim=1) else: x_ = self.down(x) x_, x_pyramid, flow_pyramid = self.submodule(x_) x_ = self.up(x_) x_out = torch.cat((x, x_), dim=1) flow = self.predict_flow(x_) x_pyramid = [x_] + x_pyramid flow_pyramid = [flow] + flow_pyramid return x_out, x_pyramid, flow_pyramid class FlowUnet(nn.Module): def __init__(self, input_nc, nf=16, start_scale=2, num_scale=5, norm='batch', gpu_ids=[], max_nf=512): super(FlowUnet, self).__init__() self.gpu_ids = gpu_ids self.nf = nf self.norm = norm self.start_scale = 2 self.num_scale = 5 if norm == 'batch': norm_layer = nn.BatchNorm2d use_bias = False elif norm == 'instance': norm_layer = nn.InstanceNorm2d use_bias = True else: raise NotImplementedError() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d conv_downsample = [ nn.Conv2d(input_nc, nf, kernel_size=7, padding=3, bias=use_bias), norm_layer(nf), nn.LeakyReLU(0.1)] nc = nf for i in range(np.log2(start_scale).astype(np.int)): conv_downsample += [ nn.Conv2d(nc, 2*nc, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(2*nc), nn.LeakyReLU(0.1) ] nc = nc*2 self.conv_downsample = nn.Sequential(*conv_downsample) unet_block = None for l in range(num_scale)[::-1]: outer_nc = min(max_nf, nc*2**l) inner_nc = min(max_nf, nc*2**(l+1)) innermost = (l==num_scale-1) outermost = (l==0) unet_block = FlowUnetSkipConnectionBlock(outer_nc, inner_nc, input_nc=None, submodule=unet_block, norm_layer=norm_layer, innermost=innermost, outermost=outermost) self.unet_block = unet_block self.nf_out = min(max_nf, nc) self.predict_vis = nn.Sequential( nn.LeakyReLU(0.1), nn.Conv2d(min(max_nf, nc), 3, kernel_size=3, stride=1, padding=1) ) def forward(self, input, single_device=False): if len(self.gpu_ids) > 1 and (not single_device): return nn.parallel.data_parallel(self, input, module_kwargs={'single_device': True}) else: x = self.conv_downsample(input) feat_out, x_pyr, flow_pyr = self.unet_block(x) vis = self.predict_vis(feat_out) flow_out = F.upsample(flow_pyr[0], scale_factor=self.start_scale, mode='bilinear', align_corners=False) vis = F.upsample(vis, scale_factor=self.start_scale, mode='bilinear', align_corners=False) return flow_out, vis, flow_pyr, feat_out class FlowUnet_v2(nn.Module): ''' A variation of Unet that use residual blocks instead of convolution layer at each scale ''' def __init__(self, input_nc, nf=64, max_nf=256, start_scale=2, num_scales=7, n_residual_blocks=2, norm='batch', activation=nn.ReLU(False), use_dropout=False, gpu_ids=[]): super(FlowUnet_v2, self).__init__() self.input_nc = input_nc self.nf = nf self.max_nf = max_nf self.start_scale = start_scale self.num_scales = num_scales self.n_residual_blocks = n_residual_blocks self.norm = norm self.gpu_ids = gpu_ids self.use_dropout = use_dropout if norm == 'batch': norm_layer = nn.BatchNorm2d use_bias = False elif norm == 'instance': norm_layer = nn.InstanceNorm2d use_bias = True else: raise NotImplementedError() start_level = np.log2(start_scale).astype(np.int) pre_conv = [channel_mapping(input_nc, nf, norm_layer, use_bias)] for i in range(start_level): c_in = min(nf*(i+1), max_nf) c_out = min(nf*(i+2), max_nf) pre_conv += [ ResidualBlock(c_in, None, norm_layer, use_bias, activation, use_dropout=use_dropout), activation, nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(c_out) ] self.pre_conv = nn.Sequential(*pre_conv) for l in range(num_scales): c_in = min(nf * (start_level+l+1), max_nf) c_out = min(nf * (start_level+l+2), max_nf) # encoding layers for i in range(n_residual_blocks): self.__setattr__('enc_%d_res_%d'%(l, i), ResidualBlock(c_in, None, norm_layer, use_bias, activation, use_dropout=use_dropout)) downsample = nn.Sequential( activation, nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(c_out) ) self.__setattr__('enc_%d_downsample'%l, downsample) # decoding layers upsample = nn.Sequential( activation, nn.Conv2d(c_out, c_in*4, kernel_size=3, padding=1, bias=use_bias), nn.PixelShuffle(2), norm_layer(c_in) ) self.__setattr__('dec_%d_upsample'%l, upsample) for i in range(n_residual_blocks): self.__setattr__('dec_%d_res_%d'%(l, i), ResidualBlock(c_in, c_in, norm_layer, use_bias, activation, use_dropout)) # flow prediction pred_flow = nn.Sequential( activation, nn.Conv2d(c_in, 2, kernel_size=3, padding=1, bias=True) ) self.__setattr__('pred_flow_%d'%l, pred_flow) # vis prediction self.pred_vis = nn.Sequential( activation, nn.Conv2d(nf*(1+start_level), 3, kernel_size=3, padding=1, bias=True) ) def forward(self, x, single_device=False): if len(self.gpu_ids) > 1 and (not single_device): return nn.parallel.data_parallel(self, x, module_kwargs={'single_device':True}) else: hiddens = [] flow_pyr = [] x = self.pre_conv(x) # encode for l in range(self.num_scales): for i in range(self.n_residual_blocks): x = self.__getattr__('enc_%d_res_%d'%(l,i))(x) hiddens.append(x) x = self.__getattr__('enc_%d_downsample'%l)(x) # decode for l in range(self.num_scales-1,-1,-1): x = self.__getattr__('dec_%d_upsample'%l)(x) for i in range(self.n_residual_blocks-1,-1,-1): h = hiddens.pop() x = self.__getattr__('dec_%d_res_%d'%(l, i))(x,h) flow_pyr = [self.__getattr__('pred_flow_%d'%l)(x)] + flow_pyr feat_out = x flow_out = F.upsample(flow_pyr[0], scale_factor=self.start_scale, mode='bilinear', align_corners=False) vis_out = F.upsample(self.pred_vis(x), scale_factor=self.start_scale, mode='bilinear', align_corners=False) return flow_out, vis_out, flow_pyr, feat_out ############################################## # Discriminator network ############################################## class NLayerDiscriminator(nn.Module): def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, output_bias = True, gpu_ids=[]): super(NLayerDiscriminator, self).__init__() self.gpu_ids = gpu_ids if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = 1 sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) ] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2**n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2**n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw, bias = output_bias)] if use_sigmoid: sequence += [nn.Sigmoid()] self.model = nn.Sequential(*sequence) def forward(self, input): if len(self.gpu_ids) and isinstance(input.data, torch.cuda.FloatTensor): return nn.parallel.data_parallel(self.model, input) else: return self.model(input)
1ee4aa351b0fdf6ec648c54f57361fc024d62e5d
7e1c4dd6a2cae0597b4f4e961063cf077acdfd4c
/couchbase/collection.py
2ff547f0bdc6941a03f9975289b23d35f0a05f71
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
couchbase/couchbase-python-client
753fa434db910d175bf9ea53a5829a40ba36e938
c7d80434be3f917d6f25439a918aed30273f63f4
refs/heads/master
2023-08-29T14:04:13.532717
2023-08-24T22:53:30
2023-08-25T03:35:21
2,122,194
223
87
Apache-2.0
2023-05-30T16:05:59
2011-07-29T04:24:46
Python
UTF-8
Python
false
false
118,216
py
collection.py
# Copyright 2016-2022. Couchbase, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from copy import copy from typing import (TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Union) from couchbase.binary_collection import BinaryCollection from couchbase.datastructures import (CouchbaseList, CouchbaseMap, CouchbaseQueue, CouchbaseSet) from couchbase.exceptions import (DocumentExistsException, ErrorMapper, InvalidArgumentException, PathExistsException, QueueEmpty) from couchbase.exceptions import exception as CouchbaseBaseException from couchbase.kv_range_scan import RangeScanRequest from couchbase.logic import (BlockingWrapper, decode_replicas, decode_value) from couchbase.logic.collection import CollectionLogic from couchbase.logic.supportability import Supportability from couchbase.management.queries import CollectionQueryIndexManager from couchbase.options import (AppendMultiOptions, DecrementMultiOptions, ExistsMultiOptions, GetAllReplicasMultiOptions, GetAnyReplicaMultiOptions, GetMultiOptions, IncrementMultiOptions, InsertMultiOptions, LockMultiOptions, PrependMultiOptions, RemoveMultiOptions, ReplaceMultiOptions, ScanOptions, TouchMultiOptions, UnlockMultiOptions, UpsertMultiOptions, forward_args, get_valid_multi_args) from couchbase.pycbc_core import (binary_multi_operation, kv_multi_operation, operations) from couchbase.result import (CounterResult, ExistsResult, GetReplicaResult, GetResult, LookupInReplicaResult, LookupInResult, MultiCounterResult, MultiExistsResult, MultiGetReplicaResult, MultiGetResult, MultiMutationResult, MutateInResult, MutationResult, OperationResult, ScanResultIterable) from couchbase.subdocument import (array_addunique, array_append, array_prepend, count) from couchbase.subdocument import get as subdoc_get from couchbase.subdocument import remove as subdoc_remove from couchbase.subdocument import replace from couchbase.subdocument import upsert as subdoc_upsert from couchbase.transcoder import Transcoder if TYPE_CHECKING: from datetime import timedelta from couchbase._utils import JSONType from couchbase.kv_range_scan import ScanType from couchbase.options import (AppendOptions, DecrementOptions, ExistsOptions, GetAndLockOptions, GetAndTouchOptions, GetAnyReplicaOptions, GetOptions, IncrementOptions, InsertOptions, LookupInAllReplicasOptions, LookupInAnyReplicaOptions, LookupInOptions, MutateInOptions, MutationMultiOptions, NoValueMultiOptions, PrependOptions, RemoveOptions, ReplaceOptions, TouchOptions, UnlockOptions, UpsertOptions) from couchbase.result import MultiResultType from couchbase.subdocument import Spec class Collection(CollectionLogic): def __init__(self, scope, name): super().__init__(scope, name) def get(self, key, # type: str *opts, # type: GetOptions **kwargs, # type: Dict[str, Any] ) -> GetResult: """Retrieves the value of a document from the collection. Args: key (str): The key for the document to retrieve. opts (:class:`~couchbase.options.GetOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.GetOptions` Returns: :class:`~couchbase.result.GetResult`: An instance of :class:`~couchbase.result.GetResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. Examples: Simple get operation:: bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('airline') res = collection.get('airline_10') print(f'Document value: {res.content_as[dict]}') Simple get operation with options:: from datetime import timedelta from couchbase.options import GetOptions # ... other code ... res = collection.get('airline_10', GetOptions(timeout=timedelta(seconds=2))) print(f'Document value: {res.content_as[dict]}') """ final_args = forward_args(kwargs, *opts) transcoder = final_args.get('transcoder', None) if not transcoder: transcoder = self.default_transcoder final_args['transcoder'] = transcoder return self._get_internal(key, **final_args) @BlockingWrapper.block_and_decode(GetResult) def _get_internal( self, key, # type: str **kwargs, # type: Dict[str, Any] ) -> GetResult: """ **Internal Operation** Internal use only. Use :meth:`Collection.get` instead. """ return super().get(key, **kwargs) def get_any_replica(self, key, # type: str *opts, # type: GetAnyReplicaOptions **kwargs, # type: Dict[str, Any] ) -> GetReplicaResult: """Retrieves the value of a document from the collection leveraging both active and all available replicas returning the first available. Args: key (str): The key for the document to retrieve. opts (:class:`~couchbase.options.GetAnyReplicaOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.GetAnyReplicaOptions` Returns: :class:`~couchbase.result.GetReplicaResult`: An instance of :class:`~couchbase.result.GetReplicaResult`. Raises: :class:`~couchbase.exceptions.DocumentUnretrievableException`: If the key provided does not exist on the server. Examples: Simple get_any_replica operation:: bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('airline') res = collection.get_any_replica('airline_10') print(f'Document is replica: {res.is_replica}') print(f'Document value: {res.content_as[dict]}') Simple get_any_replica operation with options:: from datetime import timedelta from couchbase.options import GetAnyReplicaOptions # ... other code ... res = collection.get_any_replica('airline_10', GetAnyReplicaOptions(timeout=timedelta(seconds=5))) print(f'Document is replica: {res.is_replica}') print(f'Document value: {res.content_as[dict]}') """ final_args = forward_args(kwargs, *opts) transcoder = final_args.get('transcoder', None) if not transcoder: transcoder = self.default_transcoder final_args['transcoder'] = transcoder return self._get_any_replica_internal(key, **final_args) @BlockingWrapper.block_and_decode(GetReplicaResult) def _get_any_replica_internal( self, key, # type: str **kwargs, # type: Dict[str, Any] ) -> GetReplicaResult: """ **Internal Operation** Internal use only. Use :meth:`Collection.get_any_replica` instead. """ return super().get_any_replica(key, **kwargs) def get_all_replicas(self, key, # type: str *opts, # type: GetAllReplicasOptions **kwargs, # type: Dict[str, Any] ) -> Iterable[GetReplicaResult]: """Retrieves the value of a document from the collection returning both active and all available replicas. Args: key (str): The key for the document to retrieve. opts (:class:`~couchbase.options.GetAllReplicasOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.GetAllReplicasOptions` Returns: Iterable[:class:`~couchbase.result.GetReplicaResult`]: A stream of :class:`~couchbase.result.GetReplicaResult` representing both active and replicas of the document retrieved. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. Examples: Simple get_all_replicas operation:: bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('airline') result = collection.get_all_replicas('airline_10') for res in results: print(f'Document is replica: {res.is_replica}') print(f'Document value: {res.content_as[dict]}') Simple get_all_replicas operation with options:: from datetime import timedelta from couchbase.options import GetAllReplicasOptions # ... other code ... result = collection.get_all_replicas('airline_10', GetAllReplicasOptions(timeout=timedelta(seconds=10))) for res in result: print(f'Document is replica: {res.is_replica}') print(f'Document value: {res.content_as[dict]}') Stream get_all_replicas results:: from datetime import timedelta from couchbase.options import GetAllReplicasOptions # ... other code ... result = collection.get_all_replicas('airline_10', GetAllReplicasOptions(timeout=timedelta(seconds=10))) while True: try: res = next(result) print(f'Document is replica: {res.is_replica}') print(f'Document value: {res.content_as[dict]}') except StopIteration: print('Done streaming replicas.') break """ final_args = forward_args(kwargs, *opts) transcoder = final_args.get('transcoder', None) if not transcoder: transcoder = self.default_transcoder final_args['transcoder'] = transcoder return self._get_all_replicas_internal(key, **final_args) @BlockingWrapper.block_and_decode(GetReplicaResult) def _get_all_replicas_internal( self, key, # type: str **kwargs, # type: Dict[str, Any] ) -> Iterable[GetReplicaResult]: """ **Internal Operation** Internal use only. Use :meth:`Collection.get_all_replicas` instead. """ return super().get_all_replicas(key, **kwargs) @BlockingWrapper.block(ExistsResult) def exists( self, key, # type: str *opts, # type: ExistsOptions **kwargs, # type: Dict[str, Any] ) -> ExistsResult: """Checks whether a specific document exists or not. Args: key (str): The key for the document to check existence. opts (:class:`~couchbase.options.ExistsOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.ExistsOptions` Returns: :class:`~couchbase.result.ExistsResult`: An instance of :class:`~couchbase.result.ExistsResult`. Examples: Simple exists operation:: bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('airline') key = 'airline_10' res = collection.exists(key) print(f'Document w/ key - {key} {"exists" if res.exists else "does not exist"}') Simple exists operation with options:: from datetime import timedelta from couchbase.options import ExistsOptions # ... other code ... key = 'airline_10' res = collection.exists(key, ExistsOptions(timeout=timedelta(seconds=2))) print(f'Document w/ key - {key} {"exists" if res.exists else "does not exist"}') """ return super().exists(key, *opts, **kwargs) @BlockingWrapper.block(MutationResult) def insert( self, # type: "Collection" key, # type: str value, # type: JSONType *opts, # type: InsertOptions **kwargs, # type: Dict[str, Any] ) -> MutationResult: """Inserts a new document to the collection, failing if the document already exists. Args: key (str): Document key to insert. value (JSONType): The value of the document to insert. opts (:class:`~couchbase.options.InsertOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.InsertOptions` Returns: :class:`~couchbase.result.MutationResult`: An instance of :class:`~couchbase.result.MutationResult`. Raises: :class:`~couchbase.exceptions.DocumentExistsException`: If the document already exists on the server. Examples: Simple insert operation:: bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('airline') key = 'airline_8091' airline = { "type": "airline", "id": 8091, "callsign": "CBS", "iata": None, "icao": None, "name": "Couchbase Airways", } res = collection.insert(key, doc) Simple insert operation with options:: from couchbase.durability import DurabilityLevel, ServerDurability from couchbase.options import InsertOptions # ... other code ... key = 'airline_8091' airline = { "type": "airline", "id": 8091, "callsign": "CBS", "iata": None, "icao": None, "name": "Couchbase Airways", } durability = ServerDurability(level=DurabilityLevel.PERSIST_TO_MAJORITY) res = collection.insert(key, doc, InsertOptions(durability=durability)) """ return super().insert(key, value, *opts, **kwargs) @BlockingWrapper.block(MutationResult) def upsert( self, key, # type: str value, # type: JSONType *opts, # type: UpsertOptions **kwargs, # type: Dict[str, Any] ) -> MutationResult: """Upserts a document to the collection. This operation succeeds whether or not the document already exists. Args: key (str): Document key to upsert. value (JSONType): The value of the document to upsert. opts (:class:`~couchbase.options.UpsertOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.UpsertOptions` Returns: :class:`~couchbase.result.MutationResult`: An instance of :class:`~couchbase.result.MutationResult`. Examples: Simple upsert operation:: bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('airline') key = 'airline_8091' airline = { "type": "airline", "id": 8091, "callsign": "CBS", "iata": None, "icao": None, "name": "Couchbase Airways", } res = collection.upsert(key, doc) Simple upsert operation with options:: from couchbase.durability import DurabilityLevel, ServerDurability from couchbase.options import UpsertOptions # ... other code ... key = 'airline_8091' airline = { "type": "airline", "id": 8091, "callsign": "CBS", "iata": None, "icao": None, "name": "Couchbase Airways", } durability = ServerDurability(level=DurabilityLevel.MAJORITY) res = collection.upsert(key, doc, InsertOptions(durability=durability)) """ return super().upsert(key, value, *opts, **kwargs) @BlockingWrapper.block(MutationResult) def replace(self, key, # type: str value, # type: JSONType *opts, # type: ReplaceOptions **kwargs, # type: Dict[str, Any] ) -> MutationResult: """Replaces the value of an existing document. Failing if the document does not exist. Args: key (str): Document key to replace. value (JSONType): The value of the document to replace. opts (:class:`~couchbase.options.ReplaceOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.ReplaceOptions` Returns: :class:`~couchbase.result.MutationResult`: An instance of :class:`~couchbase.result.MutationResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the document does not exist on the server. Examples: Simple replace operation:: bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('airline') key = 'airline_8091' res = collection.get(key) content = res.content_as[dict] airline["name"] = "Couchbase Airways!!" res = collection.replace(key, doc) Simple replace operation with options:: from couchbase.durability import DurabilityLevel, ServerDurability from couchbase.options import ReplaceOptions # ... other code ... key = 'airline_8091' res = collection.get(key) content = res.content_as[dict] airline["name"] = "Couchbase Airways!!" durability = ServerDurability(level=DurabilityLevel.MAJORITY) res = collection.replace(key, doc, InsertOptions(durability=durability)) """ return super().replace(key, value, *opts, **kwargs) @BlockingWrapper.block(MutationResult) def remove(self, key, # type: str *opts, # type: RemoveOptions **kwargs, # type: Dict[str, Any] ) -> MutationResult: """Removes an existing document. Failing if the document does not exist. Args: key (str): Key for the document to remove. opts (:class:`~couchbase.options.RemoveOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.RemoveOptions` Returns: :class:`~couchbase.result.MutationResult`: An instance of :class:`~couchbase.result.MutationResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the document does not exist on the server. Examples: Simple remove operation:: bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('airline') res = collection.remove('airline_10') Simple remove operation with options:: from couchbase.durability import DurabilityLevel, ServerDurability from couchbase.options import RemoveOptions # ... other code ... durability = ServerDurability(level=DurabilityLevel.MAJORITY) res = collection.remove('airline_10', RemoveOptions(durability=durability)) """ return super().remove(key, *opts, **kwargs) @BlockingWrapper.block(MutationResult) def touch(self, key, # type: str expiry, # type: timedelta *opts, # type: TouchOptions **kwargs, # type: Dict[str, Any] ) -> MutationResult: """Updates the expiry on an existing document. Args: key (str): Key for the document to touch. expiry (timedelta): The new expiry for the document. opts (:class:`~couchbase.options.TouchOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.TouchOptions` Returns: :class:`~couchbase.result.MutationResult`: An instance of :class:`~couchbase.result.MutationResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the document does not exist on the server. Examples: Simple touch operation:: from datetime import timedelta # ... other code ... bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('airline') res = collection.touch('airline_10', timedelta(seconds=300)) Simple touch operation with options:: from datetime import timedelta from couchbase.options import TouchOptions # ... other code ... res = collection.touch('airline_10', timedelta(seconds=300), TouchOptions(timeout=timedelta(seconds=2))) """ return super().touch(key, expiry, *opts, **kwargs) def get_and_touch(self, key, # type: str expiry, # type: timedelta *opts, # type: GetAndTouchOptions **kwargs, # type: Dict[str, Any] ) -> GetResult: """Retrieves the value of the document and simultanously updates the expiry time for the same document. Args: key (str): The key for the document retrieve and set expiry time. expiry (timedelta): The new expiry to apply to the document. opts (:class:`~couchbase.options.GetAndTouchOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.GetAndTouchOptions` Returns: :class:`~couchbase.result.GetResult`: An instance of :class:`~couchbase.result.GetResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. Examples: Simple get and touch operation:: from datetime import timedelta # ... other code ... bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('airline') key = 'airline_10' res = collection.get_and_touch(key, timedelta(seconds=20)) print(f'Document w/ updated expiry: {res.content_as[dict]}') Simple get and touch operation with options:: from datetime import timedelta from couchbase.options import GetAndTouchOptions # ... other code ... key = 'airline_10' res = collection.get_and_touch(key, timedelta(seconds=20), GetAndTouchOptions(timeout=timedelta(seconds=2))) print(f'Document w/ updated expiry: {res.content_as[dict]}') """ # add to kwargs for conversion to int kwargs["expiry"] = expiry final_args = forward_args(kwargs, *opts) transcoder = final_args.get('transcoder', None) if not transcoder: transcoder = self.default_transcoder final_args['transcoder'] = transcoder return self._get_and_touch_internal(key, **final_args) @BlockingWrapper.block_and_decode(GetResult) def _get_and_touch_internal(self, key, # type: str **kwargs, # type: Dict[str, Any] ) -> GetResult: """ **Internal Operation** Internal use only. Use :meth:`Collection.get_and_touch` instead. """ return super().get_and_touch(key, **kwargs) def get_and_lock( self, key, # type: str lock_time, # type: timedelta *opts, # type: GetAndLockOptions **kwargs, # type: Dict[str, Any] ) -> GetResult: """Locks a document and retrieves the value of that document at the time it is locked. Args: key (str): The key for the document to lock and retrieve. lock_time (timedelta): The amount of time to lock the document. opts (:class:`~couchbase.options.GetAndLockOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.GetAndLockOptions` Returns: :class:`~couchbase.result.GetResult`: An instance of :class:`~couchbase.result.GetResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. Examples: Simple get and lock operation:: from datetime import timedelta # ... other code ... bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('airline') key = 'airline_10' res = collection.get_and_lock(key, timedelta(seconds=20)) print(f'Locked document: {res.content_as[dict]}') Simple get and lock operation with options:: from datetime import timedelta from couchbase.options import GetAndLockOptions # ... other code ... key = 'airline_10' res = collection.get_and_lock(key, timedelta(seconds=20), GetAndLockOptions(timeout=timedelta(seconds=2))) print(f'Locked document: {res.content_as[dict]}') """ # add to kwargs for conversion to int kwargs["lock_time"] = lock_time final_args = forward_args(kwargs, *opts) transcoder = final_args.get('transcoder', None) if not transcoder: transcoder = self.default_transcoder final_args['transcoder'] = transcoder return self._get_and_lock_internal(key, **final_args) @BlockingWrapper.block_and_decode(GetResult) def _get_and_lock_internal(self, key, # type: str **kwargs, # type: Dict[str, Any] ) -> GetResult: """ **Internal Operation** Internal use only. Use :meth:`Collection.get_and_lock` instead. """ return super().get_and_lock(key, **kwargs) @BlockingWrapper.block(None) def unlock(self, key, # type: str cas, # type: int *opts, # type: UnlockOptions **kwargs, # type: Dict[str, Any] ) -> None: """Unlocks a previously locked document. Args: key (str): The key for the document to unlock. cas (int): The CAS of the document, used to validate lock ownership. opts (:class:`couchbaseoptions.UnlockOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.UnlockOptions` Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. :class:`~couchbase.exceptions.DocumentLockedException`: If the provided cas is invalid. Examples: Simple unlock operation:: from datetime import timedelta # ... other code ... bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('airline') key = 'airline_10' res = collection.get_and_lock(key, timedelta(seconds=5)) collection.unlock(key, res.cas) # this should be okay once document is unlocked collection.upsert(key, res.content_as[dict]) """ return super().unlock(key, cas, *opts, **kwargs) def lookup_in( self, key, # type: str spec, # type: Iterable[Spec] *opts, # type: LookupInOptions **kwargs, # type: Dict[str, Any] ) -> LookupInResult: """Performs a lookup-in operation against a document, fetching individual fields or information about specific fields inside the document value. Args: key (str): The key for the document look in. spec (Iterable[:class:`~couchbase.subdocument.Spec`]): A list of specs describing the data to fetch from the document. opts (:class:`~couchbase.options.LookupInOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.LookupInOptions` Returns: :class:`~couchbase.result.LookupInResult`: An instance of :class:`~couchbase.result.LookupInResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. Examples: Simple look-up in operation:: import couchbase.subdocument as SD # ... other code ... bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('hotel') key = 'hotel_10025' res = collection.lookup_in(key, (SD.get("geo"),)) print(f'Hotel {key} coordinates: {res.content_as[dict](0)}') Simple look-up in operation with options:: from datetime import timedelta import couchbase.subdocument as SD from couchbase.options import LookupInOptions # ... other code ... key = 'hotel_10025' res = collection.lookup_in(key, (SD.get("geo"),), LookupInOptions(timeout=timedelta(seconds=2))) print(f'Hotel {key} coordinates: {res.content_as[dict](0)}') """ final_args = forward_args(kwargs, *opts) transcoder = final_args.get('transcoder', None) if not transcoder: transcoder = self.default_transcoder final_args['transcoder'] = transcoder return self._lookup_in_internal(key, spec, **final_args) @BlockingWrapper.block_and_decode(LookupInResult) def _lookup_in_internal( self, key, # type: str spec, # type: Iterable[Spec] **kwargs, # type: Dict[str, Any] ) -> LookupInResult: """ **Internal Operation** Internal use only. Use :meth:`Collection.lookup_in` instead. """ return super().lookup_in(key, spec, **kwargs) def lookup_in_any_replica( self, key, # type: str spec, # type: Iterable[Spec] *opts, # type: LookupInAnyReplicaOptions **kwargs, # type: Dict[str, Any] ) -> LookupInReplicaResult: """Performs a lookup-in operation against a document, fetching individual fields or information about specific fields inside the document value. It leverages both active and all available replicas returning the first available Args: key (str): The key for the document look in. spec (Iterable[:class:`~couchbase.subdocument.Spec`]): A list of specs describing the data to fetch from the document. opts (:class:`~couchbase.options.LookupInAnyReplicaOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.LookupInAnyReplicaOptions` Returns: :class:`~couchbase.result.LookupInReplicaResult`: An instance of :class:`~couchbase.result.LookupInReplicaResult`. Raises: :class:`~couchbase.exceptions.DocumentUnretrievableException`: If the key provided does not exist on the server. Examples: Simple lookup_in_any_replica operation:: import couchbase.subdocument as SD # ... other code ... bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('hotel') key = 'hotel_10025' res = collection.lookup_in_any_replica(key, (SD.get("geo"),)) print(f'Hotel {key} coordinates: {res.content_as[dict](0)}') Simple lookup_in_any_replica operation with options:: from datetime import timedelta import couchbase.subdocument as SD from couchbase.options import LookupInAnyReplicaOptions # ... other code ... key = 'hotel_10025' res = collection.lookup_in_any_replica(key, (SD.get("geo"),), LookupInAnyReplicaOptions(timeout=timedelta(seconds=2))) print(f'Document is replica: {res.is_replica}') print(f'Hotel {key} coordinates: {res.content_as[dict](0)}') """ # noqa: E501 final_args = forward_args(kwargs, *opts) transcoder = final_args.get('transcoder', None) if not transcoder: transcoder = self.default_transcoder final_args['transcoder'] = transcoder return self._lookup_in_any_replica_internal(key, spec, **final_args) @BlockingWrapper.block_and_decode(LookupInReplicaResult) def _lookup_in_any_replica_internal( self, key, # type: str spec, # type: Iterable[Spec] **kwargs, # type: Dict[str, Any] ) -> LookupInReplicaResult: """ **Internal Operation** Internal use only. Use :meth:`Collection.lookup_in` instead. """ return super().lookup_in_any_replica(key, spec, **kwargs) def lookup_in_all_replicas( self, key, # type: str spec, # type: Iterable[Spec] *opts, # type: LookupInAllReplicasOptions **kwargs, # type: Any ) -> Iterable[LookupInReplicaResult]: """Performs a lookup-in operation against a document, fetching individual fields or information about specific fields inside the document value, returning results from both active and all available replicas Args: key (str): The key for the document look in. spec (Iterable[:class:`~couchbase.subdocument.Spec`]): A list of specs describing the data to fetch from the document. opts (:class:`~couchbase.options.LookupInAllReplicasOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.LookupInAllReplicasOptions` Returns: Iterable[:class:`~couchbase.result.LookupInReplicaResult`]: A stream of :class:`~couchbase.result.LookupInReplicaResult` representing both active and replicas of the sub-document retrieved. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. Examples: Simple lookup_in_all_replicas operation:: import couchbase.subdocument as SD # ... other code ... bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('hotel') key = 'hotel_10025' results = collection.lookup_in_all_replicas(key, (SD.get("geo"),)) for res in results: print(f'Document is replica: {res.is_replica}') print(f'Hotel {key} coordinates: {res.content_as[dict](0)}') Simple lookup_in_all_replicas operation with options:: import couchbase.subdocument as SD from datetime import timedelta from couchbase.options import LookupInAllReplicasOptions # ... other code ... key = 'hotel_10025' results = collection.lookup_in_all_replicas(key, (SD.get("geo"),), LookupInAllReplicasOptions(timeout=timedelta(seconds=2))) for res in results: print(f'Document is replica: {res.is_replica}') print(f'Hotel {key} coordinates: {res.content_as[dict](0)}') Stream lookup_in_all_replicas results:: from datetime import timedelta from couchbase.options import GetAllReplicasOptions # ... other code ... key = 'hotel_10025' results = collection.lookup_in_all_replicas(key, (SD.get("geo"),), LookupInAllReplicasOptions(timeout=timedelta(seconds=2))) while True: try: res = next(results) print(f'Document is replica: {res.is_replica}') print(f'Hotel {key} coordinates: {res.content_as[dict](0)}') except StopIteration: print('Done streaming replicas.') break """ final_args = forward_args(kwargs, *opts) transcoder = final_args.get('transcoder', None) if not transcoder: transcoder = self.default_transcoder final_args['transcoder'] = transcoder return self._lookup_in_all_replicas_internal(key, spec, **final_args) @BlockingWrapper.block_and_decode(LookupInReplicaResult) def _lookup_in_all_replicas_internal( self, key, # type: str spec, # type: Iterable[Spec] **kwargs, # type: Dict[str, Any] ) -> Iterable[LookupInReplicaResult]: """ **Internal Operation** Internal use only. Use :meth:`Collection.lookup_in` instead. """ return super().lookup_in_all_replicas(key, spec, **kwargs) @BlockingWrapper.block(MutateInResult) def mutate_in( self, key, # type: str spec, # type: Iterable[Spec] *opts, # type: MutateInOptions **kwargs, # type: Dict[str, Any] ) -> MutateInResult: """Performs a mutate-in operation against a document. Allowing atomic modification of specific fields within a document. Also enables access to document extended-attributes (i.e. xattrs). Args: key (str): The key for the document look in. spec (Iterable[:class:`~couchbase.subdocument.Spec`]): A list of specs describing the operations to perform on the document. opts (:class:`~couchbase.options.MutateInOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.MutateInOptions` Returns: :class:`~couchbase.result.MutateInResult`: An instance of :class:`~couchbase.result.MutateInResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. Examples: Simple mutate-in operation:: import couchbase.subdocument as SD # ... other code ... bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('hotel') key = 'hotel_10025' res = collection.mutate_in(key, (SD.replace("city", "New City"),)) Simple mutate-in operation with options:: from datetime import timedelta import couchbase.subdocument as SD from couchbase.options import MutateInOptions # ... other code ... key = 'hotel_10025' res = collection.mutate_in(key, (SD.replace("city", "New City"),), MutateInOptions(timeout=timedelta(seconds=2))) """ return super().mutate_in(key, spec, *opts, **kwargs) def scan(self, scan_type, # type: ScanType *opts, # type: ScanOptions **kwargs, # type: Dict[str, Any] ) -> ScanResultIterable: """Execute a key-value range scan operation from the collection. **VOLATILE** This API is subject to change at any time. Args: scan_type (:class:`~couchbase.kv_range_scan.ScanType`): Either a :class:`~couchbase.kv_range_scan.RangeScan`, :class:`~couchbase.kv_range_scan.PrefixScan` or :class:`~couchbase.kv_range_scan.SamplingScan` instance. opts (:class:`~couchbase.options.ScanOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.ScanOptions` Raises: :class:`~couchbase.exceptions.InvalidArgumentException`: If scan_type is not either a RangeScan or SamplingScan instance. :class:`~couchbase.exceptions.InvalidArgumentException`: If sort option is provided and is incorrect type. :class:`~couchbase.exceptions.InvalidArgumentException`: If consistent_with option is provided and is not a Returns: :class:`~couchbase.result.ScanResultIterable`: An instance of :class:`~couchbase.result.ScanResultIterable`. Examples: Simple range scan operation:: from couchbase.kv_range_scan import RangeScan from couchbase.options import ScanOptions # ... other code ... bucket = cluster.bucket('travel-sample') collection = bucket.scope('inventory').collection('airline') scan_type = RangeScan(ScanTerm('airline-00'), ScanTerm('airline-99')) scan_iter = collection.scan(scan_type, ScanOptions(ids_only=True)) for res in scan_iter: print(res) """ # noqa: E501 final_args = forward_args(kwargs, *opts) transcoder = final_args.get('transcoder', None) if not transcoder: final_args['transcoder'] = self.default_transcoder scan_args = super().build_scan_args(scan_type, **final_args) range_scan_request = RangeScanRequest(**scan_args) return ScanResultIterable(range_scan_request) def binary(self) -> BinaryCollection: """Creates a BinaryCollection instance, allowing access to various binary operations possible against a collection. .. seealso:: :class:`~couchbase.binary_collection.BinaryCollection` Returns: :class:`~couchbase.binary_collection.BinaryCollection`: A BinaryCollection instance. """ return BinaryCollection(self) @BlockingWrapper.block(MutationResult) def _append( self, key, # type: str value, # type: Union[str,bytes,bytearray] *opts, # type: AppendOptions **kwargs, # type: Dict[str, Any] ) -> MutationResult: """ **Internal Operation** Internal use only. Use :meth:`.BinaryCollection.append` instead. """ return super().append(key, value, *opts, **kwargs) @BlockingWrapper.block(MutationResult) def _prepend( self, key, # type: str value, # type: Union[str,bytes,bytearray] *opts, # type: PrependOptions **kwargs, # type: Dict[str, Any] ) -> MutationResult: """ **Internal Operation** Internal use only. Use :meth:`.BinaryCollection.prepend` instead. """ return super().prepend(key, value, *opts, **kwargs) @BlockingWrapper.block(CounterResult) def _increment( self, key, # type: str *opts, # type: IncrementOptions **kwargs, # type: Dict[str, Any] ) -> CounterResult: """ **Internal Operation** Internal use only. Use :meth:`.BinaryCollection.increment` instead. """ return super().increment(key, *opts, **kwargs) @BlockingWrapper.block(CounterResult) def _decrement( self, key, # type: str *opts, # type: DecrementOptions **kwargs, # type: Dict[str, Any] ) -> CounterResult: """ **Internal Operation** Internal use only. Use :meth:`.BinaryCollection.decrement` instead. """ return super().decrement(key, *opts, **kwargs) def couchbase_list(self, key # type: str ) -> CouchbaseList: """Returns a CouchbaseList permitting simple list storage in a document. .. seealso:: :class:`~couchbase.datastructures.CouchbaseList` Returns: :class:`~couchbase.datastructures.CouchbaseList`: A CouchbaseList instance. """ return CouchbaseList(key, self) @BlockingWrapper._dsop(create_type='list') def list_append(self, key, # type: str value, # type: JSONType create=False, # type: Optional[bool] **kwargs, # type: Dict[str, Any] ) -> OperationResult: """Add an item to the end of a list. .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseList.append` instead. Args: key (str): The key for the list document. value (JSONType): The value to append to the list. create (bool, optional): Whether the list should be created if it does not exist. **kwargs (Dict[str, Any]): keyword arguments that can be used as optional parameters for this operation. Returns: :class:`couchbase~.result.OperationResult`: An instance of :class:`~couchbase.result.OperationResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. """ op = array_append('', value) sd_res = self.mutate_in(key, (op,), **kwargs) return OperationResult(sd_res.cas, sd_res.mutation_token()) @BlockingWrapper._dsop(create_type='list') def list_prepend(self, key, # type: str value, # type: JSONType create=False, # type: Optional[bool] **kwargs, # type: Dict[str, Any] ) -> OperationResult: """ Add an item to the beginning of a list. .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseList.prepend` instead. Args: key (str): The key for the list document. value (JSONType): The value to prepend to the list. create (bool, optional): Whether the list should be created if it does not exist. **kwargs (Dict[str, Any]): keyword arguments that can be used as optional parameters for this operation. Returns: :class:`~couchbase.result.OperationResult`: An instance of :class:`~couchbase.result.OperationResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. """ op = array_prepend('', value) sd_res = self.mutate_in(key, (op,), **kwargs) return OperationResult(sd_res.cas, sd_res.mutation_token()) @BlockingWrapper._dsop() def list_set(self, key, # type: str index, # type: int value, # type: JSONType **kwargs # type: Dict[str, Any] ) -> OperationResult: """Sets an item within a list at a given position. .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseList.set_at` instead. Args: key (str): The key for the list document. index (int): The position to replace. value (JSONType): The value to prepend to the list. **kwargs (Dict[str, Any]): keyword arguments that can be used as optional parameters for this operation. Returns: :class:`~couchbase.result.OperationResult`: An instance of :class:`~couchbase.result.OperationResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. IndexError: If the index is out of bounds. """ op = replace(f'[{index}]', value) sd_res = self.mutate_in(key, (op,), **kwargs) return OperationResult(sd_res.cas, sd_res.mutation_token()) @BlockingWrapper._dsop() def list_get(self, key, # type: str index, # type: int **kwargs # type: Dict[str, Any] ) -> Any: """Get a specific element within a list. .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseList.get_at` instead. Args: key (str): The key for the list document. index (int): The position to retrieve. **kwargs (Dict[str, Any]): keyword arguments that can be used as optional parameters for this operation. Returns: Any: The value of the element at the specified index. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. IndexError: If the index is out of bounds. """ op = subdoc_get(f'[{index}]') sd_res = self.lookup_in(key, (op,), **kwargs) return sd_res.value[0].get("value", None) @BlockingWrapper._dsop() def list_remove(self, key, # type: str index, # type: int **kwargs # type: Dict[str, Any] ) -> OperationResult: """Remove the element at a specific index from a list. .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseList.remove_at` instead. Args: key (str): The key for the list document. index (int): The position to remove. **kwargs (Dict[str, Any]): keyword arguments that can be used as optional parameters for this operation. Returns: :class:`~couchbase.result.OperationResult`: An instance of :class:`~couchbase.result.OperationResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. IndexError: If the index is out of bounds. """ op = subdoc_remove(f'[{index}]') sd_res = self.mutate_in(key, (op,), **kwargs) return OperationResult(sd_res.cas, sd_res.mutation_token()) @BlockingWrapper._dsop() def list_size(self, key, # type: str **kwargs # type: Dict[str, Any] ) -> int: """Returns the number of items in the list. .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseList.size` instead. Args: key (str): The key for the list document. **kwargs (Dict[str, Any]): keyword arguments that can be used as optional parameters for this operation. Returns: int: The number of items in the list. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. """ op = count('') sd_res = self.lookup_in(key, (op,), **kwargs) return sd_res.value[0].get("value", None) def couchbase_map(self, key # type: str ) -> CouchbaseMap: """Returns a CouchbaseMap permitting simple map storage in a document. .. seealso:: :class:`~couchbase.datastructures.CouchbaseMap` Returns: :class:`~couchbase.datastructures.CouchbaseMap`: A CouchbaseMap instance. """ return CouchbaseMap(key, self) @BlockingWrapper._dsop(create_type='dict') def map_add(self, key, # type: str mapkey, # type: str value, # type: Any create=False, # type: Optional[bool] **kwargs # type: Dict[str, Any] ) -> OperationResult: """Set a value for a key in a map. .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseMap.add` instead. Args: key (str): The key for the map document. mapkey (str): The key in the map to set. value (Any): The value to use. create (bool, optional): Whether the map should be created if it does not exist. **kwargs (Dict[str, Any]): keyword arguments that can be used as optional parameters for this operation. Returns: :class:`~couchbase.result.OperationResult`: An instance of :class:`~couchbase.result.OperationResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. """ op = subdoc_upsert(mapkey, value) sd_res = self.mutate_in(key, (op,), **kwargs) return OperationResult(sd_res.cas, sd_res.mutation_token()) @BlockingWrapper._dsop() def map_get(self, key, # type: str mapkey, # type: str **kwargs # type: Dict[str, Any] ) -> Any: """Retrieve a value from a map. .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseMap.get` instead. Args: key (str): The key for the map document. mapkey (str): The key in the map to set. **kwargs (Dict[str, Any]): keyword arguments that can be used as optional parameters for this operation. Returns: Any: The value of the specified key. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. """ op = subdoc_get(mapkey) sd_res = self.lookup_in(key, (op,), **kwargs) return sd_res.value[0].get("value", None) @BlockingWrapper._dsop() def map_remove(self, key, # type: str mapkey, # type: str **kwargs # type: Dict[str, Any] ) -> OperationResult: """Remove an item from a map. .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseMap.remove` instead. Args: key (str): The key for the map document. mapkey (str): The key in the map to set. **kwargs (Dict[str, Any]): keyword arguments that can be used as optional parameters for this operation. Returns: :class:`~couchbase.result.OperationResult`: An instance of :class:`~couchbase.result.OperationResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. """ op = subdoc_remove(mapkey) sd_res = self.mutate_in(key, (op,), **kwargs) return OperationResult(sd_res.cas, sd_res.mutation_token()) @BlockingWrapper._dsop() def map_size(self, key, # type: str **kwargs # type: Dict[str, Any] ) -> int: """Get the number of items in the map. .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseMap.remove` instead. Args: key (str): The key for the map document. **kwargs (Dict[str, Any]): keyword arguments that can be used as optional parameters for this operation. Returns: int: The number of items in the map. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. """ op = count('') sd_res = self.lookup_in(key, (op,), **kwargs) return sd_res.value[0].get("value", None) def couchbase_set(self, key # type: str ) -> CouchbaseSet: """Returns a CouchbaseSet permitting simple map storage in a document. .. seealso:: :class:`~couchbase.datastructures.CouchbaseSet` Returns: :class:`~couchbase.datastructures.CouchbaseSet`: A CouchbaseSet instance. """ return CouchbaseSet(key, self) @BlockingWrapper._dsop(create_type='list') def set_add(self, key, # type: str value, # type: Any create=False, # type: Optional[bool] **kwargs # type: Dict[str, Any] ) -> Optional[OperationResult]: """Add an item to a set if the item does not yet exist. .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseSet.add` instead. Args: key (str): The key for the set document. value (Any): The value to add to the set. create (bool, optional): Whether the set should be created if it does not exist. **kwargs (Dict[str, Any]): keyword arguments that can be used as optional parameters for this operation. Returns: :class:`~couchbase.result.OperationResult`: An instance of :class:`~couchbase.result.OperationResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. """ op = array_addunique('', value) try: sd_res = self.mutate_in(key, (op,), **kwargs) return OperationResult(sd_res.cas, sd_res.mutation_token()) except PathExistsException: pass @BlockingWrapper._dsop() def set_remove(self, key, # type: str value, # type: Any **kwargs # type: Dict[str, Any] ) -> Optional[OperationResult]: """Remove an item from a set. .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseSet.remove` instead. Args: key (str): The key for the set document. value (Any): The value to remove from the set. **kwargs (Dict[str, Any]): keyword arguments that can be used as optional parameters for this operation. Returns: :class:`~couchbase.result.OperationResult`: An instance of :class:`~couchbase.result.OperationResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. """ while True: rv = self.get(key, **kwargs) try: ix = rv.value.index(value) kwargs['cas'] = rv.cas return self.list_remove(key, ix, **kwargs) except DocumentExistsException: pass except ValueError: return def set_size(self, key, # type: str **kwargs # type: Dict[str, Any] ) -> int: """Get the length of a set. .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseSet.size` instead. Args: key (str): The key for the set document. **kwargs (Dict[str, Any]): keyword arguments that can be used as optional parameters for this operation. Returns: int: The length of a set. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. """ return self.list_size(key, **kwargs) def set_contains(self, key, # type: str value, # type: Any **kwargs # type: Dict[str, Any] ) -> bool: """Determine if an item exists in a set .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseSet.contains` instead. Args: key (str): The key for the set document. value (Any): The value to check for. **kwargs (Dict[str, Any]): keyword arguments that can be used as optional parameters for this operation. Returns: bool: True if the set contains the specified value. False othwerwise. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. """ rv = self.get(key, **kwargs) return value in rv.value def couchbase_queue(self, key # type: str ) -> CouchbaseQueue: """Returns a CouchbaseQueue permitting simple map storage in a document. .. seealso:: :class:`~couchbase.datastructures.CouchbaseQueue` Returns: :class:`~couchbase.datastructures.CouchbaseQueue`: A CouchbaseQueue instance. """ return CouchbaseQueue(key, self) @BlockingWrapper._dsop(create_type='list') def queue_push(self, key, # type: str value, # type: Any create=False, # type: Optional[bool] **kwargs # type: Dict[str, Any] ) -> OperationResult: """Add an item to the end of a queue. .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseQueue.push` instead. Args: key (str): The key for the queue document. value (Any): The value to add. create (bool, optional): Whether the queue should be created if it does not exist. **kwargs (Dict[str, Any]): keyword arguments that can be used as optional parameters for this operation. Returns: :class:`~couchbase.result.OperationResult`: An instance of :class:`~couchbase.result.OperationResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. """ return self.list_prepend(key, value, **kwargs) @BlockingWrapper._dsop() def queue_pop(self, key, # type: str **kwargs # type: Dict[str, Any] ) -> OperationResult: """Remove and return the first item queue. .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseQueue.pop` instead. Args: key (str): The key for the queue document. **kwargs (Dict[str, Any]): keyword arguments that can be used as optional parameters for this operation. Returns: :class:`~couchbase.result.OperationResult`: An instance of :class:`~couchbase.result.OperationResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. """ while True: try: itm = self.list_get(key, -1, **kwargs) except IndexError: raise QueueEmpty kwargs.update({k: v for k, v in getattr( itm, '__dict__', {}).items() if k in {'cas'}}) try: self.list_remove(key, -1, **kwargs) return itm except DocumentExistsException: pass except IndexError: raise QueueEmpty @BlockingWrapper._dsop() def queue_size(self, key # type: str ) -> int: """Get the length of a queue. .. warning:: This method is deprecated and will be removed in a future version. Use :meth:`.CouchbaseQueue.size` instead. Args: key (str): The key for the queue document. Returns: int: The length of the queue. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server. """ return self.list_size(key) def _get_multi_mutation_transcoded_op_args( self, keys_and_docs, # type: Dict[str, JSONType] *opts, # type: MutationMultiOptions **kwargs, # type: Any ) -> Tuple[Dict[str, Any], bool]: if not isinstance(keys_and_docs, dict): raise InvalidArgumentException(message='Expected keys_and_docs to be a dict.') opts_type = kwargs.pop('opts_type', None) if not opts_type: raise InvalidArgumentException(message='Expected options type is missing.') final_args = get_valid_multi_args(opts_type, kwargs, *opts) per_key_args = final_args.pop('per_key_options', None) op_transcoder = final_args.pop('transcoder', self.default_transcoder) op_args = {} for key, value in keys_and_docs.items(): op_args[key] = copy(final_args) # per key args override global args if per_key_args and key in per_key_args: key_transcoder = per_key_args.pop('transcoder', op_transcoder) op_args[key].update(per_key_args[key]) transcoded_value = key_transcoder.encode_value(value) else: transcoded_value = op_transcoder.encode_value(value) op_args[key]['value'] = transcoded_value if isinstance(opts_type, ReplaceMultiOptions): for k, v in op_args.items(): expiry = v.get('expiry', None) preserve_expiry = v.get('preserve_expiry', False) if expiry and preserve_expiry is True: raise InvalidArgumentException( message=("The expiry and preserve_expiry options cannot " f"both be set for replace operations. Multi-op key: {k}.") ) return_exceptions = final_args.pop('return_exceptions', True) return op_args, return_exceptions def _get_multi_op_args( self, keys, # type: List[str] *opts, # type: NoValueMultiOptions **kwargs, # type: Any ) -> Tuple[Dict[str, Any], bool, Dict[str, Transcoder]]: if not isinstance(keys, list): raise InvalidArgumentException(message='Expected keys to be a list.') opts_type = kwargs.pop('opts_type', None) if not opts_type: raise InvalidArgumentException(message='Expected options type is missing.') final_args = get_valid_multi_args(opts_type, kwargs, *opts) op_transcoder = final_args.pop('transcoder', self.default_transcoder) per_key_args = final_args.pop('per_key_options', None) op_args = {} key_transcoders = {} for key in keys: op_args[key] = copy(final_args) # per key args override global args if per_key_args and key in per_key_args: key_transcoder = per_key_args.pop('transcoder', op_transcoder) key_transcoders[key] = key_transcoder op_args[key].update(per_key_args[key]) else: key_transcoders[key] = op_transcoder return_exceptions = final_args.pop('return_exceptions', True) return op_args, return_exceptions, key_transcoders def get_multi( self, keys, # type: List[str] *opts, # type: GetMultiOptions **kwargs, # type: Any ) -> MultiGetResult: """For each key in the provided list, retrieve the document associated with the key. .. note:: This method is part of an **uncommitted** API that is unlikely to change, but may still change as final consensus on its behavior has not yet been reached. Args: keys (List[str]): The keys to use for the multiple get operations. opts (:class:`~couchbase.options.GetMultiOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.GetMultiOptions` Returns: :class:`~couchbase.result.MultiGetResult`: An instance of :class:`~couchbase.result.MultiGetResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server and the return_exceptions options is False. Otherwise the exception is returned as a match to the key, but is not raised. Examples: Simple get-multi operation:: collection = bucket.default_collection() keys = ['doc1', 'doc2', 'doc3'] res = collection.get_multi(keys) for k, v in res.results.items(): print(f'Doc {k} has value: {v.content_as[dict]}') Simple get-multi operation, raise an Exception if an Exception occurs:: from couchbase.options import GetMultiOptions # ... other code ... collection = bucket.default_collection() keys = ['doc1', 'doc2', 'doc3'] res = collection.get_multi(keys, GetMultiOptions(return_exceptions=False)) for k, v in res.results.items(): print(f'Doc {k} has value: {v.content_as[dict]}') Simple get-multi operation, individual key options:: from datetime import timedelta from couchbase.options import GetMultiOptions, GetOptions # ... other code ... collection = bucket.default_collection() keys = ['doc1', 'doc2', 'doc3'] per_key_opts = {'doc1': GetOptions(timeout=timedelta(seconds=10))} res = collection.get_multi(keys, GetMultiOptions(per_key_options=per_key_opts)) for k, v in res.results.items(): print(f'Doc {k} has value: {v.content_as[dict]}') """ op_args, return_exceptions, transcoders = self._get_multi_op_args(keys, *opts, opts_type=GetMultiOptions, **kwargs) op_type = operations.GET.value res = kv_multi_operation( **self._get_connection_args(), op_type=op_type, op_args=op_args ) for k, v in res.raw_result.items(): if k == 'all_okay': continue if isinstance(v, CouchbaseBaseException): continue value = v.raw_result.get('value', None) flags = v.raw_result.get('flags', None) tc = transcoders[k] v.raw_result['value'] = decode_value(tc, value, flags) return MultiGetResult(res, return_exceptions) def get_any_replica_multi( self, keys, # type: List[str] *opts, # type: GetAnyReplicaMultiOptions **kwargs, # type: Any ) -> MultiGetReplicaResult: """For each key in the provided list, retrieve the document associated with the key from the collection leveraging both active and all available replicas returning the first available. .. note:: This method is part of an **uncommitted** API that is unlikely to change, but may still change as final consensus on its behavior has not yet been reached. Args: keys (List[str]): The keys to use for the multiple get operations. opts (:class:`~couchbase.options.GetAnyReplicaMultiOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.GetAnyReplicaMultiOptions` Returns: :class:`~couchbase.result.MultiGetReplicaResult`: An instance of :class:`~couchbase.result.MultiGetReplicaResult`. Raises: :class:`~couchbase.exceptions.DocumentUnretrievableException`: If the key provided does not exist on the server and the return_exceptions options is False. Otherwise the exception is returned as a match to the key, but is not raised. Examples: Simple get_any_replica_multi operation:: collection = bucket.default_collection() keys = ['doc1', 'doc2', 'doc3'] res = collection.get_any_replica_multi(keys) for k, v in res.results.items(): if v.is_replica: print(f'Replica doc {k} has value: {v.content_as[dict]}') else: print(f'Active doc {k} has value: {v.content_as[dict]}') Simple get_any_replica_multi operation, raise an Exception if an Exception occurs:: from couchbase.options import GetAnyReplicaMultiOptions # ... other code ... collection = bucket.default_collection() keys = ['doc1', 'doc2', 'doc3'] res = collection.get_any_replica_multi(keys, GetAnyReplicaMultiOptions(return_exceptions=False)) for k, v in res.results.items(): if v.is_replica: print(f'Replica doc {k} has value: {v.content_as[dict]}') else: print(f'Active doc {k} has value: {v.content_as[dict]}') Simple get_any_replica_multi operation, individual key options:: from datetime import timedelta from couchbase.options import GetAnyReplicaMultiOptions, GetAnyReplicaOptions # ... other code ... collection = bucket.default_collection() keys = ['doc1', 'doc2', 'doc3'] per_key_opts = {'doc1': GetAnyReplicaOptions(timeout=timedelta(seconds=10))} res = collection.get_any_replica_multi(keys, GetAnyReplicaMultiOptions(per_key_options=per_key_opts)) for k, v in res.results.items(): if v.is_replica: print(f'Replica doc {k} has value: {v.content_as[dict]}') else: print(f'Active doc {k} has value: {v.content_as[dict]}') """ op_args, return_exceptions, transcoders = self._get_multi_op_args(keys, *opts, opts_type=GetAnyReplicaMultiOptions, **kwargs) op_type = operations.GET_ANY_REPLICA.value res = kv_multi_operation( **self._get_connection_args(), op_type=op_type, op_args=op_args ) for k, v in res.raw_result.items(): if k == 'all_okay': continue if isinstance(v, CouchbaseBaseException): continue value = v.raw_result.get('value', None) flags = v.raw_result.get('flags', None) tc = transcoders[k] v.raw_result['value'] = decode_value(tc, value, flags) return MultiGetReplicaResult(res, return_exceptions) def get_all_replicas_multi( self, keys, # type: List[str] *opts, # type: GetAllReplicasMultiOptions **kwargs, # type: Any ) -> MultiGetReplicaResult: """For each key in the provided list, retrieve the document from the collection returning both active and all available replicas. .. note:: This method is part of an **uncommitted** API that is unlikely to change, but may still change as final consensus on its behavior has not yet been reached. Args: keys (List[str]): The keys to use for the multiple get operations. opts (:class:`~couchbase.options.GetAllReplicasMultiOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.GetAllReplicasMultiOptions` Returns: :class:`~couchbase.result.MultiGetReplicaResult`: An instance of :class:`~couchbase.result.MultiGetReplicaResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server and the return_exceptions options is False. Otherwise the exception is returned as a match to the key, but is not raised. Examples: Simple get_all_replicas_multi operation:: collection = bucket.default_collection() keys = ['doc1', 'doc2', 'doc3'] res = collection.get_all_replicas_multi(keys) for k, docs in res.results.items(): for doc in docs: if doc.is_replica: print(f'Replica doc {k} has value: {doc.content_as[dict]}') else: print(f'Active doc {k} has value: {doc.content_as[dict]}') Simple get_all_replicas_multi operation, raise an Exception if an Exception occurs:: from couchbase.options import GetAllReplicasMultiOptions # ... other code ... collection = bucket.default_collection() keys = ['doc1', 'doc2', 'doc3'] res = collection.get_all_replicas_multi(keys, GetAllReplicasMultiOptions(return_exceptions=False)) for k, docs in res.results.items(): for doc in docs: if doc.is_replica: print(f'Replica doc {k} has value: {doc.content_as[dict]}') else: print(f'Active doc {k} has value: {doc.content_as[dict]}') Simple get_all_replicas_multi operation, individual key options:: from datetime import timedelta from couchbase.options import GetAllReplicasMultiOptions, GetAllReplicasOptions # ... other code ... collection = bucket.default_collection() keys = ['doc1', 'doc2', 'doc3'] per_key_opts = {'doc1': GetAllReplicasOptions(timeout=timedelta(seconds=10))} res = collection.get_all_replicas_multi(keys, GetAllReplicasMultiOptions(per_key_options=per_key_opts)) for k, docs in res.results.items(): for doc in docs: if doc.is_replica: print(f'Replica doc {k} has value: {doc.content_as[dict]}') else: print(f'Active doc {k} has value: {doc.content_as[dict]}') """ op_args, return_exceptions, transcoders = self._get_multi_op_args(keys, *opts, opts_type=GetAllReplicasMultiOptions, **kwargs) op_type = operations.GET_ALL_REPLICAS.value res = kv_multi_operation( **self._get_connection_args(), op_type=op_type, op_args=op_args ) # all the successful results will be streamed_results, so lets # pop those off the main result dict and re-add the key back # transformed into a List[GetReplicaResult] result_keys = [] for k, v in res.raw_result.items(): if k == 'all_okay' or isinstance(v, CouchbaseBaseException): continue result_keys.append(k) for k in result_keys: value = res.raw_result.pop(k) tc = transcoders[k] res.raw_result[k] = list(r for r in decode_replicas(tc, value, GetReplicaResult)) return MultiGetReplicaResult(res, return_exceptions) def lock_multi( self, keys, # type: List[str] lock_time, # type: timedelta *opts, # type: LockMultiOptions **kwargs, # type: Any ) -> MultiGetResult: """For each key in the provided list, lock the document associated with the key. .. note:: This method is part of an **uncommitted** API that is unlikely to change, but may still change as final consensus on its behavior has not yet been reached. Args: keys (List[str]): The keys to use for the multiple lock operations. lock_time (timedelta): The amount of time to lock the documents. opts (:class:`~couchbase.options.LockMultiOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.LockMultiOptions` Returns: :class:`~couchbase.result.MultiGetResult`: An instance of :class:`~couchbase.result.MultiGetResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server and the return_exceptions options is False. Otherwise the exception is returned as a match to the key, but is not raised. """ kwargs["lock_time"] = lock_time op_args, return_exceptions, transcoders = self._get_multi_op_args(keys, *opts, opts_type=LockMultiOptions, **kwargs) op_type = operations.GET_AND_LOCK.value res = kv_multi_operation( **self._get_connection_args(), op_type=op_type, op_args=op_args ) for k, v in res.raw_result.items(): if k == 'all_okay': continue if isinstance(v, CouchbaseBaseException): continue value = v.raw_result.get('value', None) flags = v.raw_result.get('flags', None) tc = transcoders[k] v.raw_result['value'] = decode_value(tc, value, flags) return MultiGetResult(res, return_exceptions) def exists_multi( self, keys, # type: List[str] *opts, # type: ExistsMultiOptions **kwargs, # type: Any ) -> MultiExistsResult: """For each key in the provided list, check if the document associated with the key exists. .. note:: This method is part of an **uncommitted** API that is unlikely to change, but may still change as final consensus on its behavior has not yet been reached. Args: keys (List[str]): The keys to use for the multiple exists operations. lock_time (timedelta): The amount of time to lock the documents. opts (:class:`~couchbase.options.ExistsMultiOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.ExistsMultiOptions` Returns: :class:`~couchbase.result.MultiExistsResult`: An instance of :class:`~couchbase.result.MultiExistsResult`. """ op_args, return_exceptions, _ = self._get_multi_op_args(keys, *opts, opts_type=ExistsMultiOptions, **kwargs) op_type = operations.EXISTS.value res = kv_multi_operation( **self._get_connection_args(), op_type=op_type, op_args=op_args ) return MultiExistsResult(res, return_exceptions) def insert_multi( self, keys_and_docs, # type: Dict[str, JSONType] *opts, # type: InsertMultiOptions **kwargs, # type: Any ) -> MultiMutationResult: """For each key, value pair in the provided dict, inserts a new document to the collection, failing if the document already exists. .. note:: This method is part of an **uncommitted** API that is unlikely to change, but may still change as final consensus on its behavior has not yet been reached. Args: keys_and_docs (Dict[str, JSONType]): The keys and values/docs to use for the multiple insert operations. opts (:class:`~couchbase.options.InsertMultiOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.InsertMultiOptions` Returns: :class:`~couchbase.result.MultiMutationResult`: An instance of :class:`~couchbase.result.MultiMutationResult`. Raises: :class:`~couchbase.exceptions.DocumentExistsException`: If the key provided already exists on the server and the return_exceptions options is False. Otherwise the exception is returned as a match to the key, but is not raised. """ op_args, return_exceptions = self._get_multi_mutation_transcoded_op_args(keys_and_docs, *opts, opts_type=InsertMultiOptions, **kwargs) op_type = operations.INSERT.value res = kv_multi_operation( **self._get_connection_args(), op_type=op_type, op_args=op_args ) return MultiMutationResult(res, return_exceptions) def upsert_multi( self, keys_and_docs, # type: Dict[str, JSONType] *opts, # type: UpsertMultiOptions **kwargs, # type: Any ) -> MultiMutationResult: """For each key, value pair in the provided dict, upserts a document to the collection. This operation succeeds whether or not the document already exists. .. note:: This method is part of an **uncommitted** API that is unlikely to change, but may still change as final consensus on its behavior has not yet been reached. Args: keys_and_docs (Dict[str, JSONType]): The keys and values/docs to use for the multiple upsert operations. opts (:class:`~couchbase.options.UpsertMultiOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.UpsertMultiOptions` Returns: :class:`~couchbase.result.MultiMutationResult`: An instance of :class:`~couchbase.result.MultiMutationResult`. """ op_args, return_exceptions = self._get_multi_mutation_transcoded_op_args(keys_and_docs, *opts, opts_type=UpsertMultiOptions, **kwargs) op_type = operations.UPSERT.value res = kv_multi_operation( **self._get_connection_args(), op_type=op_type, op_args=op_args ) return MultiMutationResult(res, return_exceptions) def replace_multi( self, keys_and_docs, # type: Dict[str, JSONType] *opts, # type: ReplaceMultiOptions **kwargs, # type: Any ) -> MultiMutationResult: """For each key, value pair in the provided dict, replaces the value of a document in the collection. This operation fails if the document does not exist. .. note:: This method is part of an **uncommitted** API that is unlikely to change, but may still change as final consensus on its behavior has not yet been reached. Args: keys_and_docs (Dict[str, JSONType]): The keys and values/docs to use for the multiple replace operations. opts (:class:`~couchbase.options.ReplaceMultiOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.ReplaceMultiOptions` Returns: :class:`~couchbase.result.MultiMutationResult`: An instance of :class:`~couchbase.result.MultiMutationResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server and the return_exceptions options is False. Otherwise the exception is returned as a match to the key, but is not raised. """ op_args, return_exceptions = self._get_multi_mutation_transcoded_op_args(keys_and_docs, *opts, opts_type=ReplaceMultiOptions, **kwargs) op_type = operations.REPLACE.value res = kv_multi_operation( **self._get_connection_args(), op_type=op_type, op_args=op_args ) return MultiMutationResult(res, return_exceptions) def remove_multi( self, keys, # type: List[str] *opts, # type: RemoveMultiOptions **kwargs, # type: Any ) -> MultiMutationResult: """For each key in the provided list, remove the existing document. This operation fails if the document does not exist. .. note:: This method is part of an **uncommitted** API that is unlikely to change, but may still change as final consensus on its behavior has not yet been reached. Args: keys (List[str]): The keys to use for the multiple remove operations. opts (:class:`~couchbase.options.RemoveMultiOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.RemoveMultiOptions` Returns: :class:`~couchbase.result.MultiMutationResult`: An instance of :class:`~couchbase.result.MultiMutationResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server and the return_exceptions options is False. Otherwise the exception is returned as a match to the key, but is not raised. """ op_args, return_exceptions, _ = self._get_multi_op_args(keys, *opts, opts_type=RemoveMultiOptions, **kwargs) op_type = operations.REMOVE.value res = kv_multi_operation( **self._get_connection_args(), op_type=op_type, op_args=op_args ) return MultiMutationResult(res, return_exceptions) def touch_multi( self, keys, # type: List[str] expiry, # type: timedelta *opts, # type: TouchMultiOptions **kwargs, # type: Any ) -> MultiMutationResult: """For each key in the provided list, update the expiry on an existing document. This operation fails if the document does not exist. .. note:: This method is part of an **uncommitted** API that is unlikely to change, but may still change as final consensus on its behavior has not yet been reached. Args: keys (List[str]): The keys to use for the multiple touch operations. expiry (timedelta): The new expiry for the document. opts (:class:`~couchbase.options.TouchMultiOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.TouchMultiOptions` Returns: :class:`~couchbase.result.MultiMutationResult`: An instance of :class:`~couchbase.result.MultiMutationResult`. Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server and the return_exceptions options is False. Otherwise the exception is returned as a match to the key, but is not raised. """ kwargs['expiry'] = expiry op_args, return_exceptions, _ = self._get_multi_op_args(keys, *opts, opts_type=TouchMultiOptions, **kwargs) op_type = operations.TOUCH.value res = kv_multi_operation( **self._get_connection_args(), op_type=op_type, op_args=op_args ) return MultiMutationResult(res, return_exceptions) def unlock_multi( # noqa: C901 self, keys, # type: Union[MultiResultType, Dict[str, int]] *opts, # type: UnlockMultiOptions **kwargs, # type: Any ) -> Dict[str, Union[None, CouchbaseBaseException]]: """For each result in the provided :class:`~couchbase.result.MultiResultType` in the provided list, unlocks a previously locked document. This operation fails if the document does not exist. .. note:: This method is part of an **uncommitted** API that is unlikely to change, but may still change as final consensus on its behavior has not yet been reached. Args: keys (Union[MultiResultType, Dict[str, int]]): The result from a previous multi operation. opts (:class:`~couchbase.options.UnlockMultiOptions`): Optional parameters for this operation. **kwargs (Dict[str, Any]): keyword arguments that can be used in place or to override provided :class:`~couchbase.options.UnlockMultiOptions` Returns: Dict[str, Union[None, CouchbaseBaseException]]: Either None if operation successful or an Exception if the operation was unsuccessful Raises: :class:`~couchbase.exceptions.DocumentNotFoundException`: If the key provided does not exist on the server and the return_exceptions options is False. Otherwise the exception is returned as a match to the key, but is not raised. :class:`~couchbase.exceptions.DocumentLockedException`: If the provided cas is invalid and the return_exceptions options is False. Otherwise the exception is returned as a match to the key, but is not raised. """ op_keys_cas = {} if isinstance(keys, dict): if not all(map(lambda k: isinstance(k, str), keys.keys())): raise InvalidArgumentException('If providing keys of type dict, all values must be type int.') if not all(map(lambda v: isinstance(v, int), keys.values())): raise InvalidArgumentException('If providing keys of type dict, all values must be type int.') op_keys_cas = copy(keys) elif isinstance(keys, (MultiGetResult, MultiMutationResult)): for k, v in keys.results.items(): op_keys_cas[k] = v.cas else: raise InvalidArgumentException( 'keys type must be Union[MultiGetResult, MultiMutationResult, Dict[str, int].') op_args, return_exceptions, _ = self._get_multi_op_args(list(op_keys_cas.keys()), *opts, opts_type=UnlockMultiOptions, **kwargs) for k, v in op_args.items(): v['cas'] = op_keys_cas[k] op_type = operations.UNLOCK.value res = kv_multi_operation( **self._get_connection_args(), op_type=op_type, op_args=op_args ) output = {} for k, v in res.raw_result.items(): if k == 'all_okay': continue if isinstance(v, CouchbaseBaseException): if not return_exceptions: raise ErrorMapper.build_exception(v) else: output[k] = ErrorMapper.build_exception(v) else: output[k] = None return output def _get_multi_counter_op_args( self, keys, # type: List[str] *opts, # type: Union[IncrementMultiOptions, DecrementMultiOptions] **kwargs, # type: Any ) -> Tuple[Dict[str, Any], bool]: if not isinstance(keys, list): raise InvalidArgumentException(message='Expected keys to be a list.') opts_type = kwargs.pop('opts_type', None) if not opts_type: raise InvalidArgumentException(message='Expected options type is missing.') final_args = get_valid_multi_args(opts_type, kwargs, *opts) global_delta, global_initial = self._get_and_validate_delta_initial(final_args) final_args['delta'] = int(global_delta) final_args['initial'] = int(global_initial) per_key_args = final_args.pop('per_key_options', None) op_args = {} for key in keys: op_args[key] = copy(final_args) # per key args override global args if per_key_args and key in per_key_args: # need to validate delta/initial if provided per key delta = per_key_args[key].get('delta', None) initial = per_key_args[key].get('initial', None) self._validate_delta_initial(delta=delta, initial=initial) if delta: per_key_args[key]['delta'] = int(delta) if initial: per_key_args[key]['initial'] = int(initial) op_args[key].update(per_key_args[key]) return_exceptions = final_args.pop('return_exceptions', True) return op_args, return_exceptions def _get_multi_binary_mutation_op_args( self, keys_and_docs, # type: Dict[str, Union[str, bytes, bytearray]] *opts, # type: Union[AppendMultiOptions, PrependMultiOptions] **kwargs, # type: Any ) -> Tuple[Dict[str, Any], bool]: if not isinstance(keys_and_docs, dict): raise InvalidArgumentException(message='Expected keys_and_docs to be a dict.') opts_type = kwargs.pop('opts_type', None) if not opts_type: raise InvalidArgumentException(message='Expected options type is missing.') parsed_keys_and_docs = {} for k, v in keys_and_docs.items(): if isinstance(v, str): value = v.encode("utf-8") elif isinstance(v, bytearray): value = bytes(v) else: value = v if not isinstance(value, bytes): raise ValueError( "The value provided must of type str, bytes or bytearray.") parsed_keys_and_docs[k] = value final_args = get_valid_multi_args(opts_type, kwargs, *opts) per_key_args = final_args.pop('per_key_options', None) op_args = {} for key, value in parsed_keys_and_docs.items(): op_args[key] = copy(final_args) # per key args override global args if per_key_args and key in per_key_args: op_args[key].update(per_key_args[key]) op_args[key]['value'] = value return_exceptions = final_args.pop('return_exceptions', True) return op_args, return_exceptions def _append_multi( self, keys_and_values, # type: Dict[str, Union[str,bytes,bytearray]] *opts, # type: AppendMultiOptions **kwargs, # type: Dict[str, Any] ) -> MultiMutationResult: op_args, return_exceptions = self._get_multi_binary_mutation_op_args(keys_and_values, *opts, opts_type=AppendMultiOptions, **kwargs) op_type = operations.APPEND.value res = binary_multi_operation( **self._get_connection_args(), op_type=op_type, op_args=op_args ) return MultiMutationResult(res, return_exceptions) def _prepend_multi( self, keys_and_values, # type: Dict[str, Union[str,bytes,bytearray]] *opts, # type: PrependMultiOptions **kwargs, # type: Dict[str, Any] ) -> MultiMutationResult: op_args, return_exceptions = self._get_multi_binary_mutation_op_args(keys_and_values, *opts, opts_type=PrependMultiOptions, **kwargs) op_type = operations.PREPEND.value res = binary_multi_operation( **self._get_connection_args(), op_type=op_type, op_args=op_args ) return MultiMutationResult(res, return_exceptions) def _increment_multi( self, keys, # type: List[str] *opts, # type: IncrementMultiOptions **kwargs, # type: Dict[str, Any] ) -> MultiCounterResult: op_args, return_exceptions = self._get_multi_counter_op_args(keys, *opts, opts_type=IncrementMultiOptions, **kwargs) op_type = operations.INCREMENT.value res = binary_multi_operation( **self._get_connection_args(), op_type=op_type, op_args=op_args ) return MultiCounterResult(res, return_exceptions) def _decrement_multi( self, keys, # type: List[str] *opts, # type: DecrementMultiOptions **kwargs, # type: Dict[str, Any] ) -> MultiCounterResult: op_args, return_exceptions = self._get_multi_counter_op_args(keys, *opts, opts_type=DecrementMultiOptions, **kwargs) op_type = operations.DECREMENT.value res = binary_multi_operation( **self._get_connection_args(), op_type=op_type, op_args=op_args ) return MultiCounterResult(res, return_exceptions) def query_indexes(self) -> CollectionQueryIndexManager: """ Get a :class:`~couchbase.management.queries.CollectionQueryIndexManager` which can be used to manage the query indexes of this cluster. Returns: :class:`~couchbase.management.queries.CollectionQueryIndexManager`: A :class:`~couchbase.management.queries.CollectionQueryIndexManager` instance. """ # noqa: E501 return CollectionQueryIndexManager(self.connection, self._scope.bucket_name, self._scope.name, self.name) @staticmethod def default_name(): return "_default" """ ** DEPRECATION NOTICE ** The classes below are deprecated for 3.x compatibility. They should not be used. Instead use: * All options should be imported from `couchbase.options`. * All constrained int classes should be imported from `couchbase.options`. * Scope object should be imported from `couchbase.scope`. * Do not use the `CBCollection` class, use Collection instead. """ from couchbase.logic.options import AppendOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import DecrementOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import DeltaValueBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import DurabilityOptionBlockBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import ExistsOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import GetAllReplicasOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import GetAndLockOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import GetAndTouchOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import GetAnyReplicaOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import GetOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import IncrementOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import InsertOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import LookupInOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import OptionsTimeoutBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import PrependOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import RemoveOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import ReplaceOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import TouchOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import UnlockOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.options import UpsertOptionsBase # nopep8 # isort:skip # noqa: E402 from couchbase.logic.scope import ScopeLogic # nopep8 # isort:skip # noqa: E402 from couchbase.options import ConstrainedInt # nopep8 # isort:skip # noqa: E402, F401 from couchbase.options import SignedInt64 # nopep8 # isort:skip # noqa: E402, F401 @Supportability.import_deprecated('couchbase.collection', 'couchbase.scope') class Scope(ScopeLogic): pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class AppendOptions(AppendOptionsBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class DecrementOptions(DecrementOptionsBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class DeltaValue(DeltaValueBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class DurabilityOptionBlock(DurabilityOptionBlockBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class ExistsOptions(ExistsOptionsBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class GetAllReplicasOptions(GetAllReplicasOptionsBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class GetAndTouchOptions(GetAndTouchOptionsBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class GetAndLockOptions(GetAndLockOptionsBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class GetAnyReplicaOptions(GetAnyReplicaOptionsBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class GetOptions(GetOptionsBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class IncrementOptions(IncrementOptionsBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class InsertOptions(InsertOptionsBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class LookupInOptions(LookupInOptionsBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class OptionsTimeout(OptionsTimeoutBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class PrependOptions(PrependOptionsBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class RemoveOptions(RemoveOptionsBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class ReplaceOptions(ReplaceOptionsBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class TouchOptions(TouchOptionsBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class UnlockOptions(UnlockOptionsBase): # noqa: F811 pass @Supportability.import_deprecated('couchbase.collection', 'couchbase.options') # noqa: F811 class UpsertOptions(UpsertOptionsBase): # noqa: F811 pass @Supportability.class_deprecated('couchbase.collection.Collection') class CBCollection(Collection): pass
6877607a7789307c3574f5dd574cc6e28a944b4a
0869d7edac80e8aebe951682a2cc311a083eade3
/Python/benchmarking/struct_deserialization.py
08b8b8fa9553434723ea34aeba2795b4d5319aa1
[ "BSD-2-Clause" ]
permissive
threedworld-mit/tdw
7d5b4453832647733ff91ad7a7ce7ec2320454c1
9df96fba455b327bb360d8dd5886d8754046c690
refs/heads/master
2023-09-01T11:45:28.132298
2023-08-31T16:13:30
2023-08-31T16:13:30
245,492,977
427
75
BSD-2-Clause
2023-09-14T17:36:12
2020-03-06T18:42:09
Python
UTF-8
Python
false
false
849
py
struct_deserialization.py
from tdw.controller import Controller from tdw.tdw_utils import TDWUtils from tdw.add_ons.benchmark import Benchmark """ Benchmark the speed of deserializing structs (such as Vector3 and Quaternion). """ if __name__ == "__main__": o_id = 0 cmds = [{"$type": "teleport_object", "position": {"x": 0, "y": 0, "z": 0}, "id": o_id}, {"$type": "rotate_object_to", "rotation": {"w": 1, "x": 0, "y": 0, "z": 0}, "id": o_id}] c = Controller(launch_build=False) b = Benchmark() c.add_ons.append(b) c.communicate([TDWUtils.create_empty_room(12, 12), c.get_add_object("rh10", object_id=o_id)]) b.start() for i in range(5000): c.communicate(cmds) b.stop() print(f"FPS: {round(b.fps)}") c.communicate({"$type": "terminate"})
661c77747485dc2e72dc55f04d7b9aa2ea0909db
a4ea525e226d6c401fdb87a6e9adfdc5d07e6020
/src/azure-cli/azure/cli/command_modules/cognitiveservices/custom.py
83ddd28c1a77a5ba5ba45f3439cfb38e689c99dd
[ "MIT", "BSD-3-Clause", "LGPL-2.0-or-later", "GPL-1.0-or-later", "MPL-2.0", "LGPL-2.1-only", "Apache-2.0", "LGPL-2.1-or-later", "BSD-2-Clause" ]
permissive
Azure/azure-cli
13340eeca2e288e66e84d393fa1c8a93d46c8686
a40fd14ad0b6e89720a2e58d4d9be3a6ce1535ca
refs/heads/dev
2023-08-17T06:25:37.431463
2023-08-17T06:00:10
2023-08-17T06:00:10
51,040,886
4,018
3,310
MIT
2023-09-14T11:11:05
2016-02-04T00:21:51
Python
UTF-8
Python
false
false
11,350
py
custom.py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import json from knack.util import CLIError from knack.log import get_logger from azure.mgmt.cognitiveservices.models import Account as CognitiveServicesAccount, Sku, \ VirtualNetworkRule, IpRule, NetworkRuleSet, NetworkRuleAction, \ AccountProperties as CognitiveServicesAccountProperties, ApiProperties as CognitiveServicesAccountApiProperties, \ Identity, ResourceIdentityType as IdentityType, \ Deployment, DeploymentModel, DeploymentScaleSettings, DeploymentProperties, \ CommitmentPlan, CommitmentPlanProperties, CommitmentPeriod from azure.cli.command_modules.cognitiveservices._client_factory import cf_accounts, cf_resource_skus logger = get_logger(__name__) def list_resources(client, resource_group_name=None): """ List all Azure Cognitive Services accounts. """ if resource_group_name: return client.list_by_resource_group(resource_group_name) return client.list() def recover(client, location, resource_group_name, account_name): """ Recover a deleted Azure Cognitive Services account. """ properties = CognitiveServicesAccountProperties() properties.restore = True params = CognitiveServicesAccount(properties=properties) params.location = location return client.begin_create(resource_group_name, account_name, params) def list_usages(client, resource_group_name, account_name): """ List usages for Azure Cognitive Services account. """ return client.list_usages(resource_group_name, account_name).value def list_kinds(client): """ List all valid kinds for Azure Cognitive Services account. :param client: the ResourceSkusOperations :return: a list """ # The client should be ResourceSkusOperations, and list() should return a list of SKUs for all regions. # The sku will have "kind" and we use that to extract full list of kinds. kinds = {x.kind for x in client.list()} return sorted(list(kinds)) def list_skus(cmd, kind=None, location=None, resource_group_name=None, account_name=None): """ List skus for Azure Cognitive Services account. """ if resource_group_name is not None or account_name is not None: logger.warning( 'list-skus with an existing account has been deprecated and will be removed in a future release.') if resource_group_name is None: # account_name must not be None raise CLIError('--resource-group is required when --name is specified.') # keep the original behavior to avoid breaking changes return cf_accounts(cmd.cli_ctx).list_skus(resource_group_name, account_name) # in other cases, use kind and location to filter SKUs def _filter_sku(_sku): if kind is not None: if _sku.kind != kind: return False if location is not None: if location.lower() not in [x.lower() for x in _sku.locations]: return False return True return [x for x in cf_resource_skus(cmd.cli_ctx).list() if _filter_sku(x)] def create( client, resource_group_name, account_name, sku_name, kind, location, custom_domain=None, tags=None, api_properties=None, assign_identity=False, storage=None, encryption=None, yes=None): # pylint: disable=unused-argument """ Create an Azure Cognitive Services account. """ sku = Sku(name=sku_name) properties = CognitiveServicesAccountProperties() if api_properties is not None: api_properties = CognitiveServicesAccountApiProperties.deserialize(api_properties) properties.api_properties = api_properties if custom_domain: properties.custom_sub_domain_name = custom_domain params = CognitiveServicesAccount(sku=sku, kind=kind, location=location, properties=properties, tags=tags) if assign_identity: params.identity = Identity(type=IdentityType.system_assigned) if storage is not None: params.properties.user_owned_storage = json.loads(storage) if encryption is not None: params.properties.encryption = json.loads(encryption) return client.begin_create(resource_group_name, account_name, params) def update(client, resource_group_name, account_name, sku_name=None, custom_domain=None, tags=None, api_properties=None, storage=None, encryption=None): """ Update an Azure Cognitive Services account. """ if sku_name is None: sa = client.get(resource_group_name, account_name) sku_name = sa.sku.name sku = Sku(name=sku_name) properties = CognitiveServicesAccountProperties() if api_properties is not None: api_properties = CognitiveServicesAccountApiProperties.deserialize(api_properties) properties.api_properties = api_properties if custom_domain: properties.custom_sub_domain_name = custom_domain params = CognitiveServicesAccount(sku=sku, properties=properties, tags=tags) if storage is not None: params.properties.user_owned_storage = json.loads(storage) if encryption is not None: params.properties.encryption = json.loads(encryption) return client.begin_update(resource_group_name, account_name, params) def default_network_acls(): rules = NetworkRuleSet() rules.default_action = NetworkRuleAction.deny rules.ip_rules = [] rules.virtual_network_rules = [] return rules def list_network_rules(client, resource_group_name, account_name): """ List network rules for Azure Cognitive Services account. """ sa = client.get(resource_group_name, account_name) rules = sa.properties.network_acls if rules is None: rules = default_network_acls() return rules def add_network_rule(client, resource_group_name, account_name, subnet=None, vnet_name=None, ip_address=None): # pylint: disable=unused-argument """ Add a network rule for Azure Cognitive Services account. """ sa = client.get(resource_group_name, account_name) rules = sa.properties.network_acls if rules is None: rules = default_network_acls() if subnet: from msrestazure.tools import is_valid_resource_id if not is_valid_resource_id(subnet): raise CLIError("Expected fully qualified resource ID: got '{}'".format(subnet)) if not rules.virtual_network_rules: rules.virtual_network_rules = [] rules.virtual_network_rules.append(VirtualNetworkRule(id=subnet, ignore_missing_vnet_service_endpoint=True)) if ip_address: if not rules.ip_rules: rules.ip_rules = [] rules.ip_rules.append(IpRule(value=ip_address)) properties = CognitiveServicesAccountProperties() properties.network_acls = rules params = CognitiveServicesAccount(properties=properties) return client.begin_update(resource_group_name, account_name, params) def remove_network_rule(client, resource_group_name, account_name, ip_address=None, subnet=None, vnet_name=None): # pylint: disable=unused-argument """ Remove a network rule for Azure Cognitive Services account. """ sa = client.get(resource_group_name, account_name) rules = sa.properties.network_acls if rules is None: # nothing to update, but return the object return client.update(resource_group_name, account_name) if subnet: rules.virtual_network_rules = [x for x in rules.virtual_network_rules if not x.id.endswith(subnet)] if ip_address: rules.ip_rules = [x for x in rules.ip_rules if x.value != ip_address] properties = CognitiveServicesAccountProperties() properties.network_acls = rules params = CognitiveServicesAccount(properties=properties) return client.begin_update(resource_group_name, account_name, params) def identity_assign(client, resource_group_name, account_name): """ Assign the identity for Azure Cognitive Services account. """ params = CognitiveServicesAccount() params.identity = Identity(type=IdentityType.system_assigned) sa = client.begin_update(resource_group_name, account_name, params).result() return sa.identity if sa.identity else {} def identity_remove(client, resource_group_name, account_name): """ Remove the identity for Azure Cognitive Services account. """ params = CognitiveServicesAccount() params.identity = Identity(type=IdentityType.none) return client.begin_update(resource_group_name, account_name, params) def identity_show(client, resource_group_name, account_name): """ Show the identity for Azure Cognitive Services account. """ sa = client.get(resource_group_name, account_name) return sa.identity if sa.identity else {} def deployment_begin_create_or_update( client, resource_group_name, account_name, deployment_name, model_format, model_name, model_version, sku_name=None, sku_capacity=None, scale_settings_scale_type=None, scale_settings_capacity=None): """ Create a deployment for Azure Cognitive Services account. """ dpy = Deployment() dpy.properties = DeploymentProperties() dpy.properties.model = DeploymentModel() dpy.properties.model.format = model_format dpy.properties.model.name = model_name dpy.properties.model.version = model_version if sku_name is not None: dpy.sku = Sku(name=sku_name) dpy.sku.capacity = sku_capacity if scale_settings_scale_type is not None: dpy.properties.scale_settings = DeploymentScaleSettings() dpy.properties.scale_settings.scale_type = scale_settings_scale_type dpy.properties.scale_settings.capacity = scale_settings_capacity return client.begin_create_or_update(resource_group_name, account_name, deployment_name, dpy, polling=False) def commitment_plan_create_or_update( client, resource_group_name, account_name, commitment_plan_name, hosting_model, plan_type, auto_renew, current_tier=None, current_count=None, next_tier=None, next_count=None): """ Create a commitment plan for Azure Cognitive Services account. """ plan = CommitmentPlan() plan.properties = CommitmentPlanProperties() plan.properties.hosting_model = hosting_model plan.properties.plan_type = plan_type if (current_tier is not None or current_count is not None): plan.properties.current = CommitmentPeriod() plan.properties.current.tier = current_tier plan.properties.current.count = current_count if (next_tier is not None or next_count is not None): plan.properties.next = CommitmentPeriod() plan.properties.next.tier = next_tier plan.properties.next.count = next_count plan.properties.auto_renew = auto_renew return client.create_or_update(resource_group_name, account_name, commitment_plan_name, plan)
61ccc578ba7e38fd1b8ca0180d8f757b1ae789b4
62179a165ec620ba967dbc20016e890978fbff50
/nncf/quantization/algorithms/hyperparameter_tuner/algorithm.py
fba7b984278c580802d58535049af14adaa67b76
[ "Apache-2.0" ]
permissive
openvinotoolkit/nncf
91fcf153a96f85da166aacb7a70ca4941e4ba4a4
c027c8b43c4865d46b8de01d8350dd338ec5a874
refs/heads/develop
2023-08-24T11:25:05.704499
2023-08-23T14:44:05
2023-08-23T14:44:05
263,687,600
558
157
Apache-2.0
2023-09-14T17:06:41
2020-05-13T16:41:05
Python
UTF-8
Python
false
false
15,350
py
algorithm.py
# Copyright (c) 2023 Intel Corporation # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import dataclasses import functools import itertools import operator from typing import Any, Callable, Dict, Iterable, List, Tuple, Type, TypeVar, Union from nncf.common.factory import NNCFGraphFactory from nncf.common.factory import StatisticsAggregatorFactory from nncf.common.graph.graph import NNCFGraph from nncf.common.logging import nncf_logger from nncf.common.utils.backend import get_backend from nncf.common.utils.timer import timer from nncf.data.dataset import Dataset from nncf.quantization.algorithms.accuracy_control.evaluator import Evaluator from nncf.quantization.algorithms.accuracy_control.evaluator import MetricResults from nncf.quantization.algorithms.accuracy_control.rank_functions import create_normalized_mse_func from nncf.quantization.algorithms.accuracy_control.subset_selection import select_subset from nncf.quantization.algorithms.algorithm import Algorithm TModel = TypeVar("TModel") TTensor = TypeVar("TTensor") CombinationKey = Tuple[int, ...] Combination = Dict[str, Any] def create_combinations(param_grid: Dict[str, List[Any]]) -> Dict[CombinationKey, Combination]: """ Creates combinations as follows: * All keys in `param_grid` are numbered using integers from 0 to N = len(param_grid)-1 Order of keys is used. Let key_j is a key from param_grid.keys() that corresponds integer j in {0, 1, ..., N}. * Set of combination keys (CK) are created as Cartesian product the following sets CK = {None, 0, 1, ..., num_val_0} x {None, 0, 1, ..., num_val_1} x ... x {None, 0, 1, ..., num_val_N}, where num_val_j is a number of values in param_grid[key_j]. * Creates combination for each combination key. If combination_key[i] is None then parameter with key_i name is not changed. Otherwise, the param_grid[key_i][combination_key[i]] value should be included to combination as new value for parameter with key_i name. :param param_grid: Dictionary with parameters names as keys and list of parameter settings to try as values. :return: Created combination. """ simple_changes = [] indices = [] for param_name, values in param_grid.items(): indices.append([None, *range(len(values))]) simple_changes.append([{param_name: v} for v in values]) combinations: Dict[CombinationKey, Combination] = {} for combination_key in itertools.product(*indices): combination: Combination = {} for param_idx, value_idx in enumerate(combination_key): if value_idx is None: continue combination.update(simple_changes[param_idx][value_idx]) combinations[combination_key] = combination return combinations def is_dataclass_instance(obj: Any) -> bool: """ Returns `True` if object is a dataclass instance, `False` otherwise. :param obj: Object to check. :return: `True` if object is a dataclass instance, `False` otherwise. """ return dataclasses.is_dataclass(obj) and not isinstance(obj, type) def apply_combination(init_params: Dict[str, Any], combination: Combination) -> Dict[str, Any]: """ Applies combination of parameters to initial parameters. :param init_params: Initial set of parameters. :param combination: Combination of parameters. :return: Returns `init_params` where some values of parameters were changed according to provided combination. """ DELIMITER = ":" params = copy.deepcopy(init_params) for param_key, param_value in combination.items(): if DELIMITER in param_key: main_key, *path_to_attr, attr_name = param_key.split(DELIMITER) obj = params[main_key] assert is_dataclass_instance(obj) for name in path_to_attr: obj = getattr(obj, name) assert is_dataclass_instance(obj) setattr(obj, attr_name, param_value) else: params[param_key] = param_value return params def print_combination_and_score(title: str, combination: Combination, combination_score: float) -> None: """ Prints combination and score. :param title: Title. :param combination: Combination to print. :param combination_score: Score of combination. """ if not combination: message = "Parameters were not changed" else: message = ", ".join(f"{name} = {v}" for name, v in combination.items()) message = f"{title} {message}" nncf_logger.info(message) nncf_logger.info(f"Score: {combination_score}") def find_best_combination( combinations: Dict[CombinationKey, Combination], combination_score_func: Callable[[CombinationKey], float], param_grid: Dict[str, List[Any]], ) -> CombinationKey: """ Finds best combination. :param combinations: Combinations. :param combination_score_func: Combination score function. :param param_grid: Dictionary with parameters names as keys and list of parameter settings to try as values. :return: Best combination key. """ best_combination_key = tuple(None for _ in param_grid) best_combination_score = None for param_idx, (param_name, values) in enumerate(param_grid.items()): nncf_logger.info(f"Start search best value for the '{param_name}' parameter") values_indices = [None, *range(len(values))] param_best_combination_key = None param_best_combination_score = None for value_idx in values_indices: combination_key = (*best_combination_key[:param_idx], value_idx, *best_combination_key[param_idx + 1 :]) combination_score = combination_score_func(combination_key) if param_best_combination_score is None or param_best_combination_score < combination_score: param_best_combination_score = combination_score param_best_combination_key = combination_key print_combination_and_score( "Current combination of parameters:", combinations[combination_key], combination_score ) if best_combination_score is None or best_combination_score <= param_best_combination_score: best_combination_score = param_best_combination_score best_combination_key = param_best_combination_key print_combination_and_score( "Best combination of parameters:", combinations[best_combination_key], best_combination_score ) return best_combination_key class HyperparameterTuner: """ This algorithm is used to find a best combination of parameters from `param_grid`. The `param_grid` in simple case is a dictionary with parameters names as keys and list of parameter settings to try as values. param_grid = { "param_name": [0.1, 0.2], } The parameters names should be same as in `algorithm_cls.__init__()` method. In case when "param_name" parameter is a dataclass object there is a way to specify settings to try for his fields using marker ":" param_grid = { "param_name:field_a": [10, 20], "param_name:field_b:x": [0.1, 0.2], } In the example above the `param_name` and "param_name:field_b" parameters are dataclasses. This rule is applied recursively. The algorithm works as follow: let we have the following `param_grid` param_grid = { "param_name_0" : [0.2, 0.4, 0.6], "param_name_1:x": [-1, -2, -3], "param_name_2": [True, False], } First of all, algorithm finds the best value for parameter "param_name_0". Further, taking into account the found value, the best value for the "param_name_1:x" parameter is sought. After that, taking into account the found values for "param_name_0" and "param_name_1:x" parameters, the best value for the "param_name_2" is sought. """ def __init__( self, algorithm_cls: Type[Algorithm], init_params: Dict[str, Any], param_grid: Dict[str, List[Any]], calibration_dataset: Dataset, validation_fn: Callable[[Any, Iterable[Any]], Tuple[float, Union[None, List[float], List[List[TTensor]]]]], subset_size: int, initial_metric_results: MetricResults, quantized_metric_results: MetricResults, ): """ :param algorithm_cls: Class of algorithm. :param init_params: Initial set of parameters used to create algorithm. :param param_grid: Dictionary with parameters names as keys and list of parameter settings to try as values. :param calibration_dataset: Dataset used to collect statistics for algorithm. :param validation_fn: Validation function used to validated model. :param subset_size: Number of data items that should be selected from the dataset and used to validate model. :param initial_metric_results: Metric results for initial model. :param quantized_metric_results: Metric results for quantized with `init_params` model. """ self._algorithm_cls = algorithm_cls self._init_params = init_params self._param_grid = param_grid self._calibration_dataset = calibration_dataset self._evaluator = Evaluator(validation_fn) self._subset_size = subset_size self._initial_metric_results = initial_metric_results self._quantized_metric_results = quantized_metric_results self._is_metric_mode = isinstance(self._initial_metric_results.values_for_each_item[0], float) # # Will be initialized inside `apply()` method self._error_fn = None # Will be initialized inside `_initialize_algorithms()` method self._algorithms: Dict[CombinationKey, Algorithm] = {} self._statistic_points = None self._calculated_scores: Dict[CombinationKey, float] = {} def apply(self, model: TModel, validation_dataset: Dataset) -> TModel: """ Applies algorithm to input model. :param model: Input model. :param validation_dataset: Dataset used to validate resulted model. :return: Resulted model. """ if self._is_metric_mode: self._error_fn = operator.sub else: self._error_fn = create_normalized_mse_func(get_backend(model)) subset_indices = select_subset( self._subset_size, self._initial_metric_results.values_for_each_item, self._quantized_metric_results.values_for_each_item, self._error_fn, ) combinations = create_combinations(self._param_grid) initial_graph = NNCFGraphFactory.create(model) nncf_logger.info("Start initialization of algorithms") with timer(): self._prepare_algorithms(model, initial_graph, combinations) combination_score_fn = functools.partial( self._calculate_combination_score, initial_model=model, initial_graph=initial_graph, dataset=validation_dataset, subset_indices=subset_indices, ) nncf_logger.info("Start search best combination of parameters") with timer(): best_combination_key = find_best_combination(combinations, combination_score_fn, self._param_grid) algorithm = self._algorithms[best_combination_key] result_model = algorithm.apply(model, initial_graph, self._statistic_points) return result_model def _prepare_algorithms( self, initial_model: TModel, initial_graph: NNCFGraph, combinations: Dict[CombinationKey, Combination] ) -> None: """ Creates algorithm for each combination of parameters. Collects statistics for created algorithms. :param initial_model: Input model used to collect statistics for algorithms. :param combinations: Combinations of parameters. """ for combination_key, combination in combinations.items(): kwargs = apply_combination(self._init_params, combination) self._algorithms[combination_key] = self._algorithm_cls(**kwargs) # Collect required statistics for created algorithms stats_aggregator = StatisticsAggregatorFactory.create(initial_model, self._calibration_dataset) for algorithm in self._algorithms.values(): statistic_points = algorithm.get_statistic_points(initial_model, initial_graph) stats_aggregator.register_statistic_points(statistic_points) stats_aggregator.collect_statistics(initial_model, initial_graph) self._statistic_points = stats_aggregator.statistic_points def _calculate_combination_score( self, combination_key: CombinationKey, initial_model: TModel, initial_graph: NNCFGraph, dataset: Dataset, subset_indices: List[int], ) -> float: """ Calculates score for provided combination. :param combination_key: Combination key. :param initial_model: Input model. :param dataset: Dataset used to select data items for validation. :param subset_indices: Zero-based indices of data items that should be selected from the dataset and used to validate model. :return: Calculated score. """ if combination_key in self._calculated_scores: return self._calculated_scores[combination_key] algorithm = self._algorithms[combination_key] model = algorithm.apply(initial_model, initial_graph, self._statistic_points) score = self._validate_model(model, dataset, subset_indices) self._calculated_scores[combination_key] = score return score def _validate_model(self, model: TModel, dataset: Dataset, subset_indices: List[int]) -> float: """ Validates input model on subset. :param model: Input model. :param dataset: Dataset used to select data items for validation. :param subset_indices: Zero-based indices of data items that should be selected from the dataset and used to validate model. :return: Calculated metric. """ if self._is_metric_mode: metric_value, _ = self._evaluator.validate(model, dataset, subset_indices) else: approximate_outputs = self._evaluator.collect_values_for_each_item(model, dataset, subset_indices) reference_outputs = [self._initial_metric_results.values_for_each_item[i] for i in subset_indices] errors = [self._error_fn(a, b) for a, b in zip(reference_outputs, approximate_outputs)] metric_value = sum(errors) / len(errors) return metric_value
29fb0f392a94b44499f146b7cc89f67a22b26d51
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/webpubsub/azure-messaging-webpubsubservice/tests/disable_test_smoke_async.py
d7e660ea790a7b0e49d3f5b1629c193e082f3d52
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
3,697
py
disable_test_smoke_async.py
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # ------------------------------------------------------------------------- from testcase import WebpubsubPowerShellPreparer from testcase_async import WebpubsubAsyncTest class WebpubsubSmokeAsyncTest(WebpubsubAsyncTest): @WebpubsubPowerShellPreparer() async def test_webpubsub_send_to_all(self, webpubsub_endpoint): client = self.create_client(endpoint=webpubsub_endpoint, hub='hub') await client.send_to_all({'hello': 'test_webpubsub_send_to_all'}) @WebpubsubPowerShellPreparer() async def test_webpubsub_send_to_all_apim_proxy(self, webpubsub_endpoint, webpubsub_reverse_proxy_endpoint=None): client = self.create_client(endpoint=webpubsub_endpoint, hub='hub', reverse_proxy_endpoint=webpubsub_reverse_proxy_endpoint) await client.send_to_all({'hello': 'test_webpubsub_send_to_all_apim_proxy'}) @WebpubsubPowerShellPreparer() async def test_get_client_access_token(self, webpubsub_endpoint): client = self.create_client(endpoint=webpubsub_endpoint, hub='hub') access_token = await client.get_client_access_token() assert len(access_token) == 3 assert access_token['baseUrl'][:3] == "wss" assert access_token['token'] assert access_token['url'][:3] == "wss" @WebpubsubPowerShellPreparer() async def test_hello_world_with_connection_string(self, webpubsub_connection_string): client = self.create_client(connection_string=webpubsub_connection_string, hub="hub") await client.send_to_all(message="Hello, World!", content_type="text/plain") @WebpubsubPowerShellPreparer() async def test_hello_world_with_connection_string_json(self, webpubsub_connection_string): client = self.create_client(connection_string=webpubsub_connection_string, hub="hub") await client.send_to_all(message={"hello": "world!"}) @WebpubsubPowerShellPreparer() async def test_hello_world_with_connection_string_binary(self, webpubsub_connection_string): client = self.create_client(connection_string=webpubsub_connection_string, hub="hub") await client.send_to_all(message=b"Hello, World!", content_type="application/octet-stream") @WebpubsubPowerShellPreparer() async def test_no_users_groups(self, webpubsub_connection_string): client = self.create_client(connection_string=webpubsub_connection_string, hub="hub") assert not await client.user_exists(user_id="fake user") assert not await client.group_exists(group="fake group") @WebpubsubPowerShellPreparer() async def test_remove_connection_from_all_groups(self, webpubsub_connection_string): client = self.create_client(connection_string=webpubsub_connection_string, hub="hub") await client.remove_connection_from_all_groups(connection_id="fake connection id") @WebpubsubPowerShellPreparer() async def test_send_with_filter(self, webpubsub_connection_string): client = self.create_client(connection_string=webpubsub_connection_string, hub="hub") await client.send_to_all(message={"hello": "world!"}, filter="userId ne 'user1'", content_type="text/plain") @WebpubsubPowerShellPreparer() async def test_get_client_access_key_with_groups(self, webpubsub_connection_string): client = self.create_client(connection_string=webpubsub_connection_string, hub="hub") await client.get_client_access_token(user_id="user1", groups=["groups1"])