blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
4
721
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
5
91
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
321 values
visit_date
timestamp[ns]date
2016-08-12 09:31:09
2023-09-06 10:45:07
revision_date
timestamp[ns]date
2010-09-28 14:01:40
2023-09-06 06:22:19
committer_date
timestamp[ns]date
2010-09-28 14:01:40
2023-09-06 06:22:19
github_id
int64
426
681M
star_events_count
int64
101
243k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[ns]date
2012-06-28 18:51:49
2023-09-14 21:59:16
gha_created_at
timestamp[ns]date
2008-02-11 22:55:26
2023-08-10 11:14:58
gha_language
stringclasses
147 values
src_encoding
stringclasses
26 values
language
stringclasses
2 values
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
6
10.2M
extension
stringclasses
115 values
filename
stringlengths
3
113
content
stringlengths
6
10.2M
cd686afdf02804445d98cb43a8d0cf1e1e594462
b7314f9480634b2f2998c8181d4284d2b52ebba1
/src/python/txtai/pipeline/image/objects.py
0dbaff4e1d523abdcd43376c4f665360260b635e
[ "Apache-2.0", "LicenseRef-scancode-proprietary-license" ]
permissive
neuml/txtai
3ca6fba11126d650ea4f2cf5199011a52ea56e4e
789a4555cb60ee9cdfa69afae5a5236d197e2b07
refs/heads/master
2023-08-31T08:09:31.834178
2023-08-29T15:36:23
2023-08-29T15:36:23
286,301,447
4,804
387
Apache-2.0
2023-09-11T17:12:40
2020-08-09T19:14:59
Python
UTF-8
Python
false
false
2,726
py
objects.py
""" Objects module """ # Conditional import try: from PIL import Image PIL = True except ImportError: PIL = False from ..hfpipeline import HFPipeline class Objects(HFPipeline): """ Applies object detection models to images. Supports both object detection models and image classification models. """ def __init__(self, path=None, quantize=False, gpu=True, model=None, classification=False, threshold=0.9, **kwargs): if not PIL: raise ImportError('Objects pipeline is not available - install "pipeline" extra to enable') super().__init__("image-classification" if classification else "object-detection", path, quantize, gpu, model, **kwargs) self.classification = classification self.threshold = threshold def __call__(self, images, flatten=False, workers=0): """ Applies object detection/image classification models to images. Returns a list of (label, score). This method supports a single image or a list of images. If the input is an image, the return type is a 1D list of (label, score). If text is a list, a 2D list of (label, score) is returned with a row per image. Args: images: image|list flatten: flatten output to a list of objects workers: number of concurrent workers to use for processing data, defaults to None Returns: list of (label, score) """ # Convert single element to list values = [images] if not isinstance(images, list) else images # Open images if file strings values = [Image.open(image) if isinstance(image, str) else image for image in values] # Run pipeline results = ( self.pipeline(values, num_workers=workers) if self.classification else self.pipeline(values, threshold=self.threshold, num_workers=workers) ) # Build list of (id, score) outputs = [] for result in results: # Convert to (label, score) tuples result = [(x["label"], x["score"]) for x in result if x["score"] > self.threshold] # Sort by score descending result = sorted(result, key=lambda x: x[1], reverse=True) # Deduplicate labels unique = set() elements = [] for label, score in result: if label not in unique: elements.append(label if flatten else (label, score)) unique.add(label) outputs.append(elements) # Return single element if single element passed in return outputs[0] if not isinstance(images, list) else outputs
5148719ae13d5f6e9dd9a53c17ae2462182b5bd8
a46ccf3496712f85e92e15bac27b9f9df23436a4
/notebooks/_solutions/01-introduction-tabular-data17.py
8b87f1f5fa72420335a27742e79f4cf7d062a37a
[ "BSD-3-Clause" ]
permissive
jorisvandenbossche/DS-python-geospatial
a30ef43daa1d8cfd9d5652ab047bd828573bb493
cd5d63057a335e0cb157faf12b945ec664da4c10
refs/heads/main
2022-11-24T09:55:06.552714
2022-11-20T22:15:50
2022-11-20T22:15:50
244,412,214
134
39
BSD-3-Clause
2023-09-14T17:10:54
2020-03-02T15:57:19
Jupyter Notebook
UTF-8
Python
false
false
63
py
01-introduction-tabular-data17.py
subset = districts[districts['population'] > 50000] len(subset)
948e05bbf880513b5e11d17f4965b2b2e6038808
c1291ee7d6d2c702090eaa273b608696e050b138
/ulmo/lcra/hydromet/__init__.py
24b934d1d127fd1c72acd2099ff6c6a292a1b514
[ "BSD-3-Clause" ]
permissive
ulmo-dev/ulmo
bd5c33f18582744df1c56c8dbb6bdea73ced1f40
63371c33550d4c3fe19a02e615f239d3096fd401
refs/heads/master
2023-06-09T07:21:44.503674
2023-06-02T20:41:46
2023-06-02T20:41:46
1,579,740
134
51
NOASSERTION
2023-06-02T20:41:47
2011-04-06T23:00:14
HTML
UTF-8
Python
false
false
425
py
__init__.py
""" LCRA Hydromet Data ~~~~~~~~~~~~~~~~~~ Access to hydrologic and climate data in the Colorado River Basin (Texas) provided by the `Hydromet`_ web site and web service from the `Lower Colorado River Authority`_. .. _Lower Colorado River Authority: http://www.lcra.org .. _Hydromet: http://hydromet.lcra.org """ from .core import get_sites_by_type, get_site_data, get_all_sites, get_current_data
a151a964fbcb9179e5d5d2e1b9ad3bd73a538391
ac2f43c8e0d9649a7f063c59b3dffdfed9fd7ed7
/tests2/common/base_mboot_test.py
087f2223f8d336601088230999db83bc57a6a4a7
[]
no_license
facebook/openbmc
bef10604ced226288600f55248b7f1be9945aea4
32777c66a8410d767eae15baabf71c61a0bef13c
refs/heads/helium
2023-08-17T03:13:54.729494
2023-08-16T23:24:18
2023-08-16T23:24:18
31,917,712
684
331
null
2023-07-25T21:19:08
2015-03-09T19:18:35
C
UTF-8
Python
false
false
1,707
py
base_mboot_test.py
#!/usr/bin/env python3 # # Copyright 2020-present Facebook. All Rights Reserved. # # This program file is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; version 2 of the License. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # # You should have received a copy of the GNU General Public License # along with this program in a file named COPYING; if not, write to the # Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, # Boston, MA 02110-1301 USA # import json from abc import abstractmethod from utils.cit_logger import Logger from utils.shell_util import run_cmd class BaseMBootTest(object): def setUp(self): Logger.start(name=self._testMethodName) self.check_list = set() self.set_check_list() def tearDown(self): Logger.info("Finished logging for {}".format(self._testMethodName)) @abstractmethod def set_check_list(self): pass def test_mboot(self): """ Test all measures """ checked_list = set() cmd = ["/usr/bin/mboot-check", "-jt"] measures = json.loads(run_cmd(cmd)) for m in measures: self.assertNotEqual(m["measure"], "NA") if m["component"] in self.check_list: self.assertEqual(m["expect"], m["measure"]) checked_list.add(m["component"]) self.assertEqual(checked_list, self.check_list)
c49c1c92853ce4ad200d63808ce37dccbec5756f
e4f8313d3c91d08e3ab92886a956d96e5a3e21bf
/tests/integration/conftest.py
dc33687e53061d4325b62ef406e7749573021146
[ "MIT" ]
permissive
kiwicom/crane
69e883b56c2b8c0221fb31c8f98265e929abb73f
7033a7f0a8ebaf5679c87ddde8ef866b23562917
refs/heads/master
2023-04-07T06:50:05.801158
2023-04-04T14:49:24
2023-04-04T14:49:24
86,802,251
105
17
MIT
2022-12-08T04:50:11
2017-03-31T09:28:10
Python
UTF-8
Python
false
false
526
py
conftest.py
import os import shutil import git import pytest import tempfile from crane import deployment @pytest.fixture(autouse=True) def gitlab_ci_env(monkeypatch): monkeypatch.setenv("GITLAB_USER_EMAIL", "picky@kiwi.com") monkeypatch.setenv("CI_PROJECT_PATH", "foo/bar") monkeypatch.setenv("CI_PROJECT_URL", "https://example.com/foo/bar") monkeypatch.setenv("CI_JOB_ID", "1234567") monkeypatch.setenv("CI_REGISTRY_IMAGE", "registry.example.com/foo/bar") monkeypatch.setenv("CI_ENVIRONMENT_NAME", "a-b/c-d")
31d52dd3fad2395ef5dd897c743258eb9fdbd78e
cb8eaa782982767464ac0f9f6fb5c24fc0610c7b
/clib/mininet_test_util.py
c96e989e83a6c601004ac86e0c0238abc3e00b0c
[ "Apache-2.0" ]
permissive
faucetsdn/faucet
8a62688f369dfecebb23d30f7704799f613323f1
33a111e0664a7ac7d98938f7a0a0222a5c99ca7b
refs/heads/main
2023-08-28T19:16:46.435088
2023-08-24T02:04:23
2023-08-24T02:04:23
43,105,431
465
158
Apache-2.0
2023-09-14T06:51:38
2015-09-25T02:39:36
Python
UTF-8
Python
false
false
7,393
py
mininet_test_util.py
#!/usr/bin/env python3 """Standalone utility functions for Mininet tests.""" import collections import os import socket import subprocess import time # pylint: disable=import-error from mininet.log import error, output DEVNULL = open(os.devnull, "wb", encoding=None) # pylint: disable=consider-using-with GETPORT = "GETPORT" PUTPORTS = "PUTPORTS" GETSERIAL = "GETSERIAL" LISTPORTS = "LISTPORTS" LOCALHOST = "127.0.0.1" LOCALHOSTV6 = "::1" FAUCET_DIR = os.getenv("FAUCET_DIR", "../faucet") RESERVED_FOR_TESTS_PORTS = (179, 5001, 5002, 6633, 6653) with open( "/proc/sys/net/netfilter/nf_conntrack_tcp_timeout_time_wait", encoding="utf-8" ) as pf: MIN_PORT_AGE = max(int(pf.read()) / 2, 10) def flat_test_name(_id): """Return short form test name from TestCase ID.""" return "-".join(_id.split(".")[1:]) def lsof_tcp_listening_cmd(port, ipv, state, terse, pid): """Return a command line for lsof for processes with specified TCP state.""" terse_arg = "" if terse: terse_arg = "-t" pid_arg = "" if pid: pid_arg = "-p %u" % pid return "lsof -b -P -n %s %s -sTCP:%s -i %u -a -i tcp:%u" % ( pid_arg, terse_arg, state, ipv, port, ) def lsof_udp_listening_cmd(port, terse): """Return a command line for lsof for processes with specified TCP state.""" terse_arg = "" if terse: terse_arg = "-t" return "lsof -b -P -n %s -i udp:%u -a" % (terse_arg, port) def tcp_listening_cmd(port, ipv=4, state="LISTEN", terse=True, pid=None): """Call lsof_tcp_listening_cmd() with default args.""" return lsof_tcp_listening_cmd(port, ipv, state, terse, pid) def udp_listening_cmd(port, terse=True): """Call lsof_tcp_listening_cmd() with default args.""" return lsof_udp_listening_cmd(port, terse) def mininet_dpid(int_dpid): """Return stringified hex version, of int DPID for mininet.""" return str("%x" % int(int_dpid)) def str_int_dpid(str_dpid): """Return stringified int version, of int or hex DPID from YAML.""" str_dpid = str(str_dpid) if str_dpid.startswith("0x"): return str(int(str_dpid, 16)) return str(int(str_dpid)) def receive_sock_line(sock): """Receive a \n terminated line from a socket.""" buf = "" while buf.find("\n") <= -1: buf += sock.recv(2**10).decode() return buf.strip() def tcp_listening(port): """Return True if any process listening on a port.""" return ( subprocess.call( tcp_listening_cmd(port).split(), stdin=DEVNULL, stdout=DEVNULL, stderr=DEVNULL, close_fds=True, ) == 0 ) def udp_listening(port): """Return True if any process listening on a port.""" return ( subprocess.call( udp_listening_cmd(port).split(), stdin=DEVNULL, stdout=DEVNULL, stderr=DEVNULL, close_fds=True, ) == 0 ) def test_server_request(ports_socket, name, command): assert name is not None sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) sock.connect(ports_socket) sock.sendall(("%s,%s\n" % (command, name)).encode()) output("%s %s\n" % (name, command)) buf = receive_sock_line(sock) responses = [int(i) for i in buf.split("\n")] sock.close() if len(responses) == 1: responses = responses[0] output("%s %s: %u\n" % (name, command, responses)) return responses def get_serialno(ports_socket, name): """Retrieve serial number from test server.""" return test_server_request(ports_socket, name, GETSERIAL) def find_free_port(ports_socket, name): """Retrieve a free TCP port from test server.""" request_name = "-".join((name, str(os.getpid()))) while True: port = test_server_request(ports_socket, request_name, GETPORT) if not tcp_listening(port): return port error("port %u is busy, try another" % port) def find_free_udp_port(ports_socket, name): request_name = "-".join((name, str(os.getpid()))) while True: port = test_server_request(ports_socket, request_name, GETPORT) if not udp_listening(port): return port error("port %u is busy, try another" % port) def return_free_ports(ports_socket, name): """Notify test server that all ports under name are released.""" return test_server_request(ports_socket, name, PUTPORTS) def serve_ports(ports_socket, start_free_ports, min_free_ports): """Implement a TCP server to dispense free TCP ports.""" ports_q = collections.deque() free_ports = set() port_age = {} serialno = 0 def get_port(): while True: free_socket = socket.socket() free_socket.bind(("", 0)) free_port = free_socket.getsockname()[1] free_socket.close() if free_port < 1024: continue if free_port in RESERVED_FOR_TESTS_PORTS: continue if free_port in free_ports: continue break free_ports.add(free_port) port_age[free_port] = time.time() return free_port def queue_free_ports(min_queue_size): while len(ports_q) < min_queue_size: port = get_port() ports_q.append(port) port_age[port] = time.time() queue_free_ports(start_free_ports) ports_by_name = collections.defaultdict(set) sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) sock.bind(ports_socket) sock.listen(1) cold_start = True while True: connection, _ = sock.accept() command, name = receive_sock_line(connection).split(",") response = None if command == GETSERIAL: serialno += 1 response = serialno elif command == PUTPORTS: ports_returned = 0 for port in ports_by_name[name]: ports_returned += 1 ports_q.append(port) port_age[port] = time.time() del ports_by_name[name] response = ports_returned if ports_returned: cold_start = False elif command == GETPORT: while True: port = ports_q.popleft() if time.time() - port_age[port] > MIN_PORT_AGE or cold_start: break ports_q.append(port) time.sleep(1) ports_by_name[name].add(port) response = port queue_free_ports(min_free_ports) elif command == LISTPORTS: response = list(ports_by_name[name]) if response is not None: response_str = "" if isinstance(response, int): response = [response] response_str = "".join(["%u\n" % i for i in response]) connection.sendall(response_str.encode()) # pylint: disable=no-member connection.close() def timeout_cmd(cmd, timeout): """Return a command line prefaced with a timeout wrappers and stdout/err unbuffered.""" return "timeout -sKILL %us stdbuf -o0 -e0 %s" % (timeout, cmd) def timeout_soft_cmd(cmd, timeout): """Same as timeout_cmd buf using SIGTERM on timeout.""" return "timeout %us stdbuf -o0 -e0 %s" % (timeout, cmd)
74c9202d3f478efedf88fed19a016b6a421714cf
96dcea595e7c16cec07b3f649afd65f3660a0bad
/tests/components/universal/__init__.py
9a814402b9c3e95e8490df1c07216ca5b947f3c9
[ "Apache-2.0" ]
permissive
home-assistant/core
3455eac2e9d925c92d30178643b1aaccf3a6484f
80caeafcb5b6e2f9da192d0ea6dd1a5b8244b743
refs/heads/dev
2023-08-31T15:41:06.299469
2023-08-31T14:50:53
2023-08-31T14:50:53
12,888,993
35,501
20,617
Apache-2.0
2023-09-14T21:50:15
2013-09-17T07:29:48
Python
UTF-8
Python
false
false
41
py
__init__.py
"""Tests for the universal component."""
210e9e154e203320b8e7a0522df3164e9f6fe03f
8de79ab1818c535dcd8ad6e0c92b5c9642ffb82a
/sphinx/writers/latex.py
89b349aee59859e624d9a99bfb55f8c194b3f6d9
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
sphinx-doc/sphinx
632d75bfc7bef14904f3d847e6de6d37594a13a5
eab54533a56119c5badd5aac647c595a9adae720
refs/heads/master
2023-08-16T18:21:54.073511
2023-08-15T17:36:47
2023-08-15T17:36:47
28,710,753
6,138
2,587
NOASSERTION
2023-09-14T14:22:28
2015-01-02T10:53:28
Python
UTF-8
Python
false
false
90,889
py
latex.py
"""Custom docutils writer for LaTeX. Much of this code is adapted from Dave Kuhlman's "docpy" writer from his docutils sandbox. """ from __future__ import annotations import re from collections import defaultdict from collections.abc import Iterable from os import path from typing import TYPE_CHECKING, Any, cast from docutils import nodes, writers from sphinx import addnodes, highlighting from sphinx.domains.std import StandardDomain from sphinx.errors import SphinxError from sphinx.locale import _, __, admonitionlabels from sphinx.util import logging, texescape from sphinx.util.docutils import SphinxTranslator from sphinx.util.index_entries import split_index_msg from sphinx.util.nodes import clean_astext, get_prev_node from sphinx.util.template import LaTeXRenderer from sphinx.util.texescape import tex_replace_map try: from docutils.utils.roman import toRoman except ImportError: # In Debian/Ubuntu, roman package is provided as roman, not as docutils.utils.roman from roman import toRoman # type: ignore[no-redef] if TYPE_CHECKING: from docutils.nodes import Element, Node, Text from sphinx.builders.latex import LaTeXBuilder from sphinx.builders.latex.theming import Theme from sphinx.domains import IndexEntry logger = logging.getLogger(__name__) MAX_CITATION_LABEL_LENGTH = 8 LATEXSECTIONNAMES = ["part", "chapter", "section", "subsection", "subsubsection", "paragraph", "subparagraph"] ENUMERATE_LIST_STYLE = defaultdict(lambda: r'\arabic', { 'arabic': r'\arabic', 'loweralpha': r'\alph', 'upperalpha': r'\Alph', 'lowerroman': r'\roman', 'upperroman': r'\Roman', }) CR = '\n' BLANKLINE = '\n\n' EXTRA_RE = re.compile(r'^(.*\S)\s+\(([^()]*)\)\s*$') class collected_footnote(nodes.footnote): """Footnotes that are collected are assigned this class.""" class UnsupportedError(SphinxError): category = 'Markup is unsupported in LaTeX' class LaTeXWriter(writers.Writer): supported = ('sphinxlatex',) settings_spec = ('LaTeX writer options', '', ( ('Document name', ['--docname'], {'default': ''}), ('Document class', ['--docclass'], {'default': 'manual'}), ('Author', ['--author'], {'default': ''}), )) settings_defaults: dict[str, Any] = {} theme: Theme def __init__(self, builder: LaTeXBuilder) -> None: super().__init__() self.builder = builder def translate(self) -> None: visitor = self.builder.create_translator(self.document, self.builder, self.theme) self.document.walkabout(visitor) self.output = cast(LaTeXTranslator, visitor).astext() # Helper classes class Table: """A table data""" def __init__(self, node: Element) -> None: self.header: list[str] = [] self.body: list[str] = [] self.align = node.get('align', 'default') self.classes: list[str] = node.get('classes', []) self.styles: list[str] = [] if 'standard' in self.classes: self.styles.append('standard') elif 'borderless' in self.classes: self.styles.append('borderless') elif 'booktabs' in self.classes: self.styles.append('booktabs') if 'nocolorrows' in self.classes: self.styles.append('nocolorrows') elif 'colorrows' in self.classes: self.styles.append('colorrows') self.colcount = 0 self.colspec: str = '' if 'booktabs' in self.styles or 'borderless' in self.styles: self.colsep: str | None = '' elif 'standard' in self.styles: self.colsep = '|' else: self.colsep = None self.colwidths: list[int] = [] self.has_problematic = False self.has_oldproblematic = False self.has_verbatim = False self.caption: list[str] = [] self.stubs: list[int] = [] # current position self.col = 0 self.row = 0 # A dict mapping a table location to a cell_id (cell = rectangular area) self.cells: dict[tuple[int, int], int] = defaultdict(int) self.cell_id = 0 # last assigned cell_id def is_longtable(self) -> bool: """True if and only if table uses longtable environment.""" return self.row > 30 or 'longtable' in self.classes def get_table_type(self) -> str: """Returns the LaTeX environment name for the table. The class currently supports: * longtable * tabular * tabulary """ if self.is_longtable(): return 'longtable' elif self.has_verbatim: return 'tabular' elif self.colspec: return 'tabulary' elif self.has_problematic or (self.colwidths and 'colwidths-given' in self.classes): return 'tabular' else: return 'tabulary' def get_colspec(self) -> str: """Returns a column spec of table. This is what LaTeX calls the 'preamble argument' of the used table environment. .. note:: The ``\\X`` and ``T`` column type specifiers are defined in ``sphinxlatextables.sty``. """ if self.colspec: return self.colspec _colsep = self.colsep assert _colsep is not None if self.colwidths and 'colwidths-given' in self.classes: total = sum(self.colwidths) colspecs = [r'\X{%d}{%d}' % (width, total) for width in self.colwidths] return f'{{{_colsep}{_colsep.join(colspecs)}{_colsep}}}' + CR elif self.has_problematic: return r'{%s*{%d}{\X{1}{%d}%s}}' % (_colsep, self.colcount, self.colcount, _colsep) + CR elif self.get_table_type() == 'tabulary': # sphinx.sty sets T to be J by default. return '{' + _colsep + (('T' + _colsep) * self.colcount) + '}' + CR elif self.has_oldproblematic: return r'{%s*{%d}{\X{1}{%d}%s}}' % (_colsep, self.colcount, self.colcount, _colsep) + CR else: return '{' + _colsep + (('l' + _colsep) * self.colcount) + '}' + CR def add_cell(self, height: int, width: int) -> None: """Adds a new cell to a table. It will be located at current position: (``self.row``, ``self.col``). """ self.cell_id += 1 for col in range(width): for row in range(height): assert self.cells[(self.row + row, self.col + col)] == 0 self.cells[(self.row + row, self.col + col)] = self.cell_id def cell( self, row: int | None = None, col: int | None = None, ) -> TableCell | None: """Returns a cell object (i.e. rectangular area) containing given position. If no option arguments: ``row`` or ``col`` are given, the current position; ``self.row`` and ``self.col`` are used to get a cell object by default. """ try: if row is None: row = self.row if col is None: col = self.col return TableCell(self, row, col) except IndexError: return None class TableCell: """Data of a cell in a table.""" def __init__(self, table: Table, row: int, col: int) -> None: if table.cells[(row, col)] == 0: raise IndexError self.table = table self.cell_id = table.cells[(row, col)] self.row = row self.col = col # adjust position for multirow/multicol cell while table.cells[(self.row - 1, self.col)] == self.cell_id: self.row -= 1 while table.cells[(self.row, self.col - 1)] == self.cell_id: self.col -= 1 @property def width(self) -> int: """Returns the cell width.""" width = 0 while self.table.cells[(self.row, self.col + width)] == self.cell_id: width += 1 return width @property def height(self) -> int: """Returns the cell height.""" height = 0 while self.table.cells[(self.row + height, self.col)] == self.cell_id: height += 1 return height def escape_abbr(text: str) -> str: """Adjust spacing after abbreviations.""" return re.sub(r'\.(?=\s|$)', r'.\@', text) def rstdim_to_latexdim(width_str: str, scale: int = 100) -> str: """Convert `width_str` with rst length to LaTeX length.""" match = re.match(r'^(\d*\.?\d*)\s*(\S*)$', width_str) if not match: raise ValueError res = width_str amount, unit = match.groups()[:2] if scale == 100: float(amount) # validate amount is float if unit in ('', "px"): res = r"%s\sphinxpxdimen" % amount elif unit == 'pt': res = '%sbp' % amount # convert to 'bp' elif unit == "%": res = r"%.3f\linewidth" % (float(amount) / 100.0) else: amount_float = float(amount) * scale / 100.0 if unit in ('', "px"): res = r"%.5f\sphinxpxdimen" % amount_float elif unit == 'pt': res = '%.5fbp' % amount_float elif unit == "%": res = r"%.5f\linewidth" % (amount_float / 100.0) else: res = f"{amount_float:.5f}{unit}" return res class LaTeXTranslator(SphinxTranslator): builder: LaTeXBuilder secnumdepth = 2 # legacy sphinxhowto.cls uses this, whereas article.cls # default is originally 3. For book/report, 2 is already LaTeX default. ignore_missing_images = False def __init__(self, document: nodes.document, builder: LaTeXBuilder, theme: Theme) -> None: super().__init__(document, builder) self.body: list[str] = [] self.theme = theme # flags self.in_title = 0 self.in_production_list = 0 self.in_footnote = 0 self.in_caption = 0 self.in_term = 0 self.needs_linetrimming = 0 self.in_minipage = 0 self.no_latex_floats = 0 self.first_document = 1 self.this_is_the_title = 1 self.literal_whitespace = 0 self.in_parsed_literal = 0 self.compact_list = 0 self.first_param = 0 self.in_desc_signature = False sphinxpkgoptions = [] # sort out some elements self.elements = self.builder.context.copy() # initial section names self.sectionnames = LATEXSECTIONNAMES[:] if self.theme.toplevel_sectioning == 'section': self.sectionnames.remove('chapter') # determine top section level self.top_sectionlevel = 1 if self.config.latex_toplevel_sectioning: try: self.top_sectionlevel = \ self.sectionnames.index(self.config.latex_toplevel_sectioning) except ValueError: logger.warning(__('unknown %r toplevel_sectioning for class %r') % (self.config.latex_toplevel_sectioning, self.theme.docclass)) if self.config.numfig: self.numfig_secnum_depth = self.config.numfig_secnum_depth if self.numfig_secnum_depth > 0: # default is 1 # numfig_secnum_depth as passed to sphinx.sty indices same names as in # LATEXSECTIONNAMES but with -1 for part, 0 for chapter, 1 for section... if len(self.sectionnames) < len(LATEXSECTIONNAMES) and \ self.top_sectionlevel > 0: self.numfig_secnum_depth += self.top_sectionlevel else: self.numfig_secnum_depth += self.top_sectionlevel - 1 # this (minus one) will serve as minimum to LaTeX's secnumdepth self.numfig_secnum_depth = min(self.numfig_secnum_depth, len(LATEXSECTIONNAMES) - 1) # if passed key value is < 1 LaTeX will act as if 0; see sphinx.sty sphinxpkgoptions.append('numfigreset=%s' % self.numfig_secnum_depth) else: sphinxpkgoptions.append('nonumfigreset') if self.config.numfig and self.config.math_numfig: sphinxpkgoptions.append('mathnumfig') if (self.config.language not in {'en', 'ja'} and 'fncychap' not in self.config.latex_elements): # use Sonny style if any language specified (except English) self.elements['fncychap'] = (r'\usepackage[Sonny]{fncychap}' + CR + r'\ChNameVar{\Large\normalfont\sffamily}' + CR + r'\ChTitleVar{\Large\normalfont\sffamily}') self.babel = self.builder.babel if not self.babel.is_supported_language(): # emit warning if specified language is invalid # (only emitting, nothing changed to processing) logger.warning(__('no Babel option known for language %r'), self.config.language) minsecnumdepth = self.secnumdepth # 2 from legacy sphinx manual/howto if self.document.get('tocdepth'): # reduce tocdepth if `part` or `chapter` is used for top_sectionlevel # tocdepth = -1: show only parts # tocdepth = 0: show parts and chapters # tocdepth = 1: show parts, chapters and sections # tocdepth = 2: show parts, chapters, sections and subsections # ... tocdepth = self.document.get('tocdepth', 999) + self.top_sectionlevel - 2 if len(self.sectionnames) < len(LATEXSECTIONNAMES) and \ self.top_sectionlevel > 0: tocdepth += 1 # because top_sectionlevel is shifted by -1 if tocdepth > len(LATEXSECTIONNAMES) - 2: # default is 5 <-> subparagraph logger.warning(__('too large :maxdepth:, ignored.')) tocdepth = len(LATEXSECTIONNAMES) - 2 self.elements['tocdepth'] = r'\setcounter{tocdepth}{%d}' % tocdepth minsecnumdepth = max(minsecnumdepth, tocdepth) if self.config.numfig and (self.config.numfig_secnum_depth > 0): minsecnumdepth = max(minsecnumdepth, self.numfig_secnum_depth - 1) if minsecnumdepth > self.secnumdepth: self.elements['secnumdepth'] = r'\setcounter{secnumdepth}{%d}' %\ minsecnumdepth contentsname = document.get('contentsname') if contentsname: self.elements['contentsname'] = self.babel_renewcommand(r'\contentsname', contentsname) if self.elements['maxlistdepth']: sphinxpkgoptions.append('maxlistdepth=%s' % self.elements['maxlistdepth']) if sphinxpkgoptions: self.elements['sphinxpkgoptions'] = '[,%s]' % ','.join(sphinxpkgoptions) if self.elements['sphinxsetup']: self.elements['sphinxsetup'] = (r'\sphinxsetup{%s}' % self.elements['sphinxsetup']) if self.elements['extraclassoptions']: self.elements['classoptions'] += ',' + \ self.elements['extraclassoptions'] self.highlighter = highlighting.PygmentsBridge('latex', self.config.pygments_style, latex_engine=self.config.latex_engine) self.context: list[Any] = [] self.descstack: list[str] = [] self.tables: list[Table] = [] self.next_table_colspec: str | None = None self.bodystack: list[list[str]] = [] self.footnote_restricted: Element | None = None self.pending_footnotes: list[nodes.footnote_reference] = [] self.curfilestack: list[str] = [] self.handled_abbrs: set[str] = set() def pushbody(self, newbody: list[str]) -> None: self.bodystack.append(self.body) self.body = newbody def popbody(self) -> list[str]: body = self.body self.body = self.bodystack.pop() return body def astext(self) -> str: self.elements.update({ 'body': ''.join(self.body), 'indices': self.generate_indices(), }) return self.render('latex.tex_t', self.elements) def hypertarget(self, id: str, withdoc: bool = True, anchor: bool = True) -> str: if withdoc: id = self.curfilestack[-1] + ':' + id return (r'\phantomsection' if anchor else '') + r'\label{%s}' % self.idescape(id) def hypertarget_to(self, node: Element, anchor: bool = False) -> str: labels = ''.join(self.hypertarget(node_id, anchor=False) for node_id in node['ids']) if anchor: return r'\phantomsection' + labels else: return labels def hyperlink(self, id: str) -> str: return r'{\hyperref[%s]{' % self.idescape(id) def hyperpageref(self, id: str) -> str: return r'\autopageref*{%s}' % self.idescape(id) def escape(self, s: str) -> str: return texescape.escape(s, self.config.latex_engine) def idescape(self, id: str) -> str: return r'\detokenize{%s}' % str(id).translate(tex_replace_map).\ encode('ascii', 'backslashreplace').decode('ascii').\ replace('\\', '_') def babel_renewcommand(self, command: str, definition: str) -> str: if self.elements['multilingual']: prefix = r'\addto\captions%s{' % self.babel.get_language() suffix = '}' else: # babel is disabled (mainly for Japanese environment) prefix = '' suffix = '' return fr'{prefix}\renewcommand{{{command}}}{{{definition}}}{suffix}' + CR def generate_indices(self) -> str: def generate(content: list[tuple[str, list[IndexEntry]]], collapsed: bool) -> None: ret.append(r'\begin{sphinxtheindex}' + CR) ret.append(r'\let\bigletter\sphinxstyleindexlettergroup' + CR) for i, (letter, entries) in enumerate(content): if i > 0: ret.append(r'\indexspace' + CR) ret.append(r'\bigletter{%s}' % self.escape(letter) + CR) for entry in entries: if not entry[3]: continue ret.append(r'\item\relax\sphinxstyleindexentry{%s}' % self.encode(entry[0])) if entry[4]: # add "extra" info ret.append(r'\sphinxstyleindexextra{%s}' % self.encode(entry[4])) ret.append(r'\sphinxstyleindexpageref{%s:%s}' % (entry[2], self.idescape(entry[3])) + CR) ret.append(r'\end{sphinxtheindex}' + CR) ret = [] # latex_domain_indices can be False/True or a list of index names indices_config = self.config.latex_domain_indices if indices_config: for domain in self.builder.env.domains.values(): for indexcls in domain.indices: indexname = f'{domain.name}-{indexcls.name}' if isinstance(indices_config, list): if indexname not in indices_config: continue content, collapsed = indexcls(domain).generate( self.builder.docnames) if not content: continue ret.append(r'\renewcommand{\indexname}{%s}' % indexcls.localname + CR) generate(content, collapsed) return ''.join(ret) def render(self, template_name: str, variables: dict[str, Any]) -> str: renderer = LaTeXRenderer(latex_engine=self.config.latex_engine) for template_dir in self.config.templates_path: template = path.join(self.builder.confdir, template_dir, template_name) if path.exists(template): return renderer.render(template, variables) return renderer.render(template_name, variables) @property def table(self) -> Table | None: """Get current table.""" if self.tables: return self.tables[-1] else: return None def visit_document(self, node: Element) -> None: self.curfilestack.append(node.get('docname', '')) if self.first_document == 1: # the first document is all the regular content ... self.first_document = 0 elif self.first_document == 0: # ... and all others are the appendices self.body.append(CR + r'\appendix' + CR) self.first_document = -1 if 'docname' in node: self.body.append(self.hypertarget(':doc')) # "- 1" because the level is increased before the title is visited self.sectionlevel = self.top_sectionlevel - 1 def depart_document(self, node: Element) -> None: pass def visit_start_of_file(self, node: Element) -> None: self.curfilestack.append(node['docname']) self.body.append(CR + r'\sphinxstepscope' + CR) def depart_start_of_file(self, node: Element) -> None: self.curfilestack.pop() def visit_section(self, node: Element) -> None: if not self.this_is_the_title: self.sectionlevel += 1 self.body.append(BLANKLINE) def depart_section(self, node: Element) -> None: self.sectionlevel = max(self.sectionlevel - 1, self.top_sectionlevel - 1) def visit_problematic(self, node: Element) -> None: self.body.append(r'{\color{red}\bfseries{}') def depart_problematic(self, node: Element) -> None: self.body.append('}') def visit_topic(self, node: Element) -> None: self.in_minipage = 1 self.body.append(CR + r'\begin{sphinxShadowBox}' + CR) def depart_topic(self, node: Element) -> None: self.in_minipage = 0 self.body.append(r'\end{sphinxShadowBox}' + CR) visit_sidebar = visit_topic depart_sidebar = depart_topic def visit_glossary(self, node: Element) -> None: pass def depart_glossary(self, node: Element) -> None: pass def visit_productionlist(self, node: Element) -> None: self.body.append(BLANKLINE) self.body.append(r'\begin{productionlist}' + CR) self.in_production_list = 1 def depart_productionlist(self, node: Element) -> None: self.body.append(r'\end{productionlist}' + BLANKLINE) self.in_production_list = 0 def visit_production(self, node: Element) -> None: if node['tokenname']: tn = node['tokenname'] self.body.append(self.hypertarget('grammar-token-' + tn)) self.body.append(r'\production{%s}{' % self.encode(tn)) else: self.body.append(r'\productioncont{') def depart_production(self, node: Element) -> None: self.body.append('}' + CR) def visit_transition(self, node: Element) -> None: self.body.append(self.elements['transition']) def depart_transition(self, node: Element) -> None: pass def visit_title(self, node: Element) -> None: parent = node.parent if isinstance(parent, addnodes.seealso): # the environment already handles this raise nodes.SkipNode if isinstance(parent, nodes.section): if self.this_is_the_title: if len(node.children) != 1 and not isinstance(node.children[0], nodes.Text): logger.warning(__('document title is not a single Text node'), location=node) if not self.elements['title']: # text needs to be escaped since it is inserted into # the output literally self.elements['title'] = self.escape(node.astext()) self.this_is_the_title = 0 raise nodes.SkipNode short = '' if any(node.findall(nodes.image)): short = ('[%s]' % self.escape(' '.join(clean_astext(node).split()))) try: self.body.append(fr'\{self.sectionnames[self.sectionlevel]}{short}{{') except IndexError: # just use "subparagraph", it's not numbered anyway self.body.append(fr'\{self.sectionnames[-1]}{short}{{') self.context.append('}' + CR + self.hypertarget_to(node.parent)) elif isinstance(parent, nodes.topic): self.body.append(r'\sphinxstyletopictitle{') self.context.append('}' + CR) elif isinstance(parent, nodes.sidebar): self.body.append(r'\sphinxstylesidebartitle{') self.context.append('}' + CR) elif isinstance(parent, nodes.Admonition): self.body.append('{') self.context.append('}' + CR) elif isinstance(parent, nodes.table): # Redirect body output until title is finished. self.pushbody([]) else: logger.warning(__('encountered title node not in section, topic, table, ' 'admonition or sidebar'), location=node) self.body.append(r'\sphinxstyleothertitle{') self.context.append('}' + CR) self.in_title = 1 def depart_title(self, node: Element) -> None: self.in_title = 0 if isinstance(node.parent, nodes.table): assert self.table is not None self.table.caption = self.popbody() else: self.body.append(self.context.pop()) def visit_subtitle(self, node: Element) -> None: if isinstance(node.parent, nodes.sidebar): self.body.append(r'\sphinxstylesidebarsubtitle{') self.context.append('}' + CR) else: self.context.append('') def depart_subtitle(self, node: Element) -> None: self.body.append(self.context.pop()) ############################################################# # Domain-specific object descriptions ############################################################# # Top-level nodes for descriptions ################################## def visit_desc(self, node: Element) -> None: if self.config.latex_show_urls == 'footnote': self.body.append(BLANKLINE) self.body.append(r'\begin{savenotes}\begin{fulllineitems}' + CR) else: self.body.append(BLANKLINE) self.body.append(r'\begin{fulllineitems}' + CR) if self.table: self.table.has_problematic = True def depart_desc(self, node: Element) -> None: if self.in_desc_signature: self.body.append(CR + r'\pysigstopsignatures') self.in_desc_signature = False if self.config.latex_show_urls == 'footnote': self.body.append(CR + r'\end{fulllineitems}\end{savenotes}' + BLANKLINE) else: self.body.append(CR + r'\end{fulllineitems}' + BLANKLINE) def _visit_signature_line(self, node: Element) -> None: def next_sibling(e: Node) -> Node | None: try: return e.parent[e.parent.index(e) + 1] except (AttributeError, IndexError): return None def has_multi_line(e: Element) -> bool: return e.get('multi_line_parameter_list') self.has_tp_list = False for child in node: if isinstance(child, addnodes.desc_type_parameter_list): self.has_tp_list = True # recall that return annotations must follow an argument list, # so signatures of the form "foo[tp_list] -> retann" will not # be encountered (if they should, the `domains.python.py_sig_re` # pattern must be modified accordingly) arglist = next_sibling(child) assert isinstance(arglist, addnodes.desc_parameterlist) # tp_list + arglist: \macro{name}{tp_list}{arglist}{return} multi_tp_list = has_multi_line(child) multi_arglist = has_multi_line(arglist) if multi_tp_list: if multi_arglist: self.body.append(CR + r'\pysigwithonelineperargwithonelinepertparg{') else: self.body.append(CR + r'\pysiglinewithargsretwithonelinepertparg{') else: if multi_arglist: self.body.append(CR + r'\pysigwithonelineperargwithtypelist{') else: self.body.append(CR + r'\pysiglinewithargsretwithtypelist{') break if isinstance(child, addnodes.desc_parameterlist): # arglist only: \macro{name}{arglist}{return} if has_multi_line(child): self.body.append(CR + r'\pysigwithonelineperarg{') else: self.body.append(CR + r'\pysiglinewithargsret{') break else: # no tp_list, no arglist: \macro{name} self.body.append(CR + r'\pysigline{') def _depart_signature_line(self, node: Element) -> None: self.body.append('}') def visit_desc_signature(self, node: Element) -> None: hyper = '' if node.parent['objtype'] != 'describe' and node['ids']: for id in node['ids']: hyper += self.hypertarget(id) self.body.append(hyper) if not self.in_desc_signature: self.in_desc_signature = True self.body.append(CR + r'\pysigstartsignatures') if not node.get('is_multiline'): self._visit_signature_line(node) else: self.body.append(CR + r'\pysigstartmultiline') def depart_desc_signature(self, node: Element) -> None: if not node.get('is_multiline'): self._depart_signature_line(node) else: self.body.append(CR + r'\pysigstopmultiline') def visit_desc_signature_line(self, node: Element) -> None: self._visit_signature_line(node) def depart_desc_signature_line(self, node: Element) -> None: self._depart_signature_line(node) def visit_desc_content(self, node: Element) -> None: assert self.in_desc_signature self.body.append(CR + r'\pysigstopsignatures') self.in_desc_signature = False def depart_desc_content(self, node: Element) -> None: pass def visit_desc_inline(self, node: Element) -> None: self.body.append(r'\sphinxcode{\sphinxupquote{') def depart_desc_inline(self, node: Element) -> None: self.body.append('}}') # Nodes for high-level structure in signatures ############################################## def visit_desc_name(self, node: Element) -> None: self.body.append(r'\sphinxbfcode{\sphinxupquote{') self.literal_whitespace += 1 def depart_desc_name(self, node: Element) -> None: self.body.append('}}') self.literal_whitespace -= 1 def visit_desc_addname(self, node: Element) -> None: self.body.append(r'\sphinxcode{\sphinxupquote{') self.literal_whitespace += 1 def depart_desc_addname(self, node: Element) -> None: self.body.append('}}') self.literal_whitespace -= 1 def visit_desc_type(self, node: Element) -> None: pass def depart_desc_type(self, node: Element) -> None: pass def visit_desc_returns(self, node: Element) -> None: self.body.append(r'{ $\rightarrow$ ') def depart_desc_returns(self, node: Element) -> None: self.body.append(r'}') def _visit_sig_parameter_list(self, node: Element, parameter_group: type[Element]) -> None: """Visit a signature parameters or type parameters list. The *parameter_group* value is the type of a child node acting as a required parameter or as a set of contiguous optional parameters. The caller is responsible for closing adding surrounding LaTeX macro argument start and stop tokens. """ self.is_first_param = True self.optional_param_level = 0 self.params_left_at_level = 0 self.param_group_index = 0 # Counts as what we call a parameter group either a required parameter, or a # set of contiguous optional ones. self.list_is_required_param = [isinstance(c, parameter_group) for c in node.children] # How many required parameters are left. self.required_params_left = sum(self.list_is_required_param) self.param_separator = r'\sphinxparamcomma ' self.multi_line_parameter_list = node.get('multi_line_parameter_list', False) def visit_desc_parameterlist(self, node: Element) -> None: if not self.has_tp_list: # close name argument (#1), open parameters list argument (#2) self.body.append('}{') self._visit_sig_parameter_list(node, addnodes.desc_parameter) def depart_desc_parameterlist(self, node: Element) -> None: # close parameterlist, open return annotation self.body.append('}{') def visit_desc_type_parameter_list(self, node: Element) -> None: # close name argument (#1), open type parameters list argument (#2) self.body.append('}{') self._visit_sig_parameter_list(node, addnodes.desc_type_parameter) def depart_desc_type_parameter_list(self, node: Element) -> None: # close type parameters list, open parameters list argument (#3) self.body.append('}{') def _visit_sig_parameter(self, node: Element, parameter_macro: str) -> None: if self.is_first_param: self.is_first_param = False elif not self.multi_line_parameter_list and not self.required_params_left: self.body.append(self.param_separator) if self.optional_param_level == 0: self.required_params_left -= 1 else: self.params_left_at_level -= 1 if not node.hasattr('noemph'): self.body.append(parameter_macro) def _depart_sig_parameter(self, node: Element) -> None: if not node.hasattr('noemph'): self.body.append('}') is_required = self.list_is_required_param[self.param_group_index] if self.multi_line_parameter_list: is_last_group = self.param_group_index + 1 == len(self.list_is_required_param) next_is_required = ( not is_last_group and self.list_is_required_param[self.param_group_index + 1] ) opt_param_left_at_level = self.params_left_at_level > 0 if opt_param_left_at_level or is_required and (is_last_group or next_is_required): self.body.append(self.param_separator) elif self.required_params_left: self.body.append(self.param_separator) if is_required: self.param_group_index += 1 def visit_desc_parameter(self, node: Element) -> None: self._visit_sig_parameter(node, r'\sphinxparam{') def depart_desc_parameter(self, node: Element) -> None: self._depart_sig_parameter(node) def visit_desc_type_parameter(self, node: Element) -> None: self._visit_sig_parameter(node, r'\sphinxtypeparam{') def depart_desc_type_parameter(self, node: Element) -> None: self._depart_sig_parameter(node) def visit_desc_optional(self, node: Element) -> None: self.params_left_at_level = sum([isinstance(c, addnodes.desc_parameter) for c in node.children]) self.optional_param_level += 1 self.max_optional_param_level = self.optional_param_level if self.multi_line_parameter_list: if self.is_first_param: self.body.append(r'\sphinxoptional{') elif self.required_params_left: self.body.append(self.param_separator) self.body.append(r'\sphinxoptional{') else: self.body.append(r'\sphinxoptional{') self.body.append(self.param_separator) else: self.body.append(r'\sphinxoptional{') def depart_desc_optional(self, node: Element) -> None: self.optional_param_level -= 1 if self.multi_line_parameter_list: # If it's the first time we go down one level, add the separator before the # bracket. if self.optional_param_level == self.max_optional_param_level - 1: self.body.append(self.param_separator) self.body.append('}') if self.optional_param_level == 0: self.param_group_index += 1 def visit_desc_annotation(self, node: Element) -> None: self.body.append(r'\sphinxbfcode{\sphinxupquote{') def depart_desc_annotation(self, node: Element) -> None: self.body.append('}}') ############################################## def visit_seealso(self, node: Element) -> None: self.body.append(BLANKLINE) self.body.append(r'\begin{sphinxseealso}{%s:}' % admonitionlabels['seealso'] + CR) def depart_seealso(self, node: Element) -> None: self.body.append(BLANKLINE) self.body.append(r'\end{sphinxseealso}') self.body.append(BLANKLINE) def visit_rubric(self, node: Element) -> None: if len(node) == 1 and node.astext() in ('Footnotes', _('Footnotes')): raise nodes.SkipNode self.body.append(r'\subsubsection*{') self.context.append('}' + CR) self.in_title = 1 def depart_rubric(self, node: Element) -> None: self.in_title = 0 self.body.append(self.context.pop()) def visit_footnote(self, node: Element) -> None: self.in_footnote += 1 label = cast(nodes.label, node[0]) if self.in_parsed_literal: self.body.append(r'\begin{footnote}[%s]' % label.astext()) else: self.body.append('%' + CR) self.body.append(r'\begin{footnote}[%s]' % label.astext()) if 'referred' in node: # TODO: in future maybe output a latex macro with backrefs here pass self.body.append(r'\sphinxAtStartFootnote' + CR) def depart_footnote(self, node: Element) -> None: if self.in_parsed_literal: self.body.append(r'\end{footnote}') else: self.body.append('%' + CR) self.body.append(r'\end{footnote}') self.in_footnote -= 1 def visit_label(self, node: Element) -> None: raise nodes.SkipNode def visit_tabular_col_spec(self, node: Element) -> None: self.next_table_colspec = node['spec'] raise nodes.SkipNode def visit_table(self, node: Element) -> None: if len(self.tables) == 1: assert self.table is not None if self.table.get_table_type() == 'longtable': raise UnsupportedError( '%s:%s: longtable does not support nesting a table.' % (self.curfilestack[-1], node.line or '')) # change type of parent table to tabular # see https://groups.google.com/d/msg/sphinx-users/7m3NeOBixeo/9LKP2B4WBQAJ self.table.has_problematic = True elif len(self.tables) > 2: raise UnsupportedError( '%s:%s: deeply nested tables are not implemented.' % (self.curfilestack[-1], node.line or '')) table = Table(node) self.tables.append(table) if table.colsep is None: table.colsep = '|' * ( 'booktabs' not in self.builder.config.latex_table_style and 'borderless' not in self.builder.config.latex_table_style ) if self.next_table_colspec: table.colspec = '{%s}' % self.next_table_colspec + CR if '|' in table.colspec: table.styles.append('vlines') table.colsep = '|' else: table.styles.append('novlines') table.colsep = '' if 'colwidths-given' in node.get('classes', []): logger.info(__('both tabularcolumns and :widths: option are given. ' ':widths: is ignored.'), location=node) self.next_table_colspec = None def depart_table(self, node: Element) -> None: assert self.table is not None labels = self.hypertarget_to(node) table_type = self.table.get_table_type() table = self.render(table_type + '.tex_t', {'table': self.table, 'labels': labels}) self.body.append(BLANKLINE) self.body.append(table) self.body.append(CR) self.tables.pop() def visit_colspec(self, node: Element) -> None: assert self.table is not None self.table.colcount += 1 if 'colwidth' in node: self.table.colwidths.append(node['colwidth']) if 'stub' in node: self.table.stubs.append(self.table.colcount - 1) def depart_colspec(self, node: Element) -> None: pass def visit_tgroup(self, node: Element) -> None: pass def depart_tgroup(self, node: Element) -> None: pass def visit_thead(self, node: Element) -> None: assert self.table is not None # Redirect head output until header is finished. self.pushbody(self.table.header) def depart_thead(self, node: Element) -> None: if self.body and self.body[-1] == r'\sphinxhline': self.body.pop() self.popbody() def visit_tbody(self, node: Element) -> None: assert self.table is not None # Redirect body output until table is finished. self.pushbody(self.table.body) def depart_tbody(self, node: Element) -> None: if self.body and self.body[-1] == r'\sphinxhline': self.body.pop() self.popbody() def visit_row(self, node: Element) -> None: assert self.table is not None self.table.col = 0 _colsep = self.table.colsep # fill columns if the row starts with the bottom of multirow cell while True: cell = self.table.cell(self.table.row, self.table.col) if cell is None: # not a bottom of multirow cell break # a bottom of multirow cell self.table.col += cell.width if cell.col: self.body.append('&') if cell.width == 1: # insert suitable strut for equalizing row heights in given multirow self.body.append(r'\sphinxtablestrut{%d}' % cell.cell_id) else: # use \multicolumn for wide multirow cell self.body.append(r'\multicolumn{%d}{%sl%s}{\sphinxtablestrut{%d}}' % (cell.width, _colsep, _colsep, cell.cell_id)) def depart_row(self, node: Element) -> None: assert self.table is not None self.body.append(r'\\' + CR) cells = [self.table.cell(self.table.row, i) for i in range(self.table.colcount)] underlined = [cell.row + cell.height == self.table.row + 1 # type: ignore[union-attr] for cell in cells] if all(underlined): self.body.append(r'\sphinxhline') else: i = 0 underlined.extend([False]) # sentinel if underlined[0] is False: i = 1 while i < self.table.colcount and underlined[i] is False: if cells[i - 1].cell_id != cells[i].cell_id: # type: ignore[union-attr] self.body.append(r'\sphinxvlinecrossing{%d}' % i) i += 1 while i < self.table.colcount: # each time here underlined[i] is True j = underlined[i:].index(False) self.body.append(r'\sphinxcline{%d-%d}' % (i + 1, i + j)) i += j i += 1 while i < self.table.colcount and underlined[i] is False: if cells[i - 1].cell_id != cells[i].cell_id: # type: ignore[union-attr] self.body.append(r'\sphinxvlinecrossing{%d}' % i) i += 1 self.body.append(r'\sphinxfixclines{%d}' % self.table.colcount) self.table.row += 1 def visit_entry(self, node: Element) -> None: assert self.table is not None if self.table.col > 0: self.body.append('&') self.table.add_cell(node.get('morerows', 0) + 1, node.get('morecols', 0) + 1) cell = self.table.cell() assert cell is not None context = '' _colsep = self.table.colsep if cell.width > 1: if self.config.latex_use_latex_multicolumn: if self.table.col == 0: self.body.append(r'\multicolumn{%d}{%sl%s}{%%' % (cell.width, _colsep, _colsep) + CR) else: self.body.append(r'\multicolumn{%d}{l%s}{%%' % (cell.width, _colsep) + CR) context = '}%' + CR else: self.body.append(r'\sphinxstartmulticolumn{%d}%%' % cell.width + CR) context = r'\sphinxstopmulticolumn' + CR if cell.height > 1: # \sphinxmultirow 2nd arg "cell_id" will serve as id for LaTeX macros as well self.body.append(r'\sphinxmultirow{%d}{%d}{%%' % (cell.height, cell.cell_id) + CR) context = '}%' + CR + context if cell.width > 1 or cell.height > 1: self.body.append(r'\begin{varwidth}[t]{\sphinxcolwidth{%d}{%d}}' % (cell.width, self.table.colcount) + CR) context = (r'\par' + CR + r'\vskip-\baselineskip' r'\vbox{\hbox{\strut}}\end{varwidth}%' + CR + context) self.needs_linetrimming = 1 if len(list(node.findall(nodes.paragraph))) >= 2: self.table.has_oldproblematic = True if isinstance(node.parent.parent, nodes.thead) or (cell.col in self.table.stubs): if len(node) == 1 and isinstance(node[0], nodes.paragraph) and node.astext() == '': pass else: self.body.append(r'\sphinxstyletheadfamily ') if self.needs_linetrimming: self.pushbody([]) self.context.append(context) def depart_entry(self, node: Element) -> None: if self.needs_linetrimming: self.needs_linetrimming = 0 body = self.popbody() # Remove empty lines from top of merged cell while body and body[0] == CR: body.pop(0) self.body.extend(body) self.body.append(self.context.pop()) assert self.table is not None cell = self.table.cell() assert cell is not None self.table.col += cell.width _colsep = self.table.colsep # fill columns if next ones are a bottom of wide-multirow cell while True: nextcell = self.table.cell() if nextcell is None: # not a bottom of multirow cell break # a bottom part of multirow cell self.body.append('&') if nextcell.width == 1: # insert suitable strut for equalizing row heights in multirow # they also serve to clear colour panels which would hide the text self.body.append(r'\sphinxtablestrut{%d}' % nextcell.cell_id) else: # use \multicolumn for not first row of wide multirow cell self.body.append(r'\multicolumn{%d}{l%s}{\sphinxtablestrut{%d}}' % (nextcell.width, _colsep, nextcell.cell_id)) self.table.col += nextcell.width def visit_acks(self, node: Element) -> None: # this is a list in the source, but should be rendered as a # comma-separated list here bullet_list = cast(nodes.bullet_list, node[0]) list_items = cast(Iterable[nodes.list_item], bullet_list) self.body.append(BLANKLINE) self.body.append(', '.join(n.astext() for n in list_items) + '.') self.body.append(BLANKLINE) raise nodes.SkipNode def visit_bullet_list(self, node: Element) -> None: if not self.compact_list: self.body.append(r'\begin{itemize}' + CR) if self.table: self.table.has_problematic = True def depart_bullet_list(self, node: Element) -> None: if not self.compact_list: self.body.append(r'\end{itemize}' + CR) def visit_enumerated_list(self, node: Element) -> None: def get_enumtype(node: Element) -> str: enumtype = node.get('enumtype', 'arabic') if 'alpha' in enumtype and (node.get('start', 0) + len(node)) > 26: # fallback to arabic if alphabet counter overflows enumtype = 'arabic' return enumtype def get_nested_level(node: Element) -> int: if node is None: return 0 elif isinstance(node, nodes.enumerated_list): return get_nested_level(node.parent) + 1 else: return get_nested_level(node.parent) enum = "enum%s" % toRoman(get_nested_level(node)).lower() enumnext = "enum%s" % toRoman(get_nested_level(node) + 1).lower() style = ENUMERATE_LIST_STYLE.get(get_enumtype(node)) prefix = node.get('prefix', '') suffix = node.get('suffix', '.') self.body.append(r'\begin{enumerate}' + CR) self.body.append(r'\sphinxsetlistlabels{%s}{%s}{%s}{%s}{%s}%%' % (style, enum, enumnext, prefix, suffix) + CR) if 'start' in node: self.body.append(r'\setcounter{%s}{%d}' % (enum, node['start'] - 1) + CR) if self.table: self.table.has_problematic = True def depart_enumerated_list(self, node: Element) -> None: self.body.append(r'\end{enumerate}' + CR) def visit_list_item(self, node: Element) -> None: # Append "{}" in case the next character is "[", which would break # LaTeX's list environment (no numbering and the "[" is not printed). self.body.append(r'\item {} ') def depart_list_item(self, node: Element) -> None: self.body.append(CR) def visit_definition_list(self, node: Element) -> None: self.body.append(r'\begin{description}' + CR) if self.table: self.table.has_problematic = True def depart_definition_list(self, node: Element) -> None: self.body.append(r'\end{description}' + CR) def visit_definition_list_item(self, node: Element) -> None: pass def depart_definition_list_item(self, node: Element) -> None: pass def visit_term(self, node: Element) -> None: self.in_term += 1 ctx = '' if node.get('ids'): ctx = r'\phantomsection' for node_id in node['ids']: ctx += self.hypertarget(node_id, anchor=False) ctx += r'}' self.body.append(r'\sphinxlineitem{') self.context.append(ctx) def depart_term(self, node: Element) -> None: self.body.append(self.context.pop()) self.in_term -= 1 def visit_classifier(self, node: Element) -> None: self.body.append('{[}') def depart_classifier(self, node: Element) -> None: self.body.append('{]}') def visit_definition(self, node: Element) -> None: pass def depart_definition(self, node: Element) -> None: self.body.append(CR) def visit_field_list(self, node: Element) -> None: self.body.append(r'\begin{quote}\begin{description}' + CR) if self.table: self.table.has_problematic = True def depart_field_list(self, node: Element) -> None: self.body.append(r'\end{description}\end{quote}' + CR) def visit_field(self, node: Element) -> None: pass def depart_field(self, node: Element) -> None: pass visit_field_name = visit_term depart_field_name = depart_term visit_field_body = visit_definition depart_field_body = depart_definition def visit_paragraph(self, node: Element) -> None: index = node.parent.index(node) if (index > 0 and isinstance(node.parent, nodes.compound) and not isinstance(node.parent[index - 1], nodes.paragraph) and not isinstance(node.parent[index - 1], nodes.compound)): # insert blank line, if the paragraph follows a non-paragraph node in a compound self.body.append(r'\noindent' + CR) elif index == 1 and isinstance(node.parent, (nodes.footnote, footnotetext)): # don't insert blank line, if the paragraph is second child of a footnote # (first one is label node) pass else: # the \sphinxAtStartPar is to allow hyphenation of first word of # a paragraph in narrow contexts such as in a table cell # added as two items (cf. line trimming in depart_entry()) self.body.extend([CR, r'\sphinxAtStartPar' + CR]) def depart_paragraph(self, node: Element) -> None: self.body.append(CR) def visit_centered(self, node: Element) -> None: self.body.append(CR + r'\begin{center}') if self.table: self.table.has_problematic = True def depart_centered(self, node: Element) -> None: self.body.append(CR + r'\end{center}') def visit_hlist(self, node: Element) -> None: self.compact_list += 1 ncolumns = node['ncolumns'] if self.compact_list > 1: self.body.append(r'\setlength{\multicolsep}{0pt}' + CR) self.body.append(r'\begin{multicols}{' + ncolumns + r'}\raggedright' + CR) self.body.append(r'\begin{itemize}\setlength{\itemsep}{0pt}' r'\setlength{\parskip}{0pt}' + CR) if self.table: self.table.has_problematic = True def depart_hlist(self, node: Element) -> None: self.compact_list -= 1 self.body.append(r'\end{itemize}\raggedcolumns\end{multicols}' + CR) def visit_hlistcol(self, node: Element) -> None: pass def depart_hlistcol(self, node: Element) -> None: # \columnbreak would guarantee same columns as in html output. But # some testing with long items showed that columns may be too uneven. # And in case only of short items, the automatic column breaks should # match the ones pre-computed by the hlist() directive. # self.body.append(r'\columnbreak\n') pass def latex_image_length(self, width_str: str, scale: int = 100) -> str | None: try: return rstdim_to_latexdim(width_str, scale) except ValueError: logger.warning(__('dimension unit %s is invalid. Ignored.'), width_str) return None def is_inline(self, node: Element) -> bool: """Check whether a node represents an inline element.""" return isinstance(node.parent, nodes.TextElement) def visit_image(self, node: Element) -> None: pre: list[str] = [] # in reverse order post: list[str] = [] include_graphics_options = [] has_hyperlink = isinstance(node.parent, nodes.reference) if has_hyperlink: is_inline = self.is_inline(node.parent) else: is_inline = self.is_inline(node) if 'width' in node: if 'scale' in node: w = self.latex_image_length(node['width'], node['scale']) else: w = self.latex_image_length(node['width']) if w: include_graphics_options.append('width=%s' % w) if 'height' in node: if 'scale' in node: h = self.latex_image_length(node['height'], node['scale']) else: h = self.latex_image_length(node['height']) if h: include_graphics_options.append('height=%s' % h) if 'scale' in node: if not include_graphics_options: # if no "width" nor "height", \sphinxincludegraphics will fit # to the available text width if oversized after rescaling. include_graphics_options.append('scale=%s' % (float(node['scale']) / 100.0)) if 'align' in node: align_prepost = { # By default latex aligns the top of an image. (1, 'top'): ('', ''), (1, 'middle'): (r'\raisebox{-0.5\height}{', '}'), (1, 'bottom'): (r'\raisebox{-\height}{', '}'), (0, 'center'): (r'{\hspace*{\fill}', r'\hspace*{\fill}}'), # These 2 don't exactly do the right thing. The image should # be floated alongside the paragraph. See # https://www.w3.org/TR/html4/struct/objects.html#adef-align-IMG (0, 'left'): ('{', r'\hspace*{\fill}}'), (0, 'right'): (r'{\hspace*{\fill}', '}'), } try: pre.append(align_prepost[is_inline, node['align']][0]) post.append(align_prepost[is_inline, node['align']][1]) except KeyError: pass if self.in_parsed_literal: pre.append(r'{\sphinxunactivateextrasandspace ') post.append('}') if not is_inline and not has_hyperlink: pre.append(CR + r'\noindent') post.append(CR) pre.reverse() if node['uri'] in self.builder.images: uri = self.builder.images[node['uri']] else: # missing image! if self.ignore_missing_images: return uri = node['uri'] if uri.find('://') != -1: # ignore remote images return self.body.extend(pre) options = '' if include_graphics_options: options = '[%s]' % ','.join(include_graphics_options) base, ext = path.splitext(uri) if self.in_title and base: # Lowercase tokens forcely because some fncychap themes capitalize # the options of \sphinxincludegraphics unexpectedly (ex. WIDTH=...). cmd = fr'\lowercase{{\sphinxincludegraphics{options}}}{{{{{base}}}{ext}}}' else: cmd = fr'\sphinxincludegraphics{options}{{{{{base}}}{ext}}}' # escape filepath for includegraphics, https://tex.stackexchange.com/a/202714/41112 if '#' in base: cmd = r'{\catcode`\#=12' + cmd + '}' self.body.append(cmd) self.body.extend(post) def depart_image(self, node: Element) -> None: pass def visit_figure(self, node: Element) -> None: align = self.elements['figure_align'] if self.no_latex_floats: align = "H" if self.table: # TODO: support align option if 'width' in node: length = self.latex_image_length(node['width']) if length: self.body.append(r'\begin{sphinxfigure-in-table}[%s]' % length + CR) self.body.append(r'\centering' + CR) else: self.body.append(r'\begin{sphinxfigure-in-table}' + CR) self.body.append(r'\centering' + CR) if any(isinstance(child, nodes.caption) for child in node): self.body.append(r'\capstart') self.context.append(r'\end{sphinxfigure-in-table}\relax' + CR) elif node.get('align', '') in ('left', 'right'): length = None if 'width' in node: length = self.latex_image_length(node['width']) elif isinstance(node[0], nodes.image) and 'width' in node[0]: length = self.latex_image_length(node[0]['width']) # Insert a blank line to prevent an infinite loop # https://github.com/sphinx-doc/sphinx/issues/7059 self.body.append(BLANKLINE) self.body.append(r'\begin{wrapfigure}{%s}{%s}' % ('r' if node['align'] == 'right' else 'l', length or '0pt') + CR) self.body.append(r'\centering') self.context.append(r'\end{wrapfigure}' + BLANKLINE + r'\mbox{}\par\vskip-\dimexpr\baselineskip+\parskip\relax' + CR) # avoid disappearance if no text next issues/11079 elif self.in_minipage: self.body.append(CR + r'\begin{center}') self.context.append(r'\end{center}' + CR) else: self.body.append(CR + r'\begin{figure}[%s]' % align + CR) self.body.append(r'\centering' + CR) if any(isinstance(child, nodes.caption) for child in node): self.body.append(r'\capstart' + CR) self.context.append(r'\end{figure}' + CR) def depart_figure(self, node: Element) -> None: self.body.append(self.context.pop()) def visit_caption(self, node: Element) -> None: self.in_caption += 1 if isinstance(node.parent, captioned_literal_block): self.body.append(r'\sphinxSetupCaptionForVerbatim{') elif self.in_minipage and isinstance(node.parent, nodes.figure): self.body.append(r'\captionof{figure}{') elif self.table and node.parent.tagname == 'figure': self.body.append(r'\sphinxfigcaption{') else: self.body.append(r'\caption{') def depart_caption(self, node: Element) -> None: self.body.append('}') if isinstance(node.parent, nodes.figure): labels = self.hypertarget_to(node.parent) self.body.append(labels) self.in_caption -= 1 def visit_legend(self, node: Element) -> None: self.body.append(CR + r'\begin{sphinxlegend}') def depart_legend(self, node: Element) -> None: self.body.append(r'\end{sphinxlegend}' + CR) def visit_admonition(self, node: Element) -> None: self.body.append(CR + r'\begin{sphinxadmonition}{note}') self.no_latex_floats += 1 def depart_admonition(self, node: Element) -> None: self.body.append(r'\end{sphinxadmonition}' + CR) self.no_latex_floats -= 1 def _visit_named_admonition(self, node: Element) -> None: label = admonitionlabels[node.tagname] self.body.append(CR + r'\begin{sphinxadmonition}{%s}{%s:}' % (node.tagname, label)) self.no_latex_floats += 1 def _depart_named_admonition(self, node: Element) -> None: self.body.append(r'\end{sphinxadmonition}' + CR) self.no_latex_floats -= 1 visit_attention = _visit_named_admonition depart_attention = _depart_named_admonition visit_caution = _visit_named_admonition depart_caution = _depart_named_admonition visit_danger = _visit_named_admonition depart_danger = _depart_named_admonition visit_error = _visit_named_admonition depart_error = _depart_named_admonition visit_hint = _visit_named_admonition depart_hint = _depart_named_admonition visit_important = _visit_named_admonition depart_important = _depart_named_admonition visit_note = _visit_named_admonition depart_note = _depart_named_admonition visit_tip = _visit_named_admonition depart_tip = _depart_named_admonition visit_warning = _visit_named_admonition depart_warning = _depart_named_admonition def visit_versionmodified(self, node: Element) -> None: pass def depart_versionmodified(self, node: Element) -> None: pass def visit_target(self, node: Element) -> None: def add_target(id: str) -> None: # indexing uses standard LaTeX index markup, so the targets # will be generated differently if id.startswith('index-'): return # equations also need no extra blank line nor hypertarget # TODO: fix this dependency on mathbase extension internals if id.startswith('equation-'): return # insert blank line, if the target follows a paragraph node index = node.parent.index(node) if index > 0 and isinstance(node.parent[index - 1], nodes.paragraph): self.body.append(CR) # do not generate \phantomsection in \section{} anchor = not self.in_title self.body.append(self.hypertarget(id, anchor=anchor)) # skip if visitor for next node supports hyperlink next_node: Node = node while isinstance(next_node, nodes.target): next_node = next_node.next_node(ascend=True) domain = cast(StandardDomain, self.builder.env.get_domain('std')) if isinstance(next_node, HYPERLINK_SUPPORT_NODES): return if domain.get_enumerable_node_type(next_node) and domain.get_numfig_title(next_node): return if 'refuri' in node: return if 'anonymous' in node: return if node.get('refid'): prev_node = get_prev_node(node) if isinstance(prev_node, nodes.reference) and node['refid'] == prev_node['refid']: # a target for a hyperlink reference having alias pass else: add_target(node['refid']) # Temporary fix for https://github.com/sphinx-doc/sphinx/issues/11093 # TODO: investigate if a more elegant solution exists (see comments of #11093) if node.get('ismod', False): # Detect if the previous nodes are label targets. If so, remove # the refid thereof from node['ids'] to avoid duplicated ids. def has_dup_label(sib: Node | None) -> bool: return isinstance(sib, nodes.target) and sib.get('refid') in node['ids'] prev = get_prev_node(node) if has_dup_label(prev): ids = node['ids'][:] # copy to avoid side-effects while has_dup_label(prev): ids.remove(prev['refid']) # type: ignore[index] prev = get_prev_node(prev) # type: ignore[arg-type] else: ids = iter(node['ids']) # read-only iterator else: ids = iter(node['ids']) # read-only iterator for id in ids: add_target(id) def depart_target(self, node: Element) -> None: pass def visit_attribution(self, node: Element) -> None: self.body.append(CR + r'\begin{flushright}' + CR) self.body.append('---') def depart_attribution(self, node: Element) -> None: self.body.append(CR + r'\end{flushright}' + CR) def visit_index(self, node: Element) -> None: def escape(value: str) -> str: value = self.encode(value) value = value.replace(r'\{', r'\sphinxleftcurlybrace{}') value = value.replace(r'\}', r'\sphinxrightcurlybrace{}') value = value.replace('"', '""') value = value.replace('@', '"@') value = value.replace('!', '"!') value = value.replace('|', r'\textbar{}') return value def style(string: str) -> str: match = EXTRA_RE.match(string) if match: return match.expand(r'\\spxentry{\1}\\spxextra{\2}') else: return r'\spxentry{%s}' % string if not node.get('inline', True): self.body.append(CR) entries = node['entries'] for type, string, _tid, ismain, _key in entries: m = '' if ismain: m = '|spxpagem' try: parts = tuple(map(escape, split_index_msg(type, string))) styled = tuple(map(style, parts)) if type == 'single': try: p1, p2 = parts P1, P2 = styled self.body.append(fr'\index{{{p1}@{P1}!{p2}@{P2}{m}}}') except ValueError: p, = parts P, = styled self.body.append(fr'\index{{{p}@{P}{m}}}') elif type == 'pair': p1, p2 = parts P1, P2 = styled self.body.append(fr'\index{{{p1}@{P1}!{p2}@{P2}{m}}}' fr'\index{{{p2}@{P2}!{p1}@{P1}{m}}}') elif type == 'triple': p1, p2, p3 = parts P1, P2, P3 = styled self.body.append( fr'\index{{{p1}@{P1}!{p2} {p3}@{P2} {P3}{m}}}' fr'\index{{{p2}@{P2}!{p3}, {p1}@{P3}, {P1}{m}}}' fr'\index{{{p3}@{P3}!{p1} {p2}@{P1} {P2}{m}}}') elif type in {'see', 'seealso'}: p1, p2 = parts P1, _P2 = styled self.body.append(fr'\index{{{p1}@{P1}|see{{{p2}}}}}') else: logger.warning(__('unknown index entry type %s found'), type) except ValueError as err: logger.warning(str(err)) if not node.get('inline', True): self.body.append(r'\ignorespaces ') raise nodes.SkipNode def visit_raw(self, node: Element) -> None: if not self.is_inline(node): self.body.append(CR) if 'latex' in node.get('format', '').split(): self.body.append(node.astext()) if not self.is_inline(node): self.body.append(CR) raise nodes.SkipNode def visit_reference(self, node: Element) -> None: if not self.in_title: for id in node.get('ids'): anchor = not self.in_caption self.body += self.hypertarget(id, anchor=anchor) if not self.is_inline(node): self.body.append(CR) uri = node.get('refuri', '') if not uri and node.get('refid'): uri = '%' + self.curfilestack[-1] + '#' + node['refid'] if self.in_title or not uri: self.context.append('') elif uri.startswith('#'): # references to labels in the same document id = self.curfilestack[-1] + ':' + uri[1:] self.body.append(self.hyperlink(id)) self.body.append(r'\sphinxsamedocref{') if self.config.latex_show_pagerefs and not \ self.in_production_list: self.context.append('}}} (%s)' % self.hyperpageref(id)) else: self.context.append('}}}') elif uri.startswith('%'): # references to documents or labels inside documents hashindex = uri.find('#') if hashindex == -1: # reference to the document id = uri[1:] + '::doc' else: # reference to a label id = uri[1:].replace('#', ':') self.body.append(self.hyperlink(id)) if (len(node) and isinstance(node[0], nodes.Element) and 'std-term' in node[0].get('classes', [])): # don't add a pageref for glossary terms self.context.append('}}}') # mark up as termreference self.body.append(r'\sphinxtermref{') else: self.body.append(r'\sphinxcrossref{') if self.config.latex_show_pagerefs and not self.in_production_list: self.context.append('}}} (%s)' % self.hyperpageref(id)) else: self.context.append('}}}') else: if len(node) == 1 and uri == node[0]: if node.get('nolinkurl'): self.body.append(r'\sphinxnolinkurl{%s}' % self.encode_uri(uri)) else: self.body.append(r'\sphinxurl{%s}' % self.encode_uri(uri)) raise nodes.SkipNode else: self.body.append(r'\sphinxhref{%s}{' % self.encode_uri(uri)) self.context.append('}') def depart_reference(self, node: Element) -> None: self.body.append(self.context.pop()) if not self.is_inline(node): self.body.append(CR) def visit_number_reference(self, node: Element) -> None: if node.get('refid'): id = self.curfilestack[-1] + ':' + node['refid'] else: id = node.get('refuri', '')[1:].replace('#', ':') title = self.escape(node.get('title', '%s')).replace(r'\%s', '%s') if r'\{name\}' in title or r'\{number\}' in title: # new style format (cf. "Fig.%{number}") title = title.replace(r'\{name\}', '{name}').replace(r'\{number\}', '{number}') text = escape_abbr(title).format(name=r'\nameref{%s}' % self.idescape(id), number=r'\ref{%s}' % self.idescape(id)) else: # old style format (cf. "Fig.%{number}") text = escape_abbr(title) % (r'\ref{%s}' % self.idescape(id)) hyperref = fr'\hyperref[{self.idescape(id)}]{{{text}}}' self.body.append(hyperref) raise nodes.SkipNode def visit_download_reference(self, node: Element) -> None: pass def depart_download_reference(self, node: Element) -> None: pass def visit_pending_xref(self, node: Element) -> None: pass def depart_pending_xref(self, node: Element) -> None: pass def visit_emphasis(self, node: Element) -> None: self.body.append(r'\sphinxstyleemphasis{') def depart_emphasis(self, node: Element) -> None: self.body.append('}') def visit_literal_emphasis(self, node: Element) -> None: self.body.append(r'\sphinxstyleliteralemphasis{\sphinxupquote{') def depart_literal_emphasis(self, node: Element) -> None: self.body.append('}}') def visit_strong(self, node: Element) -> None: self.body.append(r'\sphinxstylestrong{') def depart_strong(self, node: Element) -> None: self.body.append('}') def visit_literal_strong(self, node: Element) -> None: self.body.append(r'\sphinxstyleliteralstrong{\sphinxupquote{') def depart_literal_strong(self, node: Element) -> None: self.body.append('}}') def visit_abbreviation(self, node: Element) -> None: abbr = node.astext() self.body.append(r'\sphinxstyleabbreviation{') # spell out the explanation once if node.hasattr('explanation') and abbr not in self.handled_abbrs: self.context.append('} (%s)' % self.encode(node['explanation'])) self.handled_abbrs.add(abbr) else: self.context.append('}') def depart_abbreviation(self, node: Element) -> None: self.body.append(self.context.pop()) def visit_manpage(self, node: Element) -> None: return self.visit_literal_emphasis(node) def depart_manpage(self, node: Element) -> None: return self.depart_literal_emphasis(node) def visit_title_reference(self, node: Element) -> None: self.body.append(r'\sphinxtitleref{') def depart_title_reference(self, node: Element) -> None: self.body.append('}') def visit_thebibliography(self, node: Element) -> None: citations = cast(Iterable[nodes.citation], node) labels = (cast(nodes.label, citation[0]) for citation in citations) longest_label = max((label.astext() for label in labels), key=len) if len(longest_label) > MAX_CITATION_LABEL_LENGTH: # adjust max width of citation labels not to break the layout longest_label = longest_label[:MAX_CITATION_LABEL_LENGTH] self.body.append(CR + r'\begin{sphinxthebibliography}{%s}' % self.encode(longest_label) + CR) def depart_thebibliography(self, node: Element) -> None: self.body.append(r'\end{sphinxthebibliography}' + CR) def visit_citation(self, node: Element) -> None: label = cast(nodes.label, node[0]) self.body.append(fr'\bibitem[{self.encode(label.astext())}]' fr'{{{node["docname"]}:{node["ids"][0]}}}') def depart_citation(self, node: Element) -> None: pass def visit_citation_reference(self, node: Element) -> None: if self.in_title: pass else: self.body.append(fr'\sphinxcite{{{node["docname"]}:{node["refname"]}}}') raise nodes.SkipNode def depart_citation_reference(self, node: Element) -> None: pass def visit_literal(self, node: Element) -> None: if self.in_title: self.body.append(r'\sphinxstyleliteralintitle{\sphinxupquote{') return elif 'kbd' in node['classes']: self.body.append(r'\sphinxkeyboard{\sphinxupquote{') return lang = node.get("language", None) if 'code' not in node['classes'] or not lang: self.body.append(r'\sphinxcode{\sphinxupquote{') return opts = self.config.highlight_options.get(lang, {}) hlcode = self.highlighter.highlight_block( node.astext(), lang, opts=opts, location=node, nowrap=True) self.body.append(r'\sphinxcode{\sphinxupquote{%' + CR + hlcode.rstrip() + '%' + CR + '}}') raise nodes.SkipNode def depart_literal(self, node: Element) -> None: self.body.append('}}') def visit_footnote_reference(self, node: Element) -> None: raise nodes.SkipNode def visit_footnotemark(self, node: Element) -> None: self.body.append(r'\sphinxfootnotemark[') def depart_footnotemark(self, node: Element) -> None: self.body.append(']') def visit_footnotetext(self, node: Element) -> None: label = cast(nodes.label, node[0]) self.body.append('%' + CR) self.body.append(r'\begin{footnotetext}[%s]' % label.astext()) self.body.append(r'\sphinxAtStartFootnote' + CR) def depart_footnotetext(self, node: Element) -> None: # the \ignorespaces in particular for after table header use self.body.append('%' + CR) self.body.append(r'\end{footnotetext}\ignorespaces ') def visit_captioned_literal_block(self, node: Element) -> None: pass def depart_captioned_literal_block(self, node: Element) -> None: pass def visit_literal_block(self, node: Element) -> None: if node.rawsource != node.astext(): # most probably a parsed-literal block -- don't highlight self.in_parsed_literal += 1 self.body.append(r'\begin{sphinxalltt}' + CR) else: labels = self.hypertarget_to(node) if isinstance(node.parent, captioned_literal_block): labels += self.hypertarget_to(node.parent) if labels and not self.in_footnote: self.body.append(CR + r'\def\sphinxLiteralBlockLabel{' + labels + '}') lang = node.get('language', 'default') linenos = node.get('linenos', False) highlight_args = node.get('highlight_args', {}) highlight_args['force'] = node.get('force', False) opts = self.config.highlight_options.get(lang, {}) hlcode = self.highlighter.highlight_block( node.rawsource, lang, opts=opts, linenos=linenos, location=node, **highlight_args, ) if self.in_footnote: self.body.append(CR + r'\sphinxSetupCodeBlockInFootnote') hlcode = hlcode.replace(r'\begin{Verbatim}', r'\begin{sphinxVerbatim}') # if in table raise verbatim flag to avoid "tabulary" environment # and opt for sphinxVerbatimintable to handle caption & long lines elif self.table: self.table.has_problematic = True self.table.has_verbatim = True hlcode = hlcode.replace(r'\begin{Verbatim}', r'\begin{sphinxVerbatimintable}') else: hlcode = hlcode.replace(r'\begin{Verbatim}', r'\begin{sphinxVerbatim}') # get consistent trailer hlcode = hlcode.rstrip()[:-14] # strip \end{Verbatim} if self.table and not self.in_footnote: hlcode += r'\end{sphinxVerbatimintable}' else: hlcode += r'\end{sphinxVerbatim}' hllines = str(highlight_args.get('hl_lines', []))[1:-1] if hllines: self.body.append(CR + r'\fvset{hllines={, %s,}}%%' % hllines) self.body.append(CR + hlcode + CR) if hllines: self.body.append(r'\sphinxresetverbatimhllines' + CR) raise nodes.SkipNode def depart_literal_block(self, node: Element) -> None: self.body.append(CR + r'\end{sphinxalltt}' + CR) self.in_parsed_literal -= 1 visit_doctest_block = visit_literal_block depart_doctest_block = depart_literal_block def visit_line(self, node: Element) -> None: self.body.append(r'\item[] ') def depart_line(self, node: Element) -> None: self.body.append(CR) def visit_line_block(self, node: Element) -> None: if isinstance(node.parent, nodes.line_block): self.body.append(r'\item[]' + CR) self.body.append(r'\begin{DUlineblock}{\DUlineblockindent}' + CR) else: self.body.append(CR + r'\begin{DUlineblock}{0em}' + CR) if self.table: self.table.has_problematic = True def depart_line_block(self, node: Element) -> None: self.body.append(r'\end{DUlineblock}' + CR) def visit_block_quote(self, node: Element) -> None: # If the block quote contains a single object and that object # is a list, then generate a list not a block quote. # This lets us indent lists. done = 0 if len(node.children) == 1: child = node.children[0] if isinstance(child, (nodes.bullet_list, nodes.enumerated_list)): done = 1 if not done: self.body.append(r'\begin{quote}' + CR) if self.table: self.table.has_problematic = True def depart_block_quote(self, node: Element) -> None: done = 0 if len(node.children) == 1: child = node.children[0] if isinstance(child, (nodes.bullet_list, nodes.enumerated_list)): done = 1 if not done: self.body.append(r'\end{quote}' + CR) # option node handling copied from docutils' latex writer def visit_option(self, node: Element) -> None: if self.context[-1]: # this is not the first option self.body.append(', ') def depart_option(self, node: Element) -> None: # flag that the first option is done. self.context[-1] += 1 def visit_option_argument(self, node: Element) -> None: """The delimiter between an option and its argument.""" self.body.append(node.get('delimiter', ' ')) def depart_option_argument(self, node: Element) -> None: pass def visit_option_group(self, node: Element) -> None: self.body.append(r'\item [') # flag for first option self.context.append(0) def depart_option_group(self, node: Element) -> None: self.context.pop() # the flag self.body.append('] ') def visit_option_list(self, node: Element) -> None: self.body.append(r'\begin{optionlist}{3cm}' + CR) if self.table: self.table.has_problematic = True def depart_option_list(self, node: Element) -> None: self.body.append(r'\end{optionlist}' + CR) def visit_option_list_item(self, node: Element) -> None: pass def depart_option_list_item(self, node: Element) -> None: pass def visit_option_string(self, node: Element) -> None: ostring = node.astext() self.body.append(self.encode(ostring)) raise nodes.SkipNode def visit_description(self, node: Element) -> None: self.body.append(' ') def depart_description(self, node: Element) -> None: pass def visit_superscript(self, node: Element) -> None: self.body.append(r'$^{\text{') def depart_superscript(self, node: Element) -> None: self.body.append('}}$') def visit_subscript(self, node: Element) -> None: self.body.append(r'$_{\text{') def depart_subscript(self, node: Element) -> None: self.body.append('}}$') def visit_inline(self, node: Element) -> None: classes = node.get('classes', []) if classes in [['menuselection']]: self.body.append(r'\sphinxmenuselection{') self.context.append('}') elif classes in [['guilabel']]: self.body.append(r'\sphinxguilabel{') self.context.append('}') elif classes in [['accelerator']]: self.body.append(r'\sphinxaccelerator{') self.context.append('}') elif classes and not self.in_title: self.body.append(r'\DUrole{%s}{' % ','.join(classes)) self.context.append('}') else: self.context.append('') def depart_inline(self, node: Element) -> None: self.body.append(self.context.pop()) def visit_generated(self, node: Element) -> None: pass def depart_generated(self, node: Element) -> None: pass def visit_compound(self, node: Element) -> None: pass def depart_compound(self, node: Element) -> None: pass def visit_container(self, node: Element) -> None: classes = node.get('classes', []) for c in classes: self.body.append('\n\\begin{sphinxuseclass}{%s}' % c) def depart_container(self, node: Element) -> None: classes = node.get('classes', []) for _c in classes: self.body.append('\n\\end{sphinxuseclass}') def visit_decoration(self, node: Element) -> None: pass def depart_decoration(self, node: Element) -> None: pass # docutils-generated elements that we don't support def visit_header(self, node: Element) -> None: raise nodes.SkipNode def visit_footer(self, node: Element) -> None: raise nodes.SkipNode def visit_docinfo(self, node: Element) -> None: raise nodes.SkipNode # text handling def encode(self, text: str) -> str: text = self.escape(text) if self.literal_whitespace: # Insert a blank before the newline, to avoid # ! LaTeX Error: There's no line here to end. text = text.replace(CR, r'~\\' + CR).replace(' ', '~') return text def encode_uri(self, text: str) -> str: # TODO: it is probably wrong that this uses texescape.escape() # this must be checked against hyperref package exact dealings # mainly, %, #, {, } and \ need escaping via a \ escape # in \href, the tilde is allowed and must be represented literally return self.encode(text).replace(r'\textasciitilde{}', '~').\ replace(r'\sphinxhyphen{}', '-').\ replace(r'\textquotesingle{}', "'") def visit_Text(self, node: Text) -> None: text = self.encode(node.astext()) self.body.append(text) def depart_Text(self, node: Text) -> None: pass def visit_comment(self, node: Element) -> None: raise nodes.SkipNode def visit_meta(self, node: Element) -> None: # only valid for HTML raise nodes.SkipNode def visit_system_message(self, node: Element) -> None: pass def depart_system_message(self, node: Element) -> None: self.body.append(CR) def visit_math(self, node: Element) -> None: if self.in_title: self.body.append(r'\protect\(%s\protect\)' % node.astext()) else: self.body.append(r'\(%s\)' % node.astext()) raise nodes.SkipNode def visit_math_block(self, node: Element) -> None: if node.get('label'): label = f"equation:{node['docname']}:{node['label']}" else: label = None if node.get('nowrap'): if label: self.body.append(r'\label{%s}' % label) self.body.append(node.astext()) else: from sphinx.util.math import wrap_displaymath self.body.append(wrap_displaymath(node.astext(), label, self.config.math_number_all)) raise nodes.SkipNode def visit_math_reference(self, node: Element) -> None: label = f"equation:{node['docname']}:{node['target']}" eqref_format = self.config.math_eqref_format if eqref_format: try: ref = r'\ref{%s}' % label self.body.append(eqref_format.format(number=ref)) except KeyError as exc: logger.warning(__('Invalid math_eqref_format: %r'), exc, location=node) self.body.append(r'\eqref{%s}' % label) else: self.body.append(r'\eqref{%s}' % label) def depart_math_reference(self, node: Element) -> None: pass # FIXME: Workaround to avoid circular import # refs: https://github.com/sphinx-doc/sphinx/issues/5433 from sphinx.builders.latex.nodes import ( # noqa: E402 # isort:skip HYPERLINK_SUPPORT_NODES, captioned_literal_block, footnotetext, )
f2db591789c6d0851466feeddd3e11a89130f612
010279e2ba272d09e9d2c4e903722e5faba2cf7a
/contrib/python/fonttools/fontTools/ttLib/tables/_k_e_r_n.py
94183c8a0a1e8a02cfc229d525030d9ae2b27ddf
[ "MIT", "LicenseRef-scancode-unknown-license-reference", "OFL-1.1", "BSD-3-Clause", "Apache-2.0" ]
permissive
catboost/catboost
854c1a1f439a96f1ae6b48e16644be20aa04dba2
f5042e35b945aded77b23470ead62d7eacefde92
refs/heads/master
2023-09-01T12:14:14.174108
2023-09-01T10:01:01
2023-09-01T10:22:12
97,556,265
8,012
1,425
Apache-2.0
2023-09-11T03:32:32
2017-07-18T05:29:04
Python
UTF-8
Python
false
false
10,436
py
_k_e_r_n.py
from fontTools.ttLib import getSearchRange from fontTools.misc.textTools import safeEval, readHex from fontTools.misc.fixedTools import fixedToFloat as fi2fl, floatToFixed as fl2fi from . import DefaultTable import struct import sys import array import logging log = logging.getLogger(__name__) class table__k_e_r_n(DefaultTable.DefaultTable): def getkern(self, format): for subtable in self.kernTables: if subtable.format == format: return subtable return None # not found def decompile(self, data, ttFont): version, nTables = struct.unpack(">HH", data[:4]) apple = False if (len(data) >= 8) and (version == 1): # AAT Apple's "new" format. Hm. version, nTables = struct.unpack(">LL", data[:8]) self.version = fi2fl(version, 16) data = data[8:] apple = True else: self.version = version data = data[4:] self.kernTables = [] for i in range(nTables): if self.version == 1.0: # Apple length, coverage, subtableFormat = struct.unpack(">LBB", data[:6]) else: # in OpenType spec the "version" field refers to the common # subtable header; the actual subtable format is stored in # the 8-15 mask bits of "coverage" field. # This "version" is always 0 so we ignore it here _, length, subtableFormat, coverage = struct.unpack(">HHBB", data[:6]) if nTables == 1 and subtableFormat == 0: # The "length" value is ignored since some fonts # (like OpenSans and Calibri) have a subtable larger than # its value. (nPairs,) = struct.unpack(">H", data[6:8]) calculated_length = (nPairs * 6) + 14 if length != calculated_length: log.warning( "'kern' subtable longer than defined: " "%d bytes instead of %d bytes" % (calculated_length, length) ) length = calculated_length if subtableFormat not in kern_classes: subtable = KernTable_format_unkown(subtableFormat) else: subtable = kern_classes[subtableFormat](apple) subtable.decompile(data[:length], ttFont) self.kernTables.append(subtable) data = data[length:] def compile(self, ttFont): if hasattr(self, "kernTables"): nTables = len(self.kernTables) else: nTables = 0 if self.version == 1.0: # AAT Apple's "new" format. data = struct.pack(">LL", fl2fi(self.version, 16), nTables) else: data = struct.pack(">HH", self.version, nTables) if hasattr(self, "kernTables"): for subtable in self.kernTables: data = data + subtable.compile(ttFont) return data def toXML(self, writer, ttFont): writer.simpletag("version", value=self.version) writer.newline() for subtable in self.kernTables: subtable.toXML(writer, ttFont) def fromXML(self, name, attrs, content, ttFont): if name == "version": self.version = safeEval(attrs["value"]) return if name != "kernsubtable": return if not hasattr(self, "kernTables"): self.kernTables = [] format = safeEval(attrs["format"]) if format not in kern_classes: subtable = KernTable_format_unkown(format) else: apple = self.version == 1.0 subtable = kern_classes[format](apple) self.kernTables.append(subtable) subtable.fromXML(name, attrs, content, ttFont) class KernTable_format_0(object): # 'version' is kept for backward compatibility version = format = 0 def __init__(self, apple=False): self.apple = apple def decompile(self, data, ttFont): if not self.apple: version, length, subtableFormat, coverage = struct.unpack(">HHBB", data[:6]) if version != 0: from fontTools.ttLib import TTLibError raise TTLibError("unsupported kern subtable version: %d" % version) tupleIndex = None # Should we also assert length == len(data)? data = data[6:] else: length, coverage, subtableFormat, tupleIndex = struct.unpack( ">LBBH", data[:8] ) data = data[8:] assert self.format == subtableFormat, "unsupported format" self.coverage = coverage self.tupleIndex = tupleIndex self.kernTable = kernTable = {} nPairs, searchRange, entrySelector, rangeShift = struct.unpack( ">HHHH", data[:8] ) data = data[8:] datas = array.array("H", data[: 6 * nPairs]) if sys.byteorder != "big": datas.byteswap() it = iter(datas) glyphOrder = ttFont.getGlyphOrder() for k in range(nPairs): left, right, value = next(it), next(it), next(it) if value >= 32768: value -= 65536 try: kernTable[(glyphOrder[left], glyphOrder[right])] = value except IndexError: # Slower, but will not throw an IndexError on an invalid # glyph id. kernTable[ (ttFont.getGlyphName(left), ttFont.getGlyphName(right)) ] = value if len(data) > 6 * nPairs + 4: # Ignore up to 4 bytes excess log.warning( "excess data in 'kern' subtable: %d bytes", len(data) - 6 * nPairs ) def compile(self, ttFont): nPairs = min(len(self.kernTable), 0xFFFF) searchRange, entrySelector, rangeShift = getSearchRange(nPairs, 6) searchRange &= 0xFFFF entrySelector = min(entrySelector, 0xFFFF) rangeShift = min(rangeShift, 0xFFFF) data = struct.pack(">HHHH", nPairs, searchRange, entrySelector, rangeShift) # yeehee! (I mean, turn names into indices) try: reverseOrder = ttFont.getReverseGlyphMap() kernTable = sorted( (reverseOrder[left], reverseOrder[right], value) for ((left, right), value) in self.kernTable.items() ) except KeyError: # Slower, but will not throw KeyError on invalid glyph id. getGlyphID = ttFont.getGlyphID kernTable = sorted( (getGlyphID(left), getGlyphID(right), value) for ((left, right), value) in self.kernTable.items() ) for left, right, value in kernTable: data = data + struct.pack(">HHh", left, right, value) if not self.apple: version = 0 length = len(data) + 6 if length >= 0x10000: log.warning( '"kern" subtable overflow, ' "truncating length value while preserving pairs." ) length &= 0xFFFF header = struct.pack(">HHBB", version, length, self.format, self.coverage) else: if self.tupleIndex is None: # sensible default when compiling a TTX from an old fonttools # or when inserting a Windows-style format 0 subtable into an # Apple version=1.0 kern table log.warning("'tupleIndex' is None; default to 0") self.tupleIndex = 0 length = len(data) + 8 header = struct.pack( ">LBBH", length, self.coverage, self.format, self.tupleIndex ) return header + data def toXML(self, writer, ttFont): attrs = dict(coverage=self.coverage, format=self.format) if self.apple: if self.tupleIndex is None: log.warning("'tupleIndex' is None; default to 0") attrs["tupleIndex"] = 0 else: attrs["tupleIndex"] = self.tupleIndex writer.begintag("kernsubtable", **attrs) writer.newline() items = sorted(self.kernTable.items()) for (left, right), value in items: writer.simpletag("pair", [("l", left), ("r", right), ("v", value)]) writer.newline() writer.endtag("kernsubtable") writer.newline() def fromXML(self, name, attrs, content, ttFont): self.coverage = safeEval(attrs["coverage"]) subtableFormat = safeEval(attrs["format"]) if self.apple: if "tupleIndex" in attrs: self.tupleIndex = safeEval(attrs["tupleIndex"]) else: # previous fontTools versions didn't export tupleIndex log.warning("Apple kern subtable is missing 'tupleIndex' attribute") self.tupleIndex = None else: self.tupleIndex = None assert subtableFormat == self.format, "unsupported format" if not hasattr(self, "kernTable"): self.kernTable = {} for element in content: if not isinstance(element, tuple): continue name, attrs, content = element self.kernTable[(attrs["l"], attrs["r"])] = safeEval(attrs["v"]) def __getitem__(self, pair): return self.kernTable[pair] def __setitem__(self, pair, value): self.kernTable[pair] = value def __delitem__(self, pair): del self.kernTable[pair] class KernTable_format_unkown(object): def __init__(self, format): self.format = format def decompile(self, data, ttFont): self.data = data def compile(self, ttFont): return self.data def toXML(self, writer, ttFont): writer.begintag("kernsubtable", format=self.format) writer.newline() writer.comment("unknown 'kern' subtable format") writer.newline() writer.dumphex(self.data) writer.endtag("kernsubtable") writer.newline() def fromXML(self, name, attrs, content, ttFont): self.decompile(readHex(content), ttFont) kern_classes = {0: KernTable_format_0}
7c08ba7b137391ad74c388cc0e521aa92bf20d8a
0f96e82782069113767e0322cd29629503fc2aad
/src/weresync/plugins/weresync_grub2.py
5a123ee9e65f741c8b8dc7702ea24c0368cc0007
[ "Apache-2.0" ]
permissive
DonyorM/weresync
f82afe39d03fd8a8f48562130ee856b2c199dfbf
3c0094cb386358589c48bf48cb60f20acf961f9c
refs/heads/master
2022-12-10T20:02:05.332807
2021-02-20T23:18:34
2021-02-20T23:18:34
72,903,177
225
19
Apache-2.0
2022-12-08T05:15:41
2016-11-05T03:37:34
Python
UTF-8
Python
false
false
6,564
py
weresync_grub2.py
# Copyright 2016 Daniel Manila # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Installs the Grub2 bootloader. This works on both UEFI and MBR systems.""" from weresync.plugins import IBootPlugin import weresync.plugins as plugins import weresync.daemon.device as device from weresync.exception import CopyError, DeviceError import subprocess import os import sys import logging LOGGER = logging.getLogger(__name__) class GrubPlugin(IBootPlugin): """Plugin to install the grub2 bootloader. Does not install grub legacy.""" def __init__(self): super().__init__("grub2", "Grub2") def get_help(self): return __doc__ def install_bootloader(self, source_mnt, target_mnt, copier, excluded_partitions=[], boot_partition=None, root_partition=None, efi_partition=None): if efi_partition is not None: import weresync.plugins.weresync_uuid_copy as uuc # UEFI systems tend to only need a UUID copy. No sense in not # reusing old code. uuc.UUIDPlugin().install_bootloader(source_mnt, target_mnt, copier, excluded_partitions, boot_partition, root_partition, efi_partition) return if root_partition is None and boot_partition is None: # This for loop searches for a partition with a /boot/grub folder # and it assumes it is the root partition for i in copier.target.get_partitions(): try: mount_point = copier.target.mount_point(i) if mount_point is None: copier.target.mount_partition(i, target_mnt) mount_point = target_mnt if os.path.exists(mount_point + ("/" if not mount_point.endswith("/") else "") + "boot/grub"): root_partition = i break else: copier.target.unmount_partition(i) except DeviceError as ex: LOGGER.warning("Could not mount partition {0}. " "Assumed to not be the partition grub " "is on.".format(i)) LOGGER.debug("Error info:\n", exc_info=sys.exc_info()) else: # No partition found raise CopyError("Could not find partition with " "'boot/grub' folder on device {0}".format( copier.target.device)) # These variables are flags that allow the plugin to know if it mounted # any partitions and then clean up properly if it did mounted_here = False boot_mounted_here = False try: if root_partition is not None: mount_loc = copier.target.mount_point(root_partition) if mount_loc is None: plugins.mount_partition(copier.target, copier.lvm_target, root_partition, target_mnt) mounted_here = True mount_loc = target_mnt else: mount_loc = target_mnt # This line avoids double slashes in path mount_loc += "/" if not mount_loc.endswith("/") else "" if boot_partition is not None: boot_folder = mount_loc + "boot" if not os.path.exists(boot_folder): os.makedirs(boot_folder) plugins.mount_partition(copier.target, copier.lvm_target, boot_partition, boot_folder) boot_mounted_here = True print(_("Updating Grub")) grub_cfg = mount_loc + "boot/grub/grub.cfg" old_perms = os.stat(grub_cfg)[0] try: with open(grub_cfg, "r+") as grubcfg: cfg = grubcfg.read() LOGGER.debug("UUID Dicts: " + str(copier.get_uuid_dict())) final = device.multireplace(cfg, copier.get_uuid_dict()) grubcfg.seek(0) grubcfg.write(final) grubcfg.truncate() grubcfg.flush() finally: os.chmod(grub_cfg, old_perms) print(_("Installing Grub")) grub_command = ["grub-install", "--boot-directory=" + mount_loc + "boot", "--recheck", "--target=i386-pc", copier.target.device] LOGGER.debug("Grub command: " + " ".join(grub_command)) grub_install = subprocess.Popen(grub_command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) install_output, install_error = grub_install.communicate() if grub_install.returncode != 0: raise DeviceError(copier.target.device, "Error installing grub.", str(install_output, "utf-8")) print(_("Consider running update-grub on your backup. WereSync" " copies can sometimes fail to capture all the nuances of a" " complex system.")) print(_("Cleaning up.")) finally: # This block cleans up any mounted partitions if boot_mounted_here: copier.target.unmount_partition(boot_partition) if mounted_here: copier.target.unmount_partition(root_partition) print(_("Finished!"))
94a91e1402d22fd2405499c05d4bd63a67354dbb
6189f34eff2831e3e727cd7c5e43bc5b591adffc
/WebMirror/management/rss_parser_funcs/feed_parse_extractLnAddiction.py
a6e92bc8872250140f07f22680e3d2ede31d3062
[ "BSD-3-Clause" ]
permissive
fake-name/ReadableWebProxy
24603660b204a9e7965cfdd4a942ff62d7711e27
ca2e086818433abc08c014dd06bfd22d4985ea2a
refs/heads/master
2023-09-04T03:54:50.043051
2023-08-26T16:08:46
2023-08-26T16:08:46
39,611,770
207
20
BSD-3-Clause
2023-09-11T15:48:15
2015-07-24T04:30:43
Python
UTF-8
Python
false
false
451
py
feed_parse_extractLnAddiction.py
def extractLnAddiction(item): """ # Ln Addiction """ vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or 'preview' in item['title'].lower(): return None if ('Hissou Dungeon Unei Houhou' in item['tags'] or 'Hisshou Dungeon Unei Houhou' in item['tags']) and (chp or frag): return buildReleaseMessageWithType(item, 'Hisshou Dungeon Unei Houhou', vol, chp, frag=frag, postfix=postfix) return False
e4af2cf7af21db7a156ef80d842f59e6d42977df
3bba998ece193dd4594059025d0ebdc86a982e18
/lib/rucio/db/sqla/migrate_repo/versions/9a45bc4ea66d_add_vp_table.py
74351e2405bd3c09aa3bff6da3edd6d1e09c5575
[ "Apache-2.0" ]
permissive
rucio/rucio
d3320db046866be616f534baecdfdb2b28c8d0f1
7f0d229ac0b3bc7dec12c6e158bea2b82d414a3b
refs/heads/master
2023-09-02T15:17:54.376456
2023-08-14T12:54:06
2023-08-21T12:42:21
109,819,364
232
378
Apache-2.0
2023-09-14T12:52:36
2017-11-07T10:15:12
Python
UTF-8
Python
false
false
1,962
py
9a45bc4ea66d_add_vp_table.py
# -*- coding: utf-8 -*- # Copyright European Organization for Nuclear Research (CERN) since 2012 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' add VP table ''' import sqlalchemy as sa from alembic import context from alembic.op import create_primary_key, create_table, create_foreign_key, drop_table from rucio.common.schema import get_schema_value from rucio.db.sqla.types import JSON # Alembic revision identifiers revision = '9a45bc4ea66d' down_revision = '739064d31565' def upgrade(): ''' Upgrade the database to this revision ''' if context.get_context().dialect.name in ['oracle', 'mysql', 'postgresql']: create_table('virtual_placements', sa.Column('scope', sa.String(get_schema_value('SCOPE_LENGTH'))), sa.Column('name', sa.String(get_schema_value('NAME_LENGTH'))), sa.Column('placements', JSON()), sa.Column('created_at', sa.DateTime), sa.Column('updated_at', sa.DateTime) ) create_primary_key('VP_PK', 'virtual_placements', ['scope', 'name']) create_foreign_key('VP_FK', 'virtual_placements', 'dids', ['scope', 'name'], ['scope', 'name']) def downgrade(): ''' Downgrade the database to the previous revision ''' if context.get_context().dialect.name in ['oracle', 'mysql', 'postgresql']: drop_table('virtual_placements')
1a594ca6e89eabdb814125220a3a59f14149ac82
317814366a23277bea87ce6dde4441a53dbb9996
/lib/build_pack_utils/zips.py
e95b1911bede40c22ff041e0ac533dec1bc68738
[ "Apache-2.0" ]
permissive
cloudfoundry/php-buildpack
c163ffbcc733aff454a349dbf2d64843c102ccbd
4bd55b99bafdf81864ed0b0014e064fc585ad7dd
refs/heads/master
2023-09-03T21:00:20.596401
2023-08-23T18:11:25
2023-08-23T18:12:02
15,767,202
140
464
Apache-2.0
2023-09-07T16:07:46
2014-01-09T13:19:03
Python
UTF-8
Python
false
false
9,325
py
zips.py
import os import gzip import bz2 import zipfile import shutil import logging import tempfile from functools import partial from subprocess import Popen from subprocess import PIPE class UnzipUtil(object): """Extract files from compressed archives.""" def __init__(self, config): self._ctx = config self._log = logging.getLogger('zips') def _unzip(self, zipFile, intoDir, strip): """Extract files from a zip archive. Extract all of the files from the archive into the given folder optionally stripping of the first element of the path. Ex: some/file/in/archive.txt -> intoDir/file/in/archive.txt :param zipFile: full path to zip archive :param intoDir: full path to root of extracted files :param strip: trim leading element from path in archive """ if strip: tmpDir = tempfile.mkdtemp(prefix='zips-') else: tmpDir = intoDir zipIn = None try: zipIn = zipfile.ZipFile(zipFile, 'r') zipIn.extractall(tmpDir) if strip: members = zipIn.namelist() if len(members) > 0: firstDir = members[0].split('/')[0] if all([firstDir == m.split('/')[0] for m in members]): moveFrom = os.path.join(tmpDir, firstDir) if os.path.exists(moveFrom) and \ os.path.isdir(moveFrom): for item in os.listdir(moveFrom): shutil.move(os.path.join(moveFrom, item), intoDir) return intoDir self._log.warn("Zip file does not need stripped") for item in os.listdir(tmpDir): shutil.move(os.path.join(tmpDir, item), intoDir) return intoDir finally: if zipIn: zipIn.close() if intoDir != tmpDir and os.path.exists(tmpDir): shutil.rmtree(tmpDir) return intoDir def _gunzip(self, zipFile, intoDir, strip): """Uncompress a gzip'd file. :param zipFile: full path to gzip'd file :param intoDir: full path to directory for uncompressed file :param strip: ignored / not applicable """ path = os.path.join(intoDir, os.path.basename(zipFile)[:-3]) zipIn = None try: zipIn = gzip.open(zipFile, 'rb') with open(path, 'wb') as zipOut: for buf in iter(partial(zipIn.read, 8196), ''): zipOut.write(buf) finally: if zipIn: zipIn.close() return path def _bunzip2(self, zipFile, intoDir, strip): """Uncompress a bzip2'd file. :param zipFile: full path to bzip2'd file :param intoDir: full path to directory for uncompressed file :param strip: ignore / not applicable """ path = os.path.join(intoDir, os.path.basename(zipFile)[:-4]) zipIn = None try: zipIn = bz2.BZ2File(zipFile, 'rb') with open(path, 'wb') as zipOut: for buf in iter(partial(zipIn.read, 8196), ''): zipOut.write(buf) finally: if zipIn: zipIn.close() return path def _tar_bunzip2(self, zipFile, intoDir, strip): """Extract files from a bzip2'd tar archive. Extract all of the files from the archive into the given folder optionally stripping of the first element of the path. Ex: some/file/in/archive.txt -> intoDir/file/in/archive.txt :param zipFile: full path to bzip'd tar archive :param intoDir: full path to root of extracted files :param strip: set `--strip-components 1` argument to tar """ return self._tar_helper(zipFile, intoDir, 'bz2', strip) def _tar_gunzip(self, zipFile, intoDir, strip): """Extract files from a gzip'd tar archive. Extract all of the files from the archive into the given folder optionally stripping of the first element of the path. Ex: some/file/in/archive.txt -> intoDir/file/in/archive.txt :param zipFile: full path to gzip'd tar archive :param intoDir: full path to root of extracted files :param strip: set `--strip-components 1` argument to tar """ return self._tar_helper(zipFile, intoDir, 'gz', strip) def _untar(self, zipFile, intoDir, strip): """Extract files from a tar archive. Extract all of the files from the archive into the given folder optionally stripping of the first element of the path. Ex: some/file/in/archive.txt -> intoDir/file/in/archive.txt :param zipFile: full path to tar archive :param intoDir: full path to root of extracted files :param strip: set `--strip-components 1` argument to tar """ return self._tar_helper(zipFile, intoDir, None, strip) def _tar_helper(self, zipFile, intoDir, compression, strip): """Uncompress and extract files from the archive. Uncompress and extract all of the files from the archive into the given folder, optionally stripping off the first element of the path. :param zipFile: full path to possibly compressed tar archive :param intoDir: full path to root of extracted files :param compression: type of compression (None, 'gz' or 'bz2') :param strip: set `--strip-components 1` argument to tar """ # build command cmd = [] if compression == 'gz': cmd.append('gunzip -c %s' % zipFile) elif compression == 'bz2': cmd.append('bunzip2 -c %s' % zipFile) if strip: if compression is None: cmd.append('tar xf %s --strip-components 1' % zipFile) else: cmd.append('tar xf - --strip-components 1') else: if compression is None: cmd.append('tar xf %s' % zipFile) else: cmd.append('tar xf -') command = (len(cmd) > 1) and ' | '.join(cmd) or ''.join(cmd) # run it cwd = os.getcwd() try: if not os.path.exists(intoDir): os.makedirs(intoDir) os.chdir(intoDir) if os.path.exists(zipFile): proc = Popen(command, stdout=PIPE, shell=True) output, unused_err = proc.communicate() retcode = proc.poll() if retcode: raise RuntimeError("Extracting [%s] failed with code [%d]" % (zipFile, retcode)) finally: os.chdir(cwd) return intoDir def _pick_based_on_file_extension(self, zipFile): """Pick extraction method based on file extension. :param zipFile: archive to extract """ if zipFile.endswith('.tar.gz') or zipFile.endswith('.tgz'): return self._tar_gunzip if zipFile.endswith('.tar.bz2'): return self._tar_bunzip2 if zipFile.endswith('.tar'): return self._untar if zipFile.endswith('.gz'): return self._gunzip if zipFile.endswith('.bz2'): return self._bunzip2 if zipFile.endswith('.zip') and zipfile.is_zipfile(zipFile): return self._unzip if zipFile.endswith('.war') and zipfile.is_zipfile(zipFile): return self._unzip if zipFile.endswith('.jar') and zipfile.is_zipfile(zipFile): return self._unzip def extract(self, zipFile, intoDir, strip=False, method=None): """Extract files from the archive. Extract all of the files from the given archive. Files are placed into the directory specified. Optionally, the leading element of the path used by the files in the archive can be stripped off. By default, the method will decicde how to extract the files based on the file extension. If you need to manually instruct it how to extract the files, you can pass in a helper method. Helper methods would generally be one of these methods, which are available on this class. * _untar * _tar_gunzip * _tar_bunzip2 * _bunzip2 * _gunzip * _unzip However you can pass in any method that you like, which is convenient if you need to extract files from an unsupported archive type. :param zipFile: full path to archive file :param intoDir: full path to root of extracted files :param strip: strip leading element of archive path (Default value = False) :param method: method used to extract files from archive (Default value = None) """ self._log.info("Extracting [%s] into [%s]", zipFile, intoDir) if not method: method = self._pick_based_on_file_extension(zipFile) return method(zipFile, intoDir, strip)
fbedded06b14d50134fd9049c6de58dfce0a7a99
a4269b96a9eba49bbe692733d6777ec1917ef629
/semana-04/scripts/3-eventos-y-señales-ejemplo_1.py
ead3bab58740119072f457a54207556ad6a66527
[]
no_license
IIC2233/contenidos
7bbc687c10d5fa2f394891507cf733f24b14080f
ee49033e3aa382f1dcbd03004601a7c084f824ab
refs/heads/main
2023-08-29T10:15:56.430976
2023-08-22T04:35:17
2023-08-22T04:37:00
286,314,095
118
193
null
2020-10-13T16:55:19
2020-08-09T20:45:00
Jupyter Notebook
UTF-8
Python
false
false
2,311
py
3-eventos-y-señales-ejemplo_1.py
import sys from PyQt6.QtWidgets import (QApplication, QWidget, QPushButton, QLabel, QGridLayout, QVBoxLayout) class MiVentana(QWidget): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.init_gui() def init_gui(self): self.label1 = QLabel('Status:', self) self.grilla = QGridLayout() valores = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '0', 'CE', 'C'] posiciones = [(i, j) for i in range(4) for j in range(3)] for posicion, valor in zip(posiciones, valores): boton = QPushButton(valor, self) """ Aquí conectamos el evento clicked() de cada boton con el slot correspondiente. En este ejemplo todos los botones usan el mismo slot (self.boton_clickeado). """ boton.clicked.connect(self.boton_clickeado) self.grilla.addWidget(boton, *posicion) vbox = QVBoxLayout() vbox.addWidget(self.label1) vbox.addLayout(self.grilla) self.setLayout(vbox) self.move(300, 150) self.setWindowTitle('Calculator') def boton_clickeado(self): """ Esta función se ejecuta cada vez que uno de los botones de la grilla es presionado. Cada vez que el botón genera el evento, la función inspecciona cual botón fue presionado y recupera la posición en que se encuentra en la grilla. """ # Sender retorna el objeto que fue clickeado. # Ahora, la variable boton referencia una instancia de QPushButton boton = self.sender() # Obtenemos el identificador del elemento en la grilla idx = self.grilla.indexOf(boton) # Con el identificador obtenemos la posición del ítem en la grilla posicion = self.grilla.getItemPosition(idx) # Actualizamos label1 self.label1.setText(f'Status: Presionado boton {idx}, en fila/columna: {posicion[:2]}.') if __name__ == '__main__': def hook(type, value, traceback): print(type) print(traceback) sys.__excepthook__ = hook app = QApplication([]) form = MiVentana() form.show() sys.exit(app.exec())
f44c0e93d0e91d3264847c1af7b7bacd366d5176
04f5e5e2536f05f5dfeff9747322f85b0c62886b
/experiments/661k_genomes/scan_genomes_minmers.py
5d1f32aea0753c81fffc168c0286b73a74d41372
[ "MIT" ]
permissive
ekimb/rust-mdbg
dba6355580ef019b5b65d6ccece445afe45157ca
985ba674f9da0ff440b0330fd1e2b1de92226305
refs/heads/master
2023-05-12T04:47:17.340513
2023-01-12T10:14:00
2023-01-12T11:05:47
310,619,686
163
14
MIT
2022-02-22T17:37:39
2020-11-06T14:29:44
Rust
UTF-8
Python
false
false
2,640
py
scan_genomes_minmers.py
""" purpose: scans stdin for kminmers found in a reference file stdin format: [seq_id] [list of minimizers] reference file: many lines, each line is: [seq_id] [list of minimizers to extract kminmers from] """ import sys genome_minspace_filename = sys.argv[1] k=10 graph_mode = "-g" in sys.argv from collections import defaultdict kminmers = defaultdict(list) #kminmers_sets = set() for line in open(genome_minspace_filename): line = line.replace('[','').replace(']','').replace(',','') ls = line.split() seq_id = ls[0] minimizers = tuple(map(int,ls[1:])) if len(minimizers) < k: continue for i in range(len(minimizers)-k+1): kminmer = minimizers[i:i+k] kminmers[kminmer] += [(seq_id,i)] kminmers[kminmer[::-1]] += [(seq_id,i)] #kminmers_sets.add(set(kminmer)) assert(len(kminmer)==10) # hack for speed kminmer_str = str(list(kminmer)) kminmer_str_inv = str(list(kminmer[::-1])) #print(kminmer_str,kminmer_str_inv) kminmers[kminmer_str] += [(seq_id,i)] kminmers[kminmer_str_inv] += [(seq_id,i)] if graph_mode: for line in sys.stdin: if line[0] == "#": continue # 16606 [27472887960080780, 26945328166221359, 83024137861838436, 183455804785478733, 54911163836344167, 170342695321694208, 91112118779713090, 54911163836344167, 83024137861838436, 183455804785478733] GCCGAGAGGCTGAAGGCGCTCCCCTGCTAAGGGAGTATGCGGTCAA AAGCTGCATCCGGGGTTCGAATCCCCGCCTCACCGCCATTTGCATCCGTAGCTCAGCTGGATAGAGTACTCGGCTACGAACCGAGCGGTCGGAGGTTCGAATCCTCCCGGATGCACCATATTCTACGTACTTTCAGCGATGAAGGTATGGAAGAGGTGGCGGTATAACCGCAGGCACCAGGGAGGATAACGTTGCTTTAGCAACGGCCCGAAGGGCGAGCCGCAAGGCGAGTAATCCTCCCGGATGCACCATCT CTTACTTGATATGGCTTTAGTAGCGATATCAATATCAGCAGTAAAATAAATTTTCCCGATGCATCCGTAGCTCAGCTGGATAGAGTACTCGGCTACGAACCGAGCGGTC * * (24, 33) ls = line.split() #kminmer = tuple(eval(" ".join(ls[1:k+1]))) kminmer = " ".join(ls[1:k+1]) if kminmer in kminmers: print("*","*",kminmers[kminmer] + kminmers[kminmer[::-1]]) else: for line in sys.stdin: if ":" in line or "Parsing" in line: continue # debug stuff output by mdbg ls = line.split() seq_id, minimizers = ls[0], tuple(map(int,ls[1:])) for i in range(len(minimizers)-k+1): kminmer = minimizers[i:i+k] if kminmer in kminmers or kminmer[::-1] in kminmers: #print("hit!",seq_id,"at pos",i,"found in ref(s)",kminmers[kminmer] + kminmers[kminmer[::-1]]) print(seq_id,i,kminmers[kminmer] + kminmers[kminmer[::-1]])
b550ff5fdac059bc0e583bc3d3230fc20e2d91c6
3db48713c39b90d5967615e3d1c874d88055ba70
/tests/utils/stl-lit/stl-lit.in
c9c28dc1fce8ab7f791bc6636659ee8c1cef3900
[ "Apache-2.0", "LLVM-exception", "LicenseRef-scancode-object-form-exception-to-mit", "LicenseRef-scancode-unicode", "MIT", "LicenseRef-scancode-mit-old-style", "LicenseRef-scancode-other-permissive", "CC0-1.0", "BSL-1.0", "LicenseRef-scancode-public-domain", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference" ]
permissive
microsoft/STL
4b1a6a625402e04b857e8dfc3c22efd9bc798f01
6c69a73911b33892919ec628c0ea5bbf0caf8a6a
refs/heads/main
2023-09-04T08:50:17.559497
2023-08-31T16:49:43
2023-08-31T16:49:43
204,593,825
9,862
1,629
NOASSERTION
2023-09-14T21:57:47
2019-08-27T01:31:18
C++
UTF-8
Python
false
false
1,016
in
stl-lit.in
#!/usr/bin/env python # -*- coding: utf-8 -*- #===----------------------------------------------------------------------===## # # Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # #===----------------------------------------------------------------------===## import os import sys config_map = {} def map_config(source_dir, site_config): global config_map source_dir = os.path.realpath(source_dir) source_dir = os.path.normcase(source_dir) site_config = os.path.normpath(site_config) config_map[source_dir] = site_config # Make sure we can find the lit package. sys.path.insert(0, os.path.join("@LLVM_SOURCE_DIR@", 'utils', 'lit')) @STL_LIT_CONFIG_MAP@ builtin_parameters= {} builtin_parameters['config_map'] = config_map if __name__=='__main__': from lit.main import main main(builtin_parameters)
e869c5d3f81bf03134a538e8647d517b767a9ac0
dcbef06d5a00f07756339b9e62c684dec2fee425
/nuitka/build/inline_copy/lib/scons-3.1.2/SCons/Tool/applelink.py
f432d613b3e97176cdc8edadf4220f1c33f47444
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
Nuitka/Nuitka
f9543d8d95bfa0b81d4e60af0dfad99fb72893a4
d87faf2f7e1d6ed9bfe4cf8c1d648f34307e33f2
refs/heads/develop
2023-08-28T14:00:32.861328
2023-08-27T09:16:45
2023-08-27T09:16:45
9,626,741
8,573
599
Apache-2.0
2023-09-13T02:49:41
2013-04-23T15:40:33
Python
UTF-8
Python
false
false
8,618
py
applelink.py
"""SCons.Tool.applelink Tool-specific initialization for Apple's gnu-like linker. There normally shouldn't be any need to import this module directly. It will usually be imported through the generic SCons.Tool.Tool() selection method. """ # # Copyright (c) 2001 - 2019 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "src/engine/SCons/Tool/applelink.py bee7caf9defd6e108fc2998a2520ddb36a967691 2019-12-17 02:07:09 bdeegan" import SCons.Util # Even though the Mac is based on the GNU toolchain, it doesn't understand # the -rpath option, so we use the "link" tool instead of "gnulink". from . import link class AppleLinkInvalidCurrentVersionException(Exception): pass class AppleLinkInvalidCompatibilityVersionException(Exception): pass def _applelib_versioned_lib_suffix(env, suffix, version): """For suffix='.dylib' and version='0.1.2' it returns '.0.1.2.dylib'""" Verbose = False if Verbose: print("_applelib_versioned_lib_suffix: suffix={!r}".format(suffix)) print("_applelib_versioned_lib_suffix: version={!r}".format(version)) if version not in suffix: suffix = "." + version + suffix if Verbose: print("_applelib_versioned_lib_suffix: return suffix={!r}".format(suffix)) return suffix def _applelib_versioned_lib_soname(env, libnode, version, prefix, suffix, name_func): """For libnode='/optional/dir/libfoo.X.Y.Z.dylib' it returns 'libfoo.X.dylib'""" Verbose = False if Verbose: print("_applelib_versioned_lib_soname: version={!r}".format(version)) name = name_func(env, libnode, version, prefix, suffix) if Verbose: print("_applelib_versioned_lib_soname: name={!r}".format(name)) major = version.split('.')[0] (libname,_suffix) = name.split('.') soname = '.'.join([libname, major, _suffix]) if Verbose: print("_applelib_versioned_lib_soname: soname={!r}".format(soname)) return soname def _applelib_versioned_shlib_soname(env, libnode, version, prefix, suffix): return _applelib_versioned_lib_soname(env, libnode, version, prefix, suffix, link._versioned_shlib_name) # User programmatically describes how SHLIBVERSION maps to values for compat/current. _applelib_max_version_values = (65535, 255, 255) def _applelib_check_valid_version(version_string): """ Check that the version # is valid. X[.Y[.Z]] where X 0-65535 where Y either not specified or 0-255 where Z either not specified or 0-255 :param version_string: :return: """ parts = version_string.split('.') if len(parts) > 3: return False, "Version string has too many periods [%s]"%version_string if len(parts) <= 0: return False, "Version string unspecified [%s]"%version_string for (i, p) in enumerate(parts): try: p_i = int(p) except ValueError: return False, "Version component %s (from %s) is not a number"%(p, version_string) if p_i < 0 or p_i > _applelib_max_version_values[i]: return False, "Version component %s (from %s) is not valid value should be between 0 and %d"%(p, version_string, _applelib_max_version_values[i]) return True, "" def _applelib_currentVersionFromSoVersion(source, target, env, for_signature): """ A generator function to create the -Wl,-current_version flag if needed. If env['APPLELINK_NO_CURRENT_VERSION'] contains a true value no flag will be generated Otherwise if APPLELINK_CURRENT_VERSION is not specified, env['SHLIBVERSION'] will be used. :param source: :param target: :param env: :param for_signature: :return: A string providing the flag to specify the current_version of the shared library """ if env.get('APPLELINK_NO_CURRENT_VERSION', False): return "" elif env.get('APPLELINK_CURRENT_VERSION', False): version_string = env['APPLELINK_CURRENT_VERSION'] elif env.get('SHLIBVERSION', False): version_string = env['SHLIBVERSION'] else: return "" version_string = ".".join(version_string.split('.')[:3]) valid, reason = _applelib_check_valid_version(version_string) if not valid: raise AppleLinkInvalidCurrentVersionException(reason) return "-Wl,-current_version,%s" % version_string def _applelib_compatVersionFromSoVersion(source, target, env, for_signature): """ A generator function to create the -Wl,-compatibility_version flag if needed. If env['APPLELINK_NO_COMPATIBILITY_VERSION'] contains a true value no flag will be generated Otherwise if APPLELINK_COMPATIBILITY_VERSION is not specified the first two parts of env['SHLIBVERSION'] will be used with a .0 appended. :param source: :param target: :param env: :param for_signature: :return: A string providing the flag to specify the compatibility_version of the shared library """ if env.get('APPLELINK_NO_COMPATIBILITY_VERSION', False): return "" elif env.get('APPLELINK_COMPATIBILITY_VERSION', False): version_string = env['APPLELINK_COMPATIBILITY_VERSION'] elif env.get('SHLIBVERSION', False): version_string = ".".join(env['SHLIBVERSION'].split('.')[:2] + ['0']) else: return "" if version_string is None: return "" valid, reason = _applelib_check_valid_version(version_string) if not valid: raise AppleLinkInvalidCompatibilityVersionException(reason) return "-Wl,-compatibility_version,%s" % version_string def generate(env): """Add Builders and construction variables for applelink to an Environment.""" link.generate(env) env['FRAMEWORKPATHPREFIX'] = '-F' env['_FRAMEWORKPATH'] = '${_concat(FRAMEWORKPATHPREFIX, FRAMEWORKPATH, "", __env__, RDirs)}' env['_FRAMEWORKS'] = '${_concat("-framework ", FRAMEWORKS, "", __env__)}' env['LINKCOM'] = env['LINKCOM'] + ' $_FRAMEWORKPATH $_FRAMEWORKS $FRAMEWORKSFLAGS' env['SHLINKFLAGS'] = SCons.Util.CLVar('$LINKFLAGS -dynamiclib') env['SHLINKCOM'] = env['SHLINKCOM'] + ' $_FRAMEWORKPATH $_FRAMEWORKS $FRAMEWORKSFLAGS' # see: http://docstore.mik.ua/orelly/unix3/mac/ch05_04.htm for proper naming link._setup_versioned_lib_variables(env, tool = 'applelink')#, use_soname = use_soname) env['LINKCALLBACKS'] = link._versioned_lib_callbacks() env['LINKCALLBACKS']['VersionedShLibSuffix'] = _applelib_versioned_lib_suffix env['LINKCALLBACKS']['VersionedShLibSoname'] = _applelib_versioned_shlib_soname env['_APPLELINK_CURRENT_VERSION'] = _applelib_currentVersionFromSoVersion env['_APPLELINK_COMPATIBILITY_VERSION'] = _applelib_compatVersionFromSoVersion env['_SHLIBVERSIONFLAGS'] = '$_APPLELINK_CURRENT_VERSION $_APPLELINK_COMPATIBILITY_VERSION ' env['_LDMODULEVERSIONFLAGS'] = '$_APPLELINK_CURRENT_VERSION $_APPLELINK_COMPATIBILITY_VERSION ' # override the default for loadable modules, which are different # on OS X than dynamic shared libs. echoing what XCode does for # pre/suffixes: env['LDMODULEPREFIX'] = '' env['LDMODULESUFFIX'] = '' env['LDMODULEFLAGS'] = SCons.Util.CLVar('$LINKFLAGS -bundle') env['LDMODULECOM'] = '$LDMODULE -o ${TARGET} $LDMODULEFLAGS $SOURCES $_LIBDIRFLAGS $_LIBFLAGS $_FRAMEWORKPATH $_FRAMEWORKS $FRAMEWORKSFLAGS' env['__SHLIBVERSIONFLAGS'] = '${__libversionflags(__env__,"SHLIBVERSION","_SHLIBVERSIONFLAGS")}' def exists(env): return env['PLATFORM'] == 'darwin' # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
07a5c8b26b300f79a0570d6ca9e7a9d5b89f13df
de84a9c84e9fd00fb1cf52c69381b20c96463f2b
/proselint/checks/misc/scare_quotes.py
4c5fa8048d70efb9b3bfd66372ffb8fea9a4f650
[ "BSD-3-Clause" ]
permissive
amperser/proselint
23b7b1a0963bf036dde9326b3bb0bbbfcdf26c61
b5b7536bec5fd461e45cacad87c2aab9ea33ac35
refs/heads/main
2023-08-11T08:45:59.641463
2023-07-27T13:28:58
2023-07-27T13:28:58
29,220,809
4,513
267
BSD-3-Clause
2023-09-10T20:53:11
2015-01-14T01:24:07
Python
UTF-8
Python
false
false
554
py
scare_quotes.py
"""Misuse of scare quotes. --- layout: post source: Pinker's book on writing source_url: ??? title: misuse of scare quotes date: 2014-06-10 12:31:19 categories: writing --- Points out misuse of scare quotes. """ from proselint.tools import existence_check, memoize @memoize def check(text): """Suggest the preferred forms.""" err = "pinker.scare_quotes" msg = "Misuse of 'scare quotes'. Delete them." narcissism = [ "the 'take-home message'", ] return existence_check(text, narcissism, err, msg)
aac1bd411cbdb2b37b60c8f8cfed2cc0b00e0aed
9da4adae4c389e84097a0da9bfce40f9132eef96
/pygame_menu/utils.py
c10c0ae245046d2bb22c8779c8b55193722af611
[ "MIT" ]
permissive
ppizarror/pygame-menu
f8fd2ff3acefad25b07e19499a2dfebd50507403
bcfaccbb11d4a6ecba588eec2851932dc46c2337
refs/heads/master
2023-07-07T10:38:09.651797
2023-06-28T18:00:25
2023-06-28T18:00:25
89,940,842
570
207
NOASSERTION
2023-08-19T19:17:59
2017-05-01T16:26:50
Python
UTF-8
Python
false
false
39,971
py
utils.py
""" pygame-menu https://github.com/ppizarror/pygame-menu UTILS Utility functions. """ __all__ = [ # Methods 'assert_alignment', 'assert_color', 'assert_cursor', 'assert_list_vector', 'assert_orientation', 'assert_position', 'assert_position_vector', 'assert_vector', 'check_key_pressed_valid', 'fill_gradient', 'format_color', 'get_cursor', 'get_finger_pos', 'load_pygame_image_file', 'make_surface', 'mouse_motion_current_mouse_position', 'parse_padding', 'print_menu_widget_structure', 'set_pygame_cursor', 'uuid4', 'warn', 'widget_terminal_title', # Constants 'PYGAME_V2', # Classes 'ShadowGenerator', 'TerminalColors' ] import sys import traceback import uuid import warnings import pygame import pygame_menu from pygame_menu.locals import ALIGN_CENTER, ALIGN_LEFT, ALIGN_RIGHT, POSITION_CENTER, \ POSITION_NORTH, POSITION_SOUTH, POSITION_SOUTHEAST, POSITION_NORTHWEST, \ POSITION_WEST, POSITION_EAST, POSITION_NORTHEAST, POSITION_SOUTHWEST, \ ORIENTATION_HORIZONTAL, ORIENTATION_VERTICAL, FINGERDOWN, FINGERUP, FINGERMOTION from pygame_menu._types import ColorType, ColorInputType, Union, List, Vector2NumberType, \ NumberType, Any, Optional, Tuple, NumberInstance, VectorInstance, PaddingInstance, \ PaddingType, Tuple4IntType, ColorInputInstance, VectorType, EventType, \ CursorInputInstance, CursorInputType, Tuple2IntType, Dict, Tuple3IntType PYGAME_V2 = pygame.version.vernum[0] >= 2 WARNINGS_LAST_MESSAGES: Dict[int, bool] = {} def assert_alignment(align: str) -> None: """ Assert that a certain alignment is valid. :param align: Align value """ assert isinstance(align, str), f'alignment "{align}" must be a string' assert align in (ALIGN_LEFT, ALIGN_CENTER, ALIGN_RIGHT), \ f'incorrect alignment value "{align}"' def assert_color( color: Union[ColorInputType, List[int]], warn_if_invalid: bool = True ) -> ColorType: """ Assert that a certain color is valid. :param color: Object color :param warn_if_invalid: If ``True`` warns if the color is invalid :return: Formatted color if valid, else, throws an ``AssertionError`` exception """ color = format_color(color, warn_if_invalid=warn_if_invalid) assert isinstance(color, VectorInstance), \ f'color must be a tuple or list, not type "{type(color)}"' assert 4 >= len(color) >= 3, \ 'color must be a tuple or list of 3 or 4 numbers' for i in range(3): assert isinstance(color[i], int), \ f'"{color[i]}" in element color {color} must be an integer, not type "{type(color)}"' assert 0 <= color[i] <= 255, \ f'"{color[i]}" in element color {color} must be an integer between 0 and 255' if len(color) == 4: assert isinstance(color[3], int), \ f'alpha channel must be an integer between 0 and 255, not type "{type(color)}"' assert 0 <= color[3] <= 255, \ f'opacity of color {color} must be an integer between 0 and 255; ' \ f'where 0 is fully-transparent and 255 is fully-opaque' return color def assert_cursor(cursor: CursorInputType) -> None: """ Assert a given cursor is valid. :param cursor: Cursor object """ assert isinstance(cursor, CursorInputInstance), \ 'cursor instance invalid, it can be None, an integer, ' \ 'or pygame.cursors.Cursor' def assert_list_vector(list_vector: Union[List[Vector2NumberType], Tuple[Vector2NumberType, ...]], length: int) -> None: """ Assert that a list fixed length vector is numeric. :param list_vector: Numeric list vector :param length: Length of the required vector. If ``0`` don't check the length """ assert isinstance(list_vector, VectorInstance), \ f'list_vector "{list_vector}" must be a tuple or list' for v in list_vector: assert_vector(v, length) def assert_orientation(orientation: str) -> None: """ Assert that a certain widget orientation is valid. :param orientation: Object orientation """ assert isinstance(orientation, str), \ f'orientation "{orientation}" must be a string' assert orientation in (ORIENTATION_HORIZONTAL, ORIENTATION_VERTICAL), \ f'invalid orientation value "{orientation}"' def assert_position(position: str) -> None: """ Assert that a certain position is valid. :param position: Object position """ assert isinstance(position, str), \ f'position "{position}" must be a string' assert position in (POSITION_WEST, POSITION_SOUTHWEST, POSITION_SOUTH, POSITION_SOUTHEAST, POSITION_EAST, POSITION_NORTH, POSITION_NORTHWEST, POSITION_NORTHEAST, POSITION_CENTER), \ f'invalid position value "{position}"' def assert_position_vector(position: Union[str, List[str], Tuple[str, ...]]) -> None: """ Assert that a position vector is valid. :param position: Object position """ if isinstance(position, str): assert_position(position) else: assert isinstance(position, VectorInstance) unique = [] for pos in position: assert_position(pos) if pos not in unique: unique.append(pos) assert len(unique) == len(position), 'there cannot be repeated positions' def assert_vector( num_vector: VectorType, length: int, instance: type = NumberInstance ) -> None: """ Assert that a fixed length vector is numeric. :param num_vector: Numeric vector :param length: Length of the required vector. If ``0`` don't check the length :param instance: Instance of each item of the vector """ assert isinstance(num_vector, VectorInstance), \ f'vector "{num_vector}" must be a list or tuple of {length} items if type {instance}' if length != 0: assert len(num_vector) == length, \ f'vector "{num_vector}" must contain {length} numbers only, ' \ f'but {num_vector} were given' for i in range(len(num_vector)): num = num_vector[i] if instance == int and isinstance(num, float) and int(num) == num: num = int(num) assert isinstance(num, instance), \ f'item {num} of vector must be {instance}, not type "{type(num)}"' def check_key_pressed_valid(event: EventType) -> bool: """ Checks if the pressed key is valid. :param event: Key press event :return: ``True`` if a key is pressed """ # If the system detects that any key event has been pressed but # there's not any key pressed then this method raises a KEYUP # flag bad_event = not (True in pygame.key.get_pressed()) if bad_event: if 'test' in event.dict and event.dict['test']: return True ev = pygame.event.Event(pygame.KEYUP, {'key': event.key}) pygame.event.post(ev) return not bad_event def fill_gradient( surface: 'pygame.Surface', color: ColorInputType, gradient: ColorInputType, rect: Optional['pygame.Rect'] = None, vertical: bool = True, forward: bool = True ) -> None: """ Fill a surface with a gradient pattern. :param surface: Surface to fill :param color: Starting color :param gradient: Final color :param rect: Area to fill; default is surface's rect :param vertical: True=vertical; False=horizontal :param forward: True=forward; False=reverse """ if rect is None: rect = surface.get_rect() x1, x2 = rect.left, rect.right y1, y2 = rect.top, rect.bottom color = assert_color(color) gradient = assert_color(gradient) if vertical: h = y2 - y1 else: h = x2 - x1 if forward: a, b = color, gradient else: b, a = color, gradient rate = ( float(b[0] - a[0]) / h, float(b[1] - a[1]) / h, float(b[2] - a[2]) / h ) fn_line = pygame.draw.line if vertical: for line in range(y1, y2): color = ( min(max(a[0] + (rate[0] * (line - y1)), 0), 255), min(max(a[1] + (rate[1] * (line - y1)), 0), 255), min(max(a[2] + (rate[2] * (line - y1)), 0), 255) ) fn_line(surface, color, (x1, line), (x2, line)) else: for col in range(x1, x2): color = ( min(max(a[0] + (rate[0] * (col - x1)), 0), 255), min(max(a[1] + (rate[1] * (col - x1)), 0), 255), min(max(a[2] + (rate[2] * (col - x1)), 0), 255) ) fn_line(surface, color, (col, y1), (col, y2)) def format_color( color: Union[ColorInputType, Any], warn_if_invalid: bool = True ) -> Union[ColorType, Any]: """ Format color from string, int, or tuple to tuple type. Available formats: - Color name str: name of the color to use, e.g. ``"red"`` (all the supported name strings can be found in the colordict module, see https://github.com/pygame/pygame/blob/main/src_py/colordict.py) - HTML color format str: ``"#rrggbbaa"`` or ``"#rrggbb"``, where rr, gg, bb, and aa are 2-digit hex numbers in the range of ``0`` to ``0xFF`` inclusive, the aa (alpha) value defaults to ``0xFF`` if not provided - Hex number str: ``"0xrrggbbaa"`` or ``"0xrrggbb"``, where rr, gg, bb, and aa are 2-digit hex numbers in the range of ``0x00`` to ``0xFF`` inclusive, the aa (alpha) value defaults to ``0xFF`` if not provided - int: int value of the color to use, using hex numbers can make this parameter more readable, e.g. ``0xrrggbbaa``, where rr, gg, bb, and aa are 2-digit hex numbers in the range of ``0x00`` to ``0xFF`` inclusive, note that the aa (alpha) value is not optional for the int format and must be provided - tuple/list of int color values: ``(R, G, B, A)`` or ``(R, G, B)``, where R, G, B, and A are int values in the range of ``0`` to ``255`` inclusive, the A (alpha) value defaults to ``255`` (opaque) if not provided :param color: Color to format. If format is valid returns the same input value :param warn_if_invalid: If ``True`` warns if the color is invalid :return: Color in (r, g, b, a) format """ if not isinstance(color, ColorInputInstance): return color if not isinstance(color, pygame.Color): if isinstance(color, str): if len(color) == 4 and color[0] == '#': r, g, b = color[1], color[2], color[3] color = f'#{r * 2}{g * 2}{b * 2}' try: if isinstance(color, VectorInstance) and 3 <= len(color) <= 4: if PYGAME_V2: for j in color: if not isinstance(j, int): raise ValueError('color cannot contain floating point values') c = pygame.Color(*color) else: c = pygame.Color(color) except ValueError: if warn_if_invalid: warn(f'invalid color value "{color}"') else: raise return color else: c = color return c.r, c.g, c.b, c.a def get_cursor() -> CursorInputType: """ Return the pygame cursor object. :return: Cursor object """ try: return pygame.mouse.get_cursor() except TypeError as e: warn(str(e)) return None def get_finger_pos(menu: Optional['pygame_menu.Menu'], event: EventType) -> Tuple2IntType: """ Return the position from finger (or mouse) event on x-axis and y-axis (x, y). :param menu: Menu object for relative positioning in finger events :param event: Pygame event object :return: Position on x-axis and y-axis (x, y) in px """ if event.type in (FINGERDOWN, FINGERMOTION, FINGERUP): assert menu is not None, \ 'menu reference cannot be none while using finger position' display_size = menu.get_window_size() finger_pos = (int(event.x * display_size[0]), int(event.y * display_size[1])) return finger_pos return event.pos def is_callable(func: Any) -> bool: """ Return ``True`` if ``func`` is callable. :param func: Function object :return: ``True`` if function """ e = 'is_callable(func) method will be removed in v5, consider using built-in' \ ' callable(func) method instead' warnings.warn(e, DeprecationWarning) return callable(func) def load_pygame_image_file(image_path: str, **kwargs) -> 'pygame.Surface': """ Loads an image and returns a surface. :param image_path: Image file :param kwargs: Optional keyword arguments :return: Surface """ # Try to load the image try: if 'test' in kwargs.keys(): raise pygame.error('File is not a Windows BMP file') surface = pygame.image.load(image_path) except pygame.error as exc: # Check if file is not a Windows file if str(exc) == 'File is not a Windows BMP file': pil_invalid_exception = Exception # Check if Pillow exists try: # noinspection PyPackageRequirements from PIL import Image, UnidentifiedImageError pil_invalid_exception = UnidentifiedImageError img_pil = Image.open(image_path) # noinspection PyTypeChecker surface = pygame.image.fromstring( img_pil.tobytes(), img_pil.size, img_pil.mode).convert() except (ModuleNotFoundError, ImportError): warn(f'Image file "{image_path}" could not be loaded, as pygame.error ' f'is raised. To avoid this issue install the Pillow library') raise except pil_invalid_exception: warn(f'The image "{image_path}" could not be loaded using Pillow') raise else: raise return surface def make_surface( width: NumberType, height: NumberType, alpha: bool = False, fill_color: Optional[ColorInputType] = None ) -> 'pygame.Surface': """ Creates a pygame surface object. :param width: Surface width :param height: Surface height :param alpha: Enable alpha channel on surface :param fill_color: Fill surface with a certain color :return: Pygame surface """ assert isinstance(width, NumberInstance) assert isinstance(height, NumberInstance) assert isinstance(alpha, bool) assert width >= 0 and height >= 0, \ 'surface width and height must be equal or greater than zero' surface = pygame.Surface((int(width), int(height)), pygame.SRCALPHA, 32) if alpha: # noinspection PyArgumentList surface = pygame.Surface.convert_alpha(surface) if fill_color is not None: fill_color = assert_color(fill_color) surface.fill(fill_color) return surface def mouse_motion_current_mouse_position() -> EventType: """ Return a pygame event type MOUSEMOTION in the current mouse position. :return: Event """ x, y = pygame.mouse.get_pos() return pygame.event.Event(pygame.MOUSEMOTION, {'pos': (int(x), int(y))}) def parse_padding(padding: PaddingType) -> Tuple4IntType: """ Get the padding value from tuple. - If an integer or float is provided: top, right, bottom and left values will be the same - If 2-item tuple is provided: top and bottom takes the first value, left and right the second - If 3-item tuple is provided: top will take the first value, left and right the second, and bottom the third - If 4-item tuple is provided: padding will be (top, right, bottom, left) .. note:: See `CSS W3Schools <https://www.w3schools.com/css/css_padding.asp>`_ for more info about padding. :param padding: Can be a single number, or a tuple of 2, 3 or 4 elements following CSS style :return: Padding value, (top, right, bottom, left), in px """ if padding is False or None: padding = 0 assert isinstance(padding, PaddingInstance) if isinstance(padding, NumberInstance): assert padding >= 0, 'padding cannot be a negative number' return int(padding), int(padding), int(padding), int(padding) else: assert 1 <= len(padding) <= 4, 'padding must be a tuple of 2, 3 or 4 elements' for i in range(len(padding)): assert isinstance(padding[i], NumberInstance), \ 'all padding elements must be integers or floats' assert padding[i] >= 0, \ 'all padding elements must be equal or greater than zero' if len(padding) == 1: return int(padding[0]), int(padding[0]), int(padding[0]), int(padding[0]) elif len(padding) == 2: return int(padding[0]), int(padding[1]), int(padding[0]), int(padding[1]) elif len(padding) == 3: return int(padding[0]), int(padding[1]), int(padding[2]), int(padding[1]) else: return int(padding[0]), int(padding[1]), int(padding[2]), int(padding[3]) def print_menu_widget_structure( widgets: List['pygame_menu.widgets.Widget'], index: int ) -> None: """ Test printing widgets order. .. note:: - Φ Floating status - ⇇ Selected - !▲ Widget is not appended to current menu - ╳ Widget is hidden - ∑ Scrollable frame sizing - β Widget is not selectable - {x,y} Widget *column, row* position - <x,y> Frame indices (min, max) :param widgets: Menu widgets list :param index: Menu index """ indx = 0 current_depth = 0 depth_widths = {} c = TerminalColors def close_frames(depth: int) -> None: """ Close frames up to current depth. :param depth: Depth to close """ d = current_depth - depth for i in range(d): j = depth + d - (i + 1) # Current depth line = f'· {"│ " * j}└{"┄" * 3}' # * depth_widths[j] print(c.BRIGHT_WHITE + line.ljust(0, '━') + c.ENDC) # 80 also work non_menu_frame_widgets: Dict[int, List['pygame_menu.widgets.Widget']] = {} def process_non_menu_frame(w_indx: int) -> None: """ Print non-menu frames list. :param w_indx: Current iteration index to print widgets """ for nmi in list(non_menu_frame_widgets.keys()): if nmi == w_indx: v = non_menu_frame_widgets[nmi] for v_wid in v: try: print(c.BRIGHT_WHITE + '· ' + '│ ' * v_wid.get_frame_depth() + c.ENDC + widget_terminal_title(v_wid)) except UnicodeEncodeError: pass del non_menu_frame_widgets[nmi] for w in widgets: w_depth = w.get_frame_depth() close_frames(w.get_frame_depth()) title = widget_terminal_title(w, indx, index) try: print('{0}{1}{2}'.format( str(indx).ljust(3), ' ' + c.BRIGHT_WHITE + '│ ' * w_depth + c.ENDC, title )) except UnicodeEncodeError: pass if w_depth not in depth_widths.keys(): depth_widths[w_depth] = 0 # depth_widths[w_depth] = max(int(len(title) * 1.2) + 3, depth_widths[w_depth]) depth_widths[w_depth] = len(title) - 2 current_depth = w.get_frame_depth() process_non_menu_frame(indx) jw = widgets[0] try: if isinstance(w, pygame_menu.widgets.Frame): # Print ordered non-menu widgets current_depth += 1 prev_indx = indx for jw in w.get_widgets(unpack_subframes=False): if jw.get_menu() is None or jw not in widgets: if prev_indx not in non_menu_frame_widgets.keys(): non_menu_frame_widgets[prev_indx] = [] non_menu_frame_widgets[prev_indx].append(jw) else: prev_indx = widgets.index(jw) except ValueError as e: print(f'[ERROR] while requesting widget {jw.get_class_id()}') warn(str(e)) indx += 1 process_non_menu_frame(indx) close_frames(0) def set_pygame_cursor(cursor: CursorInputType) -> None: """ Set pygame cursor. :param cursor: Cursor object """ try: if cursor is not None: # noinspection PyArgumentList pygame.mouse.set_cursor(cursor) except (pygame.error, TypeError): if PYGAME_V2: warn(f'could not establish widget cursor, invalid value {cursor}') def uuid4(short: bool = False) -> str: """ Create custom version of uuid4. :param short: If ``True`` only returns the first 8 chars of the uuid, else, 18 :return: UUID of 18 chars """ return str(uuid.uuid4())[:18 if not short else 8] def warn(message: str, print_stack: bool = True) -> None: """ Warnings warn method. :param message: Message to warn about :param print_stack: Print stack trace of the call """ assert isinstance(message, str) # noinspection PyUnresolvedReferences,PyProtectedMember frame = sys._getframe().f_back # frame_info = inspect.getframeinfo(frame) # Traceback(filename, lineno, function, code_context, index) # Check if message in dict msg_hash = hash(message) msg_in_hash = False try: msg_in_hash = WARNINGS_LAST_MESSAGES[msg_hash] except KeyError: pass if not msg_in_hash and print_stack: traceback.print_stack(frame, limit=5) WARNINGS_LAST_MESSAGES[msg_hash] = True # warnings.showwarning(message, UserWarning, frame_info[0], frame_info[1]) warnings.warn(message, stacklevel=2) def widget_terminal_title( widget: 'pygame_menu.widgets.Widget', widget_index: int = -1, current_index: int = -1 ) -> str: """ Return widget title to be printed on terminals. :param widget: Widget to get title from :param widget_index: Widget index :param current_index: Menu index :return: Widget title """ w_class_id = TerminalColors.BOLD + widget.get_class_id() + TerminalColors.ENDC if isinstance(widget, pygame_menu.widgets.Frame): w_title = TerminalColors.BRIGHT_WHITE + '┌━' + TerminalColors.ENDC w_title += f'{0} - {3}[{1},{2},'.format(w_class_id, *widget.get_indices(), TerminalColors.LGREEN) if widget.horizontal: w_title += 'H] ' else: w_title += 'V] ' if widget.is_scrollable: wsz = widget.get_inner_size() wsm = widget.get_max_size() wsh = wsm[0] if wsm[0] == wsz[0] else f'{wsm[0]}→{wsz[0]}' wsv = wsm[1] if wsm[1] == wsz[1] else f'{wsm[1]}→{wsz[1]}' w_title += f'∑ [{wsh},{wsv}] ' w_title += TerminalColors.ENDC else: if widget.get_title() != '': title_f = TerminalColors.UNDERLINE + widget.get_title() + TerminalColors.ENDC w_title = f'{w_class_id} - {title_f} - ' else: w_title = w_class_id + ' - ' # Column/Row position w_title += TerminalColors.INDIGO cr = widget.get_col_row_index() w_title += '{' + str(cr[0]) + ',' + str(cr[1]) + '}' w_title += TerminalColors.ENDC # Add position w_title += TerminalColors.MAGENTA w_title += ' ({0},{1})'.format(*widget.get_position()) w_title += TerminalColors.ENDC # Add size w_title += TerminalColors.BLUE w_title += ' ({0},{1})'.format(*widget.get_size()) w_title += TerminalColors.ENDC # Add mods w_title += TerminalColors.CYAN if widget.is_floating(): w_title += ' Φ' if not widget.is_visible(): w_title += ' ╳' if not widget.is_selectable: w_title += ' β' if widget.is_selected(): w_title += TerminalColors.BOLD + ' ⟵' if current_index != -1 and current_index != widget_index: w_title += f'! [{widget_index}->{current_index}]' if widget.get_menu() is None: w_title += ' !▲' w_title += TerminalColors.ENDC return w_title class TerminalColors(object): """ Terminal colors. See https://www.lihaoyi.com/post/BuildyourownCommandLinewithANSIescapecodes.html. """ BLUE = '\u001b[38;5;27m' BOLD = '\033[1m' BRIGHT_MAGENTA = '\u001b[35;1m' BRIGHT_WHITE = '\u001b[37;1m' CYAN = '\u001b[36m' ENDC = '\u001b[0m' GRAY = '\u001b[30;1m' INDIGO = '\u001b[38;5;129m' LGREEN = '\u001b[38;5;150m' MAGENTA = '\u001b[35m' RED = '\u001b[31m' UNDERLINE = '\033[4m' class ShadowGenerator(object): """ A class to generate surfaces that work as a 'shadow' for rectangular UI elements. Base shadow surface are generated with an algorithm, then when one is requested at a specific size the closest pre-generated shadow surface is picked and then scaled to the exact size requested. By default, it creates four base shadows in a small range of sizes. If you find the shadow appearance unsatisfactory then it is possible to create closer to the size of the elements you are having trouble with. Source: https://github.com/MyreMylar/pygame_gui with many edits. """ _created_ellipse_shadows: Dict[str, 'pygame.Surface'] _preloaded_shadow_corners: Dict[str, Dict[str, 'pygame.Surface']] _short_term_rect_cache: Dict[str, 'pygame.Surface'] def __init__(self) -> None: self._created_ellipse_shadows = {} self._preloaded_shadow_corners = {} self._short_term_rect_cache = {} def clear_short_term_caches(self, force: bool = False) -> None: """ Empties short term caches, so we aren't hanging on to so many surfaces. :param force: Force clear """ t = len(self._created_ellipse_shadows) + len(self._preloaded_shadow_corners) + \ len(self._short_term_rect_cache) if t >= 100 or force: self._created_ellipse_shadows.clear() self._preloaded_shadow_corners.clear() self._short_term_rect_cache.clear() def _create_shadow_corners( self, shadow_width_param: int, corner_radius_param: int, color: Tuple3IntType, aa_amount: int = 4 ) -> Dict[str, 'pygame.Surface']: """ Create corners for our rectangular shadows. These can be used across many sizes of shadow with the same shadow width and corner radius. :param shadow_width_param: Width of the shadow :param corner_radius_param: Corner radius of the shadow :param color: Shadow color :param aa_amount: Anti-aliasing amount. Defaults to 4x :return: Dict that contain the shadows of each border """ shadow_width_param = max(1, shadow_width_param) corner_rect = pygame.Rect( 0, 0, corner_radius_param * aa_amount, corner_radius_param * aa_amount ) corner_surface, edge_surface = self._create_single_corner_and_edge( aa_amount=aa_amount, corner_radius_param=corner_radius_param, corner_rect=corner_rect, shadow_width_param=shadow_width_param, color=color ) sub_radius = ((corner_radius_param - shadow_width_param) * aa_amount) top_edge = pygame.transform.smoothscale(edge_surface, (shadow_width_param, shadow_width_param)) left_edge = pygame.transform.rotate(top_edge, 90) tl_corner = pygame.transform.smoothscale(corner_surface, (corner_radius_param, corner_radius_param)) if sub_radius > 0: corner_sub_surface = pygame.surface.Surface(corner_rect.size, flags=pygame.SRCALPHA, depth=32) corner_sub_surface.fill(pygame.Color('#00000000')) pygame.draw.circle(corner_sub_surface, pygame.Color('#FFFFFFFF'), corner_rect.size, sub_radius) corner_small_sub_surface = pygame.transform.smoothscale(corner_sub_surface, (corner_radius_param, corner_radius_param)) tl_corner.blit(corner_small_sub_surface, (0, 0), special_flags=pygame.BLEND_RGBA_SUB) corners_and_edges = { 'bottom': pygame.transform.flip(top_edge, False, True), 'bottom_left': pygame.transform.flip(tl_corner, False, True), 'bottom_right': pygame.transform.flip(tl_corner, True, True), 'left': left_edge, 'right': pygame.transform.flip(left_edge, True, False), 'top': top_edge, 'top_left': tl_corner, 'top_right': pygame.transform.flip(tl_corner, True, False) } self._preloaded_shadow_corners[(str(shadow_width_param) + 'x' + str(corner_radius_param))] = corners_and_edges return corners_and_edges @staticmethod def _create_single_corner_and_edge( aa_amount: int, corner_radius_param: int, corner_rect: 'pygame.Rect', shadow_width_param: int, color: Tuple3IntType ) -> Tuple['pygame.Surface', 'pygame.Surface']: """ Creates a single corner surface and a single edge surface for a shadow. :param aa_amount: Amount of anti-aliasing :param corner_radius_param: Radius of a corner this shadow will go around :param corner_rect: Rectangular size of corner :param shadow_width_param: Width of shadow :param color: Shadow color :return: A tuple of the corner surface and the edge surface """ aa_amount = max(1, aa_amount) final_corner_surface = pygame.surface.Surface((corner_radius_param * aa_amount, corner_radius_param * aa_amount), flags=pygame.SRCALPHA, depth=32) final_corner_surface.fill(pygame.Color('#00000000')) final_edge_surface = pygame.surface.Surface((shadow_width_param * aa_amount, shadow_width_param * aa_amount), flags=pygame.SRCALPHA, depth=32) final_edge_surface.fill(pygame.Color('#00000000')) corner_radius = corner_radius_param * aa_amount corner_centre = (corner_radius, corner_radius) edge_rect = pygame.Rect(0, 0, shadow_width_param * aa_amount, shadow_width_param * aa_amount) edge_shadow_fade_height = edge_rect.width alpha_increment = 20.0 / (shadow_width_param ** 1.5) shadow_alpha = alpha_increment r, g, b = color for _ in range(shadow_width_param): if corner_rect.width > 0 and corner_rect.height > 0 and corner_radius > 0: # Edge edge_shadow_surface = pygame.surface.Surface( edge_rect.size, flags=pygame.SRCALPHA, depth=32) edge_shadow_surface.fill(pygame.Color('#00000000')) edge_shadow_surface.fill(pygame.Color(r, g, b, int(shadow_alpha)), pygame.Rect(0, edge_rect.height - edge_shadow_fade_height, edge_rect.width, edge_shadow_fade_height)) final_edge_surface.blit(edge_shadow_surface, (0, 0), special_flags=pygame.BLEND_RGBA_ADD) # Corner corner_shadow_surface = pygame.surface.Surface(corner_rect.size, flags=pygame.SRCALPHA, depth=32) corner_shadow_surface.fill(pygame.Color('#00000000')) pygame.draw.circle(corner_shadow_surface, pygame.Color(r, g, b, int(shadow_alpha)), corner_centre, corner_radius) final_corner_surface.blit(corner_shadow_surface, (0, 0), special_flags=pygame.BLEND_RGBA_ADD) # increments/decrements shadow_alpha += alpha_increment corner_radius -= aa_amount edge_shadow_fade_height -= aa_amount return final_corner_surface, final_edge_surface def create_new_rectangle_shadow( self, width: int, height: int, shadow_width_param: int, corner_radius_param: int, aa_amount: int = 4, color: Tuple3IntType = (0, 0, 0) ) -> Optional['pygame.Surface']: """ Creates a rectangular shadow surface at the specified size and stores it for later use. :param width: The width of the base shadow to create :param height: The height of the base shadow to create :param shadow_width_param: The width of the shadowed edge :param corner_radius_param: The radius of the rectangular shadow's corners :param aa_amount: Antialiasing :param color: Shadow color (r, g, b) return: Shadow """ assert isinstance(width, int) assert isinstance(height, int) assert_vector(color, 3, int) shadow_width_param, corner_radius_param, aa_amount = int(shadow_width_param), \ int(corner_radius_param), int(aa_amount) if width < corner_radius_param or height < corner_radius_param or shadow_width_param == 0: return None r, g, b = color params = [width, height, shadow_width_param, corner_radius_param, aa_amount, r, g, b] shadow_id = '_'.join(str(param) for param in params) if shadow_id in self._short_term_rect_cache: return self._short_term_rect_cache[shadow_id] final_surface = pygame.surface.Surface((width, height), flags=pygame.SRCALPHA, depth=32) final_surface.fill(pygame.Color('#00000000')) corner_index_id = str(shadow_width_param) + 'x' + str(corner_radius_param) if corner_index_id in self._preloaded_shadow_corners: edges_and_corners = self._preloaded_shadow_corners[corner_index_id] else: edges_and_corners = self._create_shadow_corners( shadow_width_param=shadow_width_param, corner_radius_param=corner_radius_param, color=color, aa_amount=aa_amount ) final_surface.blit(edges_and_corners['top_left'], (0, 0)) final_surface.blit(edges_and_corners['top_right'], (width - corner_radius_param, 0)) final_surface.blit(edges_and_corners['bottom_left'], (0, height - corner_radius_param)) final_surface.blit(edges_and_corners['bottom_right'], (width - corner_radius_param, height - corner_radius_param)) if width - (2 * corner_radius_param) > 0: top_edge = pygame.transform.scale(edges_and_corners['top'], (width - (2 * corner_radius_param), shadow_width_param)) bottom_edge = pygame.transform.scale(edges_and_corners['bottom'], (width - (2 * corner_radius_param), shadow_width_param)) final_surface.blit(top_edge, (corner_radius_param, 0)) final_surface.blit(bottom_edge, (corner_radius_param, height - shadow_width_param)) if height - (2 * corner_radius_param) > 0: left_edge = pygame.transform.scale(edges_and_corners['left'], (shadow_width_param, height - (2 * corner_radius_param))) right_edge = pygame.transform.scale(edges_and_corners['right'], (shadow_width_param, height - (2 * corner_radius_param))) final_surface.blit(left_edge, (0, corner_radius_param)) final_surface.blit(right_edge, (width - shadow_width_param, corner_radius_param)) self._short_term_rect_cache[shadow_id] = final_surface return final_surface def create_new_ellipse_shadow( self, width: int, height: int, shadow_width_param: int, aa_amount: int = 4, color: Tuple3IntType = (0, 0, 0) ) -> Optional['pygame.Surface']: """ Creates an ellipse shaped shadow surface at the specified size and stores it for later use. :param width: The width of the shadow to create :param height: The height of the shadow to create :param shadow_width_param: The width of the shadowed edge :param aa_amount: The amount of anti-aliasing to use, defaults to 4 :param color: Shadow color (r, g, b) :return: Surface with shadow """ assert isinstance(width, int) assert isinstance(height, int) assert_vector(color, 3, int) shadow_width_param, aa_amount = int(shadow_width_param), int(aa_amount) if shadow_width_param == 0: return None shadow_surface = pygame.surface.Surface((width * aa_amount, height * aa_amount), flags=pygame.SRCALPHA, depth=32) shadow_surface.fill(pygame.Color('#00000000')) r, g, b = color ellipse_id = str(width) + 'x' + str(height) + 'x' + str(shadow_width_param) if ellipse_id in self._created_ellipse_shadows: return self._created_ellipse_shadows[ellipse_id] alpha_increment = max(1, int(20 / shadow_width_param)) shadow_alpha = alpha_increment shadow_width = width * aa_amount shadow_height = height * aa_amount for i in range(shadow_width_param): if shadow_width > 0 and shadow_height > 0: shadow_rect = pygame.Rect(i * aa_amount, i * aa_amount, shadow_width, shadow_height) pygame.draw.ellipse(shadow_surface, pygame.Color(r, g, b, shadow_alpha), shadow_rect) shadow_width -= (2 * aa_amount) shadow_height -= (2 * aa_amount) shadow_alpha += alpha_increment final_surface = pygame.transform.smoothscale(shadow_surface, (width, height)) self._created_ellipse_shadows[ellipse_id] = final_surface return final_surface
e2058ffa263161b909f39fc2ff6f19e7f584f62d
88ce889124078382c9835c2aeca101ca79302bca
/applications/questions.py
866ac43845f5715e9fea0681c50b41a741c5746b
[ "BSD-3-Clause" ]
permissive
DjangoGirls/djangogirls
9cb6c145e9fa10bcf3f06a70d025ff31d96346eb
2b2fc151354906ac116dd8cd9a9f4f412dee26af
refs/heads/main
2023-08-30T15:43:27.162564
2023-07-27T11:51:40
2023-07-27T11:51:40
20,439,809
504
347
BSD-3-Clause
2023-08-30T09:25:53
2014-06-03T11:13:57
Python
UTF-8
Python
false
false
5,951
py
questions.py
from collections import OrderedDict from django import forms from django.urls import reverse from django.utils.translation import gettext_lazy as _ def get_organiser_menu(page_url): """ Get menu entries for organiser-visible pages """ menu = [ {"title": _("Applications"), "url": reverse("applications:applications", args=[page_url])}, {"title": _("Messaging"), "url": reverse("applications:communication", args=[page_url])}, ] return menu def generate_form_from_questions(questions): fields = OrderedDict() for question in questions: options = { "label": question.title, "help_text": question.help_text or None, "required": question.is_required, } name = f"question_{question.pk}" if question.question_type == "text": options["widget"] = forms.Textarea if question.question_type == "choices": choices = ((x, x) for x in question.choices.split(";")) options["choices"] = choices if question.question_type in ["paragraph", "text"]: fields[name] = forms.CharField(**options) elif question.question_type == "choices": if question.is_multiple_choice: options["widget"] = forms.CheckboxSelectMultiple fields[name] = forms.MultipleChoiceField(**options) else: options["widget"] = forms.RadioSelect fields[name] = forms.ChoiceField(**options) if question.question_type == "email": fields[name] = forms.EmailField(**options) fields["newsletter_optin"] = forms.ChoiceField( widget=forms.RadioSelect, label=_("Do you want to receive news from the Django Girls team?"), help_text=_( "No spam, pinky swear! Only helpful programming tips and " "latest news from the Django Girls world. We send it once every two weeks." ), required=True, choices=(("yes", _("Yes, please!")), ("no", _("No, thank you."))), ) return fields DEFAULT_QUESTIONS = [ { "title": _("What's your name?"), "question_type": "paragraph", }, { "title": _("Your e-mail address:"), "question_type": "email", }, { "title": _("Your phone number:"), "help_text": _("Include your country prefix"), "question_type": "paragraph", }, { "title": _("Where are you from?"), "help_text": _("City, Country"), "question_type": "paragraph", }, { "title": _("How old are you?"), "question_type": "paragraph", "is_required": False, }, { "title": _("Which operating system do you use?"), "question_type": "choices", "choices": "Mac OS X; Windows; Linux", "is_multiple_choice": True, }, { "title": _("What is your current level of experience with programming?"), "question_type": "choices", "choices": _( "I'm a total beginner, I don't know anything about it; " "I've tried some HTML or CSS before; I've tried some JavaScript " "before; I've done a few lessons of Python; I've built a website " "before; I work as a programmer" ), "is_multiple_choice": True, }, { "title": _( "If you checked anything other than beginner, could you " "tell us a bit more about your programming knowledge?" ), "question_type": "text", "is_required": False, }, { "title": _("What is your current occupation?"), "help_text": _("What is your current job? Are you a student?"), "question_type": "text", }, { "title": _("Why do you want to attend the workshop?"), "help_text": _("Tell us about your motivations and aspirations."), "question_type": "text", }, { "title": _("How are you planning to share what you've learnt with others?"), "help_text": _( "Django Girls is a volunteer-run organisation and we " "look for people who are active and can help us help more women get " "into the field. We want you to share what you learn at the workshop " "with others in different ways: by organising a Django Girls event " "in your city, talking about Django Girls on your local meetups, " "writing a blog or simply teaching your friends." ), "question_type": "text", "is_required": False, }, { "title": _("How did you hear about Django Girls?"), "question_type": "choices", "choices": "; ".join(["Facebook", "Twitter", "From a friend", "PyLadies"]), "is_required": False, "is_multiple_choice": True, }, { "title": _("I acknowledge that some of my data will be used on Third Party Sites and Services."), "help_text": _( "Data collected through this form is used only for the " "purpose of Django Girls events. We're using Third Party Sites " "and Services to make it happen: for example, we're using " "Sendgrid to send you emails. Don't worry: We don't share your data with spammers, " "and we don't sell it! More info on our Privacy policy " "<a href='/privacy-cookies/'>here</a>." ), "question_type": "choices", "choices": _("Yes"), "is_required": True, "is_multiple_choice": True, }, { "title": _( "It is important that all attendees comply with the " "<a href='/coc/'>Django Girls Code of Conduct</a>" ), "question_type": "choices", "choices": _("I've read and understood the Django Girls Code of Conduct"), "is_required": True, "is_multiple_choice": True, }, ]
c6e49577f9835691cbe504050fc5472d0d02ad4f
d110546d747d7e3865ce5742d5fca09f404623c0
/tests/integration/grains/test_custom.py
17a09a4797ebf64b4a948e1cfc0eccd59effbf59
[ "Apache-2.0", "MIT", "BSD-2-Clause" ]
permissive
saltstack/salt
354fc86a7be1f69514b3dd3b2edb9e6f66844c1d
1ef90cbdc7203f97775edb7666db86a41eb9fc15
refs/heads/master
2023-07-19T20:56:20.210556
2023-06-29T23:12:28
2023-07-19T11:47:47
1,390,248
11,026
6,296
Apache-2.0
2023-09-14T20:45:37
2011-02-20T20:16:56
Python
UTF-8
Python
false
false
519
py
test_custom.py
""" Test the core grains """ import pytest from tests.support.case import ModuleCase @pytest.mark.windows_whitelisted class TestGrainsCore(ModuleCase): """ Test the core grains grains """ @pytest.mark.slow_test def test_grains_passed_to_custom_grain(self): """ test if current grains are passed to grains module functions that have a grains argument """ self.assertEqual( self.run_function("grains.get", ["custom_grain_test"]), "itworked" )
79113ddaeba9ba50bd9a5e7fdcf2ca3a2615e6f2
cfe182e58878e570e52102805912b4b7f63b16dc
/sph_harm.py
1d445b01d90132a1a1253d6f480d160aced3e5a0
[]
no_license
QijingZheng/VaspBandUnfolding
dfbe04ac55af7fd88a0c3c4e0bcc6257de49fc32
43a5a4fafc2079912ba8b978958b0e238a9e818c
refs/heads/master
2023-08-18T17:56:50.140704
2023-08-12T04:50:29
2023-08-12T04:50:29
90,606,540
168
76
null
2023-07-16T03:41:00
2017-05-08T08:51:01
Python
UTF-8
Python
false
false
6,182
py
sph_harm.py
#!/usr/bin/env python import numpy as np from scipy.special import sph_harm def cart2sph(xyz, epsilon=1E-10): ''' Convert Cartesian coordinate to spherical coordinate. input: xyz in (n, 3) return: r: norm theta: polar angle in [0, pi] phi: azimuthal angle in [0, 2 * pi] ''' xyz = np.asarray(xyz, dtype=float) if xyz.ndim == 1: xyz = xyz[None, :] x, y, z = xyz.T # the azimuthal angle phi = np.arctan2(y, x) # np.arctan2 outputs angle in [-pi, pi] phi[phi < 0] += 2 * np.pi # the norm r = np.linalg.norm(np.c_[x, y, z], axis=1) # in case of zero division r[r < epsilon] = epsilon # the polar angle theta = np.arccos(z / r) return np.array([r, phi, theta]) def sph_c(xyz, l, m=None): ''' Complex spherial harmonics including the Condon-Shortley phase. https://en.wikipedia.org/wiki/Table_of_spherical_harmonics#Spherical_harmonics input: xyz: cartesian coordinate of shape [n, 3] ''' xyz = np.asarray(xyz, dtype=float) if xyz.ndim == 1: xyz = xyz[None, :] if m: assert -l <= m <= l, "'m' must be in the range of [{},{}]".format(-l, l) r, phi, theta = cart2sph(xyz) N = xyz.shape[0] ylm = [sph_harm(M, l, phi, theta) for M in range(-l, l+1)] if m is None: return np.array(ylm, dtype=complex).T else: return np.array(ylm, dtype=complex).T[:, m+l] def sph_r(xyz, l, m=None): ''' Real spherial harmonics. https://en.wikipedia.org/wiki/Table_of_spherical_harmonics#Real_spherical_harmonics ''' ylm_c = sph_c(xyz, l) u = sph_u_c2r(l) if m is None: return np.dot(ylm_c, u.T).real else: return np.dot(ylm_c, u.T).real[:, m+l] def sph_u_c2r(l): ''' Set up transformation matrix complex->real spherical harmonics. please refer to: https://en.wikipedia.org/wiki/Spherical_harmonics#Real_form U_R2C is the conjugate transpose of U_C2R ''' # A strange bug: # https://stackoverflow.com/questions/9887549/negative-exponent-with-numpy-array-operand/42776488 l = int(l) TLP1 = 2 * l + 1 U_C2R = np.zeros((TLP1, TLP1), dtype=complex) sqrt2inv = 1.0 / np.sqrt(2.0) for ii in range(TLP1): M = ii - l if (M < 0): U_C2R[ii, ii] = 1j * sqrt2inv U_C2R[ii, -(ii+1)] = -1j * (-1)**M * sqrt2inv if (M == 0): U_C2R[ii, ii] = 1.0 if (M > 0): U_C2R[ii, -(ii+1)] = sqrt2inv U_C2R[ii, ii] = (-1)**M * sqrt2inv return U_C2R def sph_u_r2c(l): ''' Transformation matrix real->complex spherical harmonics ''' return sph_u_c2r(l).conj().T def show_sph_harm(l, m, real=True, N=50, use_sphere=True, plot='mpl'): ''' Show the spherical harmonics on a unit sphere ''' assert plot.lower() in ['mpl', 'mayavi', 'plotly'] theta = np.linspace(0, np.pi, N) phi = np.linspace(0, 2*np.pi, N) theta, phi = np.meshgrid(theta, phi) # The Cartesian coordinates of the unit sphere x = np.sin(theta) * np.cos(phi) y = np.sin(theta) * np.sin(phi) z = np.cos(theta) xyz = np.c_[x.ravel(), y.ravel(), z.ravel()] # from time import time # t0 = time() if real: ylm = sph_r(xyz, l, m).reshape(N, N) else: ylm = sph_c(xyz, l, m).reshape(N, N).real # t1 = time() # print(t1 - t0) # Calculate the spherical harmonic Y(l,m) and normalize to [0,1] fcolors = ylm fmax, fmin = fcolors.max(), fcolors.min() fcolors = (fcolors - fmin)/(fmax - fmin) if not use_sphere: r0 = np.abs(ylm) if plot.lower() == 'mpl': import matplotlib.pyplot as plt from matplotlib import cm, colors from mpl_toolkits.mplot3d import Axes3D # Set the aspect ratio to 1 so our sphere looks spherical fig = plt.figure( figsize=plt.figaspect(1.) ) ax = fig.add_subplot(111, projection='3d') if use_sphere: ax.plot_surface(x, y, z, rstride=1, cstride=1, facecolors=cm.seismic(fcolors)) xmax = ymax = zmax = np.max([x, y, z]) xmin = ymin = zmin = np.min([x, y, z]) else: ax.plot_surface(x*r0, y*r0, z*r0, rstride=1, cstride=1, facecolors=cm.seismic(fcolors)) xmax = ymax = zmax = np.max([r0*x, r0*y, r0*z]) xmin = ymin = zmin = np.min([r0*x, r0*y, r0*z]) # Turn off the axis planes # ax.set_axis_off() ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) ax.set_zlim(zmin, zmax) ax.set_xticks([]) ax.set_yticks([]) ax.set_zticks([]) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') plt.show() elif plot == 'mayavi': from mayavi import mlab fig = mlab.figure( size=(800, 800), bgcolor=(1,1,1) ) if use_sphere: mlab.mesh(x, y, z, colormap='seismic', scalars=fcolors) else: mlab.mesh(x*r0, y*r0, z*r0, colormap='seismic', scalars=fcolors) mlab.orientation_axes() mlab.show() else: import plotly.graph_objects as go if use_sphere: fig = go.Figure( data=[ go.Surface( z=z, x=x, y=y, surfacecolor=fcolors, colorscale='balance', showscale=False, opacity=1.0, hoverinfo='none' ) ], ) else: fig = go.Figure( data=[ go.Surface( z=r0*z, x=r0*x, y=r0*y, surfacecolor=fcolors, colorscale='balance', showscale=False, opacity=1.0, hoverinfo='none' ) ], ) fig.update_layout( width=800, height=800, ) fig.show() if __name__ == "__main__": show_sph_harm(l=2, m=1, real=True, use_sphere=False, plot='mayavi')
ba339338a73958d251fd31798b05a82ee800f4f9
0ec2b0a2caf2cc5e0ec2bbb89aefc10fc5c63047
/tests/test_class_import.py
709dc6e17cba874a810c894d284840eac87cad87
[ "Apache-2.0" ]
permissive
spulec/freezegun
3d8406eaf4c3ffa72f884162a278a332eaee4a94
4f4496380deefceead7bef23bccaca17c2bdecfa
refs/heads/master
2023-08-30T22:29:16.153344
2023-02-22T05:49:22
2023-02-22T05:49:22
7,106,250
3,480
294
Apache-2.0
2023-08-24T21:19:36
2012-12-11T05:11:00
Python
UTF-8
Python
false
false
6,101
py
test_class_import.py
import time import sys from .fake_module import ( fake_date_function, fake_datetime_function, fake_gmtime_function, fake_localtime_function, fake_strftime_function, fake_time_function, ) from . import fake_module from freezegun import freeze_time from freezegun.api import ( FakeDatetime, FakeDate, fake_time, fake_localtime, fake_gmtime, fake_strftime, ) import datetime @freeze_time("2012-01-14") def test_import_datetime_works(): assert fake_datetime_function().day == 14 @freeze_time("2012-01-14") def test_import_date_works(): assert fake_date_function().day == 14 @freeze_time("2012-01-14") def test_import_time(): local_time = datetime.datetime(2012, 1, 14) utc_time = local_time - datetime.timedelta(seconds=time.timezone) expected_timestamp = time.mktime(utc_time.timetuple()) assert fake_time_function() == expected_timestamp def test_start_and_stop_works(): freezer = freeze_time("2012-01-14") result = fake_datetime_function() assert result.__class__ == datetime.datetime assert result.__class__ != FakeDatetime freezer.start() assert fake_datetime_function().day == 14 assert isinstance(fake_datetime_function(), datetime.datetime) assert isinstance(fake_datetime_function(), FakeDatetime) freezer.stop() result = fake_datetime_function() assert result.__class__ == datetime.datetime assert result.__class__ != FakeDatetime def test_isinstance_works(): date = datetime.date.today() now = datetime.datetime.now() freezer = freeze_time('2011-01-01') freezer.start() assert isinstance(date, datetime.date) assert not isinstance(date, datetime.datetime) assert isinstance(now, datetime.datetime) assert isinstance(now, datetime.date) freezer.stop() def test_issubclass_works(): real_date = datetime.date real_datetime = datetime.datetime freezer = freeze_time('2011-01-01') freezer.start() assert issubclass(real_date, datetime.date) assert issubclass(real_datetime, datetime.datetime) freezer.stop() def test_fake_uses_real_when_ignored(): real_time_before = time.time() with freeze_time('2012-01-14', ignore=['tests.fake_module']): real_time = fake_time_function() real_time_after = time.time() assert real_time_before <= real_time <= real_time_after def test_can_ignore_email_module(): from email.utils import formatdate with freeze_time('2012-01-14'): faked_date_str = formatdate() before_date_str = formatdate() with freeze_time('2012-01-14', ignore=['email']): date_str = formatdate() after_date_str = formatdate() assert date_str != faked_date_str assert before_date_str <= date_str <= after_date_str @freeze_time('2011-01-01') def test_avoid_replacing_equal_to_anything(): assert fake_module.equal_to_anything.description == 'This is the equal_to_anything object' @freeze_time("2012-01-14 12:00:00") def test_import_localtime(): struct = fake_localtime_function() assert struct.tm_year == 2012 assert struct.tm_mon == 1 assert struct.tm_mday >= 13 # eg. GMT+14 assert struct.tm_mday <= 15 # eg. GMT-14 @freeze_time("2012-01-14 12:00:00") def test_fake_gmtime_function(): struct = fake_gmtime_function() assert struct.tm_year == 2012 assert struct.tm_mon == 1 assert struct.tm_mday == 14 @freeze_time("2012-01-14") def test_fake_strftime_function(): assert fake_strftime_function() == '2012' def test_import_after_start(): with freeze_time('2012-01-14'): assert 'tests.another_module' not in sys.modules.keys() from tests import another_module # Reals assert another_module.get_datetime() is datetime.datetime assert another_module.get_datetime() is FakeDatetime assert another_module.get_date() is datetime.date assert another_module.get_date() is FakeDate assert another_module.get_time() is time.time assert another_module.get_time() is fake_time assert another_module.get_localtime() is time.localtime assert another_module.get_localtime() is fake_localtime assert another_module.get_gmtime() is time.gmtime assert another_module.get_gmtime() is fake_gmtime assert another_module.get_strftime() is time.strftime assert another_module.get_strftime() is fake_strftime # Fakes assert another_module.get_fake_datetime() is FakeDatetime assert another_module.get_fake_date() is FakeDate assert another_module.get_fake_time() is fake_time assert another_module.get_fake_localtime() is fake_localtime assert another_module.get_fake_gmtime() is fake_gmtime assert another_module.get_fake_strftime() is fake_strftime # Reals assert another_module.get_datetime() is datetime.datetime assert not another_module.get_datetime() is FakeDatetime assert another_module.get_date() is datetime.date assert not another_module.get_date() is FakeDate assert another_module.get_time() is time.time assert not another_module.get_time() is fake_time assert another_module.get_localtime() is time.localtime assert not another_module.get_localtime() is fake_localtime assert another_module.get_gmtime() is time.gmtime assert not another_module.get_gmtime() is fake_gmtime assert another_module.get_strftime() is time.strftime assert not another_module.get_strftime() is fake_strftime # Fakes assert another_module.get_fake_datetime() is FakeDatetime assert another_module.get_fake_date() is FakeDate assert another_module.get_fake_time() is fake_time assert another_module.get_fake_localtime() is fake_localtime assert another_module.get_fake_gmtime() is fake_gmtime assert another_module.get_fake_strftime() is fake_strftime del sys.modules['tests.another_module'] def test_none_as_initial(): with freeze_time() as ft: ft.move_to('2012-01-14') assert fake_strftime_function() == '2012'
d4958d660aaa09702436e99cf5ee5b8de77c81bd
d813a392c7cbc8dbbec273b3a2366a50f9df45c9
/bmtk/analyzer/spikes_analyzer.py
af77187a618f82ecc153c796587a665d2f51cd96
[ "BSD-3-Clause" ]
permissive
AllenInstitute/bmtk
1496d6e0bd7cbef7b1b8cac64a8589d01548f897
ae9c24c415a3fbd60397b4ead160b72b4b3e4e4f
refs/heads/develop
2023-08-24T20:09:32.763686
2023-08-20T18:29:19
2023-08-20T18:29:19
104,507,294
253
111
BSD-3-Clause
2023-08-24T14:38:57
2017-09-22T18:42:44
Python
UTF-8
Python
false
false
4,787
py
spikes_analyzer.py
# Copyright 2017. Allen Institute. All rights reserved # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the # following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following # disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import pandas as pd import numpy as np try: from distutils.version import LooseVersion use_sort_values = LooseVersion(pd.__version__) >= LooseVersion('0.19.0') except: use_sort_values = False def spikes2dict(spikes_file): spikes_df = pd.read_csv(spikes_file, sep=' ', names=['time', 'gid']) if use_sort_values: spikes_sorted = spikes_df.sort_values(['gid', 'time']) else: spikes_sorted = spikes_df.sort(['gid', 'time']) spike_dict = {} for gid, spike_train in spikes_sorted.groupby('gid'): spike_dict[gid] = np.array(spike_train['time']) return spike_dict def spike_files_equal(spikes_txt_1, spikes_txt_2, err=0.0001): trial_1 = spikes2dict(spikes_txt_1) trial_2 = spikes2dict(spikes_txt_2) if set(trial_1.keys()) != set(trial_2.keys()): return False for gid, spike_train1 in trial_1.items(): spike_train2 = trial_2[gid] if len(spike_train1) != len(spike_train2): return False for s1, s2 in zip(spike_train1, spike_train2): if abs(s1 - s2) > err: return False return True def get_mean_firing_rates(spike_gids, node_ids, tstop_msec): """ Compute mean firing rate over the duration of the simulation :param spike_gids: gids of cells which spiked :param node_ids: np.array of node_ids :return mean_firing_rate: np.array mean firing rates """ min_gid = np.min(node_ids) max_gid = np.max(node_ids) gid_bins = np.arange(min_gid-0.5,max_gid+1.5,1) hist,bins = np.histogram(spike_gids, bins=gid_bins) tstop_sec = tstop_msec*1E-3 mean_firing_rates = hist/tstop_sec return mean_firing_rates def spikes_equal_in_window(spikes1,spikes2,twindow): """ Compare spikes within a time window :param spikes1: dict with "time" and "gid" arrays for raster 1 :param spikes2: dict with "time" and "gid" arrays for raster 2 :param twindow: [tstart,tend] time window :return boolean: True if equal, False if different """ ix1_window0=np.where(spikes1["time"]>twindow[0]) ix1_window1=np.where(spikes1["time"]<twindow[1]) ix1_window = np.intersect1d(ix1_window0,ix1_window1) ix2_window0=np.where(spikes2["time"]>twindow[0]) ix2_window1=np.where(spikes2["time"]<twindow[1]) ix2_window = np.intersect1d(ix2_window0,ix2_window1) print(len(spikes1["time"][ix1_window]),len(spikes2["time"][ix2_window])) if len(spikes1["time"][ix1_window]) != len(spikes2["time"][ix2_window]): print("There is a DIFFERENT number of spikes in each file within the window") print("No point to compare individual spikes") return else: print("number of spikes are the same, checking details...") ix1_sort = np.argsort(spikes1["time"][ix1_window],kind="mergesort") ix2_sort = np.argsort(spikes2["time"][ix2_window],kind="mergesort") if (np.array_equal(spikes1["gid"][ix1_window[ix1_sort]],spikes2["gid"][ix2_window[ix2_sort]])) and (np.array_equal(spikes1["time"][ix1_window[ix1_sort]],spikes2["time"][ix2_window[ix2_sort]])): print("spikes are IDENTICAL!") return True else: print("spikes are DIFFERENT") return False
7ef9262273a3c7f5ef9e3659c8253c016a2f63ad
b99c294295f1b1d6da8f90562490567b24fd8c8f
/AVR_Miner.py
be47070cc66e85068cba8e8f54f7e39bd144d175
[ "MIT" ]
permissive
revoxhere/duino-coin
5d1f97425e29bf885f639f74fc5fc2fb483859b5
9cea64d8bd59f9138dc2f160f2caaf5c3f373c8d
refs/heads/master
2023-08-17T10:43:46.972577
2023-08-16T18:02:04
2023-08-16T18:02:04
200,611,314
2,839
833
MIT
2023-09-07T23:41:21
2019-08-05T08:07:46
Python
UTF-8
Python
false
false
50,322
py
AVR_Miner.py
#!/usr/bin/env python3 """ Duino-Coin Official AVR Miner 3.5 © MIT licensed https://duinocoin.com https://github.com/revoxhere/duino-coin Duino-Coin Team & Community 2019-2023 """ from os import _exit, mkdir from os import name as osname from os import path from os import system as ossystem from platform import machine as osprocessor from platform import system import sys from configparser import ConfigParser from pathlib import Path from json import load as jsonload from random import choice from locale import LC_ALL, getdefaultlocale, getlocale, setlocale import zipfile from re import sub from socket import socket from datetime import datetime from statistics import mean from signal import SIGINT, signal from time import ctime, sleep, strptime, time import pip from subprocess import DEVNULL, Popen, check_call, call from threading import Thread from threading import Lock as thread_lock from threading import Semaphore import base64 as b64 import os printlock = Semaphore(value=1) # Python <3.5 check f"Your Python version is too old. Duino-Coin Miner requires version 3.6 or above. Update your packages and try again" def install(package): try: pip.main(["install", package]) except AttributeError: check_call([sys.executable, '-m', 'pip', 'install', package]) call([sys.executable, __file__]) try: from serial import Serial import serial.tools.list_ports except ModuleNotFoundError: print("Pyserial is not installed. " + "Miner will try to automatically install it " + "If it fails, please manually execute " + "python3 -m pip install pyserial") install('pyserial') try: import requests except ModuleNotFoundError: print("Requests is not installed. " + "Miner will try to automatically install it " + "If it fails, please manually execute " + "python3 -m pip install requests") install('requests') try: from colorama import Back, Fore, Style, init init(autoreset=True) except ModuleNotFoundError: print("Colorama is not installed. " + "Miner will try to automatically install it " + "If it fails, please manually execute " + "python3 -m pip install colorama") install("colorama") try: from pypresence import Presence except ModuleNotFoundError: print("Pypresence is not installed. " + "Miner will try to automatically install it " + "If it fails, please manually execute " + "python3 -m pip install pypresence") install("pypresence") try: import psutil except ModuleNotFoundError: print("Psutil is not installed. " + "Miner will try to automatically install it " + "If it fails, please manually execute " + "python3 -m pip install psutil") install("psutil") def now(): return datetime.now() def port_num(com): return str(''.join(filter(str.isdigit, com))) class Settings: VER = '3.5' SOC_TIMEOUT = 15 REPORT_TIME = 120 AVR_TIMEOUT = 10 BAUDRATE = 115200 DATA_DIR = "Duino-Coin AVR Miner " + str(VER) SEPARATOR = "," ENCODING = "utf-8" TEMP_FOLDER = "Temp" try: # Raspberry Pi latin users can't display this character "‖".encode(sys.stdout.encoding) BLOCK = " ‖ " except: BLOCK = " | " PICK = "" COG = " @" if (osname != "nt" or bool(osname == "nt" and os.environ.get("WT_SESSION"))): # Windows' cmd does not support emojis, shame! # And some codecs same, for example the Latin-1 encoding don`t support emoji try: "⛏ ⚙".encode(sys.stdout.encoding) # if the terminal support emoji PICK = " ⛏" COG = " ⚙" except UnicodeEncodeError: # else PICK = "" COG = " @" def check_updates(): """ Function that checks if the miner is updated. Downloads the new version and restarts the miner. """ try: data = requests.get( "https://api.github.com/repos/revoxhere/duino-coin/releases/latest" ).json() zip_file = "Duino-Coin_" + data["tag_name"] + "_linux.zip" if sys.platform == "win32": zip_file = "Duino-Coin_" + data["tag_name"] + "_windows.zip" process = psutil.Process(os.getpid()) running_script = False # If the process is from script if "python" in process.name(): running_script = True if float(Settings.VER) < float(data["tag_name"]): # If is outdated update = input(Style.BRIGHT + get_string("new_version")) if update == "Y" or update == "y": pretty_print("sys0", get_string("updating"), "warning") DATA_DIR = "Duino-Coin AVR Miner " + str(data["tag_name"]) # Create new version config folder if not path.exists(DATA_DIR): mkdir(DATA_DIR) try: config.read(str(Settings.DATA_DIR) + '/Settings.cfg') # read the previous config config["AVR Miner"] = { 'username': config["AVR Miner"]['username'], 'avrport': config["AVR Miner"]['avrport'], 'donate': int(config["AVR Miner"]['donate']), 'language': config["AVR Miner"]['language'], 'identifier': config["AVR Miner"]['identifier'], 'debug': config["AVR Miner"]['debug'], "soc_timeout": int(config["AVR Miner"]["soc_timeout"]), "avr_timeout": float(config["AVR Miner"]["avr_timeout"]), "discord_presence": config["AVR Miner"]["discord_presence"], "periodic_report": int(config["AVR Miner"]["periodic_report"]), "mining_key": config["AVR Miner"]["mining_key"] } with open(str(DATA_DIR) # save it on the new version folder + '/Settings.cfg', 'w') as configfile: config.write(configfile) pretty_print("sys0", Style.RESET_ALL + get_string('config_saved'), "success") except Exception as e: pretty_print("sys0", f"Error saving configfile: {e}" + str(e), "error") pretty_print("sys0", "Config won't be carried to the next version", "warning") if not os.path.exists(Settings.TEMP_FOLDER): # Make the Temp folder os.makedirs(Settings.TEMP_FOLDER) file_path = os.path.join(Settings.TEMP_FOLDER, zip_file) download_url = "https://github.com/revoxhere/duino-coin/releases/download/" + data["tag_name"] + "/" + zip_file if running_script: file_path = os.path.join(".", "AVR_Miner_"+data["tag_name"]+".py") download_url = "https://raw.githubusercontent.com/revoxhere/duino-coin/master/AVR_Miner.py" r = requests.get(download_url, stream=True) if r.ok: start = time() dl = 0 file_size = int(r.headers["Content-Length"]) # Get file size pretty_print("sys0", f"Saving update to: {os.path.abspath(file_path)}", "warning") with open(file_path, 'wb') as f: for chunk in r.iter_content(chunk_size=1024 * 8): # Download file in chunks if chunk: dl += len(chunk) done = int(50 * dl / file_size) dl_perc = str(int(100 * dl / file_size)) if running_script: done = int(12.5 * dl / file_size) dl_perc = str(int(22.5 * dl / file_size)) sys.stdout.write( "\r%s [%s%s] %s %s" % ( dl_perc + "%", '#' * done, ' ' * (50-done), str(round(os.path.getsize(file_path) / 1024 / 1024, 2)) + " MB ", str((dl // (time() - start)) // 1024) + " KB/s")) # ProgressBar sys.stdout.flush() f.write(chunk) f.flush() os.fsync(f.fileno()) pretty_print("sys0", "Download complete", "success") if not running_script: pretty_print("sys0", "Unpacking archive", "warning") with zipfile.ZipFile(file_path, 'r') as zip_ref: # Unzip the file for file in zip_ref.infolist(): if "AVR_Miner" in file.filename: if sys.platform == "win32": file.filename = "AVR_Miner_"+data["tag_name"]+".exe" # Rename the file else: file.filename = "AVR_Miner_"+data["tag_name"] zip_ref.extract(file, ".") pretty_print("sys0", "Unpacking complete", "success") os.remove(file_path) # Delete the zip file os.rmdir(Settings.TEMP_FOLDER) # Delete the temp folder if sys.platform == "win32": os.startfile(os.getcwd() + "\\AVR_Miner_"+data["tag_name"]+".exe") # Start the miner else: # os.startfile is only for windows os.system(os.getcwd() + "/AVR_Miner_"+data["tag_name"]) else: if sys.platform == "win32": os.system(file_path) else: os.system("python3 " + file_path) sys.exit() # Exit the program else: # HTTP status code 4XX/5XX pretty_print( "sys0", f"Update failed: {r.status_code}: {r.text}", "error") else: pretty_print("sys0", "Update aborted", "warning") except Exception as e: print(e) sys.exit() def check_mining_key(user_settings): user_settings = user_settings["AVR Miner"] if user_settings["mining_key"] != "None": key = "&k=" + b64.b64decode(user_settings["mining_key"]).decode('utf-8') else: key = '' response = requests.get( "https://server.duinocoin.com/mining_key" + "?u=" + user_settings["username"] + key, timeout=10 ).json() if response["success"] and not response["has_key"]: # if the user doesn't have a mining key user_settings["mining_key"] = "None" config["AVR Miner"] = user_settings with open(Settings.DATA_DIR + '/Settings.cfg', "w") as configfile: config.write(configfile) print("sys0", Style.RESET_ALL + get_string("config_saved"), "info") return if not response["success"]: if user_settings["mining_key"] == "None": pretty_print( "sys0", get_string("mining_key_required"), "warning") mining_key = input("Enter your mining key: ") user_settings["mining_key"] = b64.b64encode(mining_key.encode("utf-8")).decode('utf-8') config["AVR Miner"] = user_settings with open(Settings.DATA_DIR + '/Settings.cfg', "w") as configfile: config.write(configfile) print("sys0", Style.RESET_ALL + get_string("config_saved"), "info") check_mining_key(config) else: pretty_print( "sys0", get_string("invalid_mining_key"), "error") retry = input("Do you want to retry? (y/n): ") if retry == "y" or retry == "Y": mining_key = input("Enter your mining key: ") user_settings["mining_key"] = b64.b64encode(mining_key.encode("utf-8")).decode('utf-8') config["AVR Miner"] = user_settings with open(Settings.DATA_DIR + '/Settings.cfg', "w") as configfile: config.write(configfile) print("sys0", Style.RESET_ALL + get_string("config_saved"), "info") sleep(1.5) check_mining_key(config) else: return class Client: """ Class helping to organize socket connections """ def connect(pool: tuple): s = socket() s.settimeout(Settings.SOC_TIMEOUT) s.connect((pool)) return s def send(s, msg: str): sent = s.sendall(str(msg).encode(Settings.ENCODING)) return True def recv(s, limit: int = 128): data = s.recv(limit).decode(Settings.ENCODING).rstrip("\n") return data def fetch_pool(): while True: pretty_print("net0", get_string("connection_search"), "info") try: response = requests.get( "https://server.duinocoin.com/getPool", timeout=10).json() if response["success"] == True: pretty_print("net0", get_string("connecting_node") + response["name"], "info") NODE_ADDRESS = response["ip"] NODE_PORT = response["port"] return (NODE_ADDRESS, NODE_PORT) elif "message" in response: pretty_print(f"Warning: {response['message']}" + ", retrying in 15s", "warning", "net0") sleep(15) else: raise Exception( "no response - IP ban or connection error") except Exception as e: if "Expecting value" in str(e): pretty_print("net0", get_string("node_picker_unavailable") + f"15s {Style.RESET_ALL}({e})", "warning") else: pretty_print("net0", get_string("node_picker_error") + f"15s {Style.RESET_ALL}({e})", "error") sleep(15) class Donate: def load(donation_level): if donation_level > 0: if osname == 'nt': if not Path( f"{Settings.DATA_DIR}/Donate.exe").is_file(): url = ('https://server.duinocoin.com/' + 'donations/DonateExecutableWindows.exe') r = requests.get(url, timeout=15) with open(f"{Settings.DATA_DIR}/Donate.exe", 'wb') as f: f.write(r.content) elif osname == "posix": if osprocessor() == "aarch64": url = ('https://server.duinocoin.com/' + 'donations/DonateExecutableAARCH64') elif osprocessor() == "armv7l": url = ('https://server.duinocoin.com/' + 'donations/DonateExecutableAARCH32') else: url = ('https://server.duinocoin.com/' + 'donations/DonateExecutableLinux') if not Path( f"{Settings.DATA_DIR}/Donate").is_file(): r = requests.get(url, timeout=15) with open(f"{Settings.DATA_DIR}/Donate", "wb") as f: f.write(r.content) def start(donation_level): donation_settings = requests.get( "https://server.duinocoin.com/donations/settings.json").json() if os.name == 'nt': cmd = (f'cd "{Settings.DATA_DIR}" & Donate.exe ' + f'-o {donation_settings["url"]} ' + f'-u {donation_settings["user"]} ' + f'-p {donation_settings["pwd"]} ' + f'-s 4 -e {donation_level*2}') elif os.name == 'posix': cmd = (f'cd "{Settings.DATA_DIR}" && chmod +x Donate ' + '&& nice -20 ./Donate ' + f'-o {donation_settings["url"]} ' + f'-u {donation_settings["user"]} ' + f'-p {donation_settings["pwd"]} ' + f'-s 4 -e {donation_level*2}') if donation_level <= 0: pretty_print( 'sys0', Fore.YELLOW + get_string('free_network_warning').lstrip() + get_string('donate_warning').replace("\n", "\n\t\t") + Fore.GREEN + 'https://duinocoin.com/donate' + Fore.YELLOW + get_string('learn_more_donate'), 'warning') sleep(5) if donation_level > 0: debug_output(get_string('starting_donation')) donateExecutable = Popen(cmd, shell=True, stderr=DEVNULL) pretty_print('sys0', get_string('thanks_donation').replace("\n", "\n\t\t"), 'error') shares = [0, 0, 0] hashrate_mean = [] ping_mean = [] diff = 0 donator_running = False job = '' debug = 'n' discord_presence = 'y' rig_identifier = 'None' donation_level = 0 hashrate = 0 config = ConfigParser() mining_start_time = time() if not path.exists(Settings.DATA_DIR): mkdir(Settings.DATA_DIR) if not Path(Settings.DATA_DIR + '/Translations.json').is_file(): url = ('https://raw.githubusercontent.com/' + 'revoxhere/' + 'duino-coin/master/Resources/' + 'AVR_Miner_langs.json') r = requests.get(url, timeout=5) with open(Settings.DATA_DIR + '/Translations.json', 'wb') as f: f.write(r.content) # Load language file with open(Settings.DATA_DIR + '/Translations.json', 'r', encoding='utf8') as lang_file: lang_file = jsonload(lang_file) # OS X invalid locale hack if system() == 'Darwin': if getlocale()[0] is None: setlocale(LC_ALL, 'en_US.UTF-8') try: if not Path(Settings.DATA_DIR + '/Settings.cfg').is_file(): locale = getdefaultlocale()[0] if locale.startswith('es'): lang = 'spanish' elif locale.startswith('sk'): lang = 'slovak' elif locale.startswith('ru'): lang = 'russian' elif locale.startswith('pl'): lang = 'polish' elif locale.startswith('de'): lang = 'german' elif locale.startswith('fr'): lang = 'french' elif locale.startswith('jp'): lang = 'japanese' elif locale.startswith('tr'): lang = 'turkish' elif locale.startswith('it'): lang = 'italian' elif locale.startswith('pt'): lang = 'portuguese' elif locale.startswith('zh'): lang = 'chinese_simplified' elif locale.startswith('th'): lang = 'thai' elif locale.startswith('az'): lang = 'azerbaijani' elif locale.startswith('nl'): lang = 'dutch' elif locale.startswith('ko'): lang = 'korean' elif locale.startswith("id"): lang = "indonesian" elif locale.startswith("cz"): lang = "czech" elif locale.startswith("fi"): lang = "finnish" else: lang = 'english' else: try: config.read(Settings.DATA_DIR + '/Settings.cfg') lang = config["AVR Miner"]['language'] except Exception: lang = 'english' except: lang = 'english' def get_string(string_name: str): if string_name in lang_file[lang]: return lang_file[lang][string_name] elif string_name in lang_file['english']: return lang_file['english'][string_name] else: return string_name def get_prefix(symbol: str, val: float, accuracy: int): """ H/s, 1000 => 1 kH/s """ if val >= 1_000_000_000_000: # Really? val = str(round((val / 1_000_000_000_000), accuracy)) + " T" elif val >= 1_000_000_000: val = str(round((val / 1_000_000_000), accuracy)) + " G" elif val >= 1_000_000: val = str(round((val / 1_000_000), accuracy)) + " M" elif val >= 1_000: val = str(round((val / 1_000))) + " k" else: if symbol: val = str(round(val)) + " " else: val = str(round(val)) return val + symbol def debug_output(text: str): if debug == 'y': print(Style.RESET_ALL + Fore.WHITE + now().strftime(Style.DIM + '%H:%M:%S.%f ') + Style.NORMAL + f'DEBUG: {text}') def title(title: str): if osname == 'nt': """ Changing the title in Windows' cmd is easy - just use the built-in title command """ ossystem('title ' + title) else: """ Most *nix terminals use this escape sequence to change the console window title """ try: print('\33]0;' + title + '\a', end='') sys.stdout.flush() except Exception as e: print(e) def handler(signal_received, frame): pretty_print( 'sys0', get_string('sigint_detected') + Style.NORMAL + Fore.RESET + get_string('goodbye'), 'warning') _exit(0) # Enable signal handler signal(SIGINT, handler) def load_config(): global username global donation_level global avrport global hashrate_list global debug global rig_identifier global discord_presence global SOC_TIMEOUT if not Path(str(Settings.DATA_DIR) + '/Settings.cfg').is_file(): print( Style.BRIGHT + get_string('basic_config_tool') + Settings.DATA_DIR + get_string('edit_config_file_warning')) print( Style.RESET_ALL + get_string('dont_have_account') + Fore.YELLOW + get_string('wallet') + Fore.RESET + get_string('register_warning')) correct_username = False while not correct_username: username = input( Style.RESET_ALL + Fore.YELLOW + get_string('ask_username') + Fore.RESET + Style.BRIGHT) if not username: username = choice(["revox", "Bilaboz"]) r = requests.get(f"https://server.duinocoin.com/users/{username}", timeout=Settings.SOC_TIMEOUT).json() correct_username = r["success"] if not correct_username: print(get_string("incorrect_username")) response = requests.get( "https://server.duinocoin.com/mining_key" + "?u=" + username, timeout=10 ).json() mining_key = "None" if response["has_key"]: mining_key = input(Style.RESET_ALL + Fore.YELLOW + get_string("ask_mining_key") + Fore.RESET + Style.BRIGHT) mining_key = b64.b64encode(mining_key.encode("utf-8")).decode('utf-8') print(Style.RESET_ALL + Fore.YELLOW + get_string('ports_message')) portlist = serial.tools.list_ports.comports(include_links=True) for port in portlist: print(Style.RESET_ALL + Style.BRIGHT + Fore.RESET + ' ' + str(port)) print(Style.RESET_ALL + Fore.YELLOW + get_string('ports_notice')) port_names = [] for port in portlist: port_names.append(port.device) avrport = '' rig_identifier = '' while True: current_port = input( Style.RESET_ALL + Fore.YELLOW + get_string('ask_avrport') + Fore.RESET + Style.BRIGHT) if current_port in port_names: confirm_identifier = input( Style.RESET_ALL + Fore.YELLOW + get_string('ask_rig_identifier') + Fore.RESET + Style.BRIGHT) if confirm_identifier == 'y' or confirm_identifier == 'Y': current_identifier = input( Style.RESET_ALL + Fore.YELLOW + get_string('ask_rig_name') + Fore.RESET + Style.BRIGHT) rig_identifier += current_identifier else: rig_identifier += "None" avrport += current_port confirmation = input( Style.RESET_ALL + Fore.YELLOW + get_string('ask_anotherport') + Fore.RESET + Style.BRIGHT) if confirmation == 'y' or confirmation == 'Y': avrport += ',' rig_identifier += ',' else: break else: print(Style.RESET_ALL + Fore.RED + 'Please enter a valid COM port from the list above') else: rig_identifier = 'None' donation_level = '0' if osname == 'nt' or osname == 'posix': donation_level = input( Style.RESET_ALL + Fore.YELLOW + get_string('ask_donation_level') + Fore.RESET + Style.BRIGHT) donation_level = sub(r'\D', '', donation_level) if donation_level == '': donation_level = 1 if float(donation_level) > int(5): donation_level = 5 if float(donation_level) < int(0): donation_level = 0 donation_level = int(donation_level) config["AVR Miner"] = { 'username': username, 'avrport': avrport, 'donate': donation_level, 'language': lang, 'identifier': rig_identifier, 'debug': 'n', "soc_timeout": 45, "avr_timeout": 10, "discord_presence": "y", "periodic_report": 60, "mining_key": mining_key} with open(str(Settings.DATA_DIR) + '/Settings.cfg', 'w') as configfile: config.write(configfile) avrport = avrport.split(',') rig_identifier = rig_identifier.split(',') print(Style.RESET_ALL + get_string('config_saved')) hashrate_list = [0] * len(avrport) else: config.read(str(Settings.DATA_DIR) + '/Settings.cfg') username = config["AVR Miner"]['username'] avrport = config["AVR Miner"]['avrport'] avrport = avrport.replace(" ", "").split(',') donation_level = int(config["AVR Miner"]['donate']) debug = config["AVR Miner"]['debug'] rig_identifier = config["AVR Miner"]['identifier'].split(',') Settings.SOC_TIMEOUT = int(config["AVR Miner"]["soc_timeout"]) Settings.AVR_TIMEOUT = float(config["AVR Miner"]["avr_timeout"]) discord_presence = config["AVR Miner"]["discord_presence"] Settings.REPORT_TIME = int(config["AVR Miner"]["periodic_report"]) hashrate_list = [0] * len(avrport) def greeting(): global greeting print(Style.RESET_ALL) current_hour = strptime(ctime(time())).tm_hour if current_hour < 12: greeting = get_string('greeting_morning') elif current_hour == 12: greeting = get_string('greeting_noon') elif current_hour > 12 and current_hour < 18: greeting = get_string('greeting_afternoon') elif current_hour >= 18: greeting = get_string('greeting_evening') else: greeting = get_string('greeting_back') print( Style.DIM + Fore.MAGENTA + Settings.BLOCK + Fore.YELLOW + Style.BRIGHT + get_string('banner') + Style.RESET_ALL + Fore.MAGENTA + f' {Settings.VER}' + Fore.RESET + ' 2019-2023') print( Style.DIM + Fore.MAGENTA + Settings.BLOCK + Style.NORMAL + Fore.MAGENTA + 'https://github.com/revoxhere/duino-coin') if lang != "english": print( Style.DIM + Fore.MAGENTA + Settings.BLOCK + Style.NORMAL + Fore.RESET + lang.capitalize() + " translation: " + Fore.MAGENTA + get_string("translation_autor")) print( Style.DIM + Fore.MAGENTA + Settings.BLOCK + Style.NORMAL + Fore.RESET + get_string('avr_on_port') + Style.BRIGHT + Fore.YELLOW + ', '.join(avrport)) if osname == 'nt' or osname == 'posix': print( Style.DIM + Fore.MAGENTA + Settings.BLOCK + Style.NORMAL + Fore.RESET + get_string('donation_level') + Style.BRIGHT + Fore.YELLOW + str(donation_level)) print( Style.DIM + Fore.MAGENTA + Settings.BLOCK + Style.NORMAL + Fore.RESET + get_string('algorithm') + Style.BRIGHT + Fore.YELLOW + 'DUCO-S1A ⚙ AVR diff') if rig_identifier != "None": print( Style.DIM + Fore.MAGENTA + Settings.BLOCK + Style.NORMAL + Fore.RESET + get_string('rig_identifier') + Style.BRIGHT + Fore.YELLOW + rig_identifier) print( Style.DIM + Fore.MAGENTA + Settings.BLOCK + Style.NORMAL + Fore.RESET + get_string("using_config") + Style.BRIGHT + Fore.YELLOW + str(Settings.DATA_DIR + '/Settings.cfg')) print( Style.DIM + Fore.MAGENTA + Settings.BLOCK + Style.NORMAL + Fore.RESET + str(greeting) + ', ' + Style.BRIGHT + Fore.YELLOW + str(username) + '!\n') def init_rich_presence(): # Initialize Discord rich presence global RPC try: RPC = Presence(905158274490441808) RPC.connect() Thread(target=update_rich_presence).start() except Exception as e: #print("Error launching Discord RPC thread: " + str(e)) pass def update_rich_presence(): startTime = int(time()) while True: try: total_hashrate = get_prefix("H/s", sum(hashrate_list), 2) RPC.update(details="Hashrate: " + str(total_hashrate), start=mining_start_time, state=str(shares[0]) + "/" + str(shares[0] + shares[1]) + " accepted shares", large_image="avrminer", large_text="Duino-Coin, " + "a coin that can be mined with almost everything" + ", including AVR boards", buttons=[{"label": "Visit duinocoin.com", "url": "https://duinocoin.com"}, {"label": "Join the Discord", "url": "https://discord.gg/k48Ht5y"}]) except Exception as e: print("Error updating Discord RPC thread: " + str(e)) sleep(15) def pretty_print(sender: str = "sys0", msg: str = None, state: str = "success"): """ Produces nicely formatted CLI output for messages: HH:MM:S |sender| msg """ if sender.startswith("net"): bg_color = Back.BLUE elif sender.startswith("avr"): bg_color = Back.MAGENTA else: bg_color = Back.GREEN if state == "success": fg_color = Fore.GREEN elif state == "info": fg_color = Fore.BLUE elif state == "error": fg_color = Fore.RED else: fg_color = Fore.YELLOW with thread_lock(): print(Fore.WHITE + datetime.now().strftime(Style.DIM + "%H:%M:%S ") + bg_color + Style.BRIGHT + " " + sender + " " + Back.RESET + " " + fg_color + msg.strip()) def share_print(id, type, accept, reject, total_hashrate, computetime, diff, ping, reject_cause=None): """ Produces nicely formatted CLI output for shares: HH:MM:S |avrN| ⛏ Accepted 0/0 (100%) ∙ 0.0s ∙ 0 kH/s ⚙ diff 0 k ∙ ping 0ms """ try: total_hashrate = get_prefix("H/s", total_hashrate, 2) except: total_hashrate = "? H/s" if type == "accept": share_str = get_string("accepted") fg_color = Fore.GREEN elif type == "block": share_str = get_string("block_found") fg_color = Fore.YELLOW else: share_str = get_string("rejected") if reject_cause: share_str += f"{Style.NORMAL}({reject_cause}) " fg_color = Fore.RED with thread_lock(): print(Fore.WHITE + datetime.now().strftime(Style.DIM + "%H:%M:%S ") + Fore.WHITE + Style.BRIGHT + Back.MAGENTA + Fore.RESET + " avr" + str(id) + " " + Back.RESET + fg_color + Settings.PICK + share_str + Fore.RESET + str(accept) + "/" + str(accept + reject) + Fore.MAGENTA + " (" + str(round(accept / (accept + reject) * 100)) + "%)" + Style.NORMAL + Fore.RESET + " ∙ " + str("%04.1f" % float(computetime)) + "s" + Style.NORMAL + " ∙ " + Fore.BLUE + Style.BRIGHT + str(total_hashrate) + Fore.RESET + Style.NORMAL + Settings.COG + f" diff {diff} ∙ " + Fore.CYAN + f"ping {(int(ping))}ms") def mine_avr(com, threadid, fastest_pool, thread_rigid): global hashrate start_time = time() report_shares = 0 last_report_share = 0 while True: shares = [0, 0, 0] while True: try: ser.close() pretty_print('sys' + port_num(com), f"No response from the board. Closed port {com}", 'success') sleep(2) except: pass try: ser = Serial(com, baudrate=int(Settings.BAUDRATE), timeout=int(Settings.AVR_TIMEOUT)) """ Sleep after opening the port to make sure the board resets properly after receiving the DTR signal """ sleep(2) break except Exception as e: pretty_print( 'sys' + port_num(com), get_string('board_connection_error') + str(com) + get_string('board_connection_error2') + Style.NORMAL + Fore.RESET + f' (avr connection err: {e})', 'error') sleep(10) retry_counter = 0 while True: try: if retry_counter > 3: fastest_pool = Client.fetch_pool() retry_counter = 0 debug_output(f'Connecting to {fastest_pool}') s = Client.connect(fastest_pool) server_version = Client.recv(s, 6) if threadid == 0: if float(server_version) <= float(Settings.VER): pretty_print( 'net0', get_string('connected') + Style.NORMAL + Fore.RESET + get_string('connected_server') + str(server_version) + ")", 'success') else: pretty_print( 'sys0', f' Miner is outdated (v{Settings.VER}) -' + get_string('server_is_on_version') + server_version + Style.NORMAL + Fore.RESET + get_string('update_warning'), 'warning') sleep(10) Client.send(s, "MOTD") motd = Client.recv(s, 1024) if "\n" in motd: motd = motd.replace("\n", "\n\t\t") pretty_print("net" + str(threadid), get_string("motd") + Fore.RESET + Style.NORMAL + str(motd), "success") break except Exception as e: pretty_print('net0', get_string('connecting_error') + Style.NORMAL + f' (connection err: {e})', 'error') retry_counter += 1 sleep(10) pretty_print('sys' + port_num(com), get_string('mining_start') + Style.NORMAL + Fore.RESET + get_string('mining_algorithm') + str(com) + ')', 'success') # Perform a hash test to assign the starting diff prev_hash = "ba29a15896fd2d792d5c4b60668bf2b9feebc51d" exp_hash = "d0beba883d7e8cd119ea2b0e09b78f60f29e0968" exp_result = 50 retries = 0 while retries < 3: try: debug_output(com + ': Sending hash test to the board') ser.write(bytes(str(prev_hash + Settings.SEPARATOR + exp_hash + Settings.SEPARATOR + "10" + Settings.SEPARATOR), encoding=Settings.ENCODING)) debug_output(com + ': Reading hash test from the board') result = ser.read_until(b'\n').decode().strip().split(',') ser.flush() if result[0] and result[1]: _ = int(result[0], 2) debug_output(com + f': Result: {result[0]}') else: raise Exception("No data received from the board") if int(result[0], 2) != exp_result: raise Exception(com + f': Incorrect result received!') computetime = round(int(result[1], 2) / 1000000, 5) num_res = int(result[0], 2) hashrate_test = round(num_res / computetime, 2) break except Exception as e: debug_output(str(e)) retries += 1 else: pretty_print('sys' + port_num(com), f"Can't start mining on {com}" + Fore.RESET + f" - board keeps responding improperly. " + "Check if the code has been uploaded correctly " + "and your device is supported by Duino-Coin.", 'error') break start_diff = "AVR" if hashrate_test > 12000: start_diff = "ESP32" elif hashrate_test > 6000: start_diff = "ESP8266H" elif hashrate_test > 4500: start_diff = "ESP8266" elif hashrate_test > 1000: start_diff = "DUE" elif hashrate_test > 520: start_diff = "ARM" elif hashrate_test > 370: start_diff = "MEGA" pretty_print('sys' + port_num(com), get_string('hashrate_test') + get_prefix("H/s", hashrate_test, 2) + Fore.RESET + get_string('hashrate_test_diff') + start_diff) while True: try: if config["AVR Miner"]["mining_key"] != "None": key = b64.b64decode(config["AVR Miner"]["mining_key"]).decode() else: key = config["AVR Miner"]["mining_key"] debug_output(com + ': Requesting job') Client.send(s, 'JOB' + Settings.SEPARATOR + str(username) + Settings.SEPARATOR + start_diff + Settings.SEPARATOR + str(key) ) job = Client.recv(s, 128).split(Settings.SEPARATOR) debug_output(com + f": Received: {job[0]}") try: diff = int(job[2]) except: pretty_print("sys" + port_num(com), f" Node message: {job[1]}", "warning") sleep(3) except Exception as e: pretty_print('net' + port_num(com), get_string('connecting_error') + Style.NORMAL + Fore.RESET + f' (err handling result: {e})', 'error') sleep(3) break retry_counter = 0 while True: if retry_counter > 3: break try: debug_output(com + ': Sending job to the board') ser.write(bytes(str(job[0] + Settings.SEPARATOR + job[1] + Settings.SEPARATOR + job[2] + Settings.SEPARATOR), encoding=Settings.ENCODING)) debug_output(com + ': Reading result from the board') result = ser.read_until(b'\n').decode().strip().split(',') if result[0] and result[1]: _ = int(result[0], 2) debug_output(com + f': Result: {result[0]}') break else: raise Exception("No data received from AVR") except Exception as e: debug_output(com + f': Retrying data read: {e}') ser.flush() retry_counter += 1 continue if retry_counter > 3: break try: computetime = round(int(result[1], 2) / 1000000, 5) num_res = int(result[0], 2) hashrate_t = round(num_res / computetime, 2) hashrate_mean.append(hashrate_t) hashrate = mean(hashrate_mean[-5:]) hashrate_list[threadid] = hashrate except Exception as e: pretty_print('sys' + port_num(com), get_string('mining_avr_connection_error') + Style.NORMAL + Fore.RESET + ' (no response from the board: ' + f'{e}, please check the connection, ' + 'port setting or reset the AVR)', 'warning') break try: Client.send(s, str(num_res) + Settings.SEPARATOR + str(hashrate_t) + Settings.SEPARATOR + f'Official AVR Miner {Settings.VER}' + Settings.SEPARATOR + str(thread_rigid) + Settings.SEPARATOR + str(result[2])) responsetimetart = now() feedback = Client.recv(s, 64).split(",") responsetimestop = now() time_delta = (responsetimestop - responsetimetart).microseconds ping_mean.append(round(time_delta / 1000)) ping = mean(ping_mean[-10:]) diff = get_prefix("", int(diff), 0) debug_output(com + f': retrieved feedback: {" ".join(feedback)}') except Exception as e: pretty_print('net' + port_num(com), get_string('connecting_error') + Style.NORMAL + Fore.RESET + f' (err handling result: {e})', 'error') debug_output(com + f': error parsing response: {e}') sleep(5) break if feedback[0] == 'GOOD': shares[0] += 1 printlock.acquire() share_print(port_num(com), "accept", shares[0], shares[1], hashrate, computetime, diff, ping) printlock.release() elif feedback[0] == 'BLOCK': shares[0] += 1 shares[2] += 1 printlock.acquire() share_print(port_num(com), "block", shares[0], shares[1], hashrate, computetime, diff, ping) printlock.release() elif feedback[0] == 'BAD': shares[1] += 1 printlock.acquire() share_print(port_num(com), "reject", shares[0], shares[1], hashrate, computetime, diff, ping, feedback[1]) printlock.release() else: printlock.acquire() share_print(port_num(com), "reject", shares[0], shares[1], hashrate, computetime, diff, ping, feedback) printlock.release() title(get_string('duco_avr_miner') + str(Settings.VER) + f') - {shares[0]}/{(shares[0] + shares[1])}' + get_string('accepted_shares')) end_time = time() elapsed_time = end_time - start_time if threadid == 0 and elapsed_time >= Settings.REPORT_TIME: report_shares = shares[0] - last_report_share uptime = calculate_uptime(mining_start_time) periodic_report(start_time, end_time, report_shares, shares[2], hashrate, uptime) start_time = time() last_report_share = shares[0] def periodic_report(start_time, end_time, shares, block, hashrate, uptime): seconds = round(end_time - start_time) pretty_print("sys0", " " + get_string('periodic_mining_report') + Fore.RESET + Style.NORMAL + get_string('report_period') + str(seconds) + get_string('report_time') + get_string('report_body1') + str(shares) + get_string('report_body2') + str(round(shares/seconds, 1)) + get_string('report_body3') + get_string('report_body7') + str(block) + get_string('report_body4') + str(int(hashrate)) + " H/s" + get_string('report_body5') + str(int(hashrate*seconds)) + get_string('report_body6') + get_string('total_mining_time') + str(uptime), "success") def calculate_uptime(start_time): uptime = time() - start_time if uptime >= 7200: # 2 hours, plural return str(uptime // 3600) + get_string('uptime_hours') elif uptime >= 3600: # 1 hour, not plural return str(uptime // 3600) + get_string('uptime_hour') elif uptime >= 120: # 2 minutes, plural return str(uptime // 60) + get_string('uptime_minutes') elif uptime >= 60: # 1 minute, not plural return str(uptime // 60) + get_string('uptime_minute') else: # less than 1 minute return str(round(uptime)) + get_string('uptime_seconds') if __name__ == '__main__': init(autoreset=True) title(f"{get_string('duco_avr_miner')}{str(Settings.VER)})") if sys.platform == "win32": os.system('') # Enable VT100 Escape Sequence for WINDOWS 10 Ver. 1607 check_updates() try: load_config() debug_output('Config file loaded') except Exception as e: pretty_print( 'sys0', get_string('load_config_error') + Settings.DATA_DIR + get_string('load_config_error_warning') + Style.NORMAL + Fore.RESET + f' ({e})', 'error') debug_output(f'Error reading configfile: {e}') sleep(10) _exit(1) try: greeting() debug_output('Greeting displayed') except Exception as e: debug_output(f'Error displaying greeting message: {e}') try: check_mining_key(config) except Exception as e: debug_output(f'Error checking miner key: {e}') if donation_level > 0: try: Donate.load(donation_level) Donate.start(donation_level) except Exception as e: debug_output(f'Error launching donation thread: {e}') try: fastest_pool = Client.fetch_pool() threadid = 0 for port in avrport: Thread(target=mine_avr, args=(port, threadid, fastest_pool, rig_identifier[threadid])).start() threadid += 1 except Exception as e: debug_output(f'Error launching AVR thread(s): {e}') if discord_presence == "y": try: init_rich_presence() except Exception as e: debug_output(f'Error launching Discord RPC thread: {e}')
660e63d257396e6f7515f44b9f7b4c53d4ff7331
dcbce7d48685588f12e2909d256b0b608fbf689f
/gosling/examples/area_chart.py
448af3d3b9f21b99da97be0c52f062b628ef826b
[ "MIT" ]
permissive
gosling-lang/gos
89b7cf76a81b51bf21f20dbc167d4ce3f494f97d
0f22464b91163944b8654127e02fa64b0106dc21
refs/heads/main
2023-07-22T07:55:54.733935
2023-06-28T17:19:50
2023-06-28T17:19:50
387,874,230
155
11
MIT
2023-09-04T16:08:52
2021-07-20T18:00:50
Python
UTF-8
Python
false
false
602
py
area_chart.py
""" Area Chart ========== """ # category: basic marks import gosling as gos data = gos.multivec( url="https://resgen.io/api/v1/tileset_info/?d=UvVPeLHuRDiYA3qwFlm7xQ", row="sample", column="position", value="peak", categories=["sample 1"], ) domain = gos.GenomicDomain(chromosome="chr1", interval=[2000500, 3000500]) track = gos.Track(data).mark_area().encode( x=gos.X("position:G", domain=domain, axis="bottom"), y="peak:Q", size=gos.value(2), ).properties(width=725, height=180, layout="linear") track.view(title="Basic Marks: Area", subtitle="Tutorial Examples")
ac52679e28c535eab64c5305d88b0eb283c09d75
2dfc2beac0ad497f8fc59201921097a412f0df7f
/trunk/research/code-statistic/cs.py
187cc4e76703c6b50becd3a59cbd0ce99b8a06d9
[ "Apache-2.0", "LicenseRef-scancode-mulanpsl-2.0-en", "MIT", "MulanPSL-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
ossrs/srs
cf9442478fedcd32ef2817f8d53f405a6fa2c7d1
7138edd318d30b545e73e80500adda771817f8d1
refs/heads/develop
2023-09-01T03:38:35.057515
2023-08-31T01:45:25
2023-08-31T01:49:36
34,777,562
23,557
5,046
MIT
2023-09-09T00:57:42
2015-04-29T06:59:32
C++
UTF-8
Python
false
false
2,888
py
cs.py
#!/usr/bin/python # # Copyright (c) 2013-2021 Winlin # # SPDX-License-Identifier: MIT # ################################################################################# # to stat the code and comments lines ################################################################################# import sys def trace(msg): print msg pass def info(msg): print msg pass def verbose(msg): #print msg pass def process(f, code_file): info("process file success") (stat_code, stat_block_comments, stat_line_comments) = (0, 0, 0) is_block_comments = False is_line_comments = False for line in f.readlines(): line = line.strip() if is_block_comments: if "*/" in line: verbose("[block][end] %s"%line) is_block_comments = False is_line_comments = False else: verbose("[block][cont] %s"%line) stat_block_comments += 1 continue if line.startswith("/*"): verbose("[block][start] %s"%line) is_block_comments = True is_line_comments = False stat_block_comments += 1 # inline block comments if is_block_comments: if "*/" in line: verbose("[block][end] %s"%line) is_block_comments = False is_line_comments = False continue if line.startswith("//"): verbose("[line] %s"%line) is_block_comments = False is_line_comments = True stat_line_comments += 1 continue verbose("[code] %s"%line) is_block_comments = False is_line_comments = False stat_code += 1 total = stat_code + stat_block_comments + stat_line_comments comments = stat_block_comments + stat_line_comments trace("total:%s code:%s comments:%s block:%s line:%s file:%s"%(total, stat_code, comments, stat_block_comments, stat_line_comments, code_file)) return (0, total, stat_code, comments, stat_block_comments, stat_line_comments, code_file) def do_stat(code_file): f = None try: f = open(code_file, "r") info("open file success"); return process(f, code_file) finally: if f is not None: f.close() info("close file success") return (-1, 0, 0, 0, 0, 0, None) code_file = None if __name__ == "__main__": if len(sys.argv) <= 1: print "to stat the code and comments lines" print "Usage: python %s <code_file>"%(sys.argv[0]) print " code_file: the code(header or source) file to stat" print "Example:" print " python %s src/core/srs_core.hpp"%(sys.argv[0]) sys.exit(-1) code_file = sys.argv[1] info("stat %s"%(code_file)) do_stat(code_file)
67439de99a60c635fcb8809466fcef72f306fb6b
6a017c87a1c3e016de5e1704d23d1d2034fab41c
/src/coffea/nanoevents/mapping/util.py
b8897d47080067e4f8723a3caeb520f318a41ffa
[ "BSD-3-Clause" ]
permissive
CoffeaTeam/coffea
53997aefbccf583cc901718b5c639a4b4535dbcd
a33fc173f3bf2be307bac6517e624fc6ce0c4c3e
refs/heads/master
2023-08-10T12:36:49.238010
2023-08-02T02:57:18
2023-08-02T02:57:18
159,673,139
116
100
BSD-3-Clause
2023-09-12T20:32:08
2018-11-29T13:47:57
Jupyter Notebook
UTF-8
Python
false
false
2,258
py
util.py
import weakref from collections.abc import Mapping, MutableMapping from coffea.nanoevents.util import key_to_tuple class CachedMapping(Mapping): """A cache-wrapped mapping Reads will call into ``cache`` first, and if no key exists, the read will fall back to ``base``, saving the reult into ``cache``. """ def __init__(self, cache, base): self.cache = cache self.base = base self.stats = {"hit": 0, "miss": 0} def __getitem__(self, key): try: value = self.cache[key] self.stats["hit"] += 1 return value except KeyError: value = self.base[key] self.cache[key] = value self.stats["miss"] += 1 return value def __iter__(self): return iter(self.base) def __len__(self): return len(self.base) class ArrayLifecycleMapping(MutableMapping): """A tool to monitor the lifetime of arrays Useful for detecting if arrays are getting properly cleaned up by garbage collection. To be used with NanoEventsFactory as a "fake" ``persistent_cache`` Example:: from coffea.nanoevents import NanoEventsFactory from coffea.nanoevents.mapping import ArrayLifecycleMapping array_log = ArrayLifecycleMapping() def run(): events = NanoEventsFactory.from_root( "file.root", persistent_cache=array_log, ).events() # ... access things run() # may consider gc.collect() here print("Accessed:", array_log.accessed) print("Finalized:", array_log.finalized) print("Possibly leaking arrays:", set(array_log.accessed) - set(array_log.finalized)) """ def __init__(self): self.accessed = [] self.finalized = [] def __getitem__(self, key): raise KeyError def __setitem__(self, key, value): key = key_to_tuple(key)[4] key = key.split(",")[0] self.accessed.append(key) weakref.finalize(value, self.finalized.append, key) def __delitem__(self, key): pass def __iter__(self): return iter(self.base) def __len__(self): return len(self.base)
91cfa2a15bc273f8eeed646f37bdf2e31697708c
e384f5467d8bcfd70845997bcbd68d950e874a61
/example/python/legacy_opengl/glfw_minimal_example_wavefront.py
b9bc884ad87a368a9be76c9ef7528e226cea97de
[]
no_license
Rabbid76/graphics-snippets
ee642f1ed9ceafc6d320e467d3a084d2446d22c2
fa187afeabb9630bc1d988304fb5787e95a91385
refs/heads/master
2023-08-04T04:32:06.884318
2023-07-21T09:15:43
2023-07-21T09:15:43
109,126,544
177
12
null
2023-04-11T20:05:52
2017-11-01T12:05:56
C++
UTF-8
Python
false
false
1,936
py
glfw_minimal_example_wavefront.py
from OpenGL.GL import * from OpenGL.GLU import * from glfw.GLFW import * from wavefrontloader import * import os os.chdir(os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../../resource')) if glfwInit() == GLFW_FALSE: exit() glfwWindowHint(GLFW_SAMPLES, 8) window = glfwCreateWindow(300, 300, "OpenGL Window", None, None) glfwMakeContextCurrent(window) #model = WavefrontDisplayList('./model/wavefront/bunny.obj') model = WavefrontDisplayList('./model/wavefront/buddha.obj') model_center, model_size = model.center, model.size glLightfv(GL_LIGHT0, GL_AMBIENT, (0.2, 0.2, 0.2, 1.0)) glLightfv(GL_LIGHT0, GL_DIFFUSE, (0.6, 0.6, 0.6, 1.0)) glLightModeliv(GL_LIGHT_MODEL_TWO_SIDE, 1) glEnable(GL_LIGHT0) glEnable(GL_LIGHTING) glEnable(GL_COLOR_MATERIAL) glShadeModel(GL_SMOOTH) start_time_s = glfwGetTime() while not glfwWindowShouldClose(window): current_time_s = glfwGetTime() delta_time_s = current_time_s - start_time_s vp_size = glfwGetFramebufferSize(window) glViewport(0, 0, *vp_size) glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) glMatrixMode(GL_PROJECTION) glLoadIdentity() glMatrixMode(GL_MODELVIEW) glLoadIdentity() glDisable(GL_DEPTH_TEST) glBegin(GL_QUADS) glColor3f(0, 0, 0) glVertex2f(-1, -1) glVertex2f(1, -1) glColor3f(0.2, 0.6, 0.4) glVertex2f(1, 1) glVertex2f(-1, 1) glEnd() glMatrixMode(GL_PROJECTION) gluPerspective(45, vp_size[0]/vp_size[1], min(model_size)/4, max(model_size)*4) glMatrixMode(GL_MODELVIEW) glTranslate(0, 0, -max(model_size)*2) glLightfv(GL_LIGHT0, GL_POSITION, (0, 0, min(model_size), 0)) glEnable(GL_DEPTH_TEST) glPushMatrix() glRotatef(delta_time_s * 360/5, 0, 1, 0) glTranslatef(-model_center[0], -model_center[1], -model_center[2]) model.render() glPopMatrix() glfwSwapBuffers(window) glfwPollEvents() glfwTerminate() exit()
f1b92b572f6beb1a06d728439457189d8b13c00c
479a9c76b19b84d6cde69305828031cd2531aa56
/testing/MLDB-1266-import_json.py
2fb4a7ab3bae84af8f1d9557ddad5e03f7e9a725
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
mldbai/mldb
d36801bd99dd3f82d7557cd0f438b0121f63f22c
19bc4bc92a41ee8ad4eab0979dffd9c985d95758
refs/heads/master
2023-09-03T22:59:11.621839
2022-12-30T18:42:24
2022-12-30T18:42:24
47,634,692
701
107
Apache-2.0
2023-02-10T23:08:05
2015-12-08T16:34:16
C++
UTF-8
Python
false
false
12,847
py
MLDB-1266-import_json.py
# # MLDB-1266-import_json.py # 2016 # This file is part of MLDB. Copyright 2016 mldb.ai inc. All rights reserved. # from functools import partial if False: mldb_wrapper = None from mldb import mldb, MldbUnitTest, ResponseException class ImportJsonTest(MldbUnitTest): # noqa def assert_val(self, res, rowName, colName, value): for row in res: if str(row["rowName"]) != rowName: continue for col in row["columns"]: if col[0] == colName: self.assertEqual(col[1], value) return # did not find col mldb.log(res) mldb.log(rowName) mldb.log(colName) mldb.log(value) assert False # did not find row mldb.log(res) mldb.log(rowName) mldb.log(colName) mldb.log(value) assert False def do_asserts(self, row_prefix, js_res): assert_val = partial(self.assert_val, js_res) assert_val(row_prefix + "1", "colA", 1) assert_val(row_prefix + "1", "colB", "pwet pwet") assert_val(row_prefix + "2", "colB", "pwet pwet 2") assert_val(row_prefix + "3", "colC.a", 1) assert_val(row_prefix + "3", "colC.b", 2) assert_val(row_prefix + "4", "colD.0", "{\"a\":1}") assert_val(row_prefix + "4", "colD.1", "{\"b\":2}") assert_val(row_prefix + "5", "colD.1", 1) assert_val(row_prefix + "5", "colD.abc", 1) def test_import_json_procedure(self): conf = { "id": "json_importer", "type": "import.json", "params": { "dataFileUrl": "file://mldb/testing/dataset/json_dataset.json", "outputDataset": { "id": "my_json_dataset", "type": "sparse.mutable" }, 'arrays' : 'encode' } } mldb.put("/v1/procedures/json_importer", conf) res = mldb.get("/v1/query", q="select * from my_json_dataset order by rowName()") self.do_asserts("", res.json()) def test_import_invalid_json(self): conf = { "id": "json_importer", "type": "import.json", "params": { "dataFileUrl": "file://mldb/testing/dataset/json_dataset_invalid.json", "outputDataset": { "id": "my_json_dataset", "type": "sparse.mutable" }, "runOnCreation": True } } with self.assertRaises(ResponseException): mldb.put("/v1/procedures/json_importer", conf) def test_ignore_bad_lines(self): conf = { "id": "json_importer", "type": "import.json", "params": { "dataFileUrl": "file://mldb/testing/dataset/json_dataset_invalid.json", "outputDataset": { "id": "my_json_dataset2", "type": "sparse.mutable" }, "runOnCreation": True, "ignoreBadLines": True } } mldb.put("/v1/procedures/json_importer", conf) res = mldb.get("/v1/query", q="select * from my_json_dataset2 order by rowName()") js_res = res.json() self.assert_val(js_res, "1", "colA", 1) self.assert_val(js_res, "3", "colB", "pwet pwet 2") def test_json_builtin_function(self): csv_conf = { "type": "import.text", "params": { 'dataFileUrl' : 'file://mldb/testing/dataset/json_dataset.json', "outputDataset": { "id": "imported_json", }, "quoteChar": "", "delimiter": "", "runOnCreation" : True, } } mldb.put("/v1/procedures/csv_proc", csv_conf) res = mldb.get( "/v1/query", q="select parse_json(lineText, {arrays: 'encode'}) as * from imported_json") self.do_asserts("", res.json()) def test_mldb_1729_output_dataset_string_def(self): mldb.post("/v1/procedures", { "type": "import.json", "params": { "dataFileUrl": "file://mldb/testing/dataset/json_dataset.json", "outputDataset": "my_json_dataset_1", 'arrays' : 'encode' } }) res = mldb.get("/v1/query", q="SELECT * FROM my_json_dataset_1 ORDER BY rowName()") self.do_asserts("", res.json()) def test_mldb_1729_output_dataset_string_def_params(self): """ Make sure the defaults don't overwrite the given config. """ conf = { "type": "import.json", "params": { "dataFileUrl": "file://mldb/testing/dataset/json_dataset.json", "outputDataset": { 'id' : "my_json_dataset_2", 'params' : { 'unknownColumns' : 'error' } }, "runOnCreation": True } } with self.assertRaises(ResponseException): mldb.post("/v1/procedures", conf) def test_where_filtering(self): mldb.post("/v1/procedures", { "type": "import.json", "params": { "dataFileUrl": "file://mldb/testing/dataset/json_dataset.json", "outputDataset": { 'id' : "test_where_filtering", }, "runOnCreation": True, 'where' : 'colA IN (1, 2)' } }) res = mldb.query("SELECT * FROM test_where_filtering") self.assertTableResultEquals(res, [ ['_rowName', 'colA', 'colB'], ['1', 1, 'pwet pwet'], ['2', 2, 'pwet pwet 2'] ]) def test_select(self): mldb.post("/v1/procedures", { "type": "import.json", "params": { "dataFileUrl": "file://mldb/testing/dataset/json_dataset.json", "outputDataset": { 'id' : "test_where_filtering", }, "runOnCreation": True, 'select' : 'colA' } }) res = mldb.query("SELECT * FROM test_where_filtering") self.assertTableResultEquals(res, [ ['_rowName', 'colA'], ['1', 1], ['2', 2], ['3', 3], ['4', None], ['5', None], ['6', None] ]) mldb.post("/v1/procedures", { "type": "import.json", "params": { "dataFileUrl": "file://mldb/testing/dataset/json_dataset.json", "outputDataset": { 'id' : "test_where_filtering_2", }, "runOnCreation": True, 'select' : '* EXCLUDING (colA)' } }) res = mldb.query("""SELECT * FROM test_where_filtering_2 WHERE rowName()='1' """) self.assertTableResultEquals(res, [ ['_rowName', 'colB'], ['1', 'pwet pwet'] ]) mldb.post("/v1/procedures", { "type": "import.json", "params": { "dataFileUrl": "file://mldb/testing/dataset/json_dataset.json", "outputDataset": { 'id' : "test_where_filtering_3", }, "runOnCreation": True, 'select' : 'colA AS wololo' } }) res = mldb.query("""SELECT * FROM test_where_filtering_3 WHERE rowName()='1' """) self.assertTableResultEquals(res, [ ['_rowName', 'wololo'], ['1', 1] ]) def test_named_base(self): mldb.post("/v1/procedures", { "type": "import.json", "params": { "dataFileUrl": "file://mldb/testing/dataset/json_dataset.json", "outputDataset": { 'id' : "test_named", }, "runOnCreation": True, 'named' : 'colB', 'where' : 'colB IS NOT NULL' } }) res = mldb.query("""SELECT colB FROM test_named""") self.assertTableResultEquals(res, [ ['_rowName', 'colB'], ['pwet pwet', 'pwet pwet'], ['pwet pwet 2', 'pwet pwet 2'], ['pwet pwet 3', 'pwet pwet 3'] ]) def test_named_on_object(self): msg = 'Cannot convert value of type' with self.assertRaisesRegex(ResponseException, msg): mldb.post("/v1/procedures", { "type": "import.json", "params": { "dataFileUrl": "file://mldb/testing/dataset/json_dataset.json", "outputDataset": { 'id' : "test_where_filtering_2", }, "runOnCreation": True, 'named' : 'colC', 'where' : 'colC IS NOT NULL' } }) def test_named_line_number_fct(self): mldb.post("/v1/procedures", { "type": "import.json", "params": { "dataFileUrl": "file://mldb/testing/dataset/json_dataset.json", "outputDataset": { 'id' : "test_named_line_number_fct", }, "runOnCreation": True, 'named' : 'lineNumber() - 1', } }) res = mldb.query("SELECT colA FROM test_named_line_number_fct") self.assertTableResultEquals(res, [ ['_rowName', 'colA'], ["0", 1], ["1", 2], ["2", 3], ["3", None], ["4", None], ["5", None] ]) def test_no_input_file(self): msg = "dataFileUrl is a required property and must not be empty"; with self.assertRaisesRegex(ResponseException, msg): mldb.post("/v1/procedures", { "type": "import.json", "params": { "outputDataset": { 'id' : "test_no_input_file", }, "runOnCreation": True, 'named' : 'lineNumber() - 1', } }) with self.assertRaisesRegex(ResponseException, msg): mldb.post("/v1/procedures", { "type": "import.json", "params": { 'dataFileUrl' : '', "outputDataset": { 'id' : "test_no_input_file", }, "runOnCreation": True, 'named' : 'lineNumber() - 1', } }) with self.assertRaises(ResponseException): mldb.post("/v1/procedures", { "type": "import.json", "params": { 'dataFileUrl' : 'file:///idonotexist', "outputDataset": { 'id' : "test_no_input_file", }, "runOnCreation": True, 'named' : 'lineNumber() - 1', } }) def test_arrays_parse(self): mldb.post("/v1/procedures", { "type": "import.json", "params": { "dataFileUrl": "file://mldb/testing/dataset/json_dataset.json", "outputDataset": "test_arrays_parse_ds", 'arrays' : 'parse' } }) res = mldb.query( "SELECT * FROM test_arrays_parse_ds ORDER BY rowName()") self.assertTableResultEquals(res, [ ["_rowName", "colA", "colB", "colC.a", "colC.b", "colD.0.a", "colD.1.b", "colD.0", "colD.1", "colD.2", "colD.3", "colD.4", "colD.5", "colC.a.b"], ["1", 1, "pwet pwet", None, None, None, None, None, None, None, None, None, None, None], ["2", 2, "pwet pwet 2", None, None, None, None, None, None, None, None, None, None, None], ["3", 3, "pwet pwet 3", 1, 2, None, None, None, None, None, None, None, None, None], ["4", None, None, None, None, 1, 2, None, None, None, None, None, None, None], ["5", None, None, None, None, None, None, 1, 2, 3, 0, 5.25, "abc", None], ["6", None, None, None, None, None, None, None, None, None, None, None, None, 2] ]) if __name__ == '__main__': mldb.run_tests()
6a61a289a7d9497e339a3f1dc281a366b43fb859
fb8d962a803ae1f6c20f80b458efd5ba17560b06
/magnum/tests/unit/conductor/handlers/common/test_cert_manager.py
7d29cedad3de1c23105d95dbab334179029d2cea
[ "Apache-2.0" ]
permissive
openstack/magnum
980c2151388b8acc60f3ca2818e41431ffa742f4
eca79453c0097b0f63019821d3c2e9ecacebf784
refs/heads/master
2023-08-20T01:44:51.957778
2023-07-21T02:54:23
2023-07-25T09:00:40
26,314,357
345
282
Apache-2.0
2022-11-03T11:36:24
2014-11-07T10:08:50
Python
UTF-8
Python
false
false
23,605
py
test_cert_manager.py
# Copyright 2015 NEC Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from unittest import mock from magnum.common import exception from magnum.conductor.handlers.common import cert_manager from magnum.tests import base from oslo_config import cfg import magnum.conf import os import stat import tempfile CONF = magnum.conf.CONF class CertManagerTestCase(base.BaseTestCase): def setUp(self): super(CertManagerTestCase, self).setUp() cert_manager_patcher = mock.patch.object(cert_manager, 'cert_manager') self.cert_manager = cert_manager_patcher.start() self.addCleanup(cert_manager_patcher.stop) self.cert_manager_backend = mock.MagicMock() self.cert_manager.get_backend.return_value = self.cert_manager_backend self.cert_manager_backend.CertManager = mock.MagicMock() self.CertManager = self.cert_manager_backend.CertManager @mock.patch('magnum.common.x509.operations.generate_ca_certificate') @mock.patch('magnum.common.short_id.generate_id') def test_generate_ca_cert(self, mock_generate_id, mock_generate_ca_cert): expected_ca_name = 'ca-name' expected_ca_password = 'password' expected_ca_cert = { 'private_key': 'private_key', 'certificate': 'certificate'} expected_ca_cert_ref = 'ca_cert_ref' mock_generate_id.return_value = expected_ca_password mock_generate_ca_cert.return_value = expected_ca_cert self.CertManager.store_cert.return_value = expected_ca_cert_ref self.assertEqual((expected_ca_cert_ref, expected_ca_cert, expected_ca_password), cert_manager._generate_ca_cert(expected_ca_name)) mock_generate_ca_cert.assert_called_once_with( expected_ca_name, encryption_password=expected_ca_password) self.CertManager.store_cert.assert_called_once_with( certificate=expected_ca_cert['certificate'], private_key=expected_ca_cert['private_key'], private_key_passphrase=expected_ca_password, name=expected_ca_name, context=None ) @mock.patch('magnum.common.x509.operations.generate_client_certificate') @mock.patch('magnum.common.short_id.generate_id') def test_generate_client_cert(self, mock_generate_id, mock_generate_cert): expected_name = 'admin' expected_organization_name = 'system:masters' expected_ca_name = 'ca-name' expected_password = 'password' expected_ca_password = 'ca-password' expected_cert = { 'private_key': 'private_key', 'certificate': 'certificate'} expected_ca_cert = { 'private_key': 'ca_private_key', 'certificate': 'ca_certificate'} expected_cert_ref = 'cert_ref' mock_generate_id.return_value = expected_password mock_generate_cert.return_value = expected_cert self.CertManager.store_cert.return_value = expected_cert_ref self.assertEqual( expected_cert_ref, cert_manager._generate_client_cert( expected_ca_name, expected_ca_cert, expected_ca_password)) mock_generate_cert.assert_called_once_with( expected_ca_name, expected_name, expected_organization_name, expected_ca_cert['private_key'], encryption_password=expected_password, ca_key_password=expected_ca_password, ) self.CertManager.store_cert.assert_called_once_with( certificate=expected_cert['certificate'], private_key=expected_cert['private_key'], private_key_passphrase=expected_password, name=cert_manager.CONDUCTOR_CLIENT_NAME, context=None ) def _test_generate_certificates(self, expected_ca_name, mock_cluster, mock_generate_ca_cert, mock_generate_client_cert): expected_ca_password = 'ca-password' expected_ca_cert = { 'private_key': 'ca_private_key', 'certificate': 'ca_certificate'} expected_cert_ref = 'cert_ref' expected_ca_cert_ref = 'ca-cert-ref' mock_generate_ca_cert.return_value = (expected_ca_cert_ref, expected_ca_cert, expected_ca_password) mock_generate_client_cert.return_value = expected_cert_ref cert_manager.generate_certificates_to_cluster(mock_cluster) self.assertEqual(expected_ca_cert_ref, mock_cluster.ca_cert_ref) self.assertEqual(expected_cert_ref, mock_cluster.magnum_cert_ref) mock_generate_ca_cert.assert_called_with(expected_ca_name, context=None) mock_generate_client_cert.assert_called_once_with( expected_ca_name, expected_ca_cert, expected_ca_password, context=None) @mock.patch('magnum.conductor.handlers.common.cert_manager.' '_generate_client_cert') @mock.patch('magnum.conductor.handlers.common.cert_manager.' '_generate_ca_cert') def test_generate_certificates(self, mock_generate_ca_cert, mock_generate_client_cert): expected_ca_name = 'ca-name' mock_cluster = mock.MagicMock() mock_cluster.name = expected_ca_name self._test_generate_certificates(expected_ca_name, mock_cluster, mock_generate_ca_cert, mock_generate_client_cert) @mock.patch('magnum.conductor.handlers.common.cert_manager.' '_generate_client_cert') @mock.patch('magnum.conductor.handlers.common.cert_manager.' '_generate_ca_cert') def test_generate_certificates_without_name(self, mock_generate_ca_cert, mock_generate_client_cert): expected_ca_name = 'ca-uuid' mock_cluster = mock.MagicMock() mock_cluster.name = None mock_cluster.uuid = expected_ca_name self._test_generate_certificates(expected_ca_name, mock_cluster, mock_generate_ca_cert, mock_generate_client_cert) @mock.patch('magnum.conductor.handlers.common.cert_manager.' '_get_issuer_name') def test_generate_certificates_with_error(self, mock_get_issuer_name): mock_cluster = mock.MagicMock() mock_get_issuer_name.side_effect = exception.MagnumException() self.assertRaises(exception.CertificatesToClusterFailed, cert_manager.generate_certificates_to_cluster, mock_cluster) @mock.patch('magnum.common.x509.operations.sign') def test_sign_node_certificate(self, mock_x509_sign): mock_cluster = mock.MagicMock() mock_cluster.uuid = "mock_cluster_uuid" mock_ca_cert = mock.MagicMock() mock_ca_cert.get_private_key.return_value = mock.sentinel.priv_key passphrase = mock.sentinel.passphrase mock_ca_cert.get_private_key_passphrase.return_value = passphrase self.CertManager.get_cert.return_value = mock_ca_cert mock_csr = mock.MagicMock() mock_x509_sign.return_value = mock.sentinel.signed_cert cluster_ca_cert = cert_manager.sign_node_certificate(mock_cluster, mock_csr) self.CertManager.get_cert.assert_called_once_with( mock_cluster.ca_cert_ref, resource_ref=mock_cluster.uuid, context=None) mock_x509_sign.assert_called_once_with(mock_csr, mock_cluster.name, mock.sentinel.priv_key, passphrase) self.assertEqual(mock.sentinel.signed_cert, cluster_ca_cert) @mock.patch('magnum.common.x509.operations.sign') def test_sign_node_certificate_without_cluster_name(self, mock_x509_sign): mock_cluster = mock.MagicMock() mock_cluster.name = None mock_cluster.uuid = "mock_cluster_uuid" mock_ca_cert = mock.MagicMock() mock_ca_cert.get_private_key.return_value = mock.sentinel.priv_key passphrase = mock.sentinel.passphrase mock_ca_cert.get_private_key_passphrase.return_value = passphrase self.CertManager.get_cert.return_value = mock_ca_cert mock_csr = mock.MagicMock() mock_x509_sign.return_value = mock.sentinel.signed_cert cluster_ca_cert = cert_manager.sign_node_certificate(mock_cluster, mock_csr) self.CertManager.get_cert.assert_called_once_with( mock_cluster.ca_cert_ref, resource_ref=mock_cluster.uuid, context=None) mock_x509_sign.assert_called_once_with(mock_csr, mock_cluster.uuid, mock.sentinel.priv_key, passphrase) self.assertEqual(mock.sentinel.signed_cert, cluster_ca_cert) def test_get_cluster_ca_certificate(self): mock_cluster = mock.MagicMock() mock_cluster.uuid = "mock_cluster_uuid" mock_ca_cert = mock.MagicMock() self.CertManager.get_cert.return_value = mock_ca_cert cluster_ca_cert = cert_manager.get_cluster_ca_certificate(mock_cluster) self.CertManager.get_cert.assert_called_once_with( mock_cluster.ca_cert_ref, resource_ref=mock_cluster.uuid, context=None) self.assertEqual(mock_ca_cert, cluster_ca_cert) def test_get_cluster_ca_certificate_ca_cert_type(self): mock_cluster = mock.MagicMock() mock_cluster.uuid = "mock_cluster_uuid" mock_ca_cert = mock.MagicMock() self.CertManager.get_cert.return_value = mock_ca_cert cluster_ca_cert = cert_manager.get_cluster_ca_certificate( mock_cluster, ca_cert_type="front-proxy") self.CertManager.get_cert.assert_called_once_with( mock_cluster.front_proxy_ca_cert_ref, resource_ref=mock_cluster.uuid, context=None) self.assertEqual(mock_ca_cert, cluster_ca_cert) def test_get_cluster_magnum_cert(self): mock_cluster = mock.MagicMock() mock_cluster.uuid = "mock_cluster_uuid" mock_magnum_cert = mock.MagicMock() self.CertManager.get_cert.return_value = mock_magnum_cert cluster_magnum_cert = cert_manager.get_cluster_magnum_cert( mock_cluster) self.CertManager.get_cert.assert_called_once_with( mock_cluster.magnum_cert_ref, resource_ref=mock_cluster.uuid, context=None) self.assertEqual(mock_magnum_cert, cluster_magnum_cert) def test_create_client_files_notin_cache(self): mock_cluster = mock.MagicMock() mock_cluster.uuid = "mock_cluster_uuid" mock_dir = tempfile.mkdtemp() cert_dir = os.path.join(mock_dir, mock_cluster.uuid) cfg.CONF.set_override("temp_cache_dir", mock_dir, group='cluster') mock_ca_return = '%s/ca.crt' % cert_dir mock_key_return = '%s/client.key' % cert_dir mock_magnum_return = '%s/client.crt' % cert_dir mock_cert = mock.MagicMock() mock_cert.get_certificate.return_value = "some_content" mock_cert.get_decrypted_private_key.return_value = "some_key" self.CertManager.get_cert.return_value = \ mock_cert # Test that directory and files DNE self.assertEqual(False, os.path.isdir(cert_dir)) self.assertEqual(False, os.path.isfile(mock_ca_return)) self.assertEqual(False, os.path.isfile(mock_key_return)) self.assertEqual(False, os.path.isfile(mock_magnum_return)) (cluster_ca_cert, cluster_key, cluster_magnum_cert) = \ cert_manager.create_client_files(mock_cluster) # Test the directory and files were created self.assertEqual(True, os.path.isdir(cert_dir)) self.assertEqual(True, os.path.isfile(mock_ca_return)) self.assertEqual(True, os.path.isfile(mock_key_return)) self.assertEqual(True, os.path.isfile(mock_magnum_return)) # Test that all functions were called in the if not conditional self.assertEqual(self.CertManager.get_cert.call_count, 2) self.assertEqual(mock_cert.get_certificate.call_count, 2) self.assertEqual(mock_cert.get_decrypted_private_key.call_count, 1) # Test that contents were written to files & returned properly cluster_ca_cert.seek(0) cluster_key.seek(0) cluster_magnum_cert.seek(0) self.assertEqual(mock_cert.get_certificate.return_value, cluster_ca_cert.read()) self.assertEqual(mock_cert.get_decrypted_private_key.return_value, cluster_key.read()) self.assertEqual(mock_cert.get_certificate.return_value, cluster_magnum_cert.read()) @mock.patch('magnum.conductor.handlers.common.cert_manager.LOG') def test_create_client_files_temp_no_dir(self, mock_logging): mock_cluster = mock.MagicMock() mock_cluster.uuid = "mock_cluster_uuid" cfg.CONF.set_override("temp_cache_dir", "", group='cluster') mock_cert = mock.MagicMock() mock_cert.get_certificate.return_value = "some_content" mock_cert.get_decrypted_private_key.return_value = "some_key" self.CertManager.get_cert.return_value = \ mock_cert (cluster_ca_cert, cluster_key, cluster_magnum_cert) = \ cert_manager.create_client_files(mock_cluster) mock_logging.debug.assert_called_once_with( "Certificates will not be cached in the filesystem: " "they will be created as tempfiles.") self.assertEqual(self.CertManager.get_cert.call_count, 2) self.assertEqual(mock_cert.get_certificate.call_count, 2) self.assertEqual(mock_cert.get_decrypted_private_key.call_count, 1) # Test that contents were written to files & returned properly cluster_ca_cert.seek(0) cluster_key.seek(0) cluster_magnum_cert.seek(0) self.assertEqual(mock_cert.get_certificate.return_value, cluster_ca_cert.read()) self.assertEqual(mock_cert.get_decrypted_private_key.return_value, cluster_key.read()) self.assertEqual(mock_cert.get_certificate.return_value, cluster_magnum_cert.read()) # Test for certs and keys that might be returned in binary mock_cert.get_certificate.return_value = b"byte_content" mock_cert.get_decrypted_private_key.return_value = b"byte_key" ca_cert_text = magnum_cert_text = \ mock_cert.get_certificate.return_value.decode('UTF-8') magnum_key_text = \ mock_cert.get_decrypted_private_key.return_value.decode('UTF-8') (cluster_ca_cert, cluster_key, cluster_magnum_cert) = \ cert_manager.create_client_files(mock_cluster) cluster_ca_cert.seek(0) cluster_key.seek(0) cluster_magnum_cert.seek(0) self.assertEqual(ca_cert_text, cluster_ca_cert.read()) self.assertEqual(magnum_key_text, cluster_key.read()) self.assertEqual(magnum_cert_text, cluster_magnum_cert.read()) def test_create_client_files_in_cache(self): mock_cluster = mock.MagicMock() mock_cluster.uuid = "mock_cluster_uuid" mock_dir = tempfile.mkdtemp() cfg.CONF.set_override("temp_cache_dir", mock_dir, group='cluster') mock_cert = mock.MagicMock() mock_cert.get_certificate.return_value = "some_content" mock_cert.get_decrypted_private_key.return_value = "some_key" self.CertManager.get_cert.return_value = \ mock_cert # First call creates directory and writes files (cluster_ca_cert, cluster_key, cluster_magnum_cert) = \ cert_manager.create_client_files(mock_cluster) # Establish call count baseline self.assertEqual(self.CertManager.get_cert.call_count, 2) self.assertEqual(mock_cert.get_certificate.call_count, 2) self.assertEqual(mock_cert.get_decrypted_private_key.call_count, 1) # Second call to create_client_files for same cluster should enter else # conditional, open cached file and return file contents unchanged. (cluster_ca_cert, cluster_key, cluster_magnum_cert) = \ cert_manager.create_client_files(mock_cluster) # Test that function call count did not increase. self.assertEqual(self.CertManager.get_cert.call_count, 2) self.assertEqual(mock_cert.get_certificate.call_count, 2) self.assertEqual(mock_cert.get_decrypted_private_key.call_count, 1) # Check that original file contents/return values have not changed self.assertEqual(mock_cert.get_certificate.return_value, cluster_ca_cert.read()) self.assertEqual(mock_cert.get_decrypted_private_key.return_value, cluster_key.read()) self.assertEqual(mock_cert.get_certificate.return_value, cluster_magnum_cert.read()) def test_create_client_files_set_file_permissions(self): mock_cluster = mock.MagicMock() mock_cluster.uuid = "mock_cluster_uuid" mock_dir = tempfile.mkdtemp() cert_dir = os.path.join(mock_dir, mock_cluster.uuid) cfg.CONF.set_override("temp_cache_dir", mock_dir, group='cluster') mock_ca_return = '%s/ca.crt' % cert_dir mock_key_return = '%s/client.key' % cert_dir mock_magnum_return = '%s/client.crt' % cert_dir mock_cert = mock.MagicMock() mock_cert.get_certificate.return_value = "some_content" mock_cert.get_decrypted_private_key.return_value = "some_key" self.CertManager.get_cert.return_value = \ mock_cert cert_manager.create_client_files(mock_cluster) ca_permission = stat.S_IMODE(os.lstat(mock_ca_return).st_mode) self.assertEqual(ca_permission, 0o600) key_permission = stat.S_IMODE(os.lstat(mock_key_return).st_mode) self.assertEqual(key_permission, 0o600) magnum_permission = stat.S_IMODE(os.lstat(mock_magnum_return).st_mode) self.assertEqual(magnum_permission, 0o600) def test_delete_certificates(self): mock_delete_cert = self.CertManager.delete_cert expected_cert_ref = 'cert_ref' expected_ca_cert_ref = 'ca_cert_ref' mock_cluster = mock.MagicMock() mock_cluster.uuid = "mock_cluster_uuid" mock_cluster.ca_cert_ref = expected_ca_cert_ref mock_cluster.magnum_cert_ref = expected_cert_ref cert_manager.delete_certificates_from_cluster(mock_cluster) mock_delete_cert.assert_any_call(expected_ca_cert_ref, resource_ref=mock_cluster.uuid, context=None) mock_delete_cert.assert_any_call(expected_cert_ref, resource_ref=mock_cluster.uuid, context=None) def test_delete_certificates_if_raise_error(self): mock_delete_cert = self.CertManager.delete_cert expected_cert_ref = 'cert_ref' expected_ca_cert_ref = 'ca_cert_ref' mock_cluster = mock.MagicMock() mock_cluster.ca_cert_ref = expected_ca_cert_ref mock_cluster.magnum_cert_ref = expected_cert_ref mock_delete_cert.side_effect = ValueError cert_manager.delete_certificates_from_cluster(mock_cluster) mock_delete_cert.assert_any_call(expected_ca_cert_ref, resource_ref=mock_cluster.uuid, context=None) mock_delete_cert.assert_any_call(expected_cert_ref, resource_ref=mock_cluster.uuid, context=None) def test_delete_certificates_without_cert_ref(self): mock_delete_cert = self.CertManager.delete_cert mock_cluster = mock.MagicMock() mock_cluster.ca_cert_ref = None mock_cluster.magnum_cert_ref = None cert_manager.delete_certificates_from_cluster(mock_cluster) self.assertFalse(mock_delete_cert.called) def test_delete_client_files(self): mock_cluster = mock.MagicMock() mock_cluster.uuid = "mock_cluster_uuid" mock_dir = tempfile.mkdtemp() cert_dir = os.path.join(mock_dir, mock_cluster.uuid) cfg.CONF.set_override("temp_cache_dir", mock_dir, group='cluster') mock_ca_return = '%s/ca.crt' % cert_dir mock_key_return = '%s/client.key' % cert_dir mock_magnum_return = '%s/client.crt' % cert_dir mock_cert = mock.MagicMock() mock_cert.get_certificate.return_value = "some_content" mock_cert.get_decrypted_private_key.return_value = "some_key" self.CertManager.get_cert.return_value = \ mock_cert (cluster_ca_cert, cluster_key, cluster_magnum_cert) = \ cert_manager.create_client_files(mock_cluster) # Test the directory and files were created self.assertEqual(True, os.path.isdir(cert_dir)) self.assertEqual(True, os.path.isfile(mock_ca_return)) self.assertEqual(True, os.path.isfile(mock_key_return)) self.assertEqual(True, os.path.isfile(mock_magnum_return)) cert_manager.delete_client_files(mock_cluster) # Test that directory and files DNE self.assertEqual(False, os.path.isdir(cert_dir)) self.assertEqual(False, os.path.isfile(mock_ca_return)) self.assertEqual(False, os.path.isfile(mock_key_return)) self.assertEqual(False, os.path.isfile(mock_magnum_return)) def test_delete_client_files_none(self): mock_cluster = mock.MagicMock() mock_cluster.uuid = "mock_cluster_uuid" mock_dir = tempfile.mkdtemp() cfg.CONF.set_override("temp_cache_dir", mock_dir, group='cluster') cert_dir = os.path.join(mock_dir, mock_cluster.uuid) self.assertEqual(True, os.path.isdir(mock_dir)) self.assertEqual(False, os.path.isdir(cert_dir)) cert_manager.delete_client_files(mock_cluster) self.assertEqual(True, os.path.isdir(mock_dir)) self.assertEqual(False, os.path.isdir(cert_dir))
7fce0ee3732434a3746ba1a43b5eff06b6e10b73
e0cc314aa73c0a965a2022f19900df3ccc8c9f43
/windows/winproxy/apis/psapi.py
5b7690c4a3b7e8703019f7e04397115c1f79f3c3
[ "BSD-3-Clause" ]
permissive
hakril/PythonForWindows
21823e743ee4ae7ff99e376378357833f2e19d26
82d0c5cc5c9b4d569dca2c755f26b947e3ff74f5
refs/heads/master
2023-06-08T03:25:50.354768
2023-05-26T07:31:06
2023-05-26T07:31:06
49,235,784
568
111
BSD-3-Clause
2023-01-30T12:04:03
2016-01-07T22:54:33
Python
UTF-8
Python
false
false
1,960
py
psapi.py
import ctypes import windows.generated_def as gdef from ..apiproxy import ApiProxy, NeededParameter from ..error import fail_on_zero class PsapiProxy(ApiProxy): APIDLL = "psapi" default_error_check = staticmethod(fail_on_zero) @PsapiProxy() def GetMappedFileNameW(hProcess, lpv, lpFilename, nSize=None): if nSize is None: nSize = ctypes.sizeof(lpFilename) return GetMappedFileNameW.ctypes_function(hProcess, lpv, lpFilename, nSize) @PsapiProxy() def GetMappedFileNameA(hProcess, lpv, lpFilename, nSize=None): if nSize is None: nSize = ctypes.sizeof(lpFilename) return GetMappedFileNameA.ctypes_function(hProcess, lpv, lpFilename, nSize) @PsapiProxy() def QueryWorkingSet(hProcess, pv, cb): return QueryWorkingSet.ctypes_function(hProcess, pv, cb) @PsapiProxy() def QueryWorkingSetEx(hProcess, pv, cb): return QueryWorkingSetEx.ctypes_function(hProcess, pv, cb) @PsapiProxy() def GetModuleBaseNameA(hProcess, hModule, lpBaseName, nSize=None): if nSize is None: nSize = len(lpBaseName) return GetModuleBaseNameA.ctypes_function(hProcess, hModule, lpBaseName, nSize) @PsapiProxy() def GetModuleBaseNameW(hProcess, hModule, lpBaseName, nSize=None): if nSize is None: nSize = len(lpBaseName) return GetModuleBaseNameW.ctypes_function(hProcess, hModule, lpBaseName, nSize) @PsapiProxy() def GetProcessImageFileNameA(hProcess, lpImageFileName, nSize=None): if nSize is None: nSize = len(lpImageFileName) return GetProcessImageFileNameA.ctypes_function(hProcess, lpImageFileName, nSize) @PsapiProxy() def GetProcessImageFileNameW(hProcess, lpImageFileName, nSize=None): if nSize is None: nSize = len(lpImageFileName) return GetProcessImageFileNameW.ctypes_function(hProcess, lpImageFileName, nSize) @PsapiProxy() def GetProcessMemoryInfo(Process, ppsmemCounters, cb): return GetProcessMemoryInfo.ctypes_function(Process, ppsmemCounters, cb)
0cc6483b1baf603a5ad785552c9bbc60eda0ce64
9161d1421be019e0573bd123460fe69e7cce4cb9
/mosqito/sound_level_meter/noct_spectrum/_n_oct_time_filter.py
457739829c03914d1d2226a7538ce24b7937b76e
[ "Apache-2.0", "GPL-1.0-or-later" ]
permissive
Eomys/MoSQITo
dadbc9159bfef348b1b762a0c8bef8a7f3ed1ef0
b6bf207ef4ac422fa075b5117bb186281b52b7c1
refs/heads/master
2023-08-03T13:02:07.943373
2022-12-23T15:31:36
2022-12-23T15:31:36
249,368,386
107
40
Apache-2.0
2023-08-02T15:47:18
2020-03-23T07:56:37
Jupyter Notebook
UTF-8
Python
false
false
1,953
py
_n_oct_time_filter.py
# -*- coding: utf-8 -*- # Standard library imports import numpy as np from scipy.signal import decimate, butter, sosfilt def _n_oct_time_filter(sig, fs, fc, alpha, N=3): """Design of a nth octave filter set Designs a digital 1/3-octave filter with center frequency fc for sampling frequency fs. The filter is designed according to the Order-N specification of the ANSI S1.1-1986 standard. Default value for N is 3. References: ANSI S1.1-1986 (ASA 65-1986): Specifications for Octave-Band and Fractional-Octave-Band Analog and Digital Filters. Parameters ---------- sig : numpy.ndarray Time signal [any unit] fs : float Sampling frequency [Hz] fc : float Filter exact center frequency [Hz] alpha : float Ratio of the upper and lower band-edge frequencies to the mid-band frequency n : int, optional Filter order. Default to 3 Outputs ------- level : float Rms level of sig in the third octave band centered on fc """ # Check for Nyquist-Shannon criteria if fc > 0.88 * (fs / 2): raise ValueError( """ERROR: Design not possible. Filter center frequency shall verify: fc <= 0.88 * (fs / 2)""" ) # Check for high fc/fs causing filter design issue # [ref needed] and downsample if needed if fc < fs / 200: q = 2 while fc < fs / q / 200: q += 1 sig = decimate(sig, q, axis=0) fs = fs / q # Normalized cutoff frequencies w1 = fc / (fs / 2) / alpha w2 = fc / (fs / 2) * alpha # define filter coefficient sos = butter(int(N), (w1, w2), "bandpass", analog=False, output='sos') # filter signal sig_filt = sosfilt(sos, sig, axis=0) # Compute overall rms level level = np.sqrt(np.mean(sig_filt ** 2, axis=0)) return level if __name__ == "__main__": pass
4270ab4628d32954e5d53c5b4b563d04e748d741
0f2b08b31fab269c77d4b14240b8746a3ba17d5e
/orttraining/orttraining/python/training/ort_triton/_common.py
65540202420b5ee820c6ac0da95a01aa1340749c
[ "MIT" ]
permissive
microsoft/onnxruntime
f75aa499496f4d0a07ab68ffa589d06f83b7db1d
5e747071be882efd6b54d7a7421042e68dcd6aff
refs/heads/main
2023-09-04T03:14:50.888927
2023-09-02T07:16:28
2023-09-02T07:16:28
156,939,672
9,912
2,451
MIT
2023-09-14T21:22:46
2018-11-10T02:22:53
C++
UTF-8
Python
false
false
7,030
py
_common.py
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -------------------------------------------------------------------------- from abc import abstractmethod from typing import Any, Dict, List, Tuple import sympy from onnx import GraphProto, NodeProto, TensorProto from ._sympy_utils import parse_shape from ._utils import get_attribute, get_reduce_info, next_power_of_2 class CodegenContext: """ record variable name mapping in term of IRnodes. """ def __init__(self, var_map: Dict[str, str]): self._var_map: Dict[str, str] = {**var_map} # Get variable name by the node arg name in ONNX graph. def get_variable_name(self, name: str) -> str: return self._var_map[name] # For some operators such as data load/store, we need an internal variable name inside the kernel function. def get_internal_variable_name(self, name: str) -> str: var_name = self._var_map[name] return self._var_map[var_name] if var_name in self._var_map else var_name class CodeBuffer: def __init__(self): self.buffer: List[str] = [] def __iadd__(self, other: str): self.buffer.append(other) return self def __str__(self): return "".join(self.buffer) class NodeVisitor: @abstractmethod def codegen(self, node: Any, context: CodegenContext, code_buffer: CodeBuffer, indent: int): pass class TensorInfo: """ Represent a input/output tensor of a node. """ def __init__(self, dtype: TensorProto.DataType, shape: List[Any]): self._dtype: TensorProto.DataType = dtype self._shape: List[sympy.Expr] = parse_shape(shape) @property def dtype(self) -> TensorProto.DataType: return self._dtype @property def shape(self) -> List[sympy.Expr]: return self._shape def _infer_elementwise_shape(input_infos: List[TensorInfo]) -> List[sympy.Expr]: max_len = max([len(input_info.shape) for input_info in input_infos]) output_shape: List[sympy.Expr] = [sympy.Integer(1)] * max_len for input_info in input_infos: offset = max_len - len(input_info.shape) for i in range(len(input_info.shape)): if not input_info.shape[i].is_number or input_info.shape[i] != 1: output_shape[i + offset] = input_info.shape[i] return output_shape def _infer_elementwise(node: NodeProto, input_infos: List[TensorInfo], graph: GraphProto) -> List[TensorInfo]: return [TensorInfo(input_infos[0].dtype, _infer_elementwise_shape(input_infos))] def _infer_where(node: NodeProto, input_infos: List[TensorInfo], graph: GraphProto) -> List[TensorInfo]: return [TensorInfo(input_infos[1].dtype, _infer_elementwise_shape(input_infos))] def _infer_reduction(node: NodeProto, input_infos: List[TensorInfo], graph: GraphProto) -> List[TensorInfo]: input_rank = len(input_infos[0].shape) keep_dims, axes = get_reduce_info(node, graph, input_rank) axes = [axis + input_rank if axis < 0 else axis for axis in axes] axes.sort() shape = [input_infos[0].shape[i] for i in range(input_rank) if i not in axes] if keep_dims: for axis in axes: shape.insert(axis, sympy.Integer(1)) return [TensorInfo(input_infos[0].dtype, shape)] def _infer_unary(node: NodeProto, input_infos: List[TensorInfo], graph: GraphProto) -> List[TensorInfo]: return [input_infos[0]] def _infer_cast(node: NodeProto, input_infos: List[TensorInfo], graph: GraphProto) -> List[TensorInfo]: dtype = get_attribute(node, "to", TensorProto.UNDEFINED) assert dtype != TensorProto.UNDEFINED return [TensorInfo(dtype, input_infos[0].shape)] def _infer_dropout(node: NodeProto, input_infos: List[TensorInfo], graph: GraphProto) -> List[TensorInfo]: return [input_infos[0], TensorInfo(TensorProto.BOOL, input_infos[0].shape)] class TypeAndShapeInfer: _INFER_FUNC_MAP = { # noqa: RUF012 "Add": _infer_elementwise, "Sub": _infer_elementwise, "Mul": _infer_elementwise, "Div": _infer_elementwise, "Pow": _infer_elementwise, "Sqrt": _infer_elementwise, "Exp": _infer_elementwise, "Where": _infer_where, "Rsqrt": _infer_elementwise, "Cast": _infer_cast, "Dropout": _infer_dropout, "DropoutGrad": _infer_unary, "Identity": _infer_unary, "ReduceSum": _infer_reduction, "ReduceMax": _infer_reduction, "ReduceMin": _infer_reduction, "Sum": _infer_elementwise, } @classmethod def infer(cls, node: NodeProto, input_infos: List[TensorInfo], graph: GraphProto) -> List[TensorInfo]: if node.op_type not in cls._INFER_FUNC_MAP: raise NotImplementedError(f"Unsupported op type: {node.op_type}") return cls._INFER_FUNC_MAP[node.op_type](node, input_infos, graph) class AutotuneConfigs: """ Generate all autotune configs for a kernel function by it's xnumel and rnumel. A config is a tuple of (xblock, rblock, num_warps). If it's elementwise kernel, the rnumel is 1. If it's reduction kernel on last contiguous dimensions, the contiguous flag is True. """ def __init__(self, x_numel: int, r_numel: int, contiguous: bool): self.configs: List[Tuple[int, int, int]] = self._gen_autotune_configs(x_numel, r_numel, contiguous) self.requires_for_loop: bool = any(config[1] < r_numel for config in self.configs) def _num_warps(self, x: int, r: int) -> int: return min(max(x * r // 256, 2), 8) def _gen_config(self, xnp2: int, rnp2: int, x: int, r: int) -> Tuple[int, int, int]: x = min(x, xnp2) r = min(r, rnp2) return x, r, self._num_warps(x, r) # TODO: we need to tune more kernels to get more reasonable configs for better performance. def _gen_autotune_configs(self, x_numel: int, r_numel: int, contiguous: bool) -> List[Tuple[int, int, int]]: configs = [] xnp2 = next_power_of_2(x_numel) if r_numel == 1: configs.append(self._gen_config(xnp2, 1, 1024, 1)) if xnp2 > 1024: configs.append(self._gen_config(xnp2, 1, 2048, 1)) return configs rnp2 = next_power_of_2(r_numel) if contiguous: configs.append(self._gen_config(xnp2, rnp2, 1, 2048)) if rnp2 > 2048: configs.append(self._gen_config(xnp2, rnp2, 1, 4096)) elif rnp2 <= 256: x = min(xnp2, 256 // rnp2 * 2) configs.append(self._gen_config(xnp2, rnp2, x, rnp2)) else: config_set = { self._gen_config(xnp2, rnp2, 1, 2048), self._gen_config(xnp2, rnp2, 4, 512), self._gen_config(xnp2, rnp2, 8, 512), self._gen_config(xnp2, rnp2, 32, 128), } configs = list(config_set) return configs
c65d63167a55324a1987c6758bb5833edc2a898f
c168fe819b446640957e5e310ef89fcfe28662b3
/torchbenchmark/models/Background_Matting/train_real_fixed.py
c8636ece697bd64748207875f46e8c1aa0dcf945
[ "CC-BY-NC-SA-4.0", "BSD-3-Clause" ]
permissive
pytorch/benchmark
7b55e8d714de2ea873e03df43811aab3848485dd
df4da9bdff11a2f948d5bd4ac83da7922e6f44f4
refs/heads/main
2023-08-29T13:06:09.671728
2023-08-28T16:51:55
2023-08-28T16:51:55
92,541,759
685
220
BSD-3-Clause
2023-09-14T18:10:18
2017-05-26T19:21:12
Python
UTF-8
Python
false
false
8,803
py
train_real_fixed.py
from __future__ import print_function import torch from torch.autograd import Variable import torch.nn as nn import torch.optim as optim from tensorboardX import SummaryWriter import os import time import argparse import numpy as np from data_loader import VideoData from functions import * from networks import ResnetConditionHR, MultiscaleDiscriminator, conv_init from loss_functions import alpha_loss, compose_loss, alpha_gradient_loss, GANloss #CUDA #os.environ["CUDA_VISIBLE_DEVICES"]="4" print('CUDA Device: ' + os.environ["CUDA_VISIBLE_DEVICES"]) """Parses arguments.""" parser = argparse.ArgumentParser(description='Training Background Matting on Adobe Dataset.') parser.add_argument('-n', '--name', type=str, help='Name of tensorboard and model saving folders.') parser.add_argument('-bs', '--batch_size', type=int, help='Batch Size.') parser.add_argument('-res', '--reso', type=int, help='Input image resolution') parser.add_argument('-init_model', '--init_model', type=str, help='Initial model file') parser.add_argument('-epoch', '--epoch', type=int, default=10,help='Maximum Epoch') parser.add_argument('-n_blocks1', '--n_blocks1', type=int, default=7,help='Number of residual blocks after Context Switching.') parser.add_argument('-n_blocks2', '--n_blocks2', type=int, default=3,help='Number of residual blocks for Fg and alpha each.') parser.add_argument('-d', '--debug', type=str, default="", help='File to dump output') parser.add_argument('-s', '--script', type=bool, default=False, help='Trace the model') args=parser.parse_args() ##Directories tb_dir='TB_Summary/' + args.name model_dir='Models/' + args.name torch.manual_seed(1337) np.random.seed(1337) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False if not os.path.exists(model_dir): os.makedirs(model_dir) if not os.path.exists(tb_dir): os.makedirs(tb_dir) ## Input list data_config_train = {'reso': (args.reso,args.reso)} #if trimap is true, rcnn is used # DATA LOADING print('\n[Phase 1] : Data Preparation') def collate_filter_none(batch): batch = list(filter(lambda x: x is not None, batch)) return torch.utils.data.dataloader.default_collate(batch) #Original Data traindata = VideoData(csv_file='Video_data_train.csv',data_config=data_config_train,transform=None) #Write a dataloader function that can read the database provided by .csv file train_loader = torch.utils.data.DataLoader(traindata, batch_size=args.batch_size, shuffle=True, num_workers=args.batch_size, collate_fn=collate_filter_none) print('\n[Phase 2] : Initialization') netB=ResnetConditionHR(input_nc=(3,3,1,4),output_nc=4,n_blocks1=args.n_blocks1,n_blocks2=args.n_blocks2) #netB=nn.DataParallel(netB) #netB.load_state_dict(torch.load(args.init_model)) netB.cuda(); netB.eval() for param in netB.parameters(): #freeze netD param.requires_grad = False netG=ResnetConditionHR(input_nc=(3,3,1,4),output_nc=4,n_blocks1=args.n_blocks1,n_blocks2=args.n_blocks2) netG.apply(conv_init) #netG=nn.DataParallel(netG) netG.cuda() torch.backends.cudnn.benchmark=True netD=MultiscaleDiscriminator(input_nc=3,num_D=1,norm_layer=nn.InstanceNorm2d,ndf=64) netD.apply(conv_init) netD=nn.DataParallel(netD) netD.cuda() #Loss l1_loss=alpha_loss() c_loss=compose_loss() g_loss=alpha_gradient_loss() GAN_loss=GANloss() optimizerG = optim.Adam(netG.parameters(), lr=1e-4) optimizerD = optim.Adam(netD.parameters(), lr=1e-5) log_writer=SummaryWriter(tb_dir) step=50 KK=len(train_loader) wt=1 print('Tracing') for data in train_loader: bg, image, seg, multi_fr = data['bg'], data['image'], data['seg'], data['multi_fr'] bg, image, seg, multi_fr = Variable(bg.cuda()), Variable(image.cuda()), Variable(seg.cuda()), Variable(multi_fr.cuda()) if args.script: netB = torch.jit.trace(netB,(image,bg,seg,multi_fr)) netG = torch.jit.trace(netG,(image,bg,seg,multi_fr)) else: netB(image,bg,seg,multi_fr) netG(image,bg,seg,multi_fr) break print('Starting training') for epoch in range(0,args.epoch): netG.train(); netD.train() lG, lD, GenL, DisL_r, DisL_f, alL, fgL, compL, elapse_run, elapse=0,0,0,0,0,0,0,0,0,0 t0=time.time(); for i,data in enumerate(train_loader): #Initiating bg, image, seg, multi_fr, seg_gt, back_rnd = data['bg'], data['image'], data['seg'], data['multi_fr'], data['seg-gt'], data['back-rnd'] bg, image, seg, multi_fr, seg_gt, back_rnd = Variable(bg.cuda()), Variable(image.cuda()), Variable(seg.cuda()), Variable(multi_fr.cuda()), Variable(seg_gt.cuda()), Variable(back_rnd.cuda()) mask0=Variable(torch.ones(seg.shape).cuda()) tr0=time.time() #pseudo-supervision alpha_pred_sup,fg_pred_sup=netB(image,bg,seg,multi_fr) mask=(alpha_pred_sup>-0.98).type(torch.cuda.FloatTensor) mask1=(seg_gt>0.95).type(torch.cuda.FloatTensor) ## Train Generator alpha_pred,fg_pred=netG(image,bg,seg,multi_fr) if args.debug: torch.save(fg_pred, args.debug) ##pseudo-supervised losses al_loss=l1_loss(alpha_pred_sup,alpha_pred,mask0)+0.5*g_loss(alpha_pred_sup,alpha_pred,mask0) fg_loss=l1_loss(fg_pred_sup,fg_pred,mask) #compose into same background comp_loss= c_loss(image,alpha_pred,fg_pred,bg,mask1) #randomly permute the background perm=torch.LongTensor(np.random.permutation(bg.shape[0])) bg_sh=bg[perm,:,:,:] al_mask=(alpha_pred>0.95).type(torch.cuda.FloatTensor) #Choose the target background for composition #back_rnd: contains separate set of background videos captured #bg_sh: contains randomly permuted captured background from the same minibatch if np.random.random_sample() > 0.5: bg_sh=back_rnd image_sh=compose_image_withshift(alpha_pred,image*al_mask + fg_pred*(1-al_mask),bg_sh,seg) fake_response=netD(image_sh) loss_ganG=GAN_loss(fake_response,label_type=True) lossG= loss_ganG + wt*(0.05*comp_loss+0.05*al_loss+0.05*fg_loss) optimizerG.zero_grad() lossG.backward() optimizerG.step() ##Train Discriminator fake_response=netD(image_sh); real_response=netD(image) loss_ganD_fake=GAN_loss(fake_response,label_type=False) loss_ganD_real=GAN_loss(real_response,label_type=True) lossD=(loss_ganD_real+loss_ganD_fake)*0.5 # Update discriminator for every 5 generator update if i%5 ==0: optimizerD.zero_grad() lossD.backward() optimizerD.step() lG += lossG.data lD += lossD.data GenL += loss_ganG.data DisL_r += loss_ganD_real.data DisL_f += loss_ganD_fake.data alL += al_loss.data fgL += fg_loss.data compL += comp_loss.data log_writer.add_scalar('Generator Loss', lossG.data, epoch*KK + i + 1) log_writer.add_scalar('Discriminator Loss', lossD.data, epoch*KK + i + 1) log_writer.add_scalar('Generator Loss: Fake', loss_ganG.data, epoch*KK + i + 1) log_writer.add_scalar('Discriminator Loss: Real', loss_ganD_real.data, epoch*KK + i + 1) log_writer.add_scalar('Discriminator Loss: Fake', loss_ganD_fake.data, epoch*KK + i + 1) log_writer.add_scalar('Generator Loss: Alpha', al_loss.data, epoch*KK + i + 1) log_writer.add_scalar('Generator Loss: Fg', fg_loss.data, epoch*KK + i + 1) log_writer.add_scalar('Generator Loss: Comp', comp_loss.data, epoch*KK + i + 1) t1=time.time() elapse +=t1 -t0 elapse_run += t1-tr0 t0=t1 if i % step == (step-1): print('[%d, %5d] Gen-loss: %.4f Disc-loss: %.4f Alpha-loss: %.4f Fg-loss: %.4f Comp-loss: %.4f Time-all: %.4f Time-fwbw: %.4f' %(epoch + 1, i + 1, lG/step,lD/step,alL/step,fgL/step,compL/step,elapse/step,elapse_run/step)) lG, lD, GenL, DisL_r, DisL_f, alL, fgL, compL, elapse_run, elapse=0,0,0,0,0,0,0,0,0,0 write_tb_log(image,'image',log_writer,i) write_tb_log(seg,'seg',log_writer,i) write_tb_log(alpha_pred_sup,'alpha-sup',log_writer,i) write_tb_log(alpha_pred,'alpha_pred',log_writer,i) write_tb_log(fg_pred_sup*mask,'fg-pred-sup',log_writer,i) write_tb_log(fg_pred*mask,'fg_pred',log_writer,i) #composition alpha_pred=(alpha_pred+1)/2 comp=fg_pred*alpha_pred + (1-alpha_pred)*bg write_tb_log(comp,'composite-same',log_writer,i) write_tb_log(image_sh,'composite-diff',log_writer,i) del comp del mask, back_rnd, mask0, seg_gt, mask1, bg, alpha_pred, alpha_pred_sup, image, fg_pred_sup, fg_pred, seg, multi_fr,image_sh, bg_sh, fake_response, real_response, al_loss, fg_loss, comp_loss, lossG, lossD, loss_ganD_real, loss_ganD_fake, loss_ganG if (epoch%2 == 0): torch.save(netG.state_dict(), model_dir + 'netG_epoch_%d.pth' %(epoch)) torch.save(optimizerG.state_dict(), model_dir + 'optimG_epoch_%d.pth' %(epoch)) torch.save(netD.state_dict(), model_dir + 'netD_epoch_%d.pth' %(epoch)) torch.save(optimizerD.state_dict(), model_dir + 'optimD_epoch_%d.pth' %(epoch)) #Change weight every 2 epoch to put more stress on discriminator weight and less on pseudo-supervision wt=wt/2
fb3355c6b1b2db63c814c9602cdd7587f09300b8
f305f84ea6f721c2391300f0a60e21d2ce14f2a5
/20_杂题/牛客编程巅峰赛/7_ 牛妹的春游-二维的01背包.py
123f68d93fa59b40c8d237e19fce46905c1d3026
[]
no_license
981377660LMT/algorithm-study
f2ada3e6959338ae1bc21934a84f7314a8ecff82
7e79e26bb8f641868561b186e34c1127ed63c9e0
refs/heads/master
2023-09-01T18:26:16.525579
2023-09-01T12:21:58
2023-09-01T12:21:58
385,861,235
225
24
null
null
null
null
UTF-8
Python
false
false
1,043
py
7_ 牛妹的春游-二维的01背包.py
# 给出两个正整数x,y,另给出若干个数对[ai,bi,ci], # 请挑选若干数对使得挑出的数对ai的和不小于x,bi的和不小于y, # 计算挑出数对的ci的和的最小值 # breadNum,beverageNum<=2000 暗示状态就是这两维 # 可以用一个二维数组来表示状态, # 其中第一维表示面包的数量,第二维表示饮料的数量 INF = 0x3F3F3F3F class Solution: def minCost(self, breadNum, beverageNum, packageSum): n = len(packageSum) dp = [[INF] * (beverageNum + 1) for _ in range(breadNum + 1)] dp[0][0] = 0 for k in range(n): num1, num2, cost = packageSum[k] for i in range(breadNum, -1, -1): for j in range(beverageNum, -1, -1): dp[i][j] = min(dp[i][j], dp[max(0, i - num1)][max(0, j - num2)] + cost) return dp[-1][-1] print( Solution().minCost( 5, 60, [[3, 36, 120], [10, 25, 129], [5, 50, 250], [1, 45, 130], [4, 20, 119]] ) )
9022f3b5716f268f2b3b268f4ae65c2c33d720c4
c4f29914827284c581aabeee126e0c42dc7e1a56
/plugins/translate.py
e5774dcd8e5e476b91ca202b9541cb8f6c5b9d8f
[ "Unlicense", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-public-domain" ]
permissive
rmmh/skybot
66a7698d960026da52ee2413845d1ca364a1713f
3bfaad863a833a25b145b094a803f742d3aec1b8
refs/heads/master
2023-08-29T21:29:14.094136
2023-08-15T02:38:23
2023-08-15T02:38:23
855,503
155
131
Unlicense
2023-03-29T00:21:52
2010-08-22T22:38:50
Python
UTF-8
Python
false
false
5,554
py
translate.py
""" A Google API key is required and retrieved from the bot config file. Since December 1, 2011, the Google Translate API is a paid service only. """ from builtins import zip from builtins import chr import html.entities import re from util import hook, http ########### from http://effbot.org/zone/re-sub.htm#unescape-html ############# def unescape(text): def fixup(m): text = m.group(0) if text[:2] == "&#": # character reference try: if text[:3] == "&#x": return chr(int(text[3:-1], 16)) else: return chr(int(text[2:-1])) except ValueError: pass else: # named entity try: text = chr(html.entities.name2codepoint[text[1:-1]]) except KeyError: pass return text # leave as is return re.sub("&#?\w+;", fixup, text) ############################################################################## def goog_trans(api_key, text, slang, tlang): url = "https://www.googleapis.com/language/translate/v2" parsed = http.get_json(url, key=api_key, q=text, source=slang, target=tlang) if not 200 <= parsed["responseStatus"] < 300: raise IOError( "error with the translation server: %d: %s" % (parsed["responseStatus"], parsed["responseDetails"]) ) if not slang: return unescape( "(%(detectedSourceLanguage)s) %(translatedText)s" % (parsed["responseData"]["data"]["translations"][0]) ) return unescape( "%(translatedText)s" % parsed["responseData"]["data"]["translations"][0] ) def match_language(fragment): fragment = fragment.lower() for short, _ in lang_pairs: if fragment in short.lower().split(): return short.split()[0] for short, full in lang_pairs: if fragment in full.lower(): return short.split()[0] return None @hook.api_key("google") @hook.command def translate(inp, api_key=""): ".translate [source language [target language]] <sentence> -- translates" " <sentence> from source language (default autodetect) to target" " language (default English) using Google Translate" args = inp.split(" ", 2) try: if len(args) >= 2: sl = match_language(args[0]) if not sl: return goog_trans(api_key, inp, "", "en") if len(args) == 2: return goog_trans(api_key, args[1], sl, "en") if len(args) >= 3: tl = match_language(args[1]) if not tl: if sl == "en": return "unable to determine desired target language" return goog_trans(api_key, args[1] + " " + args[2], sl, "en") return goog_trans(api_key, args[2], sl, tl) return goog_trans(api_key, inp, "", "en") except IOError as e: return e languages = "ja fr de ko ru zh".split() language_pairs = zip(languages[:-1], languages[1:]) def babel_gen(inp): for language in languages: inp = inp.encode("utf8") trans = goog_trans(api_key, inp, "en", language).encode("utf8") inp = goog_trans(api_key, trans, language, "en") yield language, trans, inp @hook.api_key("google") @hook.command def babel(inp, api_key=""): ".babel <sentence> -- translates <sentence> through multiple languages" try: return list(babel_gen(api_key, inp))[-1][2] except IOError as e: return e @hook.api_key("google") @hook.command def babelext(inp, api_key=""): ".babelext <sentence> -- like .babel, but with more detailed output" try: babels = list(babel_gen(api_key, inp)) except IOError as e: return e out = "" for lang, trans, text in babels: out += '%s:"%s", ' % (lang, text.decode("utf8")) out += 'en:"' + babels[-1][2].decode("utf8") + '"' if len(out) > 300: out = out[:150] + " ... " + out[-150:] return out lang_pairs = [ ("no", "Norwegian"), ("it", "Italian"), ("ht", "Haitian Creole"), ("af", "Afrikaans"), ("sq", "Albanian"), ("ar", "Arabic"), ("hy", "Armenian"), ("az", "Azerbaijani"), ("eu", "Basque"), ("be", "Belarusian"), ("bg", "Bulgarian"), ("ca", "Catalan"), ("zh-CN zh", "Chinese"), ("hr", "Croatian"), ("cs", "Czech"), ("da", "Danish"), ("nl", "Dutch"), ("en", "English"), ("et", "Estonian"), ("tl", "Filipino"), ("fi", "Finnish"), ("fr", "French"), ("gl", "Galician"), ("ka", "Georgian"), ("de", "German"), ("el", "Greek"), ("ht", "Haitian Creole"), ("iw", "Hebrew"), ("hi", "Hindi"), ("hu", "Hungarian"), ("is", "Icelandic"), ("id", "Indonesian"), ("ga", "Irish"), ("it", "Italian"), ("ja jp jpn", "Japanese"), ("ko", "Korean"), ("lv", "Latvian"), ("lt", "Lithuanian"), ("mk", "Macedonian"), ("ms", "Malay"), ("mt", "Maltese"), ("no", "Norwegian"), ("fa", "Persian"), ("pl", "Polish"), ("pt", "Portuguese"), ("ro", "Romanian"), ("ru", "Russian"), ("sr", "Serbian"), ("sk", "Slovak"), ("sl", "Slovenian"), ("es", "Spanish"), ("sw", "Swahili"), ("sv", "Swedish"), ("th", "Thai"), ("tr", "Turkish"), ("uk", "Ukrainian"), ("ur", "Urdu"), ("vi", "Vietnamese"), ("cy", "Welsh"), ("yi", "Yiddish"), ]
28e970f9afb6961a110c42689baf89794ba5320d
489f789e19ddf0f10cd739b3f091b5c61a63a857
/agent/utils/filter.py
dae42276c92bf44e78c833f5f1b08e5c417f2639
[]
no_license
adityathebe/telegramForwarder
7523db3107911d5845f9e2ea887b4f7bd4e32953
d72e2264704f15ee5a78a14e11d50dc6be06519a
refs/heads/master
2021-06-15T08:10:10.101750
2021-05-03T17:23:17
2021-05-03T17:23:17
156,350,910
161
133
null
2021-02-15T13:38:31
2018-11-06T08:27:57
JavaScript
UTF-8
Python
false
false
4,278
py
filter.py
import logging from db.database import Database logger = logging.getLogger('Filter') database = Database() class MessageFilter: @staticmethod def get_filter(filter_id): filter = database.get_filter(filter_id) if filter is None: return False filter_dict = { 'id': filter[0], 'audio': filter[1], 'video': filter[2], 'photo': filter[3], 'sticker': filter[4], 'document': filter[5], 'hashtag': filter[6], 'link': filter[7], 'contain': filter[8], 'notcontain': filter[9] } return filter_dict @staticmethod def get_active_filters(filter_dict): """ Takes in a filter dictionary Returns a list of active filter names Example: ('photo', 'audio') """ if not isinstance(filter_dict, dict): raise ValueError('Provide a dictionary') active_filter_list = [] for key, value in filter_dict.items(): if value != 0 and value is not None: if key != 'id': active_filter_list.append(key) return active_filter_list @staticmethod def get_message_type(event): # Photos Messages if hasattr(event.media, 'photo'): return 'photo' # Look for links and hashtags in event.entities if event.entities is not None: for entity in event.entities: entity_name = type(entity).__name__ if entity_name == 'MessageEntityHashtag': return 'hashtag' if entity_name == 'MessageEntityUrl': return 'link' # Text Messages if event.media == None: return 'text' # Documents (audio, video, sticker, files) mime_type = event.media.document.mime_type if 'audio' in mime_type: return 'audio' if 'video' in mime_type: return 'video' if 'image/webp' in mime_type: return 'sticker' # Anything else is a file return 'document' @staticmethod def filter_msg(filter_id, message_event): """ Function that decides if a message should be forwarded or not Returns Boolean """ # Get Filter dictionary from database filter_dict = MessageFilter.get_filter(filter_id) if filter_dict == False: logger.info('No filters for id : {}'.format(filter_id)) return False # Get Active Filter list filter_list = MessageFilter.get_active_filters(filter_dict) # Get Message Types msg_type = MessageFilter.get_message_type(message_event) msg_text = message_event.message.text.lower() if msg_type in filter_list: logger.info(f'Filter caught :: {msg_type}') return True if 'contain' not in filter_list and 'notcontain' not in filter_list: logger.info('All filters passed.') return False # Assume message does not contain the required word contains_required_word = False if 'contain' in filter_list: # Look for text messages only if message_event.media is not None: return False keywords = filter_dict['contain'].split('<stop_word>') for keyword in keywords: if keyword in msg_text: contains_required_word = True break # Assume message does contain the blacklist word contains_blacklist_word = False if 'notcontain' in filter_list: # Look for text messages only if message_event.media is not None: return False keywords = filter_dict['notcontain'].split('<stop_word>') for keyword in keywords: if keyword in msg_text: contains_blacklist_word = True break logger.info('Contains word :: {} && Contains Blacklist :: {}'.format( contains_required_word, contains_blacklist_word)) return (not contains_required_word) or contains_blacklist_word
8d6d3bc3651f695962398b6595481de43607d91c
b60a81fd1ecaf62eb7e367f739e77049895352e2
/demo/GLUE/RTE/rte.py
b01b2af2ff2aede68c94fd01747fbfb7acdea499
[ "MIT" ]
permissive
CyberZHG/keras-xlnet
3453e61bae702611e3f30e86a73f80a41f32f7de
d9dbd2c00d9ffbf1d12a8bf3ef75ece4b25b06de
refs/heads/master
2022-02-04T20:35:32.928627
2022-01-01T02:00:00
2022-01-01T02:00:00
192,900,188
190
34
MIT
2019-07-15T16:52:14
2019-06-20T10:30:13
Python
UTF-8
Python
false
false
3,728
py
rte.py
import os import numpy as np import pandas as pd from keras_xlnet.backend import keras from keras_bert.layers import Extract from keras_xlnet import PretrainedList, get_pretrained_paths from keras_xlnet import Tokenizer, load_trained_model_from_checkpoint, ATTENTION_TYPE_BI EPOCH = 10 BATCH_SIZE = 16 SEQ_LEN = 100 MODEL_NAME = 'RTE.h5' CLASSES = { 'not_entailment': 0, 'entailment': 1, } current_path = os.path.dirname(os.path.abspath(__file__)) train_path = os.path.join(current_path, 'train.tsv') dev_path = os.path.join(current_path, 'dev.tsv') paths = get_pretrained_paths(PretrainedList.en_cased_base) tokenizer = Tokenizer(paths.vocab) # Read data class DataSequence(keras.utils.Sequence): def __init__(self, x, y): self.x = x self.y = y def __len__(self): return (len(self.y) + BATCH_SIZE - 1) // BATCH_SIZE def __getitem__(self, index): s = slice(index * BATCH_SIZE, (index + 1) * BATCH_SIZE) return [item[s] for item in self.x], self.y[s] def generate_sequence(path): tokens, classes = [], [] df = pd.read_csv(path, sep='\t', error_bad_lines=False) for _, row in df.iterrows(): text_a, text_b, cls = row['sentence1'], row['sentence2'], row['label'] if not isinstance(text_a, str) or not isinstance(text_b, str) or cls not in CLASSES: continue encoded_a, encoded_b = tokenizer.encode(text_a)[:48], tokenizer.encode(text_b)[:49] encoded = encoded_a + [tokenizer.SYM_SEP] + encoded_b + [tokenizer.SYM_SEP] encoded = [tokenizer.SYM_PAD] * (SEQ_LEN - 1 - len(encoded)) + encoded + [tokenizer.SYM_CLS] tokens.append(encoded) classes.append(CLASSES[cls]) tokens, classes = np.array(tokens), np.array(classes) segments = np.zeros_like(tokens) segments[:, -1] = 1 lengths = np.zeros_like(tokens[:, :1]) return DataSequence([tokens, segments, lengths], classes) current_path = os.path.dirname(os.path.abspath(__file__)) train_seq = generate_sequence(train_path) dev_seq = generate_sequence(dev_path) # Load pretrained model model = load_trained_model_from_checkpoint( config_path=paths.config, checkpoint_path=paths.model, batch_size=BATCH_SIZE, memory_len=0, target_len=SEQ_LEN, in_train_phase=False, attention_type=ATTENTION_TYPE_BI, ) # Build classification model last = Extract(index=-1, name='Extract')(model.output) dense = keras.layers.Dense(units=768, activation='tanh', name='Dense')(last) dropout = keras.layers.Dropout(rate=0.1, name='Dropout')(dense) output = keras.layers.Dense(units=2, activation='softmax', name='Softmax')(dropout) model = keras.models.Model(inputs=model.inputs, outputs=output) model.summary() # Fit model if os.path.exists(MODEL_NAME): model.load_weights(MODEL_NAME) model.compile( optimizer=keras.optimizers.Adam(lr=3e-5), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'], ) model.fit_generator( generator=train_seq, validation_data=dev_seq, epochs=EPOCH, callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=2)], ) model.save_weights(MODEL_NAME) # Evaluation # Use dev set because the results of test set is unknown results = model.predict_generator(dev_seq, verbose=True).argmax(axis=-1) tp, fp, fn, tn = 0, 0, 0, 0 for i in range(len(results)): if results[i] == 1: if dev_seq.y[i] == 1: tp += 1 else: fp += 1 else: if dev_seq.y[i] == 1: fn += 1 else: tn += 1 print('Confusion:') print('[{}, {}]'.format(tp, fp)) print('[{}, {}]'.format(fn, tn)) print('Accuracy: %.2f' % (100.0 * (tp + tn) / len(results)))
b495a2d500f1e59c0a15fff0eb7863daeaa9e308
96dcea595e7c16cec07b3f649afd65f3660a0bad
/homeassistant/components/vilfo/sensor.py
511e25bbfbaa8bf10fd231447855a48a95f50829
[ "Apache-2.0" ]
permissive
home-assistant/core
3455eac2e9d925c92d30178643b1aaccf3a6484f
80caeafcb5b6e2f9da192d0ea6dd1a5b8244b743
refs/heads/dev
2023-08-31T15:41:06.299469
2023-08-31T14:50:53
2023-08-31T14:50:53
12,888,993
35,501
20,617
Apache-2.0
2023-09-14T21:50:15
2013-09-17T07:29:48
Python
UTF-8
Python
false
false
2,883
py
sensor.py
"""Support for Vilfo Router sensors.""" from dataclasses import dataclass from homeassistant.components.sensor import ( SensorDeviceClass, SensorEntity, SensorEntityDescription, ) from homeassistant.config_entries import ConfigEntry from homeassistant.const import PERCENTAGE from homeassistant.core import HomeAssistant from homeassistant.helpers.device_registry import DeviceInfo from homeassistant.helpers.entity_platform import AddEntitiesCallback from .const import ( ATTR_API_DATA_FIELD_BOOT_TIME, ATTR_API_DATA_FIELD_LOAD, ATTR_BOOT_TIME, ATTR_LOAD, DOMAIN, ROUTER_DEFAULT_MODEL, ROUTER_DEFAULT_NAME, ROUTER_MANUFACTURER, ) @dataclass class VilfoRequiredKeysMixin: """Mixin for required keys.""" api_key: str @dataclass class VilfoSensorEntityDescription(SensorEntityDescription, VilfoRequiredKeysMixin): """Describes Vilfo sensor entity.""" SENSOR_TYPES: tuple[VilfoSensorEntityDescription, ...] = ( VilfoSensorEntityDescription( key=ATTR_LOAD, translation_key=ATTR_LOAD, native_unit_of_measurement=PERCENTAGE, icon="mdi:memory", api_key=ATTR_API_DATA_FIELD_LOAD, ), VilfoSensorEntityDescription( key=ATTR_BOOT_TIME, translation_key=ATTR_BOOT_TIME, icon="mdi:timer-outline", api_key=ATTR_API_DATA_FIELD_BOOT_TIME, device_class=SensorDeviceClass.TIMESTAMP, ), ) async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Add Vilfo Router entities from a config_entry.""" vilfo = hass.data[DOMAIN][config_entry.entry_id] entities = [VilfoRouterSensor(vilfo, description) for description in SENSOR_TYPES] async_add_entities(entities, True) class VilfoRouterSensor(SensorEntity): """Define a Vilfo Router Sensor.""" entity_description: VilfoSensorEntityDescription _attr_has_entity_name = True def __init__(self, api, description: VilfoSensorEntityDescription) -> None: """Initialize.""" self.entity_description = description self.api = api self._attr_device_info = DeviceInfo( identifiers={(DOMAIN, api.host, api.mac_address)}, # type: ignore[arg-type] name=ROUTER_DEFAULT_NAME, manufacturer=ROUTER_MANUFACTURER, model=ROUTER_DEFAULT_MODEL, sw_version=api.firmware_version, ) self._attr_unique_id = f"{api.unique_id}_{description.key}" @property def available(self) -> bool: """Return whether the sensor is available or not.""" return self.api.available async def async_update(self) -> None: """Update the router data.""" await self.api.async_update() self._attr_native_value = self.api.data.get(self.entity_description.api_key)
f0b078fa1be3036d20bc07f275ac126b1303ac08
a3d6556180e74af7b555f8d47d3fea55b94bcbda
/third_party/blink/web_tests/external/wpt/attribution-reporting/resources/reports.py
b71743b0fc04db7afd38e619377b032b34a86348
[ "BSD-3-Clause", "GPL-1.0-or-later", "MIT", "LGPL-2.0-or-later", "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer", "LGPL-2.1-only", "GPL-2.0-only", "LGPL-2.0-only", "BSD-2-Clause", "LicenseRef-scancode-other-copyleft" ]
permissive
chromium/chromium
aaa9eda10115b50b0616d2f1aed5ef35d1d779d6
a401d6cf4f7bf0e2d2e964c512ebb923c3d8832c
refs/heads/main
2023-08-24T00:35:12.585945
2023-08-23T22:01:11
2023-08-23T22:01:11
120,360,765
17,408
7,102
BSD-3-Clause
2023-09-10T23:44:27
2018-02-05T20:55:32
null
UTF-8
Python
false
false
4,672
py
reports.py
"""Methods for the report-event-attribution and report-aggregate-attribution endpoints""" import json from typing import List, Optional, Tuple import urllib.parse from wptserve.request import Request from wptserve.stash import Stash from wptserve.utils import isomorphic_decode, isomorphic_encode # Key used to access the reports in the stash. REPORTS = "4691a2d7fca5430fb0f33b1bd8a9d388" REDIRECT = "9250f93f-2c05-4aae-83b9-2817b0e18b4e" CLEAR_STASH = isomorphic_encode("clear_stash") CONFIG_REDIRECT = isomorphic_encode("redirect_to") Header = Tuple[str, str] Status = Tuple[int, str] Response = Tuple[Status, List[Header], str] def decode_headers(headers: dict) -> dict: """Decodes the headers from wptserve. wptserve headers are encoded like { encoded(key): [encoded(value1), encoded(value2),...] } This method decodes the above using the wptserve.utils.isomorphic_decode method """ return { isomorphic_decode(key): [isomorphic_decode(el) for el in value ] for key, value in headers.items() } def get_request_origin(request: Request) -> str: return "%s://%s" % (request.url_parts.scheme, request.url_parts.netloc) def configure_redirect(request, origin) -> None: with request.server.stash.lock: request.server.stash.put(REDIRECT, origin) return None def get_report_redirect_url(request): with request.server.stash.lock: origin = request.server.stash.take(REDIRECT) if origin is None: return None origin_parts = urllib.parse.urlsplit(origin) parts = request.url_parts new_parts = origin_parts._replace(path=bytes(parts.path, 'utf-8')) return urllib.parse.urlunsplit(new_parts) def handle_post_report(request: Request, headers: List[Header]) -> Response: """Handles POST request for reports. Retrieves the report from the request body and stores the report in the stash. If clear_stash is specified in the query params, clears the stash. """ if request.GET.get(CLEAR_STASH): clear_stash(request.server.stash) return (200, "OK"), headers, json.dumps({ "code": 200, "message": "Stash successfully cleared.", }) redirect_origin = request.GET.get(CONFIG_REDIRECT) if redirect_origin: configure_redirect(request, redirect_origin) return (200, "OK"), headers, json.dumps({ "code": 200, "message": "Redirect successfully configured.", }) redirect_url = get_report_redirect_url(request) if redirect_url is not None: headers.append(("Location", redirect_url)) return (308, "Permanent Redirect"), headers, json.dumps({ "code": 308 }) store_report( request.server.stash, get_request_origin(request), { "body": request.body.decode("utf-8"), "headers": decode_headers(request.headers) }) return (201, "OK"), headers, json.dumps({ "code": 201, "message": "Report successfully stored." }) def handle_get_reports(request: Request, headers: List[Header]) -> Response: """Handles GET request for reports. Retrieves and returns all reports from the stash. """ reports = take_reports(request.server.stash, get_request_origin(request)) headers.append(("Access-Control-Allow-Origin", "*")) return (200, "OK"), headers, json.dumps({ "code": 200, "reports": reports, }) def store_report(stash: Stash, origin: str, report: str) -> None: """Stores the report in the stash. Report here is a JSON.""" with stash.lock: reports_dict = stash.take(REPORTS) if not reports_dict: reports_dict = {} reports = reports_dict.get(origin, []) reports.append(report) reports_dict[origin] = reports stash.put(REPORTS, reports_dict) return None def clear_stash(stash: Stash) -> None: "Clears the stash." stash.take(REPORTS) stash.take(REDIRECT) return None def take_reports(stash: Stash, origin: str) -> List[str]: """Takes all the reports from the stash and returns them.""" with stash.lock: reports_dict = stash.take(REPORTS) if not reports_dict: reports_dict = {} reports = reports_dict.pop(origin, []) stash.put(REPORTS, reports_dict) return reports def handle_reports(request: Request) -> Response: """Handles request to get or store reports.""" headers = [("Content-Type", "application/json")] if request.method == "POST": return handle_post_report(request, headers) if request.method == "GET": return handle_get_reports(request, headers) return (405, "Method Not Allowed"), headers, json.dumps({ "code": 405, "message": "Only GET or POST methods are supported." })
894e9b42c7f418b7e19a5fe4cf60eca3033ed0ea
479a9c76b19b84d6cde69305828031cd2531aa56
/testing/MLDB-696_uri_causes_crash.py
6a3507a5c4adda750d3ca2a1fb059eca0754e204
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
mldbai/mldb
d36801bd99dd3f82d7557cd0f438b0121f63f22c
19bc4bc92a41ee8ad4eab0979dffd9c985d95758
refs/heads/master
2023-09-03T22:59:11.621839
2022-12-30T18:42:24
2022-12-30T18:42:24
47,634,692
701
107
Apache-2.0
2023-02-10T23:08:05
2015-12-08T16:34:16
C++
UTF-8
Python
false
false
716
py
MLDB-696_uri_causes_crash.py
# This file is part of MLDB. Copyright 2015 mldb.ai inc. All rights reserved. try: mldb.create_dataset({ "type": "beh.mutable", "id": "x", "params":{ "dataFileUrl": "relative/path/without/protocol.beh" }}).commit() #should complain about missing protocol! request.set_return("failure") exit() except: pass try: mldb.create_dataset({ "type": "beh.mutable", "id": "y", "params":{ "dataFileUrl": "/asbolute/path/without/protocol.beh" }}).commit() #should complain about missing protocol! request.set_return("failure") exit() except: pass request.set_return("success")
8c66a1665ff3bd28663c4c82e3aaa8412f787f53
99dcb18a9e3ea367272f740b8cbf3c34285a0c08
/google/cloud/aiplatform_v1/services/tensorboard_service/client.py
34f95b1bac48946a07f47479058113b7261651a6
[ "Apache-2.0" ]
permissive
googleapis/python-aiplatform
926a4873f35dbea15b2fd86c0e16b5e6556d803e
76b95b92c1d3b87c72d754d8c02b1bca652b9a27
refs/heads/main
2023-08-19T23:49:02.180075
2023-08-19T13:25:59
2023-08-19T13:27:27
298,017,988
418
240
Apache-2.0
2023-09-14T21:08:33
2020-09-23T15:43:39
Python
UTF-8
Python
false
false
213,036
py
client.py
# -*- coding: utf-8 -*- # Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict import os import re from typing import ( Dict, Mapping, MutableMapping, MutableSequence, Optional, Iterable, Sequence, Tuple, Type, Union, cast, ) from google.cloud.aiplatform_v1 import gapic_version as package_version from google.api_core import client_options as client_options_lib from google.api_core import exceptions as core_exceptions from google.api_core import gapic_v1 from google.api_core import retry as retries from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport import mtls # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore from google.auth.exceptions import MutualTLSChannelError # type: ignore from google.oauth2 import service_account # type: ignore try: OptionalRetry = Union[retries.Retry, gapic_v1.method._MethodDefault] except AttributeError: # pragma: NO COVER OptionalRetry = Union[retries.Retry, object] # type: ignore from google.api_core import operation as gac_operation # type: ignore from google.api_core import operation_async # type: ignore from google.cloud.aiplatform_v1.services.tensorboard_service import pagers from google.cloud.aiplatform_v1.types import encryption_spec from google.cloud.aiplatform_v1.types import operation as gca_operation from google.cloud.aiplatform_v1.types import tensorboard from google.cloud.aiplatform_v1.types import tensorboard as gca_tensorboard from google.cloud.aiplatform_v1.types import tensorboard_data from google.cloud.aiplatform_v1.types import tensorboard_experiment from google.cloud.aiplatform_v1.types import ( tensorboard_experiment as gca_tensorboard_experiment, ) from google.cloud.aiplatform_v1.types import tensorboard_run from google.cloud.aiplatform_v1.types import tensorboard_run as gca_tensorboard_run from google.cloud.aiplatform_v1.types import tensorboard_service from google.cloud.aiplatform_v1.types import tensorboard_time_series from google.cloud.aiplatform_v1.types import ( tensorboard_time_series as gca_tensorboard_time_series, ) from google.cloud.location import locations_pb2 # type: ignore from google.iam.v1 import iam_policy_pb2 # type: ignore from google.iam.v1 import policy_pb2 # type: ignore from google.longrunning import operations_pb2 from google.protobuf import empty_pb2 # type: ignore from google.protobuf import field_mask_pb2 # type: ignore from google.protobuf import timestamp_pb2 # type: ignore from .transports.base import TensorboardServiceTransport, DEFAULT_CLIENT_INFO from .transports.grpc import TensorboardServiceGrpcTransport from .transports.grpc_asyncio import TensorboardServiceGrpcAsyncIOTransport class TensorboardServiceClientMeta(type): """Metaclass for the TensorboardService client. This provides class-level methods for building and retrieving support objects (e.g. transport) without polluting the client instance objects. """ _transport_registry = ( OrderedDict() ) # type: Dict[str, Type[TensorboardServiceTransport]] _transport_registry["grpc"] = TensorboardServiceGrpcTransport _transport_registry["grpc_asyncio"] = TensorboardServiceGrpcAsyncIOTransport def get_transport_class( cls, label: Optional[str] = None, ) -> Type[TensorboardServiceTransport]: """Returns an appropriate transport class. Args: label: The name of the desired transport. If none is provided, then the first transport in the registry is used. Returns: The transport class to use. """ # If a specific transport is requested, return that one. if label: return cls._transport_registry[label] # No transport is requested; return the default (that is, the first one # in the dictionary). return next(iter(cls._transport_registry.values())) class TensorboardServiceClient(metaclass=TensorboardServiceClientMeta): """TensorboardService""" @staticmethod def _get_default_mtls_endpoint(api_endpoint): """Converts api endpoint to mTLS endpoint. Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively. Args: api_endpoint (Optional[str]): the api endpoint to convert. Returns: str: converted mTLS api endpoint. """ if not api_endpoint: return api_endpoint mtls_endpoint_re = re.compile( r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?" ) m = mtls_endpoint_re.match(api_endpoint) name, mtls, sandbox, googledomain = m.groups() if mtls or not googledomain: return api_endpoint if sandbox: return api_endpoint.replace( "sandbox.googleapis.com", "mtls.sandbox.googleapis.com" ) return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com") DEFAULT_ENDPOINT = "aiplatform.googleapis.com" DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__( # type: ignore DEFAULT_ENDPOINT ) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: TensorboardServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_info(info) kwargs["credentials"] = credentials return cls(*args, **kwargs) @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: TensorboardServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file(filename) kwargs["credentials"] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file @property def transport(self) -> TensorboardServiceTransport: """Returns the transport used by the client instance. Returns: TensorboardServiceTransport: The transport used by the client instance. """ return self._transport @staticmethod def tensorboard_path( project: str, location: str, tensorboard: str, ) -> str: """Returns a fully-qualified tensorboard string.""" return ( "projects/{project}/locations/{location}/tensorboards/{tensorboard}".format( project=project, location=location, tensorboard=tensorboard, ) ) @staticmethod def parse_tensorboard_path(path: str) -> Dict[str, str]: """Parses a tensorboard path into its component segments.""" m = re.match( r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/tensorboards/(?P<tensorboard>.+?)$", path, ) return m.groupdict() if m else {} @staticmethod def tensorboard_experiment_path( project: str, location: str, tensorboard: str, experiment: str, ) -> str: """Returns a fully-qualified tensorboard_experiment string.""" return "projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}".format( project=project, location=location, tensorboard=tensorboard, experiment=experiment, ) @staticmethod def parse_tensorboard_experiment_path(path: str) -> Dict[str, str]: """Parses a tensorboard_experiment path into its component segments.""" m = re.match( r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/tensorboards/(?P<tensorboard>.+?)/experiments/(?P<experiment>.+?)$", path, ) return m.groupdict() if m else {} @staticmethod def tensorboard_run_path( project: str, location: str, tensorboard: str, experiment: str, run: str, ) -> str: """Returns a fully-qualified tensorboard_run string.""" return "projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}".format( project=project, location=location, tensorboard=tensorboard, experiment=experiment, run=run, ) @staticmethod def parse_tensorboard_run_path(path: str) -> Dict[str, str]: """Parses a tensorboard_run path into its component segments.""" m = re.match( r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/tensorboards/(?P<tensorboard>.+?)/experiments/(?P<experiment>.+?)/runs/(?P<run>.+?)$", path, ) return m.groupdict() if m else {} @staticmethod def tensorboard_time_series_path( project: str, location: str, tensorboard: str, experiment: str, run: str, time_series: str, ) -> str: """Returns a fully-qualified tensorboard_time_series string.""" return "projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series}".format( project=project, location=location, tensorboard=tensorboard, experiment=experiment, run=run, time_series=time_series, ) @staticmethod def parse_tensorboard_time_series_path(path: str) -> Dict[str, str]: """Parses a tensorboard_time_series path into its component segments.""" m = re.match( r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)/tensorboards/(?P<tensorboard>.+?)/experiments/(?P<experiment>.+?)/runs/(?P<run>.+?)/timeSeries/(?P<time_series>.+?)$", path, ) return m.groupdict() if m else {} @staticmethod def common_billing_account_path( billing_account: str, ) -> str: """Returns a fully-qualified billing_account string.""" return "billingAccounts/{billing_account}".format( billing_account=billing_account, ) @staticmethod def parse_common_billing_account_path(path: str) -> Dict[str, str]: """Parse a billing_account path into its component segments.""" m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_folder_path( folder: str, ) -> str: """Returns a fully-qualified folder string.""" return "folders/{folder}".format( folder=folder, ) @staticmethod def parse_common_folder_path(path: str) -> Dict[str, str]: """Parse a folder path into its component segments.""" m = re.match(r"^folders/(?P<folder>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_organization_path( organization: str, ) -> str: """Returns a fully-qualified organization string.""" return "organizations/{organization}".format( organization=organization, ) @staticmethod def parse_common_organization_path(path: str) -> Dict[str, str]: """Parse a organization path into its component segments.""" m = re.match(r"^organizations/(?P<organization>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_project_path( project: str, ) -> str: """Returns a fully-qualified project string.""" return "projects/{project}".format( project=project, ) @staticmethod def parse_common_project_path(path: str) -> Dict[str, str]: """Parse a project path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_location_path( project: str, location: str, ) -> str: """Returns a fully-qualified location string.""" return "projects/{project}/locations/{location}".format( project=project, location=location, ) @staticmethod def parse_common_location_path(path: str) -> Dict[str, str]: """Parse a location path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path) return m.groupdict() if m else {} @classmethod def get_mtls_endpoint_and_cert_source( cls, client_options: Optional[client_options_lib.ClientOptions] = None ): """Return the API endpoint and client cert source for mutual TLS. The client cert source is determined in the following order: (1) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is not "true", the client cert source is None. (2) if `client_options.client_cert_source` is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None. The API endpoint is determined in the following order: (1) if `client_options.api_endpoint` if provided, use the provided one. (2) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is "always", use the default mTLS endpoint; if the environment variable is "never", use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint. More details can be found at https://google.aip.dev/auth/4114. Args: client_options (google.api_core.client_options.ClientOptions): Custom options for the client. Only the `api_endpoint` and `client_cert_source` properties may be used in this method. Returns: Tuple[str, Callable[[], Tuple[bytes, bytes]]]: returns the API endpoint and the client cert source to use. Raises: google.auth.exceptions.MutualTLSChannelError: If any errors happen. """ if client_options is None: client_options = client_options_lib.ClientOptions() use_client_cert = os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") use_mtls_endpoint = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto") if use_client_cert not in ("true", "false"): raise ValueError( "Environment variable `GOOGLE_API_USE_CLIENT_CERTIFICATE` must be either `true` or `false`" ) if use_mtls_endpoint not in ("auto", "never", "always"): raise MutualTLSChannelError( "Environment variable `GOOGLE_API_USE_MTLS_ENDPOINT` must be `never`, `auto` or `always`" ) # Figure out the client cert source to use. client_cert_source = None if use_client_cert == "true": if client_options.client_cert_source: client_cert_source = client_options.client_cert_source elif mtls.has_default_client_cert_source(): client_cert_source = mtls.default_client_cert_source() # Figure out which api endpoint to use. if client_options.api_endpoint is not None: api_endpoint = client_options.api_endpoint elif use_mtls_endpoint == "always" or ( use_mtls_endpoint == "auto" and client_cert_source ): api_endpoint = cls.DEFAULT_MTLS_ENDPOINT else: api_endpoint = cls.DEFAULT_ENDPOINT return api_endpoint, client_cert_source def __init__( self, *, credentials: Optional[ga_credentials.Credentials] = None, transport: Optional[Union[str, TensorboardServiceTransport]] = None, client_options: Optional[Union[client_options_lib.ClientOptions, dict]] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiates the tensorboard service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, TensorboardServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ if isinstance(client_options, dict): client_options = client_options_lib.from_dict(client_options) if client_options is None: client_options = client_options_lib.ClientOptions() client_options = cast(client_options_lib.ClientOptions, client_options) api_endpoint, client_cert_source_func = self.get_mtls_endpoint_and_cert_source( client_options ) api_key_value = getattr(client_options, "api_key", None) if api_key_value and credentials: raise ValueError( "client_options.api_key and credentials are mutually exclusive" ) # Save or instantiate the transport. # Ordinarily, we provide the transport, but allowing a custom transport # instance provides an extensibility point for unusual situations. if isinstance(transport, TensorboardServiceTransport): # transport is a TensorboardServiceTransport instance. if credentials or client_options.credentials_file or api_key_value: raise ValueError( "When providing a transport instance, " "provide its credentials directly." ) if client_options.scopes: raise ValueError( "When providing a transport instance, provide its scopes " "directly." ) self._transport = transport else: import google.auth._default # type: ignore if api_key_value and hasattr( google.auth._default, "get_api_key_credentials" ): credentials = google.auth._default.get_api_key_credentials( api_key_value ) Transport = type(self).get_transport_class(transport) self._transport = Transport( credentials=credentials, credentials_file=client_options.credentials_file, host=api_endpoint, scopes=client_options.scopes, client_cert_source_for_mtls=client_cert_source_func, quota_project_id=client_options.quota_project_id, client_info=client_info, always_use_jwt_access=True, api_audience=client_options.api_audience, ) def create_tensorboard( self, request: Optional[ Union[tensorboard_service.CreateTensorboardRequest, dict] ] = None, *, parent: Optional[str] = None, tensorboard: Optional[gca_tensorboard.Tensorboard] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> gac_operation.Operation: r"""Creates a Tensorboard. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_create_tensorboard(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) tensorboard = aiplatform_v1.Tensorboard() tensorboard.display_name = "display_name_value" request = aiplatform_v1.CreateTensorboardRequest( parent="parent_value", tensorboard=tensorboard, ) # Make the request operation = client.create_tensorboard(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.CreateTensorboardRequest, dict]): The request object. Request message for [TensorboardService.CreateTensorboard][google.cloud.aiplatform.v1.TensorboardService.CreateTensorboard]. parent (str): Required. The resource name of the Location to create the Tensorboard in. Format: ``projects/{project}/locations/{location}`` This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. tensorboard (google.cloud.aiplatform_v1.types.Tensorboard): Required. The Tensorboard to create. This corresponds to the ``tensorboard`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation.Operation: An object representing a long-running operation. The result type for the operation will be :class:`google.cloud.aiplatform_v1.types.Tensorboard` Tensorboard is a physical database that stores users' training metrics. A default Tensorboard is provided in each region of a Google Cloud project. If needed users can also create extra Tensorboards in their projects. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, tensorboard]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.CreateTensorboardRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, tensorboard_service.CreateTensorboardRequest): request = tensorboard_service.CreateTensorboardRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if tensorboard is not None: request.tensorboard = tensorboard # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.create_tensorboard] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = gac_operation.from_gapic( response, self._transport.operations_client, gca_tensorboard.Tensorboard, metadata_type=tensorboard_service.CreateTensorboardOperationMetadata, ) # Done; return the response. return response def get_tensorboard( self, request: Optional[ Union[tensorboard_service.GetTensorboardRequest, dict] ] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> tensorboard.Tensorboard: r"""Gets a Tensorboard. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_get_tensorboard(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.GetTensorboardRequest( name="name_value", ) # Make the request response = client.get_tensorboard(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.GetTensorboardRequest, dict]): The request object. Request message for [TensorboardService.GetTensorboard][google.cloud.aiplatform.v1.TensorboardService.GetTensorboard]. name (str): Required. The name of the Tensorboard resource. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.Tensorboard: Tensorboard is a physical database that stores users' training metrics. A default Tensorboard is provided in each region of a Google Cloud project. If needed users can also create extra Tensorboards in their projects. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.GetTensorboardRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, tensorboard_service.GetTensorboardRequest): request = tensorboard_service.GetTensorboardRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.get_tensorboard] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def update_tensorboard( self, request: Optional[ Union[tensorboard_service.UpdateTensorboardRequest, dict] ] = None, *, tensorboard: Optional[gca_tensorboard.Tensorboard] = None, update_mask: Optional[field_mask_pb2.FieldMask] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> gac_operation.Operation: r"""Updates a Tensorboard. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_update_tensorboard(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) tensorboard = aiplatform_v1.Tensorboard() tensorboard.display_name = "display_name_value" request = aiplatform_v1.UpdateTensorboardRequest( tensorboard=tensorboard, ) # Make the request operation = client.update_tensorboard(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.UpdateTensorboardRequest, dict]): The request object. Request message for [TensorboardService.UpdateTensorboard][google.cloud.aiplatform.v1.TensorboardService.UpdateTensorboard]. tensorboard (google.cloud.aiplatform_v1.types.Tensorboard): Required. The Tensorboard's ``name`` field is used to identify the Tensorboard to be updated. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}`` This corresponds to the ``tensorboard`` field on the ``request`` instance; if ``request`` is provided, this should not be set. update_mask (google.protobuf.field_mask_pb2.FieldMask): Required. Field mask is used to specify the fields to be overwritten in the Tensorboard resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field is overwritten if it's in the mask. If the user does not provide a mask then all fields are overwritten if new values are specified. This corresponds to the ``update_mask`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation.Operation: An object representing a long-running operation. The result type for the operation will be :class:`google.cloud.aiplatform_v1.types.Tensorboard` Tensorboard is a physical database that stores users' training metrics. A default Tensorboard is provided in each region of a Google Cloud project. If needed users can also create extra Tensorboards in their projects. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([tensorboard, update_mask]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.UpdateTensorboardRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, tensorboard_service.UpdateTensorboardRequest): request = tensorboard_service.UpdateTensorboardRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if tensorboard is not None: request.tensorboard = tensorboard if update_mask is not None: request.update_mask = update_mask # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.update_tensorboard] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("tensorboard.name", request.tensorboard.name),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = gac_operation.from_gapic( response, self._transport.operations_client, gca_tensorboard.Tensorboard, metadata_type=tensorboard_service.UpdateTensorboardOperationMetadata, ) # Done; return the response. return response def list_tensorboards( self, request: Optional[ Union[tensorboard_service.ListTensorboardsRequest, dict] ] = None, *, parent: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ListTensorboardsPager: r"""Lists Tensorboards in a Location. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_list_tensorboards(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.ListTensorboardsRequest( parent="parent_value", ) # Make the request page_result = client.list_tensorboards(request=request) # Handle the response for response in page_result: print(response) Args: request (Union[google.cloud.aiplatform_v1.types.ListTensorboardsRequest, dict]): The request object. Request message for [TensorboardService.ListTensorboards][google.cloud.aiplatform.v1.TensorboardService.ListTensorboards]. parent (str): Required. The resource name of the Location to list Tensorboards. Format: ``projects/{project}/locations/{location}`` This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.services.tensorboard_service.pagers.ListTensorboardsPager: Response message for [TensorboardService.ListTensorboards][google.cloud.aiplatform.v1.TensorboardService.ListTensorboards]. Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.ListTensorboardsRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, tensorboard_service.ListTensorboardsRequest): request = tensorboard_service.ListTensorboardsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.list_tensorboards] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # This method is paged; wrap the response in a pager, which provides # an `__iter__` convenience method. response = pagers.ListTensorboardsPager( method=rpc, request=request, response=response, metadata=metadata, ) # Done; return the response. return response def delete_tensorboard( self, request: Optional[ Union[tensorboard_service.DeleteTensorboardRequest, dict] ] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> gac_operation.Operation: r"""Deletes a Tensorboard. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_delete_tensorboard(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.DeleteTensorboardRequest( name="name_value", ) # Make the request operation = client.delete_tensorboard(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.DeleteTensorboardRequest, dict]): The request object. Request message for [TensorboardService.DeleteTensorboard][google.cloud.aiplatform.v1.TensorboardService.DeleteTensorboard]. name (str): Required. The name of the Tensorboard to be deleted. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation.Operation: An object representing a long-running operation. The result type for the operation will be :class:`google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.DeleteTensorboardRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, tensorboard_service.DeleteTensorboardRequest): request = tensorboard_service.DeleteTensorboardRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.delete_tensorboard] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = gac_operation.from_gapic( response, self._transport.operations_client, empty_pb2.Empty, metadata_type=gca_operation.DeleteOperationMetadata, ) # Done; return the response. return response def read_tensorboard_usage( self, request: Optional[ Union[tensorboard_service.ReadTensorboardUsageRequest, dict] ] = None, *, tensorboard: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> tensorboard_service.ReadTensorboardUsageResponse: r"""Returns a list of monthly active users for a given TensorBoard instance. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_read_tensorboard_usage(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.ReadTensorboardUsageRequest( tensorboard="tensorboard_value", ) # Make the request response = client.read_tensorboard_usage(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.ReadTensorboardUsageRequest, dict]): The request object. Request message for [TensorboardService.ReadTensorboardUsage][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardUsage]. tensorboard (str): Required. The name of the Tensorboard resource. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}`` This corresponds to the ``tensorboard`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.ReadTensorboardUsageResponse: Response message for [TensorboardService.ReadTensorboardUsage][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardUsage]. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([tensorboard]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.ReadTensorboardUsageRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, tensorboard_service.ReadTensorboardUsageRequest): request = tensorboard_service.ReadTensorboardUsageRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if tensorboard is not None: request.tensorboard = tensorboard # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.read_tensorboard_usage] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("tensorboard", request.tensorboard),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def read_tensorboard_size( self, request: Optional[ Union[tensorboard_service.ReadTensorboardSizeRequest, dict] ] = None, *, tensorboard: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> tensorboard_service.ReadTensorboardSizeResponse: r"""Returns the storage size for a given TensorBoard instance. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_read_tensorboard_size(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.ReadTensorboardSizeRequest( tensorboard="tensorboard_value", ) # Make the request response = client.read_tensorboard_size(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.ReadTensorboardSizeRequest, dict]): The request object. Request message for [TensorboardService.ReadTensorboardSize][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardSize]. tensorboard (str): Required. The name of the Tensorboard resource. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}`` This corresponds to the ``tensorboard`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.ReadTensorboardSizeResponse: Response message for [TensorboardService.ReadTensorboardSize][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardSize]. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([tensorboard]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.ReadTensorboardSizeRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, tensorboard_service.ReadTensorboardSizeRequest): request = tensorboard_service.ReadTensorboardSizeRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if tensorboard is not None: request.tensorboard = tensorboard # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.read_tensorboard_size] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("tensorboard", request.tensorboard),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def create_tensorboard_experiment( self, request: Optional[ Union[tensorboard_service.CreateTensorboardExperimentRequest, dict] ] = None, *, parent: Optional[str] = None, tensorboard_experiment: Optional[ gca_tensorboard_experiment.TensorboardExperiment ] = None, tensorboard_experiment_id: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> gca_tensorboard_experiment.TensorboardExperiment: r"""Creates a TensorboardExperiment. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_create_tensorboard_experiment(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.CreateTensorboardExperimentRequest( parent="parent_value", tensorboard_experiment_id="tensorboard_experiment_id_value", ) # Make the request response = client.create_tensorboard_experiment(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.CreateTensorboardExperimentRequest, dict]): The request object. Request message for [TensorboardService.CreateTensorboardExperiment][google.cloud.aiplatform.v1.TensorboardService.CreateTensorboardExperiment]. parent (str): Required. The resource name of the Tensorboard to create the TensorboardExperiment in. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}`` This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. tensorboard_experiment (google.cloud.aiplatform_v1.types.TensorboardExperiment): The TensorboardExperiment to create. This corresponds to the ``tensorboard_experiment`` field on the ``request`` instance; if ``request`` is provided, this should not be set. tensorboard_experiment_id (str): Required. The ID to use for the Tensorboard experiment, which becomes the final component of the Tensorboard experiment's resource name. This value should be 1-128 characters, and valid characters are /[a-z][0-9]-/. This corresponds to the ``tensorboard_experiment_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.TensorboardExperiment: A TensorboardExperiment is a group of TensorboardRuns, that are typically the results of a training job run, in a Tensorboard. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any( [parent, tensorboard_experiment, tensorboard_experiment_id] ) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.CreateTensorboardExperimentRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, tensorboard_service.CreateTensorboardExperimentRequest ): request = tensorboard_service.CreateTensorboardExperimentRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if tensorboard_experiment is not None: request.tensorboard_experiment = tensorboard_experiment if tensorboard_experiment_id is not None: request.tensorboard_experiment_id = tensorboard_experiment_id # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.create_tensorboard_experiment ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def get_tensorboard_experiment( self, request: Optional[ Union[tensorboard_service.GetTensorboardExperimentRequest, dict] ] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> tensorboard_experiment.TensorboardExperiment: r"""Gets a TensorboardExperiment. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_get_tensorboard_experiment(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.GetTensorboardExperimentRequest( name="name_value", ) # Make the request response = client.get_tensorboard_experiment(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.GetTensorboardExperimentRequest, dict]): The request object. Request message for [TensorboardService.GetTensorboardExperiment][google.cloud.aiplatform.v1.TensorboardService.GetTensorboardExperiment]. name (str): Required. The name of the TensorboardExperiment resource. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.TensorboardExperiment: A TensorboardExperiment is a group of TensorboardRuns, that are typically the results of a training job run, in a Tensorboard. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.GetTensorboardExperimentRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, tensorboard_service.GetTensorboardExperimentRequest): request = tensorboard_service.GetTensorboardExperimentRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.get_tensorboard_experiment ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def update_tensorboard_experiment( self, request: Optional[ Union[tensorboard_service.UpdateTensorboardExperimentRequest, dict] ] = None, *, tensorboard_experiment: Optional[ gca_tensorboard_experiment.TensorboardExperiment ] = None, update_mask: Optional[field_mask_pb2.FieldMask] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> gca_tensorboard_experiment.TensorboardExperiment: r"""Updates a TensorboardExperiment. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_update_tensorboard_experiment(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.UpdateTensorboardExperimentRequest( ) # Make the request response = client.update_tensorboard_experiment(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.UpdateTensorboardExperimentRequest, dict]): The request object. Request message for [TensorboardService.UpdateTensorboardExperiment][google.cloud.aiplatform.v1.TensorboardService.UpdateTensorboardExperiment]. tensorboard_experiment (google.cloud.aiplatform_v1.types.TensorboardExperiment): Required. The TensorboardExperiment's ``name`` field is used to identify the TensorboardExperiment to be updated. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}`` This corresponds to the ``tensorboard_experiment`` field on the ``request`` instance; if ``request`` is provided, this should not be set. update_mask (google.protobuf.field_mask_pb2.FieldMask): Required. Field mask is used to specify the fields to be overwritten in the TensorboardExperiment resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field is overwritten if it's in the mask. If the user does not provide a mask then all fields are overwritten if new values are specified. This corresponds to the ``update_mask`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.TensorboardExperiment: A TensorboardExperiment is a group of TensorboardRuns, that are typically the results of a training job run, in a Tensorboard. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([tensorboard_experiment, update_mask]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.UpdateTensorboardExperimentRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, tensorboard_service.UpdateTensorboardExperimentRequest ): request = tensorboard_service.UpdateTensorboardExperimentRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if tensorboard_experiment is not None: request.tensorboard_experiment = tensorboard_experiment if update_mask is not None: request.update_mask = update_mask # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.update_tensorboard_experiment ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("tensorboard_experiment.name", request.tensorboard_experiment.name),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def list_tensorboard_experiments( self, request: Optional[ Union[tensorboard_service.ListTensorboardExperimentsRequest, dict] ] = None, *, parent: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ListTensorboardExperimentsPager: r"""Lists TensorboardExperiments in a Location. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_list_tensorboard_experiments(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.ListTensorboardExperimentsRequest( parent="parent_value", ) # Make the request page_result = client.list_tensorboard_experiments(request=request) # Handle the response for response in page_result: print(response) Args: request (Union[google.cloud.aiplatform_v1.types.ListTensorboardExperimentsRequest, dict]): The request object. Request message for [TensorboardService.ListTensorboardExperiments][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardExperiments]. parent (str): Required. The resource name of the Tensorboard to list TensorboardExperiments. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}`` This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.services.tensorboard_service.pagers.ListTensorboardExperimentsPager: Response message for [TensorboardService.ListTensorboardExperiments][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardExperiments]. Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.ListTensorboardExperimentsRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, tensorboard_service.ListTensorboardExperimentsRequest ): request = tensorboard_service.ListTensorboardExperimentsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.list_tensorboard_experiments ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # This method is paged; wrap the response in a pager, which provides # an `__iter__` convenience method. response = pagers.ListTensorboardExperimentsPager( method=rpc, request=request, response=response, metadata=metadata, ) # Done; return the response. return response def delete_tensorboard_experiment( self, request: Optional[ Union[tensorboard_service.DeleteTensorboardExperimentRequest, dict] ] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> gac_operation.Operation: r"""Deletes a TensorboardExperiment. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_delete_tensorboard_experiment(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.DeleteTensorboardExperimentRequest( name="name_value", ) # Make the request operation = client.delete_tensorboard_experiment(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.DeleteTensorboardExperimentRequest, dict]): The request object. Request message for [TensorboardService.DeleteTensorboardExperiment][google.cloud.aiplatform.v1.TensorboardService.DeleteTensorboardExperiment]. name (str): Required. The name of the TensorboardExperiment to be deleted. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation.Operation: An object representing a long-running operation. The result type for the operation will be :class:`google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.DeleteTensorboardExperimentRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, tensorboard_service.DeleteTensorboardExperimentRequest ): request = tensorboard_service.DeleteTensorboardExperimentRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.delete_tensorboard_experiment ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = gac_operation.from_gapic( response, self._transport.operations_client, empty_pb2.Empty, metadata_type=gca_operation.DeleteOperationMetadata, ) # Done; return the response. return response def create_tensorboard_run( self, request: Optional[ Union[tensorboard_service.CreateTensorboardRunRequest, dict] ] = None, *, parent: Optional[str] = None, tensorboard_run: Optional[gca_tensorboard_run.TensorboardRun] = None, tensorboard_run_id: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> gca_tensorboard_run.TensorboardRun: r"""Creates a TensorboardRun. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_create_tensorboard_run(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) tensorboard_run = aiplatform_v1.TensorboardRun() tensorboard_run.display_name = "display_name_value" request = aiplatform_v1.CreateTensorboardRunRequest( parent="parent_value", tensorboard_run=tensorboard_run, tensorboard_run_id="tensorboard_run_id_value", ) # Make the request response = client.create_tensorboard_run(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.CreateTensorboardRunRequest, dict]): The request object. Request message for [TensorboardService.CreateTensorboardRun][google.cloud.aiplatform.v1.TensorboardService.CreateTensorboardRun]. parent (str): Required. The resource name of the TensorboardExperiment to create the TensorboardRun in. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}`` This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. tensorboard_run (google.cloud.aiplatform_v1.types.TensorboardRun): Required. The TensorboardRun to create. This corresponds to the ``tensorboard_run`` field on the ``request`` instance; if ``request`` is provided, this should not be set. tensorboard_run_id (str): Required. The ID to use for the Tensorboard run, which becomes the final component of the Tensorboard run's resource name. This value should be 1-128 characters, and valid characters are /[a-z][0-9]-/. This corresponds to the ``tensorboard_run_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.TensorboardRun: TensorboardRun maps to a specific execution of a training job with a given set of hyperparameter values, model definition, dataset, etc """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, tensorboard_run, tensorboard_run_id]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.CreateTensorboardRunRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, tensorboard_service.CreateTensorboardRunRequest): request = tensorboard_service.CreateTensorboardRunRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if tensorboard_run is not None: request.tensorboard_run = tensorboard_run if tensorboard_run_id is not None: request.tensorboard_run_id = tensorboard_run_id # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.create_tensorboard_run] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def batch_create_tensorboard_runs( self, request: Optional[ Union[tensorboard_service.BatchCreateTensorboardRunsRequest, dict] ] = None, *, parent: Optional[str] = None, requests: Optional[ MutableSequence[tensorboard_service.CreateTensorboardRunRequest] ] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> tensorboard_service.BatchCreateTensorboardRunsResponse: r"""Batch create TensorboardRuns. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_batch_create_tensorboard_runs(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) requests = aiplatform_v1.CreateTensorboardRunRequest() requests.parent = "parent_value" requests.tensorboard_run.display_name = "display_name_value" requests.tensorboard_run_id = "tensorboard_run_id_value" request = aiplatform_v1.BatchCreateTensorboardRunsRequest( parent="parent_value", requests=requests, ) # Make the request response = client.batch_create_tensorboard_runs(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.BatchCreateTensorboardRunsRequest, dict]): The request object. Request message for [TensorboardService.BatchCreateTensorboardRuns][google.cloud.aiplatform.v1.TensorboardService.BatchCreateTensorboardRuns]. parent (str): Required. The resource name of the TensorboardExperiment to create the TensorboardRuns in. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}`` The parent field in the CreateTensorboardRunRequest messages must match this field. This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. requests (MutableSequence[google.cloud.aiplatform_v1.types.CreateTensorboardRunRequest]): Required. The request message specifying the TensorboardRuns to create. A maximum of 1000 TensorboardRuns can be created in a batch. This corresponds to the ``requests`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.BatchCreateTensorboardRunsResponse: Response message for [TensorboardService.BatchCreateTensorboardRuns][google.cloud.aiplatform.v1.TensorboardService.BatchCreateTensorboardRuns]. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, requests]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.BatchCreateTensorboardRunsRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, tensorboard_service.BatchCreateTensorboardRunsRequest ): request = tensorboard_service.BatchCreateTensorboardRunsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if requests is not None: request.requests = requests # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.batch_create_tensorboard_runs ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def get_tensorboard_run( self, request: Optional[ Union[tensorboard_service.GetTensorboardRunRequest, dict] ] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> tensorboard_run.TensorboardRun: r"""Gets a TensorboardRun. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_get_tensorboard_run(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.GetTensorboardRunRequest( name="name_value", ) # Make the request response = client.get_tensorboard_run(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.GetTensorboardRunRequest, dict]): The request object. Request message for [TensorboardService.GetTensorboardRun][google.cloud.aiplatform.v1.TensorboardService.GetTensorboardRun]. name (str): Required. The name of the TensorboardRun resource. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.TensorboardRun: TensorboardRun maps to a specific execution of a training job with a given set of hyperparameter values, model definition, dataset, etc """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.GetTensorboardRunRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, tensorboard_service.GetTensorboardRunRequest): request = tensorboard_service.GetTensorboardRunRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.get_tensorboard_run] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def update_tensorboard_run( self, request: Optional[ Union[tensorboard_service.UpdateTensorboardRunRequest, dict] ] = None, *, tensorboard_run: Optional[gca_tensorboard_run.TensorboardRun] = None, update_mask: Optional[field_mask_pb2.FieldMask] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> gca_tensorboard_run.TensorboardRun: r"""Updates a TensorboardRun. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_update_tensorboard_run(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) tensorboard_run = aiplatform_v1.TensorboardRun() tensorboard_run.display_name = "display_name_value" request = aiplatform_v1.UpdateTensorboardRunRequest( tensorboard_run=tensorboard_run, ) # Make the request response = client.update_tensorboard_run(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.UpdateTensorboardRunRequest, dict]): The request object. Request message for [TensorboardService.UpdateTensorboardRun][google.cloud.aiplatform.v1.TensorboardService.UpdateTensorboardRun]. tensorboard_run (google.cloud.aiplatform_v1.types.TensorboardRun): Required. The TensorboardRun's ``name`` field is used to identify the TensorboardRun to be updated. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}`` This corresponds to the ``tensorboard_run`` field on the ``request`` instance; if ``request`` is provided, this should not be set. update_mask (google.protobuf.field_mask_pb2.FieldMask): Required. Field mask is used to specify the fields to be overwritten in the TensorboardRun resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field is overwritten if it's in the mask. If the user does not provide a mask then all fields are overwritten if new values are specified. This corresponds to the ``update_mask`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.TensorboardRun: TensorboardRun maps to a specific execution of a training job with a given set of hyperparameter values, model definition, dataset, etc """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([tensorboard_run, update_mask]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.UpdateTensorboardRunRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, tensorboard_service.UpdateTensorboardRunRequest): request = tensorboard_service.UpdateTensorboardRunRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if tensorboard_run is not None: request.tensorboard_run = tensorboard_run if update_mask is not None: request.update_mask = update_mask # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.update_tensorboard_run] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("tensorboard_run.name", request.tensorboard_run.name),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def list_tensorboard_runs( self, request: Optional[ Union[tensorboard_service.ListTensorboardRunsRequest, dict] ] = None, *, parent: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ListTensorboardRunsPager: r"""Lists TensorboardRuns in a Location. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_list_tensorboard_runs(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.ListTensorboardRunsRequest( parent="parent_value", ) # Make the request page_result = client.list_tensorboard_runs(request=request) # Handle the response for response in page_result: print(response) Args: request (Union[google.cloud.aiplatform_v1.types.ListTensorboardRunsRequest, dict]): The request object. Request message for [TensorboardService.ListTensorboardRuns][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardRuns]. parent (str): Required. The resource name of the TensorboardExperiment to list TensorboardRuns. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}`` This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.services.tensorboard_service.pagers.ListTensorboardRunsPager: Response message for [TensorboardService.ListTensorboardRuns][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardRuns]. Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.ListTensorboardRunsRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, tensorboard_service.ListTensorboardRunsRequest): request = tensorboard_service.ListTensorboardRunsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.list_tensorboard_runs] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # This method is paged; wrap the response in a pager, which provides # an `__iter__` convenience method. response = pagers.ListTensorboardRunsPager( method=rpc, request=request, response=response, metadata=metadata, ) # Done; return the response. return response def delete_tensorboard_run( self, request: Optional[ Union[tensorboard_service.DeleteTensorboardRunRequest, dict] ] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> gac_operation.Operation: r"""Deletes a TensorboardRun. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_delete_tensorboard_run(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.DeleteTensorboardRunRequest( name="name_value", ) # Make the request operation = client.delete_tensorboard_run(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.DeleteTensorboardRunRequest, dict]): The request object. Request message for [TensorboardService.DeleteTensorboardRun][google.cloud.aiplatform.v1.TensorboardService.DeleteTensorboardRun]. name (str): Required. The name of the TensorboardRun to be deleted. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation.Operation: An object representing a long-running operation. The result type for the operation will be :class:`google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.DeleteTensorboardRunRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, tensorboard_service.DeleteTensorboardRunRequest): request = tensorboard_service.DeleteTensorboardRunRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.delete_tensorboard_run] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = gac_operation.from_gapic( response, self._transport.operations_client, empty_pb2.Empty, metadata_type=gca_operation.DeleteOperationMetadata, ) # Done; return the response. return response def batch_create_tensorboard_time_series( self, request: Optional[ Union[tensorboard_service.BatchCreateTensorboardTimeSeriesRequest, dict] ] = None, *, parent: Optional[str] = None, requests: Optional[ MutableSequence[tensorboard_service.CreateTensorboardTimeSeriesRequest] ] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> tensorboard_service.BatchCreateTensorboardTimeSeriesResponse: r"""Batch create TensorboardTimeSeries that belong to a TensorboardExperiment. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_batch_create_tensorboard_time_series(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) requests = aiplatform_v1.CreateTensorboardTimeSeriesRequest() requests.parent = "parent_value" requests.tensorboard_time_series.display_name = "display_name_value" requests.tensorboard_time_series.value_type = "BLOB_SEQUENCE" request = aiplatform_v1.BatchCreateTensorboardTimeSeriesRequest( parent="parent_value", requests=requests, ) # Make the request response = client.batch_create_tensorboard_time_series(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.BatchCreateTensorboardTimeSeriesRequest, dict]): The request object. Request message for [TensorboardService.BatchCreateTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.BatchCreateTensorboardTimeSeries]. parent (str): Required. The resource name of the TensorboardExperiment to create the TensorboardTimeSeries in. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}`` The TensorboardRuns referenced by the parent fields in the CreateTensorboardTimeSeriesRequest messages must be sub resources of this TensorboardExperiment. This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. requests (MutableSequence[google.cloud.aiplatform_v1.types.CreateTensorboardTimeSeriesRequest]): Required. The request message specifying the TensorboardTimeSeries to create. A maximum of 1000 TensorboardTimeSeries can be created in a batch. This corresponds to the ``requests`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.BatchCreateTensorboardTimeSeriesResponse: Response message for [TensorboardService.BatchCreateTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.BatchCreateTensorboardTimeSeries]. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, requests]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.BatchCreateTensorboardTimeSeriesRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, tensorboard_service.BatchCreateTensorboardTimeSeriesRequest ): request = tensorboard_service.BatchCreateTensorboardTimeSeriesRequest( request ) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if requests is not None: request.requests = requests # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.batch_create_tensorboard_time_series ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def create_tensorboard_time_series( self, request: Optional[ Union[tensorboard_service.CreateTensorboardTimeSeriesRequest, dict] ] = None, *, parent: Optional[str] = None, tensorboard_time_series: Optional[ gca_tensorboard_time_series.TensorboardTimeSeries ] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> gca_tensorboard_time_series.TensorboardTimeSeries: r"""Creates a TensorboardTimeSeries. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_create_tensorboard_time_series(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) tensorboard_time_series = aiplatform_v1.TensorboardTimeSeries() tensorboard_time_series.display_name = "display_name_value" tensorboard_time_series.value_type = "BLOB_SEQUENCE" request = aiplatform_v1.CreateTensorboardTimeSeriesRequest( parent="parent_value", tensorboard_time_series=tensorboard_time_series, ) # Make the request response = client.create_tensorboard_time_series(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.CreateTensorboardTimeSeriesRequest, dict]): The request object. Request message for [TensorboardService.CreateTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.CreateTensorboardTimeSeries]. parent (str): Required. The resource name of the TensorboardRun to create the TensorboardTimeSeries in. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}`` This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. tensorboard_time_series (google.cloud.aiplatform_v1.types.TensorboardTimeSeries): Required. The TensorboardTimeSeries to create. This corresponds to the ``tensorboard_time_series`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.TensorboardTimeSeries: TensorboardTimeSeries maps to times series produced in training runs """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, tensorboard_time_series]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.CreateTensorboardTimeSeriesRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, tensorboard_service.CreateTensorboardTimeSeriesRequest ): request = tensorboard_service.CreateTensorboardTimeSeriesRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if tensorboard_time_series is not None: request.tensorboard_time_series = tensorboard_time_series # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.create_tensorboard_time_series ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def get_tensorboard_time_series( self, request: Optional[ Union[tensorboard_service.GetTensorboardTimeSeriesRequest, dict] ] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> tensorboard_time_series.TensorboardTimeSeries: r"""Gets a TensorboardTimeSeries. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_get_tensorboard_time_series(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.GetTensorboardTimeSeriesRequest( name="name_value", ) # Make the request response = client.get_tensorboard_time_series(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.GetTensorboardTimeSeriesRequest, dict]): The request object. Request message for [TensorboardService.GetTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.GetTensorboardTimeSeries]. name (str): Required. The name of the TensorboardTimeSeries resource. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series}`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.TensorboardTimeSeries: TensorboardTimeSeries maps to times series produced in training runs """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.GetTensorboardTimeSeriesRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, tensorboard_service.GetTensorboardTimeSeriesRequest): request = tensorboard_service.GetTensorboardTimeSeriesRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.get_tensorboard_time_series ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def update_tensorboard_time_series( self, request: Optional[ Union[tensorboard_service.UpdateTensorboardTimeSeriesRequest, dict] ] = None, *, tensorboard_time_series: Optional[ gca_tensorboard_time_series.TensorboardTimeSeries ] = None, update_mask: Optional[field_mask_pb2.FieldMask] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> gca_tensorboard_time_series.TensorboardTimeSeries: r"""Updates a TensorboardTimeSeries. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_update_tensorboard_time_series(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) tensorboard_time_series = aiplatform_v1.TensorboardTimeSeries() tensorboard_time_series.display_name = "display_name_value" tensorboard_time_series.value_type = "BLOB_SEQUENCE" request = aiplatform_v1.UpdateTensorboardTimeSeriesRequest( tensorboard_time_series=tensorboard_time_series, ) # Make the request response = client.update_tensorboard_time_series(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.UpdateTensorboardTimeSeriesRequest, dict]): The request object. Request message for [TensorboardService.UpdateTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.UpdateTensorboardTimeSeries]. tensorboard_time_series (google.cloud.aiplatform_v1.types.TensorboardTimeSeries): Required. The TensorboardTimeSeries' ``name`` field is used to identify the TensorboardTimeSeries to be updated. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series}`` This corresponds to the ``tensorboard_time_series`` field on the ``request`` instance; if ``request`` is provided, this should not be set. update_mask (google.protobuf.field_mask_pb2.FieldMask): Required. Field mask is used to specify the fields to be overwritten in the TensorboardTimeSeries resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field is overwritten if it's in the mask. If the user does not provide a mask then all fields are overwritten if new values are specified. This corresponds to the ``update_mask`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.TensorboardTimeSeries: TensorboardTimeSeries maps to times series produced in training runs """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([tensorboard_time_series, update_mask]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.UpdateTensorboardTimeSeriesRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, tensorboard_service.UpdateTensorboardTimeSeriesRequest ): request = tensorboard_service.UpdateTensorboardTimeSeriesRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if tensorboard_time_series is not None: request.tensorboard_time_series = tensorboard_time_series if update_mask is not None: request.update_mask = update_mask # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.update_tensorboard_time_series ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( ( ( "tensorboard_time_series.name", request.tensorboard_time_series.name, ), ) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def list_tensorboard_time_series( self, request: Optional[ Union[tensorboard_service.ListTensorboardTimeSeriesRequest, dict] ] = None, *, parent: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ListTensorboardTimeSeriesPager: r"""Lists TensorboardTimeSeries in a Location. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_list_tensorboard_time_series(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.ListTensorboardTimeSeriesRequest( parent="parent_value", ) # Make the request page_result = client.list_tensorboard_time_series(request=request) # Handle the response for response in page_result: print(response) Args: request (Union[google.cloud.aiplatform_v1.types.ListTensorboardTimeSeriesRequest, dict]): The request object. Request message for [TensorboardService.ListTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardTimeSeries]. parent (str): Required. The resource name of the TensorboardRun to list TensorboardTimeSeries. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}`` This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.services.tensorboard_service.pagers.ListTensorboardTimeSeriesPager: Response message for [TensorboardService.ListTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardTimeSeries]. Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.ListTensorboardTimeSeriesRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, tensorboard_service.ListTensorboardTimeSeriesRequest ): request = tensorboard_service.ListTensorboardTimeSeriesRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.list_tensorboard_time_series ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # This method is paged; wrap the response in a pager, which provides # an `__iter__` convenience method. response = pagers.ListTensorboardTimeSeriesPager( method=rpc, request=request, response=response, metadata=metadata, ) # Done; return the response. return response def delete_tensorboard_time_series( self, request: Optional[ Union[tensorboard_service.DeleteTensorboardTimeSeriesRequest, dict] ] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> gac_operation.Operation: r"""Deletes a TensorboardTimeSeries. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_delete_tensorboard_time_series(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.DeleteTensorboardTimeSeriesRequest( name="name_value", ) # Make the request operation = client.delete_tensorboard_time_series(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.DeleteTensorboardTimeSeriesRequest, dict]): The request object. Request message for [TensorboardService.DeleteTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.DeleteTensorboardTimeSeries]. name (str): Required. The name of the TensorboardTimeSeries to be deleted. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series}`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation.Operation: An object representing a long-running operation. The result type for the operation will be :class:`google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.DeleteTensorboardTimeSeriesRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, tensorboard_service.DeleteTensorboardTimeSeriesRequest ): request = tensorboard_service.DeleteTensorboardTimeSeriesRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.delete_tensorboard_time_series ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = gac_operation.from_gapic( response, self._transport.operations_client, empty_pb2.Empty, metadata_type=gca_operation.DeleteOperationMetadata, ) # Done; return the response. return response def batch_read_tensorboard_time_series_data( self, request: Optional[ Union[tensorboard_service.BatchReadTensorboardTimeSeriesDataRequest, dict] ] = None, *, tensorboard: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> tensorboard_service.BatchReadTensorboardTimeSeriesDataResponse: r"""Reads multiple TensorboardTimeSeries' data. The data point number limit is 1000 for scalars, 100 for tensors and blob references. If the number of data points stored is less than the limit, all data is returned. Otherwise, the number limit of data points is randomly selected from this time series and returned. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_batch_read_tensorboard_time_series_data(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.BatchReadTensorboardTimeSeriesDataRequest( tensorboard="tensorboard_value", time_series=['time_series_value1', 'time_series_value2'], ) # Make the request response = client.batch_read_tensorboard_time_series_data(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.BatchReadTensorboardTimeSeriesDataRequest, dict]): The request object. Request message for [TensorboardService.BatchReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.BatchReadTensorboardTimeSeriesData]. tensorboard (str): Required. The resource name of the Tensorboard containing TensorboardTimeSeries to read data from. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}``. The TensorboardTimeSeries referenced by [time_series][google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest.time_series] must be sub resources of this Tensorboard. This corresponds to the ``tensorboard`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.BatchReadTensorboardTimeSeriesDataResponse: Response message for [TensorboardService.BatchReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.BatchReadTensorboardTimeSeriesData]. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([tensorboard]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.BatchReadTensorboardTimeSeriesDataRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, tensorboard_service.BatchReadTensorboardTimeSeriesDataRequest ): request = tensorboard_service.BatchReadTensorboardTimeSeriesDataRequest( request ) # If we have keyword arguments corresponding to fields on the # request, apply these. if tensorboard is not None: request.tensorboard = tensorboard # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.batch_read_tensorboard_time_series_data ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("tensorboard", request.tensorboard),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def read_tensorboard_time_series_data( self, request: Optional[ Union[tensorboard_service.ReadTensorboardTimeSeriesDataRequest, dict] ] = None, *, tensorboard_time_series: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> tensorboard_service.ReadTensorboardTimeSeriesDataResponse: r"""Reads a TensorboardTimeSeries' data. By default, if the number of data points stored is less than 1000, all data is returned. Otherwise, 1000 data points is randomly selected from this time series and returned. This value can be changed by changing max_data_points, which can't be greater than 10k. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_read_tensorboard_time_series_data(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.ReadTensorboardTimeSeriesDataRequest( tensorboard_time_series="tensorboard_time_series_value", ) # Make the request response = client.read_tensorboard_time_series_data(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.ReadTensorboardTimeSeriesDataRequest, dict]): The request object. Request message for [TensorboardService.ReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardTimeSeriesData]. tensorboard_time_series (str): Required. The resource name of the TensorboardTimeSeries to read data from. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series}`` This corresponds to the ``tensorboard_time_series`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.ReadTensorboardTimeSeriesDataResponse: Response message for [TensorboardService.ReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardTimeSeriesData]. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([tensorboard_time_series]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.ReadTensorboardTimeSeriesDataRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, tensorboard_service.ReadTensorboardTimeSeriesDataRequest ): request = tensorboard_service.ReadTensorboardTimeSeriesDataRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if tensorboard_time_series is not None: request.tensorboard_time_series = tensorboard_time_series # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.read_tensorboard_time_series_data ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("tensorboard_time_series", request.tensorboard_time_series),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def read_tensorboard_blob_data( self, request: Optional[ Union[tensorboard_service.ReadTensorboardBlobDataRequest, dict] ] = None, *, time_series: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> Iterable[tensorboard_service.ReadTensorboardBlobDataResponse]: r"""Gets bytes of TensorboardBlobs. This is to allow reading blob data stored in consumer project's Cloud Storage bucket without users having to obtain Cloud Storage access permission. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_read_tensorboard_blob_data(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.ReadTensorboardBlobDataRequest( time_series="time_series_value", ) # Make the request stream = client.read_tensorboard_blob_data(request=request) # Handle the response for response in stream: print(response) Args: request (Union[google.cloud.aiplatform_v1.types.ReadTensorboardBlobDataRequest, dict]): The request object. Request message for [TensorboardService.ReadTensorboardBlobData][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardBlobData]. time_series (str): Required. The resource name of the TensorboardTimeSeries to list Blobs. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series}`` This corresponds to the ``time_series`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: Iterable[google.cloud.aiplatform_v1.types.ReadTensorboardBlobDataResponse]: Response message for [TensorboardService.ReadTensorboardBlobData][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardBlobData]. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([time_series]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.ReadTensorboardBlobDataRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, tensorboard_service.ReadTensorboardBlobDataRequest): request = tensorboard_service.ReadTensorboardBlobDataRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if time_series is not None: request.time_series = time_series # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.read_tensorboard_blob_data ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("time_series", request.time_series),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def write_tensorboard_experiment_data( self, request: Optional[ Union[tensorboard_service.WriteTensorboardExperimentDataRequest, dict] ] = None, *, tensorboard_experiment: Optional[str] = None, write_run_data_requests: Optional[ MutableSequence[tensorboard_service.WriteTensorboardRunDataRequest] ] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> tensorboard_service.WriteTensorboardExperimentDataResponse: r"""Write time series data points of multiple TensorboardTimeSeries in multiple TensorboardRun's. If any data fail to be ingested, an error is returned. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_write_tensorboard_experiment_data(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) write_run_data_requests = aiplatform_v1.WriteTensorboardRunDataRequest() write_run_data_requests.tensorboard_run = "tensorboard_run_value" write_run_data_requests.time_series_data.tensorboard_time_series_id = "tensorboard_time_series_id_value" write_run_data_requests.time_series_data.value_type = "BLOB_SEQUENCE" request = aiplatform_v1.WriteTensorboardExperimentDataRequest( tensorboard_experiment="tensorboard_experiment_value", write_run_data_requests=write_run_data_requests, ) # Make the request response = client.write_tensorboard_experiment_data(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.WriteTensorboardExperimentDataRequest, dict]): The request object. Request message for [TensorboardService.WriteTensorboardExperimentData][google.cloud.aiplatform.v1.TensorboardService.WriteTensorboardExperimentData]. tensorboard_experiment (str): Required. The resource name of the TensorboardExperiment to write data to. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}`` This corresponds to the ``tensorboard_experiment`` field on the ``request`` instance; if ``request`` is provided, this should not be set. write_run_data_requests (MutableSequence[google.cloud.aiplatform_v1.types.WriteTensorboardRunDataRequest]): Required. Requests containing per-run TensorboardTimeSeries data to write. This corresponds to the ``write_run_data_requests`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.WriteTensorboardExperimentDataResponse: Response message for [TensorboardService.WriteTensorboardExperimentData][google.cloud.aiplatform.v1.TensorboardService.WriteTensorboardExperimentData]. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([tensorboard_experiment, write_run_data_requests]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.WriteTensorboardExperimentDataRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, tensorboard_service.WriteTensorboardExperimentDataRequest ): request = tensorboard_service.WriteTensorboardExperimentDataRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if tensorboard_experiment is not None: request.tensorboard_experiment = tensorboard_experiment if write_run_data_requests is not None: request.write_run_data_requests = write_run_data_requests # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.write_tensorboard_experiment_data ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("tensorboard_experiment", request.tensorboard_experiment),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def write_tensorboard_run_data( self, request: Optional[ Union[tensorboard_service.WriteTensorboardRunDataRequest, dict] ] = None, *, tensorboard_run: Optional[str] = None, time_series_data: Optional[ MutableSequence[tensorboard_data.TimeSeriesData] ] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> tensorboard_service.WriteTensorboardRunDataResponse: r"""Write time series data points into multiple TensorboardTimeSeries under a TensorboardRun. If any data fail to be ingested, an error is returned. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_write_tensorboard_run_data(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) time_series_data = aiplatform_v1.TimeSeriesData() time_series_data.tensorboard_time_series_id = "tensorboard_time_series_id_value" time_series_data.value_type = "BLOB_SEQUENCE" request = aiplatform_v1.WriteTensorboardRunDataRequest( tensorboard_run="tensorboard_run_value", time_series_data=time_series_data, ) # Make the request response = client.write_tensorboard_run_data(request=request) # Handle the response print(response) Args: request (Union[google.cloud.aiplatform_v1.types.WriteTensorboardRunDataRequest, dict]): The request object. Request message for [TensorboardService.WriteTensorboardRunData][google.cloud.aiplatform.v1.TensorboardService.WriteTensorboardRunData]. tensorboard_run (str): Required. The resource name of the TensorboardRun to write data to. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}`` This corresponds to the ``tensorboard_run`` field on the ``request`` instance; if ``request`` is provided, this should not be set. time_series_data (MutableSequence[google.cloud.aiplatform_v1.types.TimeSeriesData]): Required. The TensorboardTimeSeries data to write. Values with in a time series are indexed by their step value. Repeated writes to the same step will overwrite the existing value for that step. The upper limit of data points per write request is 5000. This corresponds to the ``time_series_data`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.types.WriteTensorboardRunDataResponse: Response message for [TensorboardService.WriteTensorboardRunData][google.cloud.aiplatform.v1.TensorboardService.WriteTensorboardRunData]. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([tensorboard_run, time_series_data]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.WriteTensorboardRunDataRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, tensorboard_service.WriteTensorboardRunDataRequest): request = tensorboard_service.WriteTensorboardRunDataRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if tensorboard_run is not None: request.tensorboard_run = tensorboard_run if time_series_data is not None: request.time_series_data = time_series_data # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.write_tensorboard_run_data ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("tensorboard_run", request.tensorboard_run),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def export_tensorboard_time_series_data( self, request: Optional[ Union[tensorboard_service.ExportTensorboardTimeSeriesDataRequest, dict] ] = None, *, tensorboard_time_series: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ExportTensorboardTimeSeriesDataPager: r"""Exports a TensorboardTimeSeries' data. Data is returned in paginated responses. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import aiplatform_v1 def sample_export_tensorboard_time_series_data(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.ExportTensorboardTimeSeriesDataRequest( tensorboard_time_series="tensorboard_time_series_value", ) # Make the request page_result = client.export_tensorboard_time_series_data(request=request) # Handle the response for response in page_result: print(response) Args: request (Union[google.cloud.aiplatform_v1.types.ExportTensorboardTimeSeriesDataRequest, dict]): The request object. Request message for [TensorboardService.ExportTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.ExportTensorboardTimeSeriesData]. tensorboard_time_series (str): Required. The resource name of the TensorboardTimeSeries to export data from. Format: ``projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series}`` This corresponds to the ``tensorboard_time_series`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.aiplatform_v1.services.tensorboard_service.pagers.ExportTensorboardTimeSeriesDataPager: Response message for [TensorboardService.ExportTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.ExportTensorboardTimeSeriesData]. Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([tensorboard_time_series]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a tensorboard_service.ExportTensorboardTimeSeriesDataRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, tensorboard_service.ExportTensorboardTimeSeriesDataRequest ): request = tensorboard_service.ExportTensorboardTimeSeriesDataRequest( request ) # If we have keyword arguments corresponding to fields on the # request, apply these. if tensorboard_time_series is not None: request.tensorboard_time_series = tensorboard_time_series # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.export_tensorboard_time_series_data ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("tensorboard_time_series", request.tensorboard_time_series),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # This method is paged; wrap the response in a pager, which provides # an `__iter__` convenience method. response = pagers.ExportTensorboardTimeSeriesDataPager( method=rpc, request=request, response=response, metadata=metadata, ) # Done; return the response. return response def __enter__(self) -> "TensorboardServiceClient": return self def __exit__(self, type, value, traceback): """Releases underlying transport's resources. .. warning:: ONLY use as a context manager if the transport is NOT shared with other clients! Exiting the with block will CLOSE the transport and may cause errors in other clients! """ self.transport.close() def list_operations( self, request: Optional[operations_pb2.ListOperationsRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operations_pb2.ListOperationsResponse: r"""Lists operations that match the specified filter in the request. Args: request (:class:`~.operations_pb2.ListOperationsRequest`): The request object. Request message for `ListOperations` method. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.operations_pb2.ListOperationsResponse: Response message for ``ListOperations`` method. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.ListOperationsRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method.wrap_method( self._transport.list_operations, default_timeout=None, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def get_operation( self, request: Optional[operations_pb2.GetOperationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operations_pb2.Operation: r"""Gets the latest state of a long-running operation. Args: request (:class:`~.operations_pb2.GetOperationRequest`): The request object. Request message for `GetOperation` method. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.operations_pb2.Operation: An ``Operation`` object. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.GetOperationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method.wrap_method( self._transport.get_operation, default_timeout=None, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def delete_operation( self, request: Optional[operations_pb2.DeleteOperationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> None: r"""Deletes a long-running operation. This method indicates that the client is no longer interested in the operation result. It does not cancel the operation. If the server doesn't support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Args: request (:class:`~.operations_pb2.DeleteOperationRequest`): The request object. Request message for `DeleteOperation` method. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: None """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.DeleteOperationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method.wrap_method( self._transport.delete_operation, default_timeout=None, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) def cancel_operation( self, request: Optional[operations_pb2.CancelOperationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> None: r"""Starts asynchronous cancellation on a long-running operation. The server makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn't support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Args: request (:class:`~.operations_pb2.CancelOperationRequest`): The request object. Request message for `CancelOperation` method. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: None """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.CancelOperationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method.wrap_method( self._transport.cancel_operation, default_timeout=None, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) def wait_operation( self, request: Optional[operations_pb2.WaitOperationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operations_pb2.Operation: r"""Waits until the specified long-running operation is done or reaches at most a specified timeout, returning the latest state. If the operation is already done, the latest state is immediately returned. If the timeout specified is greater than the default HTTP/RPC timeout, the HTTP/RPC timeout is used. If the server does not support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Args: request (:class:`~.operations_pb2.WaitOperationRequest`): The request object. Request message for `WaitOperation` method. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.operations_pb2.Operation: An ``Operation`` object. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.WaitOperationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method.wrap_method( self._transport.wait_operation, default_timeout=None, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def set_iam_policy( self, request: Optional[iam_policy_pb2.SetIamPolicyRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> policy_pb2.Policy: r"""Sets the IAM access control policy on the specified function. Replaces any existing policy. Args: request (:class:`~.iam_policy_pb2.SetIamPolicyRequest`): The request object. Request message for `SetIamPolicy` method. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.policy_pb2.Policy: Defines an Identity and Access Management (IAM) policy. It is used to specify access control policies for Cloud Platform resources. A ``Policy`` is a collection of ``bindings``. A ``binding`` binds one or more ``members`` to a single ``role``. Members can be user accounts, service accounts, Google groups, and domains (such as G Suite). A ``role`` is a named list of permissions (defined by IAM or configured by users). A ``binding`` can optionally specify a ``condition``, which is a logic expression that further constrains the role binding based on attributes about the request and/or target resource. **JSON Example** :: { "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": ["user:eve@example.com"], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", } } ] } **YAML Example** :: bindings: - members: - user:mike@example.com - group:admins@example.com - domain:google.com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/resourcemanager.organizationAdmin - members: - user:eve@example.com role: roles/resourcemanager.organizationViewer condition: title: expirable access description: Does not grant access after Sep 2020 expression: request.time < timestamp('2020-10-01T00:00:00.000Z') For a description of IAM and its features, see the `IAM developer's guide <https://cloud.google.com/iam/docs>`__. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = iam_policy_pb2.SetIamPolicyRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method.wrap_method( self._transport.set_iam_policy, default_timeout=None, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("resource", request.resource),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def get_iam_policy( self, request: Optional[iam_policy_pb2.GetIamPolicyRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> policy_pb2.Policy: r"""Gets the IAM access control policy for a function. Returns an empty policy if the function exists and does not have a policy set. Args: request (:class:`~.iam_policy_pb2.GetIamPolicyRequest`): The request object. Request message for `GetIamPolicy` method. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.policy_pb2.Policy: Defines an Identity and Access Management (IAM) policy. It is used to specify access control policies for Cloud Platform resources. A ``Policy`` is a collection of ``bindings``. A ``binding`` binds one or more ``members`` to a single ``role``. Members can be user accounts, service accounts, Google groups, and domains (such as G Suite). A ``role`` is a named list of permissions (defined by IAM or configured by users). A ``binding`` can optionally specify a ``condition``, which is a logic expression that further constrains the role binding based on attributes about the request and/or target resource. **JSON Example** :: { "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": ["user:eve@example.com"], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", } } ] } **YAML Example** :: bindings: - members: - user:mike@example.com - group:admins@example.com - domain:google.com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/resourcemanager.organizationAdmin - members: - user:eve@example.com role: roles/resourcemanager.organizationViewer condition: title: expirable access description: Does not grant access after Sep 2020 expression: request.time < timestamp('2020-10-01T00:00:00.000Z') For a description of IAM and its features, see the `IAM developer's guide <https://cloud.google.com/iam/docs>`__. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = iam_policy_pb2.GetIamPolicyRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method.wrap_method( self._transport.get_iam_policy, default_timeout=None, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("resource", request.resource),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def test_iam_permissions( self, request: Optional[iam_policy_pb2.TestIamPermissionsRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> iam_policy_pb2.TestIamPermissionsResponse: r"""Tests the specified IAM permissions against the IAM access control policy for a function. If the function does not exist, this will return an empty set of permissions, not a NOT_FOUND error. Args: request (:class:`~.iam_policy_pb2.TestIamPermissionsRequest`): The request object. Request message for `TestIamPermissions` method. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.iam_policy_pb2.TestIamPermissionsResponse: Response message for ``TestIamPermissions`` method. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = iam_policy_pb2.TestIamPermissionsRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method.wrap_method( self._transport.test_iam_permissions, default_timeout=None, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("resource", request.resource),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def get_location( self, request: Optional[locations_pb2.GetLocationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> locations_pb2.Location: r"""Gets information about a location. Args: request (:class:`~.location_pb2.GetLocationRequest`): The request object. Request message for `GetLocation` method. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.location_pb2.Location: Location object. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = locations_pb2.GetLocationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method.wrap_method( self._transport.get_location, default_timeout=None, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def list_locations( self, request: Optional[locations_pb2.ListLocationsRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> locations_pb2.ListLocationsResponse: r"""Lists information about the supported locations for this service. Args: request (:class:`~.location_pb2.ListLocationsRequest`): The request object. Request message for `ListLocations` method. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.location_pb2.ListLocationsResponse: Response message for ``ListLocations`` method. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = locations_pb2.ListLocationsRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method.wrap_method( self._transport.list_locations, default_timeout=None, client_info=DEFAULT_CLIENT_INFO, ) # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=package_version.__version__ ) __all__ = ("TensorboardServiceClient",)
115ac7dd9c19729be33f8a941fe8cea323e8ef5b
d01680fe164d915bb3ffd6b10dea1d7cac503630
/python-package/lets_plot/plot/theme_.py
af03d76c10599eba970dc84223fa5dc242d5fb0c
[ "MIT", "Apache-2.0", "LGPL-2.0-or-later", "BSD-3-Clause", "LGPL-3.0-only" ]
permissive
JetBrains/lets-plot
4ba8edd8910967d5e15d8d0ea1a9cd7a9c50432f
af4f6554eb9cc250259a6a6757b5c8d920dde8c4
refs/heads/master
2023-09-01T04:15:04.414149
2023-08-31T16:48:57
2023-08-31T16:48:57
176,771,727
1,264
59
MIT
2023-09-07T12:42:01
2019-03-20T16:13:03
Kotlin
UTF-8
Python
false
false
18,310
py
theme_.py
# # Copyright (c) 2019. JetBrains s.r.o. # Use of this source code is governed by the MIT license that can be found in the LICENSE file. # from .core import FeatureSpec __all__ = [ 'theme', 'element_blank', "element_line", 'element_rect', 'element_text', 'margin', 'element_geom', ] def theme(*, line=None, rect=None, text=None, title=None, # ToDo: aspect.ratio axis=None, axis_ontop=None, axis_ontop_x=None, axis_ontop_y=None, axis_title=None, axis_title_x=None, axis_title_y=None, # ToDo: axis.title.x.top, axis.title.x.bottom # ToDo: axis.title.y.left, axis.title.y.right axis_text=None, axis_text_x=None, axis_text_y=None, # ToDo: axis.text.x.top, axis.text.x.bottom # ToDo: axis.text.x.left, axis.text.x.right axis_ticks=None, axis_ticks_x=None, axis_ticks_y=None, # ToDo: axis.ticks.x.top, axis.ticks.x.bottom # ToDo: axis.ticks.x.left, axis.ticks.x.right axis_ticks_length=None, axis_ticks_length_x=None, axis_ticks_length_y=None, axis_line=None, axis_line_x=None, axis_line_y=None, # ToDo: axis.line.x.top, axis.line.x.bottom # ToDo: axis.line.x.left, axis.line.x.right legend_background=None, legend_text=None, legend_title=None, legend_position=None, legend_justification=None, legend_direction=None, # ToDo: other legend options... panel_background=None, panel_border=None, # ToDo: other panel options... panel_grid=None, panel_grid_major=None, panel_grid_minor=None, panel_grid_major_x=None, panel_grid_minor_x=None, panel_grid_major_y=None, panel_grid_minor_y=None, plot_background=None, plot_title=None, plot_subtitle=None, plot_caption=None, strip_background=None, # ToDo: x/y strip_text=None, # ToDo: x/y # ToDo: strip.placement axis_tooltip=None, axis_tooltip_x=None, axis_tooltip_y=None, axis_tooltip_text=None, axis_tooltip_text_x=None, axis_tooltip_text_y=None, tooltip=None, tooltip_text=None, tooltip_title_text=None, geom=None ): """ Use `theme()` to modify individual components of a theme, allowing you to control all non-data components of the plot. Parameters ---------- line : str or dict All line elements. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_line()` to specify line parameters. rect : str or dict All rectangular elements. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_rect()` to specify rectangular element parameters. text : str or dict All text elements. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_text()` to specify text parameters. title : str or dict All title elements: plot, axes, legends. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_text()` to specify title text parameters, inherited from `text`. axis : str or dict All axis elements: lines, ticks, texts, titles. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_line()` to specify axes parameters. axis_ontop, axis_ontop_x, axis_ontop_y : bool, default=False Option to place axis (lines, tickmarks and labels) over the data layers. axis_title, axis_title_x, axis_title_y : str or dict Labels of axes. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_text()` to specify axes label parameters. `axis_title_*` inherits from `axis_title` which inherits from `text`. axis_text, axis_text_x, axis_text_y : str or dict Tick labels along axes. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_text()` to specify all axes tick label parameters. `axis_text_*` inherits from `axis_text` which inherits from `text`. axis_ticks, axis_ticks_x, axis_ticks_y : str or dict Tick marks along axes. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_line()` to specify all tick mark parameters. `axis_ticks_*` inherits from `axis_ticks` which inherits from `line`. axis_ticks_length, axis_ticks_length_x, axis_ticks_length_y : float Length of tick marks in px. axis_line, axis_line_x, axis_line_y : str or dict Lines along axes. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_line()` to specify line parameters along all axes. `axis_line_*` inherits from `axis_line` which inherits from `line`. legend_background : str or dict Background of legend. Set 'blank' or result of `element_blank()` to draw nothing. Set `element_rect()` to specify legend background parameters, inherited from `rect`. legend_text : str or dict Legend item labels. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_text()` to specify legend item label parameters, inherited from `text`. legend_title : str or dict Title of legend. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_text()` to specify legend title parameters, inherited from `title`. legend_position : {'none', 'left', 'right', 'bottom', 'top'} or list The position of legends. To remove the plot legend, use the 'none' value. If parameter is a list, then it should be a two-element numeric vector, each value of float type between 0 and 1. legend_justification : str or list Anchor point for positioning legend. If parameter is a list, then it should be a two-element numeric vector. The pair [0, 0] corresponds to the bottom left corner, the pair [1, 1] corresponds to the top right. For string parameter the only possible value is 'center'. legend_direction : {'horizontal', 'vertical'} Layout of items in legends. panel_background : str or dict Background of plotting area. Set 'blank' or result of `element_blank()` to draw nothing. Set `element_rect()` to specify plotting area background parameters, inherited from `rect`. panel_border : str or dict Border around plotting area. Set 'blank' or result of `element_blank()` to draw nothing. Set `element_rect()` to specify border parameters, inherited from `rect`. panel_grid, panel_grid_major, panel_grid_minor, panel_grid_major_x, panel_grid_major_y, panel_grid_minor_x, panel_grid_minor_y : str or dict Grid lines. Specify major grid lines or minor grid lines separately if needed. Set 'blank' or result of `element_blank()` to draw nothing. Set `element_line()` to specify grid line parameters. `panel_grid_*_*` inherits from `panel_grid_*` which inherits from `panel_grid`, which in turn inherits from `line`. plot_background : str or dict Background of the entire plot. Set 'blank' or result of `element_blank()` to draw nothing. Set `element_rect()` to specify plot background parameters, inherited from `rect`. plot_title : str or dict Plot title. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_text()` to specify plot title parameters, inherited from `title`. plot_subtitle : str or dict Plot subtitle. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_text()` to specify plot subtitle parameters, inherited from `plot_title` or `title`. plot_caption : str or dict Plot caption. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_text()` to specify plot caption parameters, inherited from `title`. strip_background : str or dict Background of facet labels. Set 'blank' or result of `element_blank()` to draw nothing. Set `element_rect()` to specify facet label background parameters, inherited from `rect`. strip_text : str or dict Facet labels. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_text()` to specify facet label parameters, inherited from `text`. axis_tooltip, axis_tooltip_x, axis_tooltip_y : str or dict Axes tooltips. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_rect()` to specify axes tooltip parameters. `axis_tooltip_*` inherits from `axis_tooltip` which inherits from `rect`. axis_tooltip_text, axis_tooltip_text_x, axis_tooltip_text_y : str or dict Text in axes tooltips. Set 'blank' or result of `element_blank()` to draw nothing and assign no space. Set `element_text()` to specify axes text tooltip parameters. `axis_tooltip_text_*` inherits from `axis_tooltip_text` which inherits from `tooltip_text`. tooltip : str or dict General tooltip. Set `element_rect()` to specify tooltip rectangular parameters, inherited from `rect`. tooltip_text : str or dict Text in general tooltip. Set `element_text()` to specify tooltip text parameters. tooltip_title_text: str or dict Tooltip title text. Set `element_text()` to specify tooltip title parameters, inherited from `tooltip_text`. Bold by default. geom: dict Geometry colors. Set `element_geom()` to specify new values for the named colors. Returns ------- `FeatureSpec` Theme specification. Examples -------- .. jupyter-execute:: :linenos: :emphasize-lines: 11-16 import numpy as np from lets_plot import * LetsPlot.setup_html() n = 100 np.random.seed(42) x = np.random.normal(size=n) c = np.random.choice(['a', 'b', 'c'], size=n) ggplot({'x': x, 'class': c}, aes('x')) + \\ geom_density(aes(color='class'), size=2) + \\ ggtitle('Density of classes') + \\ theme(axis_line=element_line(size=4), \\ axis_ticks_length=10, \\ axis_title_y='blank', \\ legend_position=[1, 1], legend_justification=[1, 1], \\ panel_background=element_rect(color='black', fill='#eeeeee', size=2), \\ panel_grid=element_line(color='black', size=1)) | .. jupyter-execute:: :linenos: :emphasize-lines: 14-19 import numpy as np from lets_plot import * LetsPlot.setup_html() n = 1000 np.random.seed(42) p = np.random.uniform(size=7) x = np.random.choice(range(p.size), p=p/p.sum(), size=n) c = np.random.choice(['a', 'b', 'c'], p=[.5, .3, .2], size=n) ggplot({'x': x, 'class': c}) + \\ geom_bar(aes('x', fill='x')) + \\ scale_y_continuous(breaks=list(range(0, 151, 25))) + \\ scale_fill_discrete() + \\ facet_grid(y='class') + \\ theme(axis_line_x='blank', \\ axis_ticks=element_line(color='white'), \\ panel_grid_major_x='blank', \\ strip_background=element_rect(color='black', fill='white'), \\ axis_tooltip=element_rect(color='black', fill='white'), \\ legend_position='top') """ filtered = _filter_none(locals()) return FeatureSpec('theme', name=None, **filtered) def _filter_none(original: dict) -> dict: def _filter_val(value): if isinstance(value, dict): return _filter_none(value) else: return value return {k: _filter_val(v) for k, v in original.items() if v is not None} def element_blank() -> dict: """ Specify how non-data components of the plot are drawn. This theme element draws nothing, and assigns no space. Returns ------- `dict` Theme element specification. Examples -------- .. jupyter-execute:: :linenos: :emphasize-lines: 7 import numpy as np from lets_plot import * LetsPlot.setup_html() np.random.seed(42) data = {'x': np.random.normal(size=1000)} ggplot(data, aes(x='x')) + geom_histogram() + \\ theme(axis_title_x=element_blank(), axis_ticks=element_blank()) """ return dict(blank=True) def element_rect( fill=None, color=None, size=None, # ToDo: linetype blank=False, ) -> dict: """ Specify how non-data components of the plot are drawn. This theme element draws borders and backgrounds. Parameters ---------- fill : str Fill color. color : str Border color. size : int Border size. blank : bool, default=False If True - draws nothing, and assigns no space. Returns ------- `dict` Theme element specification. Examples -------- .. jupyter-execute:: :linenos: :emphasize-lines: 7 import numpy as np from lets_plot import * LetsPlot.setup_html() np.random.seed(42) data = {'x': np.random.normal(size=1000)} ggplot(data, aes(x='x')) + geom_histogram() + \\ theme(panel_background=element_rect()) """ return locals() def element_line( color=None, size=None, # ToDo: linetype, lineend, arrow blank=False, ) -> dict: """ Specify how non-data components of the plot are drawn. This theme element draws lines. Parameters ---------- color : str Line color. size : int Line size. blank : bool, default=False If True - draws nothing, and assigns no space. Returns ------- `dict` Theme element specification. Examples -------- .. jupyter-execute:: :linenos: :emphasize-lines: 7 import numpy as np from lets_plot import * LetsPlot.setup_html() np.random.seed(42) data = {'x': np.random.normal(size=1000)} ggplot(data, aes(x='x')) + geom_histogram() + \\ theme(panel_grid=element_line(size=3)) """ return locals() def element_text( color=None, family=None, face=None, size=None, angle=None, # ToDo: lineheight hjust=None, vjust=None, margin=None, blank=False, ) -> dict: """ Specify how non-data components of the plot are drawn. This theme element draws texts. Parameters ---------- color : str Text color. family : str Font family. face : str Font face ("plain", "italic", "bold", "bold_italic"). size : int Text size in pt. angle : float Angle to rotate the text (in degrees). hjust : float Horizontal justification (in [0, 1]). 0 - left-justified 1 - right-justified 0.5 - center-justified Can be used with values out of range, but behaviour is not specified. vjust : float Vertical justification (in [0, 1]). 0 - bottom-justified 1 - top-justified 0.5 - middle-justified Can be used with values out of range, but behaviour is not specified. margin : `margin` Margins around the text. See `margin()` for more details. blank : bool, default=False If True - draws nothing, and assigns no space. Returns ------- `dict` Theme element specification. Examples -------- .. jupyter-execute:: :linenos: :emphasize-lines: 7 import numpy as np from lets_plot import * LetsPlot.setup_html() np.random.seed(42) data = {'x': np.random.normal(size=1000)} ggplot(data, aes(x='x')) + geom_histogram() + \\ theme(axis_text=element_text(color='#bdbdbd')) """ return locals() def margin(t=None, r=None, b=None, l=None) -> dict: """ Dimensions of each margin. Parameters ---------- t : float Top margin. r : float Right margin. b : float Bottom margin. l : float Left margin. Returns ------- `dict` Margins specification. Examples -------- .. jupyter-execute:: :linenos: :emphasize-lines: 7 import numpy as np from lets_plot import * LetsPlot.setup_html() np.random.seed(42) data = {'x': np.random.normal(size=1000)} ggplot(data, aes(x='x')) + geom_histogram() + \\ theme(axis_title=element_text(margin=margin(t=10,r=10,b=4,l=4))) """ return locals() def element_geom( pen=None, brush=None, paper=None, # ToDo: fatten ) -> dict: """ Specify new values for the named colors. Parameters ---------- pen : str Color to use by name "pen". brush : str Color to use by name "brush". paper : str Color to use by name "paper". Returns ------- `dict` Theme element specification. Examples -------- .. jupyter-execute:: :linenos: :emphasize-lines: 7 import numpy as np from lets_plot import * LetsPlot.setup_html() np.random.seed(42) data = {'x': np.random.normal(size=1000)} ggplot(data, aes(x='x')) + geom_histogram(color='pen', fill='paper') + \\ theme(geom=element_geom(pen='dark_blue', paper='light_blue')) """ return locals()
e5b24979f06312d08f923b6bb31f8c621fc4bae5
83b8b30ebb633eecd29ca0a7a20cc43a293c9333
/tests/basics/list_slice_assign.py
885615717232ada1e94b725db2a0629a589dd51f
[ "MIT", "GPL-1.0-or-later" ]
permissive
adafruit/circuitpython
430ec895149d1eb814b505db39b4977a35ee88a7
506dca71b0cbb7af749bb51f86b01021db5483b3
refs/heads/main
2023-08-21T16:30:46.781068
2023-08-20T00:39:44
2023-08-20T00:39:44
66,166,069
3,806
1,560
MIT
2023-09-14T19:23:51
2016-08-20T20:10:40
C
UTF-8
Python
false
false
621
py
list_slice_assign.py
# test slices; only 2 argument version supported by MicroPython at the moment x = list(range(10)) # Assignment l = list(x) l[1:3] = [10, 20] print(l) l = list(x) l[1:3] = [10] print(l) l = list(x) l[1:3] = [] print(l) l = list(x) del l[1:3] print(l) l = list(x) l[:3] = [10, 20] print(l) l = list(x) l[:3] = [] print(l) l = list(x) del l[:3] print(l) l = list(x) l[:-3] = [10, 20] print(l) l = list(x) l[:-3] = [] print(l) l = list(x) del l[:-3] print(l) # assign a tuple l = [1, 2, 3] l[0:1] = (10, 11, 12) print(l) # RHS of slice must be an iterable try: [][0:1] = 123 except TypeError: print('TypeError')
2bb37a82962a57a0e65c4e35a4c80d8264a9f5d6
df87814cb32990ad8c27d0b13a821aabce012819
/kolibri/core/discovery/utils/filesystem/posix.py
64d1b91e2d766a237aaaacf1ebae0322ace7addf
[ "MIT" ]
permissive
learningequality/kolibri
26812d4ae771f3b389d3317a586bc032fc84866b
cc9da2a6acd139acac3cd71c4cb05c15d4465712
refs/heads/release-v0.16.x
2023-09-01T18:07:29.720772
2023-08-31T15:43:47
2023-08-31T15:43:47
49,976,939
689
682
MIT
2023-09-14T20:02:29
2016-01-19T19:22:07
Python
UTF-8
Python
false
false
9,838
py
posix.py
import logging import os import re import shutil import subprocess import sys from .constants import drivetypes from kolibri.utils.android import on_android logger = logging.getLogger(__name__) # Regex parser for the output of `mount` on OSX, which contains rows that looks like: # /dev/disk1s1 on /Volumes/HP v125w (msdos, local, nodev, nosuid, noowners) OSX_MOUNT_PARSER = re.compile( r"^(?P<device>\S+) on (?P<path>.+) \((?P<filesystem>[^, ]+)", flags=re.MULTILINE ) # Regex parser for the output of `mount` on Linux, which contains rows that looks like: # /dev/sdb2 on /media/user/KEEPOD type ext4 (rw,nosuid,nodev,uhelper=udisks2) LINUX_MOUNT_PARSER = re.compile( r"^(?P<device>\S+) on (?P<path>.+) type (?P<filesystem>\S+)", flags=re.MULTILINE ) # Regex parser for the output of 'mount' on Android, which contains rows that looks like: # /dev/block/bootdevice/by-name/userdata /data ext4 rw,seclabel,nosuid,nodev,noatime,noauto_da_alloc,data=ordered 0 0 # Note that access to /proc/ is restricted in later versions of Android. Will break the app. RAW_MOUNT_PARSER = re.compile( r"^(?P<device>\S+) (?P<path>\S+) (?P<filesystem>\S+)", flags=re.MULTILINE ) FILESYSTEM_BLACKLIST = set( [ "anon_inodefs", "bdev", "binfmt_misc", "cgroup", "cpuset", "debugfs", "devpts", "devtmpfs", "ecryptfs", "fuse", "fuse.gvfsd-fuse", "fuse.portal", "fusectl", "hugetlbfs", "mqueue", "nfs", "nfs4", "nfsd", "pipefs", "proc", "pstore", "ramfs", "rootfs", "rpc_pipefs", "securityfs", "sockfs", "sysfs", "tmpfs", "cgmfs", ] ) # These paths can be mounted as separate drives/partitions, # so they should not be shown in the list of import/export drives. PATH_PREFIX_BLACKLIST = ["/proc", "/sys", "/tmp", "/var", "/boot", "/dev"] def get_drive_list(): """ Gets a list of drives and metadata by parsing the output of `mount`, and adding additional info from various commands. Disk size/usage comes from shutil.disk_usage or os.statvfs, and name/type info from dbus (Linux) or diskutil (OSX). """ if sys.platform == "darwin": MOUNT_PARSER = OSX_MOUNT_PARSER else: MOUNT_PARSER = LINUX_MOUNT_PARSER try: drivelist = subprocess.Popen("mount", shell=True, stdout=subprocess.PIPE) drivelisto, err = drivelist.communicate() # Some Android devices at least now use the LINUX_MOUNT_PARSER format. # Try it and revert to RAW_MOUNT_PARSER if we can't find any matches with it. if on_android() and not MOUNT_PARSER.match(drivelisto.decode()): MOUNT_PARSER = RAW_MOUNT_PARSER except OSError: # couldn't run `mount`, let's try reading the /etc/mounts listing directly with open("/proc/mounts") as f: drivelisto = f.read() MOUNT_PARSER = RAW_MOUNT_PARSER drives = [] for drivematch in MOUNT_PARSER.finditer(drivelisto.decode()): drive = drivematch.groupdict() path = ( drive["path"] .replace("\\040", " ") .replace("\\011", "\t") .replace("\\012", "\n") .replace("\\134", "\\") ) # skip the drive if the filesystem or path is in a blacklist if drive["filesystem"] in FILESYSTEM_BLACKLIST or any( path.startswith(p) for p in PATH_PREFIX_BLACKLIST ): logger.debug("Skipping blacklisted drive '{}'".format(path)) continue # skip if we don't have read access to the drive if not os.access(path, os.R_OK): continue # attempt to get some additional metadata about the drive try: usage = _get_drive_usage(path) except OSError: # skip if we don't have access to get drive usage continue dbus_drive_info = _try_to_get_drive_info_from_dbus(drive["device"]) diskutil_info = _try_to_get_drive_info_from_diskutil(drive["device"]) # combine the various metadata sources to construct the overall drive metadata drives.append( { "path": path, "name": dbus_drive_info.get("name") or diskutil_info.get("name") or path, "filesystem": drive["filesystem"], "freespace": usage["free"], "totalspace": usage["total"], "drivetype": dbus_drive_info.get("drivetype") or diskutil_info.get("drivetype") or "", "guid": dbus_drive_info.get("guid") or diskutil_info.get("guid") or drive["device"], } ) return drives def _get_drive_usage(path): """ Use Python libraries to get drive space/usage statistics. Prior to v3.3, use `os.statvfs`; on v3.3+, use the more accurate `shutil.disk_usage`. """ if sys.version_info >= (3, 3): usage = shutil.disk_usage(path) return {"total": usage.total, "used": usage.used, "free": usage.free} if on_android(): from jnius import autoclass StatFs = autoclass("android.os.StatFs") AndroidString = autoclass("java.lang.String") stats = StatFs(AndroidString(path)) return { "total": stats.getBlockCountLong() * stats.getBlockSizeLong(), "free": stats.getAvailableBlocksLong() * stats.getBlockSizeLong(), } # with os.statvfs, we need to multiple block sizes by block counts to get bytes stats = os.statvfs(path) total = stats.f_frsize * stats.f_blocks free = stats.f_frsize * stats.f_bavail return {"total": total, "free": free, "used": total - free} def _try_to_get_drive_info_from_dbus(device): """ One of the only ways to access a lot of useful information about drives, without requiring root/sudo, is through DBUS. The Python library for DBUS is not always installed, but use it if available. """ # ensure the device is under /dev, and extract the block device name path_components = os.path.split(device) if path_components[0] != "/dev": return {} block_device_name = path_components[-1] # try importing dbus, and exit gracefully if it fails try: import dbus except ImportError: return {} try: bus = dbus.SystemBus() # get the block object based on the block device name block_obj = bus.get_object( "org.freedesktop.UDisks2", "/org/freedesktop/UDisks2/block_devices/" + block_device_name, ) block_iface = dbus.Interface(block_obj, "org.freedesktop.DBus.Properties") block = block_iface.GetAll("org.freedesktop.UDisks2.Block") # get the drive object, based on the drive identifier from the block object drive_path = block.get("Drive") drive_obj = bus.get_object("org.freedesktop.UDisks2", drive_path) drive_iface = dbus.Interface(drive_obj, "org.freedesktop.DBus.Properties") drive = drive_iface.GetAll("org.freedesktop.UDisks2.Drive") # extract the name and guid from the block and drive properties, calculate drivetype, and return return { "name": str( block.get("IdLabel") or " ".join([drive.get("Vendor"), drive.get("Model")]).strip() ), "guid": str(block.get("IdUUID") or drive.get("Serial") or drive.get("Id")), "drivetype": _get_drivetype_from_dbus_drive_properties(drive), } except ValueError: return {} except dbus.exceptions.DBusException: return {} def _get_drivetype_from_dbus_drive_properties(drive_props): """ Read the block and drive properties from dbus drive props object to determine our best guess at the drive type. """ if ( drive_props.get("ConnectionBus") == "sdio" or drive_props.get("Media") == "flash_sd" ): return drivetypes.SD_CARD if drive_props.get("ConnectionBus") == "usb" or drive_props.get("Media") == "thumb": return drivetypes.USB_DEVICE if drive_props.get("Optical"): return drivetypes.OPTICAL_DRIVE if drive_props.get("Removable") or drive_props.get("MediaRemovable"): return drivetypes.USB_DEVICE return drivetypes.UNKNOWN def _try_to_get_drive_info_from_diskutil(device): """ On OSX, the best way to get disk info is with `diskutil`. """ # we only use diskutil on OSX if sys.platform != "darwin": return {} # skip non-device mounts if not device.startswith("/dev/"): return {} # run the command and read the results diskutilp = subprocess.Popen( "diskutil info {}".format(device), shell=True, stdout=subprocess.PIPE ) diskutil_output, err = diskutilp.communicate() rows = [ line.split(":", 1) for line in diskutil_output.decode().split("\n") if ":" in line ] metadata = dict([(key.strip(), val.strip()) for key, val in rows]) # determine what type of drive it is (not sure what an optical drive shows up as, but OSX + optical is now uncommon) if metadata.get("Protocol") == "USB": drivetype = drivetypes.USB_DEVICE elif metadata.get("Internal") == "Yes": drivetype = drivetypes.INTERNAL_DRIVE else: drivetype = drivetypes.UNKNOWN # extract the name and guid from the diskutil drive metadata, and return return { "drivetype": drivetype, "name": metadata.get("Volume Name") or metadata.get("Device / Media Name") or "", "guid": metadata.get("Volume UUID") or "", }
c0ec6c105921ec8300c801a92310da726c3aba73
c29eba01ce299ebb27b886a83e19e59add7e2f6b
/tests/cases/doc/test_get_current_cases.py
2a1e3aaa03d1fddb607fe32a4ff3c9f7aeee901a
[ "BSD-3-Clause" ]
permissive
smarie/python-pytest-cases
e87516e73d5067d5c307c7fdb37cc5f1f97c417e
ab3b7190d728b18512141b9f5f3a1c3dfc7cedf2
refs/heads/main
2023-07-08T11:41:57.278697
2023-02-23T13:11:25
2023-02-23T13:11:25
138,296,136
286
40
BSD-3-Clause
2023-07-03T14:57:02
2018-06-22T11:42:19
Python
UTF-8
Python
false
false
9,058
py
test_get_current_cases.py
# Authors: Sylvain MARIE <sylvain.marie@se.com> # + All contributors to <https://github.com/smarie/python-pytest-cases> # # License: 3-clause BSD, <https://github.com/smarie/python-pytest-cases/blob/master/LICENSE> from pytest_cases import parametrize_with_cases, fixture, case, filters, get_current_cases from . import test_get_current_cases_cases as casesfile from pytest_cases.common_pytest_marks import PYTEST3_OR_GREATER @case(tags=("no_fix_needed",)) def case_a(): return 1, 2 @case(tags=("no_fix_needed",)) def case_b(): return 1, 2 @case(id="custom_id", tags=("no_fix_needed",)) def tuplecase_a(): return 1, 2 @case(id="custom_id") def case_a_fixture(request): return 1, 2 def tuplecase_a_fixture(request): return 1, 2 @parametrize_with_cases("withfixrefs_f1,withfixrefs_f2", cases=".", prefix="tuplecase_") @parametrize_with_cases("withfixrefs_f", cases=".", prefix="case_") @parametrize_with_cases("purelazy_t1,purelazy_t2", cases=".", prefix="tuplecase_", filter=filters.has_tags("no_fix_needed")) @parametrize_with_cases("purelazy_a", cases=".", prefix="case_", filter=filters.has_tags("no_fix_needed")) def test_local_cases(purelazy_a, purelazy_t1, purelazy_t2, withfixrefs_f, withfixrefs_f1, withfixrefs_f2, current_cases, request): # also try with a late call, just to be sure that a cache would not prevent us to access the lazy value getters late_call_dct = get_current_cases(request) for cases_dct in (current_cases, late_call_dct): assert set(cases_dct.keys()) == { "purelazy_a", "purelazy_t1", "purelazy_t2", "withfixrefs_f", "withfixrefs_f1", "withfixrefs_f2" } _assert_cases(cases_dct, local=True) @parametrize_with_cases("withfixrefs_f1,withfixrefs_f2", prefix="tuplecase_") @parametrize_with_cases("withfixrefs_f", prefix="case_") @parametrize_with_cases("purelazy_t1,purelazy_t2", prefix="tuplecase_", filter=filters.has_tags("no_fix_needed")) @parametrize_with_cases("purelazy_a", prefix="case_", filter=filters.has_tags("no_fix_needed")) def test_separate_cases_file(purelazy_a, purelazy_t1, purelazy_t2, withfixrefs_f, withfixrefs_f1, withfixrefs_f2, current_cases, request): # also try with a late call, just to be sure that a cache would not prevent us to access the lazy value getters late_call_dct = get_current_cases(request) for cases_dct in (current_cases, late_call_dct): assert set(cases_dct.keys()) == { "purelazy_a", "purelazy_t1", "purelazy_t2", "withfixrefs_f", "withfixrefs_f1", "withfixrefs_f2" } _assert_cases(cases_dct, local=False) def _assert_cases(current_cases, local=True): ref_dict = { 'a': case_a if local else casesfile.case_a, 'b': case_b if local else casesfile.case_b } assert len(current_cases["purelazy_a"]) == 3 assert current_cases["purelazy_a"][1] is ref_dict[current_cases["purelazy_a"][0]] assert current_cases["purelazy_a"][2] == {} assert len(current_cases["purelazy_t1"]) == 3 assert current_cases["purelazy_t1"][0] == "custom_id" assert current_cases["purelazy_t1"][1] is (tuplecase_a if local else casesfile.tuplecase_a) assert current_cases["purelazy_t1"][2] == {} assert current_cases["purelazy_t1"] == current_cases["purelazy_t2"] ref_dict = { 'a': case_a if local else casesfile.case_a, 'b': case_b if local else casesfile.case_b, 'custom_id': case_a_fixture if local else casesfile.case_a_fixture } assert len(current_cases["withfixrefs_f"]) == 3 assert current_cases["withfixrefs_f"][1] is ref_dict[current_cases["withfixrefs_f"][0]] assert current_cases["withfixrefs_f"][2] == {} ref_dict = { 'custom_id': tuplecase_a if local else casesfile.tuplecase_a, "a_fixture": tuplecase_a_fixture if local else casesfile.tuplecase_a_fixture } assert len(current_cases["withfixrefs_f1"]) == 3 assert current_cases["withfixrefs_f1"][1] is ref_dict[current_cases["withfixrefs_f1"][0]] assert current_cases["withfixrefs_f2"] == current_cases["withfixrefs_f1"] if PYTEST3_OR_GREATER: @fixture @parametrize_with_cases("purelazy_t1,purelazy_t2", cases=".", prefix="tuplecase_", filter=filters.has_tags("no_fix_needed")) @parametrize_with_cases("withfixrefs_f1,withfixrefs_f2", cases=".", prefix="tuplecase_") @parametrize_with_cases("purelazy_a", cases=".", prefix="case_", filter=filters.has_tags("no_fix_needed")) @parametrize_with_cases("withfixrefs_f", cases=".", prefix="case_") def my_fixture_local(purelazy_a, purelazy_t1, purelazy_t2, withfixrefs_f, withfixrefs_f1, withfixrefs_f2, current_cases, request): late_call_dct = get_current_cases(request) for cases_dct in (current_cases, late_call_dct): assert set(cases_dct.keys()) == { "purelazy_a", "purelazy_t1", "purelazy_t2", "withfixrefs_f", "withfixrefs_f1", "withfixrefs_f2", # NEW: the fixture "my_fixture_local" } _assert_cases(cases_dct, local=True) assert set(cases_dct["my_fixture_local"].keys()) == { "purelazy_a", "purelazy_t1", "purelazy_t2", "withfixrefs_f", "withfixrefs_f1", "withfixrefs_f2" } _assert_cases(cases_dct["my_fixture_local"], local=True) @fixture @parametrize_with_cases("withfixrefs_f1,withfixrefs_f2", prefix="tuplecase_") @parametrize_with_cases("withfixrefs_f", prefix="case_") @parametrize_with_cases("purelazy_t1,purelazy_t2", prefix="tuplecase_", filter=filters.has_tags("no_fix_needed")) @parametrize_with_cases("purelazy_a", prefix="case_", filter=filters.has_tags("no_fix_needed")) def my_fixture_separate_file(purelazy_a, purelazy_t1, purelazy_t2, withfixrefs_f, withfixrefs_f1, withfixrefs_f2, current_cases, request): late_call_dct = get_current_cases(request) for cases_dct in (current_cases, late_call_dct): assert set(cases_dct.keys()) == { "purelazy_a", "purelazy_t1", "purelazy_t2", "withfixrefs_f", "withfixrefs_f1", "withfixrefs_f2", # NEW: the fixture "my_fixture_separate_file" } _assert_cases(cases_dct, local=False) assert set(cases_dct["my_fixture_separate_file"].keys()) == { "purelazy_a", "purelazy_t1", "purelazy_t2", "withfixrefs_f", "withfixrefs_f1", "withfixrefs_f2" } _assert_cases(cases_dct["my_fixture_separate_file"], local=False) @parametrize_with_cases("withfixrefs_f1,withfixrefs_f2", cases=".", prefix="tuplecase_") @parametrize_with_cases("withfixrefs_f", cases=".", prefix="case_") @parametrize_with_cases("purelazy_t1,purelazy_t2", cases=".", prefix="tuplecase_", filter=filters.has_tags("no_fix_needed")) @parametrize_with_cases("purelazy_a", cases=".", prefix="case_", filter=filters.has_tags("no_fix_needed")) def test_local_cases_with_fix(purelazy_a, purelazy_t1, purelazy_t2, withfixrefs_f, withfixrefs_f1, withfixrefs_f2, my_fixture_local, current_cases, request): late_call_dct = get_current_cases(request) for cases_dct in (current_cases, late_call_dct): assert set(cases_dct.keys()) == { "purelazy_a", "purelazy_t1", "purelazy_t2", "withfixrefs_f", "withfixrefs_f1", "withfixrefs_f2", # NEW: the fixture "my_fixture_local" } _assert_cases(cases_dct, local=True) assert set(cases_dct["my_fixture_local"].keys()) == { "purelazy_a", "purelazy_t1", "purelazy_t2", "withfixrefs_f", "withfixrefs_f1", "withfixrefs_f2" } _assert_cases(cases_dct["my_fixture_local"], local=True) @parametrize_with_cases("withfixrefs_f1,withfixrefs_f2", prefix="tuplecase_") @parametrize_with_cases("withfixrefs_f", prefix="case_") @parametrize_with_cases("purelazy_t1,purelazy_t2", prefix="tuplecase_", filter=filters.has_tags("no_fix_needed")) @parametrize_with_cases("purelazy_a", prefix="case_", filter=filters.has_tags("no_fix_needed")) def test_separate_cases_file_with_fix(purelazy_a, purelazy_t1, purelazy_t2, withfixrefs_f, withfixrefs_f1, withfixrefs_f2, my_fixture_separate_file, current_cases, request): late_call_dct = get_current_cases(request) for cases_dct in (current_cases, late_call_dct): assert set(cases_dct.keys()) == { "purelazy_a", "purelazy_t1", "purelazy_t2", "withfixrefs_f", "withfixrefs_f1", "withfixrefs_f2", # NEW: the fixture "my_fixture_separate_file" } _assert_cases(cases_dct, local=False) assert set(cases_dct["my_fixture_separate_file"].keys()) == { "purelazy_a", "purelazy_t1", "purelazy_t2", "withfixrefs_f", "withfixrefs_f1", "withfixrefs_f2" } _assert_cases(cases_dct["my_fixture_separate_file"], local=False)
6e82c5ec1811060133dfc18258a74c22ae880a1c
a4ea525e226d6c401fdb87a6e9adfdc5d07e6020
/src/azure-cli/azure/cli/command_modules/resource/tests/latest/test_api_check.py
6a74af36cf2d913f5a2a99434879bd565ddc625e
[ "MIT", "BSD-3-Clause", "LGPL-2.0-or-later", "GPL-1.0-or-later", "MPL-2.0", "LGPL-2.1-only", "Apache-2.0", "LGPL-2.1-or-later", "BSD-2-Clause" ]
permissive
Azure/azure-cli
13340eeca2e288e66e84d393fa1c8a93d46c8686
a40fd14ad0b6e89720a2e58d4d9be3a6ce1535ca
refs/heads/dev
2023-08-17T06:25:37.431463
2023-08-17T06:00:10
2023-08-17T06:00:10
51,040,886
4,018
3,310
MIT
2023-09-14T11:11:05
2016-02-04T00:21:51
Python
UTF-8
Python
false
false
5,190
py
test_api_check.py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import unittest from unittest.mock import MagicMock from knack.util import CLIError from azure.cli.command_modules.resource.custom import (_ResourceUtils, _validate_resource_inputs, parse_resource_id) class TestApiCheck(unittest.TestCase): @classmethod def setUpClass(cls): pass @classmethod def tearDownClass(cls): pass def setUp(self): pass def tearDown(self): pass def test_parse_resource(self): parts = parse_resource_id('/subscriptions/00000/resourcegroups/bocconitestlabrg138089/' 'providers/microsoft.devtestlab/labs/bocconitestlab/' 'virtualmachines/tasktest1') self.assertIsNotNone(parts.get('type')) def test_parse_resource_capital(self): parts = parse_resource_id('/subscriptions/00000/resourceGroups/bocconitestlabrg138089/' 'providers/microsoft.devtestlab/labs/bocconitestlab/' 'virtualmachines/tasktest1') self.assertIsNotNone(parts.get('type')) def test_validate_resource_inputs(self): self.assertRaises(CLIError, _validate_resource_inputs, None, None, None, None) self.assertRaises(CLIError, _validate_resource_inputs, 'a', None, None, None) self.assertRaises(CLIError, _validate_resource_inputs, 'a', 'b', None, None) self.assertRaises(CLIError, _validate_resource_inputs, 'a', 'b', 'c', None) _validate_resource_inputs('a', 'b', 'c', 'd') def test_resolve_api_provider_backup(self): # Verifies provider is used as backup if api-version not specified. from azure.cli.core.mock import DummyCli cli = DummyCli() rcf = self._get_mock_client() res_utils = _ResourceUtils(cli, resource_type='Mock/test', resource_name='vnet1', resource_group_name='rg', rcf=rcf) self.assertEqual(res_utils.api_version, "2016-01-01") def test_resolve_api_provider_with_parent_backup(self): # Verifies provider (with parent) is used as backup if api-version not specified. from azure.cli.core.mock import DummyCli cli = DummyCli() rcf = self._get_mock_client() res_utils = _ResourceUtils(cli, parent_resource_path='foo/testfoo123', resource_group_name='rg', resource_provider_namespace='Mock', resource_type='test', resource_name='vnet1', rcf=rcf) self.assertEqual(res_utils.api_version, "1999-01-01") def test_resolve_api_all_previews(self): # Verifies most recent preview version returned only if there are no non-preview versions. from azure.cli.core.mock import DummyCli cli = DummyCli() rcf = self._get_mock_client() res_utils = _ResourceUtils(cli, resource_type='Mock/preview', resource_name='vnet1', resource_group_name='rg', rcf=rcf) self.assertEqual(res_utils.api_version, "2005-01-01-preview") def test_resolve_api_provider_latest_include_preview(self): # Verifies provider is used as backup if api-version not specified. from azure.cli.core.mock import DummyCli cli = DummyCli() rcf = self._get_mock_client() res_utils = _ResourceUtils(cli, resource_type='Mock/test_latest', resource_name='vnet1', resource_group_name='rg', rcf=rcf) self.assertEqual(res_utils.api_version, "2015-01-01") res_utils = _ResourceUtils(cli, resource_type='Mock/test_latest', resource_name='vnet1', resource_group_name='rg', rcf=rcf, latest_include_preview=True) self.assertEqual(res_utils.api_version, "2016-01-01-preview") def _get_mock_client(self): client = MagicMock() provider = MagicMock() provider.resource_types = [ self._get_mock_resource_type('skip', ['2000-01-01-preview', '2000-01-01']), self._get_mock_resource_type('test', ['2016-01-01-preview', '2016-01-01']), self._get_mock_resource_type('foo', ['1999-01-01-preview', '1999-01-01']), self._get_mock_resource_type('preview', ['2005-01-01-preview', '2004-01-01-preview']), self._get_mock_resource_type('test_latest', ['2016-01-01-preview', '2015-01-01']) ] client.providers.get.return_value = provider return client def _get_mock_resource_type(self, name, api_versions): # pylint: disable=no-self-use rt = MagicMock() rt.resource_type = name rt.api_versions = api_versions return rt if __name__ == '__main__': unittest.main()
dcd1490f66297369bc3ab7b17aa223a8bc789811
025401acb1f040d0fffe94b2306e5ed899b773bc
/data_structures/attribute.py
64fb6c33cca38376671eb4e171186e4535ddf44c
[ "MIT" ]
permissive
alipsgh/tornado
02f19a838d3136d39d662c4d48403fdb98ce7974
f5a2a46a1b0882a91613ab9a635008808a7d37dd
refs/heads/master
2022-08-07T11:16:17.146885
2022-08-02T22:05:11
2022-08-02T22:05:11
102,551,348
129
37
MIT
2022-08-02T22:05:13
2017-09-06T02:09:14
Python
UTF-8
Python
false
false
615
py
attribute.py
class Attribute: def __init__(self): self.NAME = None self.TYPE = None self.POSSIBLE_VALUES = [] self.MAXIMUM_VALUE = None self.MINIMUM_VALUE = None def set_name(self, attr_name): self.NAME = attr_name def set_type(self, attr_type): self.TYPE = attr_type def set_possible_values(self, attr_possible_values): self.POSSIBLE_VALUES = attr_possible_values def set_bounds_values(self, attr_min_value, attr_max_value): self.MINIMUM_VALUE = attr_min_value self.MAXIMUM_VALUE = attr_max_value
fd132cd2443af5b9a66775b0e1854482f86045e6
2c9a0463dcd7c88623bedf94dbfa3b33f2830783
/pywallet/utils/ethereum.py
2541052ddd5915aebf600084217935f69b7fc178
[ "MIT" ]
permissive
ranaroussi/pywallet
dea3a23b5f9c2631120811eb307582b512883d94
468622dcf993a27a5b585289b2724986c02a1fbc
refs/heads/master
2023-04-11T05:48:46.160948
2019-11-09T14:32:13
2019-11-09T14:32:13
111,648,229
432
199
MIT
2023-03-16T08:54:02
2017-11-22T07:02:29
Python
UTF-8
Python
false
false
55,603
py
ethereum.py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Code from: https://github.com/michailbrynard/ethereum-bip44-python This submodule provides the PublicKey, PrivateKey, and Signature classes. It also provides HDPublicKey and HDPrivateKey classes for working with HD wallets.""" import math import base58 import base64 import binascii import hashlib import hmac from mnemonic.mnemonic import Mnemonic import random from two1.bitcoin.utils import bytes_to_str from two1.bitcoin.utils import address_to_key_hash from two1.bitcoin.utils import rand_bytes from two1.crypto.ecdsa_base import Point from two1.crypto.ecdsa import ECPointAffine from two1.crypto.ecdsa import secp256k1 bitcoin_curve = secp256k1() from Crypto.Hash import keccak sha3_256 = lambda x: keccak.new(digest_bits=256, data=x) def sha3(seed): return sha3_256(seed).digest() def get_bytes(s): """Returns the byte representation of a hex- or byte-string.""" if isinstance(s, bytes): b = s elif isinstance(s, str): b = bytes.fromhex(s) else: raise TypeError("s must be either 'bytes' or 'str'!") return b class PrivateKeyBase(object): """ Base class for both PrivateKey and HDPrivateKey. As this class is a base class it should not be used directly. Args: k (int): The private key. Returns: PrivateKey: The object representing the private key. """ @staticmethod def from_b58check(private_key): """ Decodes a Base58Check encoded private-key. Args: private_key (str): A Base58Check encoded private key. Returns: PrivateKey: A PrivateKey object """ raise NotImplementedError def __init__(self, k): self.key = k self._public_key = None @property def public_key(self): """ Returns the public key associated with this private key. Returns: PublicKey: The PublicKey object that corresponds to this private key. """ return self._public_key def raw_sign(self, message, do_hash=True): """ Signs message using this private key. Args: message (bytes): The message to be signed. If a string is provided it is assumed the encoding is 'ascii' and converted to bytes. If this is not the case, it is up to the caller to convert the string to bytes appropriately and pass in the bytes. do_hash (bool): True if the message should be hashed prior to signing, False if not. This should always be left as True except in special situations which require doing the hash outside (e.g. handling Bitcoin bugs). Returns: ECPointAffine: a raw point (r = pt.x, s = pt.y) which is the signature. """ raise NotImplementedError def sign(self, message, do_hash=True): """ Signs message using this private key. Note: This differs from `raw_sign()` since it returns a Signature object. Args: message (bytes or str): The message to be signed. If a string is provided it is assumed the encoding is 'ascii' and converted to bytes. If this is not the case, it is up to the caller to convert the string to bytes appropriately and pass in the bytes. do_hash (bool): True if the message should be hashed prior to signing, False if not. This should always be left as True except in special situations which require doing the hash outside (e.g. handling Bitcoin bugs). Returns: Signature: The signature corresponding to message. """ raise NotImplementedError def sign_bitcoin(self, message, compressed=False): """ Signs a message using this private key such that it is compatible with bitcoind, bx, and other Bitcoin clients/nodes/utilities. Note: 0x18 + b\"Bitcoin Signed Message:" + newline + len(message) is prepended to the message before signing. Args: message (bytes or str): Message to be signed. compressed (bool): True if the corresponding public key will be used in compressed format. False if the uncompressed version is used. Returns: bytes: A Base64-encoded byte string of the signed message. The first byte of the encoded message contains information about how to recover the public key. In bitcoind parlance, this is the magic number containing the recovery ID and whether or not the key was compressed or not. (This function always processes full, uncompressed public-keys, so the magic number will always be either 27 or 28). """ raise NotImplementedError def to_b58check(self, testnet=False): """ Generates a Base58Check encoding of this private key. Returns: str: A Base58Check encoded string representing the key. """ raise NotImplementedError def to_hex(self): """ Generates a hex encoding of the serialized key. Returns: str: A hex encoded string representing the key. """ return bytes_to_str(bytes(self)) def __bytes__(self): raise NotImplementedError def __int__(self): raise NotImplementedError class PublicKeyBase(object): """ Base class for both PublicKey and HDPublicKey. As this class is a base class it should not be used directly. Args: x (int): The x component of the public key point. y (int): The y component of the public key point. Returns: PublicKey: The object representing the public key. """ @staticmethod def from_bytes(key_bytes): """ Generates a public key object from a byte (or hex) string. Args: key_bytes (bytes or str): A byte stream. Returns: PublicKey: A PublicKey object. """ raise NotImplementedError @staticmethod def from_private_key(private_key): """ Generates a public key object from a PrivateKey object. Args: private_key (PrivateKey): The private key object from which to derive this object. Returns: PublicKey: A PublicKey object. """ return private_key.public_key def __init__(self): pass def hash160(self, compressed=True): """ Return the RIPEMD-160 hash of the SHA-256 hash of the public key. Args: compressed (bool): Whether or not the compressed key should be used. Returns: bytes: RIPEMD-160 byte string. """ raise NotImplementedError def address(self, compressed=True, testnet=False): """ Address property that returns the Base58Check encoded version of the HASH160. Args: compressed (bool): Whether or not the compressed key should be used. testnet (bool): Whether or not the key is intended for testnet usage. False indicates mainnet usage. Returns: bytes: Base58Check encoded string """ raise NotImplementedError def verify(self, message, signature, do_hash=True): """ Verifies that message was appropriately signed. Args: message (bytes): The message to be verified. signature (Signature): A signature object. do_hash (bool): True if the message should be hashed prior to signing, False if not. This should always be left as True except in special situations which require doing the hash outside (e.g. handling Bitcoin bugs). Returns: verified (bool): True if the signature is verified, False otherwise. """ raise NotImplementedError def to_hex(self): """ Hex representation of the serialized byte stream. Returns: h (str): A hex-encoded string. """ return bytes_to_str(bytes(self)) def __bytes__(self): raise NotImplementedError def __int__(self): raise NotImplementedError @property def compressed_bytes(self): """ Byte string corresponding to a compressed representation of this public key. Returns: b (bytes): A 33-byte long byte string. """ raise NotImplementedError class PrivateKey(PrivateKeyBase): """ Encapsulation of a Bitcoin ECDSA private key. This class provides capability to generate private keys, obtain the corresponding public key, sign messages and serialize/deserialize into a variety of formats. Args: k (int): The private key. Returns: PrivateKey: The object representing the private key. """ TESTNET_VERSION = 0xEF MAINNET_VERSION = 0x80 @staticmethod def from_bytes(b): """ Generates PrivateKey from the underlying bytes. Args: b (bytes): A byte stream containing a 256-bit (32-byte) integer. Returns: tuple(PrivateKey, bytes): A PrivateKey object and the remainder of the bytes. """ if len(b) < 32: raise ValueError('b must contain at least 32 bytes') return PrivateKey(int.from_bytes(b[:32], 'big')) @staticmethod def from_hex(h): """ Generates PrivateKey from a hex-encoded string. Args: h (str): A hex-encoded string containing a 256-bit (32-byte) integer. Returns: PrivateKey: A PrivateKey object. """ return PrivateKey.from_bytes(bytes.fromhex(h)) @staticmethod def from_int(i): """ Initializes a private key from an integer. Args: i (int): Integer that is the private key. Returns: PrivateKey: The object representing the private key. """ return PrivateKey(i) @staticmethod def from_b58check(private_key): """ Decodes a Base58Check encoded private-key. Args: private_key (str): A Base58Check encoded private key. Returns: PrivateKey: A PrivateKey object """ b58dec = base58.b58decode_check(private_key) version = b58dec[0] assert version in [PrivateKey.TESTNET_VERSION, PrivateKey.MAINNET_VERSION] return PrivateKey(int.from_bytes(b58dec[1:], 'big')) @staticmethod def from_random(): """ Initializes a private key from a random integer. Returns: PrivateKey: The object representing the private key. """ return PrivateKey(random.SystemRandom().randrange(1, bitcoin_curve.n)) def __init__(self, k): self.key = k self._public_key = None @property def public_key(self): """ Returns the public key associated with this private key. Returns: PublicKey: The PublicKey object that corresponds to this private key. """ if self._public_key is None: self._public_key = PublicKey.from_point( bitcoin_curve.public_key(self.key)) return self._public_key def raw_sign(self, message, do_hash=True): """ Signs message using this private key. Args: message (bytes): The message to be signed. If a string is provided it is assumed the encoding is 'ascii' and converted to bytes. If this is not the case, it is up to the caller to convert the string to bytes appropriately and pass in the bytes. do_hash (bool): True if the message should be hashed prior to signing, False if not. This should always be left as True except in special situations which require doing the hash outside (e.g. handling Bitcoin bugs). Returns: ECPointAffine: a raw point (r = pt.x, s = pt.y) which is the signature. """ if isinstance(message, str): msg = bytes(message, 'ascii') elif isinstance(message, bytes): msg = message else: raise TypeError("message must be either str or bytes!") sig_pt, rec_id = bitcoin_curve.sign(msg, self.key, do_hash) # Take care of large s: # Bitcoin deals with large s, by subtracting # s from the curve order. See: # https://bitcointalk.org/index.php?topic=285142.30;wap2 if sig_pt.y >= (bitcoin_curve.n // 2): sig_pt = Point(sig_pt.x, bitcoin_curve.n - sig_pt.y) rec_id ^= 0x1 return (sig_pt, rec_id) def sign(self, message, do_hash=True): """ Signs message using this private key. Note: This differs from `raw_sign()` since it returns a Signature object. Args: message (bytes or str): The message to be signed. If a string is provided it is assumed the encoding is 'ascii' and converted to bytes. If this is not the case, it is up to the caller to convert the string to bytes appropriately and pass in the bytes. do_hash (bool): True if the message should be hashed prior to signing, False if not. This should always be left as True except in special situations which require doing the hash outside (e.g. handling Bitcoin bugs). Returns: Signature: The signature corresponding to message. """ # Some BTC things want to have the recovery id to extract the public # key, so we should figure that out. sig_pt, rec_id = self.raw_sign(message, do_hash) return Signature(sig_pt.x, sig_pt.y, rec_id) def sign_bitcoin(self, message, compressed=False): """ Signs a message using this private key such that it is compatible with bitcoind, bx, and other Bitcoin clients/nodes/utilities. Note: 0x18 + b\"Bitcoin Signed Message:" + newline + len(message) is prepended to the message before signing. Args: message (bytes or str): Message to be signed. compressed (bool): True if the corresponding public key will be used in compressed format. False if the uncompressed version is used. Returns: bytes: A Base64-encoded byte string of the signed message. The first byte of the encoded message contains information about how to recover the public key. In bitcoind parlance, this is the magic number containing the recovery ID and whether or not the key was compressed or not. """ if isinstance(message, str): msg_in = bytes(message, 'ascii') elif isinstance(message, bytes): msg_in = message else: raise TypeError("message must be either str or bytes!") msg = b"\x18Bitcoin Signed Message:\n" + bytes([len(msg_in)]) + msg_in msg_hash = hashlib.sha256(msg).digest() sig = self.sign(msg_hash) comp_adder = 4 if compressed else 0 magic = 27 + sig.recovery_id + comp_adder return base64.b64encode(bytes([magic]) + bytes(sig)) def to_b58check(self, testnet=False): """ Generates a Base58Check encoding of this private key. Returns: str: A Base58Check encoded string representing the key. """ version = self.TESTNET_VERSION if testnet else self.MAINNET_VERSION return base58.b58encode_check(bytes([version]) + bytes(self)) def __bytes__(self): return self.key.to_bytes(32, 'big') def __int__(self): return self.key class PublicKey(PublicKeyBase): """ Encapsulation of a Bitcoin ECDSA public key. This class provides a high-level API to using an ECDSA public key, specifically for Bitcoin (secp256k1) purposes. Args: x (int): The x component of the public key point. y (int): The y component of the public key point. Returns: PublicKey: The object representing the public key. """ TESTNET_VERSION = 0x6F MAINNET_VERSION = 0x00 @staticmethod def from_point(p): """ Generates a public key object from any object containing x, y coordinates. Args: p (Point): An object containing a two-dimensional, affine representation of a point on the secp256k1 curve. Returns: PublicKey: A PublicKey object. """ return PublicKey(p.x, p.y) @staticmethod def from_int(i): """ Generates a public key object from an integer. Note: This assumes that the upper 32 bytes of the integer are the x component of the public key point and the lower 32 bytes are the y component. Args: i (Bignum): A 512-bit integer representing the public key point on the secp256k1 curve. Returns: PublicKey: A PublicKey object. """ point = ECPointAffine.from_int(bitcoin_curve, i) return PublicKey.from_point(point) @staticmethod def from_base64(b64str, testnet=False): """ Generates a public key object from a Base64 encoded string. Args: b64str (str): A Base64-encoded string. testnet (bool) (Optional): If True, changes the version that is prepended to the key. Returns: PublicKey: A PublicKey object. """ return PublicKey.from_bytes(base64.b64decode(b64str)) @staticmethod def from_bytes(key_bytes): """ Generates a public key object from a byte (or hex) string. The byte stream must be of the SEC variety (http://www.secg.org/): beginning with a single byte telling what key representation follows. A full, uncompressed key is represented by: 0x04 followed by 64 bytes containing the x and y components of the point. For compressed keys with an even y component, 0x02 is followed by 32 bytes containing the x component. For compressed keys with an odd y component, 0x03 is followed by 32 bytes containing the x component. Args: key_bytes (bytes or str): A byte stream that conforms to the above. Returns: PublicKey: A PublicKey object. """ b = get_bytes(key_bytes) key_bytes_len = len(b) key_type = b[0] if key_type == 0x04: # Uncompressed if key_bytes_len != 65: raise ValueError("key_bytes must be exactly 65 bytes long when uncompressed.") x = int.from_bytes(b[1:33], 'big') y = int.from_bytes(b[33:65], 'big') elif key_type == 0x02 or key_type == 0x03: if key_bytes_len != 33: raise ValueError("key_bytes must be exactly 33 bytes long when compressed.") x = int.from_bytes(b[1:33], 'big') ys = bitcoin_curve.y_from_x(x) # Pick the one that corresponds to key_type last_bit = key_type - 0x2 for y in ys: if y & 0x1 == last_bit: break else: return None return PublicKey(x, y) @staticmethod def from_hex(h): """ Generates a public key object from a hex-encoded string. See from_bytes() for requirements of the hex string. Args: h (str): A hex-encoded string. Returns: PublicKey: A PublicKey object. """ return PublicKey.from_bytes(h) @staticmethod def from_signature(message, signature): """ Attempts to create PublicKey object by deriving it from the message and signature. Args: message (bytes): The message to be verified. signature (Signature): The signature for message. The recovery_id must not be None! Returns: PublicKey: A PublicKey object derived from the signature, it it exists. None otherwise. """ if signature.recovery_id is None: raise ValueError("The signature must have a recovery_id.") msg = get_bytes(message) pub_keys = bitcoin_curve.recover_public_key(msg, signature, signature.recovery_id) for k, recid in pub_keys: if signature.recovery_id is not None and recid == signature.recovery_id: return PublicKey(k.x, k.y) return None @staticmethod def verify_bitcoin(message, signature, address): """ Verifies a message signed using PrivateKey.sign_bitcoin() or any of the bitcoin utils (e.g. bitcoin-cli, bx, etc.) Args: message(bytes): The message that the signature corresponds to. signature (bytes or str): A Base64 encoded signature address (str): Base58Check encoded address. Returns: bool: True if the signature verified properly, False otherwise. """ magic_sig = base64.b64decode(signature) magic = magic_sig[0] sig = Signature.from_bytes(magic_sig[1:]) sig.recovery_id = (magic - 27) & 0x3 compressed = ((magic - 27) & 0x4) != 0 # Build the message that was signed msg = b"\x18Bitcoin Signed Message:\n" + bytes([len(message)]) + message msg_hash = hashlib.sha256(msg).digest() derived_public_key = PublicKey.from_signature(msg_hash, sig) if derived_public_key is None: raise ValueError("Could not recover public key from the provided signature.") ver, h160 = address_to_key_hash(address) hash160 = derived_public_key.hash160(compressed) if hash160 != h160: return False return derived_public_key.verify(msg_hash, sig) def __init__(self, x, y): p = ECPointAffine(bitcoin_curve, x, y) if not bitcoin_curve.is_on_curve(p): raise ValueError("The provided (x, y) are not on the secp256k1 curve.") self.point = p # RIPEMD-160 of SHA-256 r = hashlib.new('ripemd160') r.update(hashlib.sha256(bytes(self)).digest()) self.ripe = r.digest() r = hashlib.new('ripemd160') r.update(hashlib.sha256(self.compressed_bytes).digest()) self.ripe_compressed = r.digest() self.keccak = sha3(bytes(self)[1:]) def hash160(self, compressed=True): """ Return the RIPEMD-160 hash of the SHA-256 hash of the public key. Args: compressed (bool): Whether or not the compressed key should be used. Returns: bytes: RIPEMD-160 byte string. """ return self.ripe_compressed if compressed else self.ripe def address(self, compressed=True, testnet=False): """ Address property that returns the Base58Check encoded version of the HASH160. Args: compressed (bool): Whether or not the compressed key should be used. testnet (bool): Whether or not the key is intended for testnet usage. False indicates mainnet usage. Returns: bytes: Base58Check encoded string """ version = '0x' return version + binascii.hexlify(self.keccak[12:]).decode('ascii') # Put the version byte in front, 0x00 for Mainnet, 0x6F for testnet # version = bytes([self.TESTNET_VERSION]) if testnet else bytes([self.MAINNET_VERSION]) # return base58.b58encode_check(version + self.hash160(compressed)) def verify(self, message, signature, do_hash=True): """ Verifies that message was appropriately signed. Args: message (bytes): The message to be verified. signature (Signature): A signature object. do_hash (bool): True if the message should be hashed prior to signing, False if not. This should always be left as True except in special situations which require doing the hash outside (e.g. handling Bitcoin bugs). Returns: verified (bool): True if the signature is verified, False otherwise. """ msg = get_bytes(message) return bitcoin_curve.verify(msg, signature, self.point, do_hash) def to_base64(self): """ Hex representation of the serialized byte stream. Returns: b (str): A Base64-encoded string. """ return base64.b64encode(bytes(self)) def __int__(self): mask = 2 ** 256 - 1 return ((self.point.x & mask) << bitcoin_curve.nlen) | (self.point.y & mask) def __bytes__(self): return bytes(self.point) @property def compressed_bytes(self): """ Byte string corresponding to a compressed representation of this public key. Returns: b (bytes): A 33-byte long byte string. """ return self.point.compressed_bytes class Signature(object): """ Encapsulation of a ECDSA signature for Bitcoin purposes. Args: r (Bignum): r component of the signature. s (Bignum): s component of the signature. recovery_id (int) (Optional): Must be between 0 and 3 specifying which of the public keys generated by the algorithm specified in http://www.secg.org/sec1-v2.pdf Section 4.1.6 (Public Key Recovery Operation) is the correct one for this signature. Returns: sig (Signature): A Signature object. """ @staticmethod def from_der(der): """ Decodes a Signature that was DER-encoded. Args: der (bytes or str): The DER encoding to be decoded. Returns: Signature: The deserialized signature. """ d = get_bytes(der) # d must conform to (from btcd): # [0 ] 0x30 - ASN.1 identifier for sequence # [1 ] <1-byte> - total remaining length # [2 ] 0x02 - ASN.1 identifier to specify an integer follows # [3 ] <1-byte> - length of R # [4.] <bytes> - R # [..] 0x02 - ASN.1 identifier to specify an integer follows # [..] <1-byte> - length of S # [..] <bytes> - S # 6 bytes + R (min. 1 byte) + S (min. 1 byte) if len(d) < 8: raise ValueError("DER signature string is too short.") # 6 bytes + R (max. 33 bytes) + S (max. 33 bytes) if len(d) > 72: raise ValueError("DER signature string is too long.") if d[0] != 0x30: raise ValueError("DER signature does not start with 0x30.") if d[1] != len(d[2:]): raise ValueError("DER signature length incorrect.") total_length = d[1] if d[2] != 0x02: raise ValueError("DER signature no 1st int marker.") if d[3] <= 0 or d[3] > (total_length - 7): raise ValueError("DER signature incorrect R length.") # Grab R, check for errors rlen = d[3] s_magic_index = 4 + rlen rb = d[4:s_magic_index] if rb[0] & 0x80 != 0: raise ValueError("DER signature R is negative.") if len(rb) > 1 and rb[0] == 0 and rb[1] & 0x80 != 0x80: raise ValueError("DER signature R is excessively padded.") r = int.from_bytes(rb, 'big') # Grab S, check for errors if d[s_magic_index] != 0x02: raise ValueError("DER signature no 2nd int marker.") slen_index = s_magic_index + 1 slen = d[slen_index] if slen <= 0 or slen > len(d) - (slen_index + 1): raise ValueError("DER signature incorrect S length.") sb = d[slen_index + 1:] if sb[0] & 0x80 != 0: raise ValueError("DER signature S is negative.") if len(sb) > 1 and sb[0] == 0 and sb[1] & 0x80 != 0x80: raise ValueError("DER signature S is excessively padded.") s = int.from_bytes(sb, 'big') if r < 1 or r >= bitcoin_curve.n: raise ValueError("DER signature R is not between 1 and N - 1.") if s < 1 or s >= bitcoin_curve.n: raise ValueError("DER signature S is not between 1 and N - 1.") return Signature(r, s) @staticmethod def from_base64(b64str): """ Generates a signature object from a Base64 encoded string. Args: b64str (str): A Base64-encoded string. Returns: Signature: A Signature object. """ return Signature.from_bytes(base64.b64decode(b64str)) @staticmethod def from_bytes(b): """ Extracts the r and s components from a byte string. Args: b (bytes): A 64-byte long string. The first 32 bytes are extracted as the r component and the second 32 bytes are extracted as the s component. Returns: Signature: A Signature object. Raises: ValueError: If signature is incorrect length """ if len(b) != 64: raise ValueError("from_bytes: Signature length != 64.") r = int.from_bytes(b[0:32], 'big') s = int.from_bytes(b[32:64], 'big') return Signature(r, s) @staticmethod def from_hex(h): """ Extracts the r and s components from a hex-encoded string. Args: h (str): A 64-byte (128 character) long string. The first 32 bytes are extracted as the r component and the second 32 bytes are extracted as the s component. Returns: Signature: A Signature object. """ return Signature.from_bytes(bytes.fromhex(h)) def __init__(self, r, s, recovery_id=None): self.r = r self.s = s self.recovery_id = recovery_id @property def x(self): """ Convenience property for any method that requires this object to provide a Point interface. """ return self.r @property def y(self): """ Convenience property for any method that requires this object to provide a Point interface. """ return self.s def _canonicalize(self): rv = [] for x in [self.r, self.s]: # Compute minimum bytes to represent integer bl = math.ceil(x.bit_length() / 8) # Make sure it's at least one byte in length if bl == 0: bl += 1 x_bytes = x.to_bytes(bl, 'big') # make sure there's no way it could be interpreted # as a negative integer if x_bytes[0] & 0x80: x_bytes = bytes([0]) + x_bytes rv.append(x_bytes) return rv def to_der(self): """ Encodes this signature using DER Returns: bytes: The DER encoding of (self.r, self.s). """ # Output should be: # 0x30 <length> 0x02 <length r> r 0x02 <length s> s r, s = self._canonicalize() total_length = 6 + len(r) + len(s) der = bytes([0x30, total_length - 2, 0x02, len(r)]) + r + bytes([0x02, len(s)]) + s return der def to_hex(self): """ Hex representation of the serialized byte stream. Returns: str: A hex-encoded string. """ return bytes_to_str(bytes(self)) def to_base64(self): """ Hex representation of the serialized byte stream. Returns: str: A Base64-encoded string. """ return base64.b64encode(bytes(self)) def __bytes__(self): nbytes = math.ceil(bitcoin_curve.nlen / 8) return self.r.to_bytes(nbytes, 'big') + self.s.to_bytes(nbytes, 'big') class HDKey(object): """ Base class for HDPrivateKey and HDPublicKey. Args: key (PrivateKey or PublicKey): The underlying simple private or public key that is used to sign/verify. chain_code (bytes): The chain code associated with the HD key. depth (int): How many levels below the master node this key is. By definition, depth = 0 for the master node. index (int): A value between 0 and 0xffffffff indicating the child number. Values >= 0x80000000 are considered hardened children. parent_fingerprint (bytes): The fingerprint of the parent node. This is 0x00000000 for the master node. Returns: HDKey: An HDKey object. """ @staticmethod def from_b58check(key): """ Decodes a Base58Check encoded key. The encoding must conform to the description in: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#serialization-format Args: key (str): A Base58Check encoded key. Returns: HDPrivateKey or HDPublicKey: Either an HD private or public key object, depending on what was serialized. """ return HDKey.from_bytes(base58.b58decode_check(key)) @staticmethod def from_bytes(b): """ Generates either a HDPrivateKey or HDPublicKey from the underlying bytes. The serialization must conform to the description in: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#serialization-format Args: b (bytes): A byte stream conforming to the above. Returns: HDPrivateKey or HDPublicKey: Either an HD private or public key object, depending on what was serialized. """ if len(b) < 78: raise ValueError("b must be at least 78 bytes long.") version = int.from_bytes(b[:4], 'big') depth = b[4] parent_fingerprint = b[5:9] index = int.from_bytes(b[9:13], 'big') chain_code = b[13:45] key_bytes = b[45:78] rv = None if version == HDPrivateKey.MAINNET_VERSION or version == HDPrivateKey.TESTNET_VERSION: if key_bytes[0] != 0: raise ValueError("First byte of private key must be 0x00!") private_key = int.from_bytes(key_bytes[1:], 'big') rv = HDPrivateKey(key=private_key, chain_code=chain_code, index=index, depth=depth, parent_fingerprint=parent_fingerprint) elif version == HDPublicKey.MAINNET_VERSION or version == HDPublicKey.TESTNET_VERSION: if key_bytes[0] != 0x02 and key_bytes[0] != 0x03: raise ValueError("First byte of public key must be 0x02 or 0x03!") public_key = PublicKey.from_bytes(key_bytes) rv = HDPublicKey(x=public_key.point.x, y=public_key.point.y, chain_code=chain_code, index=index, depth=depth, parent_fingerprint=parent_fingerprint) else: raise ValueError("incorrect encoding.") return rv @staticmethod def from_hex(h): """ Generates either a HDPrivateKey or HDPublicKey from the underlying hex-encoded string. The serialization must conform to the description in: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#serialization-format Args: h (str): A hex-encoded string conforming to the above. Returns: HDPrivateKey or HDPublicKey: Either an HD private or public key object, depending on what was serialized. """ return HDKey.from_bytes(bytes.fromhex(h)) @staticmethod def from_path(root_key, path): p = HDKey.parse_path(path) if p[0] == "m": if root_key.master: p = p[1:] else: raise ValueError("root_key must be a master key if 'm' is the first element of the path.") keys = [root_key] for i in p: if isinstance(i, str): hardened = i[-1] == "'" index = int(i[:-1], 0) | 0x80000000 if hardened else int(i, 0) else: index = i k = keys[-1] klass = k.__class__ keys.append(klass.from_parent(k, index)) return keys @staticmethod def parse_path(path): if isinstance(path, str): # Remove trailing "/" p = path.rstrip("/").split("/") elif isinstance(path, bytes): p = path.decode('utf-8').rstrip("/").split("/") else: p = list(path) return p @staticmethod def path_from_indices(l): p = [] for n in l: if n == "m": p.append(n) else: if n & 0x80000000: _n = n & 0x7fffffff p.append(str(_n) + "'") else: p.append(str(n)) return "/".join(p) def __init__(self, key, chain_code, index, depth, parent_fingerprint): if index < 0 or index > 0xffffffff: raise ValueError("index is out of range: 0 <= index <= 2**32 - 1") if not isinstance(chain_code, bytes): raise TypeError("chain_code must be bytes") self._key = key self.chain_code = chain_code self.depth = depth self.index = index self.parent_fingerprint = get_bytes(parent_fingerprint) @property def master(self): """ Whether or not this is a master node. Returns: bool: True if this is a master node, False otherwise. """ return self.depth == 0 @property def hardened(self): """ Whether or not this is a hardened node. Hardened nodes are those with indices >= 0x80000000. Returns: bool: True if this is hardened, False otherwise. """ # A hardened key is a key with index >= 2 ** 31, so # we check that the MSB of a uint32 is set. return self.index & 0x80000000 @property def identifier(self): """ Returns the identifier for the key. A key's identifier and fingerprint are defined as: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#key-identifiers Returns: bytes: A 20-byte RIPEMD-160 hash. """ raise NotImplementedError @property def fingerprint(self): """ Returns the key's fingerprint, which is the first 4 bytes of its identifier. A key's identifier and fingerprint are defined as: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#key-identifiers Returns: bytes: The first 4 bytes of the RIPEMD-160 hash. """ return self.identifier[:4] def to_b58check(self, testnet=False): """ Generates a Base58Check encoding of this key. Args: testnet (bool): True if the key is to be used with testnet, False otherwise. Returns: str: A Base58Check encoded string representing the key. """ b = self.testnet_bytes if testnet else bytes(self) return base58.b58encode_check(b) def _serialize(self, testnet=False): version = self.TESTNET_VERSION if testnet else self.MAINNET_VERSION key_bytes = self._key.compressed_bytes if isinstance(self, HDPublicKey) else b'\x00' + bytes(self._key) return (version.to_bytes(length=4, byteorder='big') + bytes([self.depth]) + self.parent_fingerprint + self.index.to_bytes(length=4, byteorder='big') + self.chain_code + key_bytes) def __bytes__(self): return self._serialize() @property def testnet_bytes(self): """ Serialization of the key for testnet. Returns: bytes: A 78-byte serialization of the key, specifically for testnet (i.e. the first 2 bytes will be 0x0435). """ return self._serialize(True) class HDPrivateKey(HDKey, PrivateKeyBase): """ Implements an HD Private Key according to BIP-0032: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki For the vast majority of use cases, the 3 static functions (HDPrivateKey.master_key_from_entropy, HDPrivateKey.master_key_from_seed and HDPrivateKey.from_parent) will be used rather than directly constructing an object. Args: key (PrivateKey or PublicKey): The underlying simple private or public key that is used to sign/verify. chain_code (bytes): The chain code associated with the HD key. depth (int): How many levels below the master node this key is. By definition, depth = 0 for the master node. index (int): A value between 0 and 0xffffffff indicating the child number. Values >= 0x80000000 are considered hardened children. parent_fingerprint (bytes): The fingerprint of the parent node. This is 0x00000000 for the master node. Returns: HDKey: An HDKey object. """ MAINNET_VERSION = 0x0488ADE4 TESTNET_VERSION = 0x04358394 @staticmethod def master_key_from_mnemonic(mnemonic, passphrase=''): """ Generates a master key from a mnemonic. Args: mnemonic (str): The mnemonic sentence representing the seed from which to generate the master key. passphrase (str): Password if one was used. Returns: HDPrivateKey: the master private key. """ return HDPrivateKey.master_key_from_seed( Mnemonic.to_seed(mnemonic, passphrase)) @staticmethod def master_key_from_entropy(passphrase='', strength=128): """ Generates a master key from system entropy. Args: strength (int): Amount of entropy desired. This should be a multiple of 32 between 128 and 256. passphrase (str): An optional passphrase for the generated mnemonic string. Returns: HDPrivateKey, str: a tuple consisting of the master private key and a mnemonic string from which the seed can be recovered. """ if strength % 32 != 0: raise ValueError("strength must be a multiple of 32") if strength < 128 or strength > 256: raise ValueError("strength should be >= 128 and <= 256") entropy = rand_bytes(strength // 8) m = Mnemonic(language='english') n = m.to_mnemonic(entropy) return HDPrivateKey.master_key_from_seed( Mnemonic.to_seed(n, passphrase)), n @staticmethod def master_key_from_seed(seed): """ Generates a master key from a provided seed. Args: seed (bytes or str): a string of bytes or a hex string Returns: HDPrivateKey: the master private key. """ S = get_bytes(seed) I = hmac.new(b"Bitcoin seed", S, hashlib.sha512).digest() Il, Ir = I[:32], I[32:] parse_Il = int.from_bytes(Il, 'big') if parse_Il == 0 or parse_Il >= bitcoin_curve.n: raise ValueError("Bad seed, resulting in invalid key!") return HDPrivateKey(key=parse_Il, chain_code=Ir, index=0, depth=0) @staticmethod def from_parent(parent_key, i): """ Derives a child private key from a parent private key. It is not possible to derive a child private key from a public parent key. Args: parent_private_key (HDPrivateKey): """ if not isinstance(parent_key, HDPrivateKey): raise TypeError("parent_key must be an HDPrivateKey object.") hmac_key = parent_key.chain_code if i & 0x80000000: hmac_data = b'\x00' + bytes(parent_key._key) + i.to_bytes(length=4, byteorder='big') else: hmac_data = parent_key.public_key.compressed_bytes + i.to_bytes(length=4, byteorder='big') I = hmac.new(hmac_key, hmac_data, hashlib.sha512).digest() Il, Ir = I[:32], I[32:] parse_Il = int.from_bytes(Il, 'big') if parse_Il >= bitcoin_curve.n: return None child_key = (parse_Il + parent_key._key.key) % bitcoin_curve.n if child_key == 0: # Incredibly unlucky choice return None child_depth = parent_key.depth + 1 return HDPrivateKey(key=child_key, chain_code=Ir, index=i, depth=child_depth, parent_fingerprint=parent_key.fingerprint) def __init__(self, key, chain_code, index, depth, parent_fingerprint=b'\x00\x00\x00\x00'): if index < 0 or index > 0xffffffff: raise ValueError("index is out of range: 0 <= index <= 2**32 - 1") private_key = PrivateKey(key) HDKey.__init__(self, private_key, chain_code, index, depth, parent_fingerprint) self._public_key = None @property def public_key(self): """ Returns the public key associated with this private key. Returns: HDPublicKey: The HDPublicKey object that corresponds to this private key. """ if self._public_key is None: self._public_key = HDPublicKey(x=self._key.public_key.point.x, y=self._key.public_key.point.y, chain_code=self.chain_code, index=self.index, depth=self.depth, parent_fingerprint=self.parent_fingerprint) return self._public_key def raw_sign(self, message, do_hash=True): """ Signs message using the underlying non-extended private key. Args: message (bytes): The message to be signed. If a string is provided it is assumed the encoding is 'ascii' and converted to bytes. If this is not the case, it is up to the caller to convert the string to bytes appropriately and pass in the bytes. do_hash (bool): True if the message should be hashed prior to signing, False if not. This should always be left as True except in special situations which require doing the hash outside (e.g. handling Bitcoin bugs). Returns: ECPointAffine: a raw point (r = pt.x, s = pt.y) which is the signature. """ return self._key.raw_sign(message, do_hash) def sign(self, message, do_hash=True): """ Signs message using the underlying non-extended private key. Note: This differs from `raw_sign()` since it returns a Signature object. Args: message (bytes or str): The message to be signed. If a string is provided it is assumed the encoding is 'ascii' and converted to bytes. If this is not the case, it is up to the caller to convert the string to bytes appropriately and pass in the bytes. do_hash (bool): True if the message should be hashed prior to signing, False if not. This should always be left as True except in special situations which require doing the hash outside (e.g. handling Bitcoin bugs). Returns: Signature: The signature corresponding to message. """ return self._key.sign(message, do_hash) def sign_bitcoin(self, message, compressed=False): """ Signs a message using the underlying non-extended private key such that it is compatible with bitcoind, bx, and other Bitcoin clients/nodes/utilities. Note: 0x18 + b\"Bitcoin Signed Message:" + newline + len(message) is prepended to the message before signing. Args: message (bytes or str): Message to be signed. compressed (bool): True if the corresponding public key will be used in compressed format. False if the uncompressed version is used. Returns: bytes: A Base64-encoded byte string of the signed message. The first byte of the encoded message contains information about how to recover the public key. In bitcoind parlance, this is the magic number containing the recovery ID and whether or not the key was compressed or not. (This function always processes full, uncompressed public-keys, so the magic number will always be either 27 or 28). """ return self._key.sign_bitcoin(message, compressed) @property def identifier(self): """ Returns the identifier for the key. A key's identifier and fingerprint are defined as: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#key-identifiers In this case, it will return the RIPEMD-160 hash of the corresponding public key. Returns: bytes: A 20-byte RIPEMD-160 hash. """ return self.public_key.hash160() def __int__(self): return int(self.key) class HDPublicKey(HDKey, PublicKeyBase): """ Implements an HD Public Key according to BIP-0032: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki For the vast majority of use cases, the static function HDPublicKey.from_parent() will be used rather than directly constructing an object. Args: x (int): x component of the point representing the public key. y (int): y component of the point representing the public key. chain_code (bytes): The chain code associated with the HD key. depth (int): How many levels below the master node this key is. By definition, depth = 0 for the master node. index (int): A value between 0 and 0xffffffff indicating the child number. Values >= 0x80000000 are considered hardened children. parent_fingerprint (bytes): The fingerprint of the parent node. This is 0x00000000 for the master node. Returns: HDPublicKey: An HDPublicKey object. """ MAINNET_VERSION = 0x0488B21E TESTNET_VERSION = 0x043587CF @staticmethod def from_parent(parent_key, i): """ """ if isinstance(parent_key, HDPrivateKey): # Get child private key return HDPrivateKey.from_parent(parent_key, i).public_key elif isinstance(parent_key, HDPublicKey): if i & 0x80000000: raise ValueError("Can't generate a hardened child key from a parent public key.") else: I = hmac.new(parent_key.chain_code, parent_key.compressed_bytes + i.to_bytes(length=4, byteorder='big'), hashlib.sha512).digest() Il, Ir = I[:32], I[32:] parse_Il = int.from_bytes(Il, 'big') if parse_Il >= bitcoin_curve.n: return None temp_priv_key = PrivateKey(parse_Il) Ki = temp_priv_key.public_key.point + parent_key._key.point if Ki.infinity: return None child_depth = parent_key.depth + 1 return HDPublicKey(x=Ki.x, y=Ki.y, chain_code=Ir, index=i, depth=child_depth, parent_fingerprint=parent_key.fingerprint) else: raise TypeError("parent_key must be either a HDPrivateKey or HDPublicKey object") def __init__(self, x, y, chain_code, index, depth, parent_fingerprint=b'\x00\x00\x00\x00'): key = PublicKey(x, y) HDKey.__init__(self, key, chain_code, index, depth, parent_fingerprint) PublicKeyBase.__init__(self) @property def identifier(self): """ Returns the identifier for the key. A key's identifier and fingerprint are defined as: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#key-identifiers In this case, it will return the RIPEMD-160 hash of the non-extended public key. Returns: bytes: A 20-byte RIPEMD-160 hash. """ return self.hash160() def hash160(self, compressed=True): """ Return the RIPEMD-160 hash of the SHA-256 hash of the non-extended public key. Note: This always returns the hash of the compressed version of the public key. Returns: bytes: RIPEMD-160 byte string. """ return self._key.hash160(True) def address(self, compressed=True, testnet=False): """ Address property that returns the Base58Check encoded version of the HASH160. Args: compressed (bool): Whether or not the compressed key should be used. testnet (bool): Whether or not the key is intended for testnet usage. False indicates mainnet usage. Returns: bytes: Base58Check encoded string """ return self._key.address(True, testnet) def verify(self, message, signature, do_hash=True): """ Verifies that message was appropriately signed. Args: message (bytes): The message to be verified. signature (Signature): A signature object. do_hash (bool): True if the message should be hashed prior to signing, False if not. This should always be left as True except in special situations which require doing the hash outside (e.g. handling Bitcoin bugs). Returns: verified (bool): True if the signature is verified, False otherwise. """ return self._key.verify(message, signature, do_hash) @property def compressed_bytes(self): """ Byte string corresponding to a compressed representation of this public key. Returns: b (bytes): A 33-byte long byte string. """ return self._key.compressed_bytes
fe502e4a4513f0704957d34c893ff395672b0da3
8150b3e15b39199b231619f79b20f64eb941507e
/lenstronomy/SimulationAPI/observation_api.py
690f1a850232b776b2409ce4b9aa0dc482937e2b
[ "BSD-3-Clause" ]
permissive
sibirrer/lenstronomy
8d48ca125fc588a1f97033255746afcdeaaa1e76
902a0f318da46bd444d408853f40f744603e2f35
refs/heads/main
2023-08-21T19:55:18.222805
2023-08-21T19:31:01
2023-08-21T19:31:01
80,772,893
115
76
null
null
null
null
UTF-8
Python
false
false
13,290
py
observation_api.py
import numpy as np import warnings import lenstronomy.Util.data_util as data_util from lenstronomy.Data.psf import PSF from lenstronomy.Util.package_util import exporter export, __all__ = exporter() @export class Instrument(object): """ basic access points to instrument properties """ def __init__(self, pixel_scale, read_noise=None, ccd_gain=None): """ :param read_noise: std of noise generated by read-out (in units of electrons) :param pixel_scale: scale (in arcseconds) of pixels :param ccd_gain: electrons/ADU (analog-to-digital unit). A gain of 8 means that the camera digitizes the CCD signal so that each ADU corresponds to 8 photoelectrons. """ if ccd_gain is not None: ccd_gain = float(ccd_gain) self.ccd_gain = ccd_gain self._read_noise = read_noise self.pixel_scale = pixel_scale @export class Observation(object): """ basic access point to observation properties """ def __init__(self, exposure_time, sky_brightness=None, seeing=None, num_exposures=1, psf_type='GAUSSIAN', kernel_point_source=None, truncation=5, point_source_supersampling_factor=1): """ :param exposure_time: exposure time per image (in seconds) :param sky_brightness: sky brightness (in magnitude per square arcseconds) :param seeing: full width at half maximum of the PSF (if not specific psf_model is specified) :param num_exposures: number of exposures that are combined :param psf_type: string, type of PSF ('GAUSSIAN' and 'PIXEL' supported) :param kernel_point_source: 2d numpy array, model of PSF centered with odd number of pixels per axis (optional when psf_type='PIXEL' is chosen) :param point_source_supersampling_factor: int, supersampling factor of kernel_point_source (optional when psf_type='PIXEL' is chosen) """ self._exposure_time = exposure_time self._sky_brightness_ = sky_brightness self._num_exposures = num_exposures self._seeing = seeing self._psf_type = psf_type self._truncation = truncation self._kernel_point_source = kernel_point_source self._point_source_supersampling_factor = point_source_supersampling_factor def update_observation(self, exposure_time=None, sky_brightness=None, seeing=None, num_exposures=None, psf_type=None, kernel_point_source=None): """ updates class instance with new properties if specific argument is not None :param exposure_time: exposure time per image (in seconds) :param sky_brightness: sky brightness (in magnitude per square arcseconds) :param seeing: full width at half maximum of the PSF (if not specific psf_model is specified) :param num_exposures: number of exposures that are combined :param psf_type: string, type of PSF ('GAUSSIAN' and 'PIXEL' supported) :param kernel_point_source: 2d numpy array, model of PSF centered with odd number of pixels per axis (optional when psf_type='PIXEL' is chosen) :return: None, updated class instance """ if exposure_time is not None: self._exposure_time = exposure_time if sky_brightness is not None: self._sky_brightness_ = sky_brightness if seeing is not None: self._seeing = seeing if num_exposures is not None: self._num_exposures = num_exposures if psf_type is not None: self._psf_type = psf_type if kernel_point_source is not None: self._kernel_point_source = kernel_point_source @property def _sky_brightness(self): if self._sky_brightness_ is None: raise ValueError('sky_brightness is not set in the class instance!') return self._sky_brightness_ @property def exposure_time(self): """ total exposure time :return: summed exposure time """ return self._exposure_time * self._num_exposures @property def kwargs_psf(self): """ keyword arguments to initiate a PSF() class :return: kwargs_psf """ if self._psf_type == 'GAUSSIAN': psf_type = "GAUSSIAN" fwhm = self._seeing truncation = self._truncation kwargs_psf = {'psf_type': psf_type, 'fwhm': fwhm, 'truncation': truncation} elif self._psf_type == 'PIXEL': if self._kernel_point_source is not None: kwargs_psf = {'psf_type': "PIXEL", 'kernel_point_source': self._kernel_point_source, 'point_source_supersampling_factor': self._point_source_supersampling_factor} else: raise ValueError("You need to create the class instance with a psf_model!") elif self._psf_type == 'NONE': kwargs_psf = {'psf_type': "NONE"} else: raise ValueError("psf_type %s not supported!" % self._psf_type) return kwargs_psf @property def psf_class(self): """ creates instance of PSF() class based on knowledge of the observations For the full possibility of how to create such an instance, see the PSF() class documentation :return: instance of PSF() class """ psf_class = PSF(**self.kwargs_psf) return psf_class @export class SingleBand(Instrument, Observation): """ class that combines Instrument and Observation """ def __init__(self, pixel_scale, exposure_time, magnitude_zero_point, read_noise=None, ccd_gain=None, sky_brightness=None, seeing=None, num_exposures=1, psf_type='GAUSSIAN', kernel_point_source=None, truncation=5, point_source_supersampling_factor=1, data_count_unit='e-', background_noise=None): """ :param read_noise: std of noise generated by read-out (in units of electrons) :param pixel_scale: scale (in arcseconds) of pixels :param ccd_gain: electrons/ADU (analog-to-digital unit). A gain of 8 means that the camera digitizes the CCD signal so that each ADU corresponds to 8 photoelectrons. :param exposure_time: exposure time per image (in seconds) :param sky_brightness: sky brightness (in magnitude per square arcseconds in units of electrons) :param seeing: Full-Width-at-Half-Maximum (FWHM) of PSF :param magnitude_zero_point: magnitude in which 1 count (e-) per second per arcsecond square is registered :param num_exposures: number of exposures that are combined :param point_source_supersampling_factor: int, supersampling factor of kernel_point_source (optional when psf_type='PIXEL' is chosen) :param data_count_unit: string, unit of the data (not noise properties - see other definitions), 'e-': (electrons assumed to be IID), 'ADU': (analog-to-digital unit) :param background_noise: sqrt(variance of background) as a total contribution from readnoise, sky brightness etc. in units of the data_count_units (e- or ADU) If you set this parameter, it will use this value regardless of the values of read_noise, sky_brightness """ Instrument.__init__(self, pixel_scale, read_noise, ccd_gain) # read_noise and ccd_gain can be None Observation.__init__(self, exposure_time=exposure_time, sky_brightness=sky_brightness, seeing=seeing, num_exposures=num_exposures, psf_type=psf_type, kernel_point_source=kernel_point_source, point_source_supersampling_factor=point_source_supersampling_factor, truncation=truncation) if data_count_unit not in ['e-', 'ADU']: raise ValueError("count_unit type %s not supported! Please choose e- or ADU." % data_count_unit) self._data_count_unit = data_count_unit self._background_noise = background_noise self._magnitude_zero_point = magnitude_zero_point @property def sky_brightness(self): """ :return: sky brightness (counts per square arcseconds in unit of data (e- or ADU's) per unit time) """ cps = self._sky_brightness_cps if self._data_count_unit == 'ADU': cps /= self.ccd_gain return cps @property def _sky_brightness_cps(self): """ :return: sky brightness in electrons per second """ cps = data_util.magnitude2cps(self._sky_brightness, magnitude_zero_point=self._magnitude_zero_point) return cps @property def background_noise(self): """ Gaussian sigma of noise level per pixel in counts (e- or ADU) per second :return: sqrt(variance) of background noise level in data units """ if self._background_noise is None: if self._read_noise is None: raise ValueError('read_noise is not specified to evaluate background noise!') bkg_noise = data_util.bkg_noise(self._read_noise, self._exposure_time, self._sky_brightness_cps, self.pixel_scale, num_exposures=self._num_exposures) if self._data_count_unit == 'ADU': bkg_noise /= self.ccd_gain return bkg_noise else: if self._read_noise is not None: warnings.warn('read noise is specified but not used for noise properties. Background noise is estimated' ' from "background_noise" argument.') return self._background_noise def flux_noise(self, flux): """ :param flux: float or array, units of count_unit/seconds, needs to be positive semi-definite in the flux value :return: Gaussian approximation of Poisson statistics in IIDs sqrt(variance) """ flux_iid = self.flux_iid(flux) variance = flux_iid # the variance of a Poisson distribution is the IID count number if isinstance(variance, int) or isinstance(variance, float): variance = max(variance, 0) else: variance[flux_iid < 0] = 0 # make sure negative pixels do not lead to variances (or nans) in the return noise = np.sqrt(variance) / self.exposure_time if self._data_count_unit == 'ADU': noise /= self.ccd_gain return noise def flux_iid(self, flux_per_second): """ IID counts. This can be used by lenstronomy to estimate the Poisson errors keeping the assumption that the counts are IIDs (even if they are not). :param flux_per_second: flux count per second in the units set in this class (ADU or e-) :return: IID count number """ if self._data_count_unit == 'ADU': exp_time = self.ccd_gain * self.exposure_time else: exp_time = self.exposure_time return exp_time * flux_per_second def noise_for_model(self, model, background_noise=True, poisson_noise=True, seed=None): """ :param model: 2d numpy array of modelled image (with pixels in units of data specified in class) :param background_noise: bool, if True, adds background noise :param poisson_noise: bool, if True, adds Poisson noise of modelled flux :param seed: int, seed number to be used to render the noise properties. If None, then uses the current numpy.random seed to render the noise properties. :return: noise realization corresponding to the model """ if seed is not None: g = np.random.RandomState(seed=seed) else: g = np.random nx, ny = np.shape(model) noise = np.zeros_like(model) if background_noise is True: noise += g.randn(nx, ny) * self.background_noise if poisson_noise is True: noise += g.randn(nx, ny) * self.flux_noise(model) return noise def estimate_noise(self, image): """ :param image: noisy data, background subtracted :return: estimated noise map sqrt(variance) for each pixel as estimated from the instrument and observation """ return np.sqrt(self.background_noise**2 + self.flux_noise(image)**2) def magnitude2cps(self, magnitude): """ converts an apparent magnitude to counts per second (in units of the data) The zero point of an instrument, by definition, is the magnitude of an object that produces one count (or data number, DN) per second. The magnitude of an arbitrary object producing DN counts in an observation of length EXPTIME is therefore: m = -2.5 x log10(DN / EXPTIME) + ZEROPOINT :param magnitude: magnitude of object :return: counts per second of object """ # compute counts in units of e- or ADS (depending on data and magnitude zero point defined) cps = data_util.magnitude2cps(magnitude, magnitude_zero_point=self._magnitude_zero_point) if self._data_count_unit == 'ADU': cps /= self.ccd_gain return cps
650702b0061979988570a2e80affc3ce968f119a
10ddfb2d43a8ec5d47ce35dc0b8acf4fd58dea94
/Python/distinct-echo-substrings.py
1f065c5472e98c2dece05708af253fb69eb80583
[ "MIT" ]
permissive
kamyu104/LeetCode-Solutions
f54822059405ef4df737d2e9898b024f051fd525
4dc4e6642dc92f1983c13564cc0fd99917cab358
refs/heads/master
2023-09-02T13:48:26.830566
2023-08-28T10:11:12
2023-08-28T10:11:12
152,631,182
4,549
1,651
MIT
2023-05-31T06:10:33
2018-10-11T17:38:35
C++
UTF-8
Python
false
false
3,601
py
distinct-echo-substrings.py
# Time: O(n^2 + d), d is the duplicated of result substrings size # Space: O(r), r is the size of result substrings set class Solution(object): def distinctEchoSubstrings(self, text): """ :type text: str :rtype: int """ def KMP(text, l, result): prefix = [-1]*(len(text)-l) j = -1 for i in xrange(1, len(prefix)): while j > -1 and text[l+j+1] != text[l+i]: j = prefix[j] if text[l+j+1] == text[l+i]: j += 1 prefix[i] = j if (j+1) and (i+1) % ((i+1) - (j+1)) == 0 and \ (i+1) // ((i+1) - (j+1)) % 2 == 0: result.add(text[l:l+i+1]) return len(prefix)-(prefix[-1]+1) \ if prefix[-1]+1 and len(prefix) % (len(prefix)-(prefix[-1]+1)) == 0 \ else float("inf") result = set() i, l = 0, len(text)-1 while i < l: # aaaaaaaaaaaaaaaaaaaaaaaaaaaaaabcdefabcdefabcdef l = min(l, i + KMP(text, i, result)); i += 1 return len(result) # Time: O(n^2 + d), d is the duplicated of result substrings size # Space: O(r), r is the size of result substrings set class Solution2(object): def distinctEchoSubstrings(self, text): """ :type text: str :rtype: int """ result = set() for l in xrange(1, len(text)//2+1): count = sum(text[i] == text[i+l] for i in xrange(l)) for i in xrange(len(text)-2*l): if count == l: result.add(text[i:i+l]) count += (text[i+l] == text[i+l+l]) - (text[i] == text[i+l]) if count == l: result.add(text[len(text)-2*l:len(text)-2*l+l]) return len(result) # Time: O(n^2 + d), d is the duplicated of result substrings size # Space: O(r), r is the size of result substrings set class Solution3(object): def distinctEchoSubstrings(self, text): """ :type text: str :rtype: int """ MOD = 10**9+7 D = 27 # a-z and '' result = set() for i in xrange(len(text)-1): left, right, pow_D = 0, 0, 1 for l in xrange(1, min(i+2, len(text)-i)): left = (D*left + (ord(text[i-l+1])-ord('a')+1)) % MOD right = (pow_D*(ord(text[i+l])-ord('a')+1) + right) % MOD if left == right: # assumed no collision result.add(left) pow_D = (pow_D*D) % MOD return len(result) # Time: O(n^3 + d), d is the duplicated of result substrings size # Space: O(r), r is the size of result substrings set class Solution_TLE(object): def distinctEchoSubstrings(self, text): """ :type text: str :rtype: int """ def compare(text, l, s1, s2): for i in xrange(l): if text[s1+i] != text[s2+i]: return False return True MOD = 10**9+7 D = 27 # a-z and '' result = set() for i in xrange(len(text)): left, right, pow_D = 0, 0, 1 for l in xrange(1, min(i+2, len(text)-i)): left = (D*left + (ord(text[i-l+1])-ord('a')+1)) % MOD right = (pow_D*(ord(text[i+l])-ord('a')+1) + right) % MOD if left == right and compare(text, l, i-l+1, i+1): result.add(text[i+1:i+1+l]) pow_D = (pow_D*D) % MOD return len(result)
07f4bf681dac89025c8e4b294aa4ee847406dc43
0ba2e5061577f6286ff9265ef1df9aca96769445
/machine_learning/sentiment_analysis_twitter/Deep Learning/sentiment_cnn.py
819c19a881caf404343d6c4aab00d4ad377a8f4a
[ "CC0-1.0" ]
permissive
ZoranPandovski/al-go-rithms
68d5d02f80a61de9baf8e50a81a52e7d0b3983a0
4ae6ba54e90af14af236e03e435eb0402dcac787
refs/heads/master
2023-09-04T16:04:04.321676
2023-06-06T15:22:16
2023-06-06T15:22:16
93,438,176
1,421
2,445
CC0-1.0
2023-06-15T14:24:28
2017-06-05T19:20:20
Jupyter Notebook
UTF-8
Python
false
false
1,592
py
sentiment_cnn.py
import numpy as np import pandas as pd from keras.layers import Input, Dense, Bidirectional, Embedding, Dropout, Flatten from keras.layers import concatenate, SpatialDropout1D, GlobalAveragePooling1D, GlobalMaxPooling1D from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from keras.models import Model from sklearn.model_selection import train_test_split from utils import * maxlen = 150 max_features = 2500 gop = pd.read_csv('Data/gop.csv') data = gop[['text','sentiment']] # Balance Negative - Positive tweets data[data['sentiment'] == 'Negative'] = data[data['sentiment'] == 'Negative'][:2236] data = data.dropna() data['sentiment'].value_counts() #Negative: 8493; Neutral: 3142; Positive: 2236 X, Y = format_data(data, max_features, maxlen) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state=42) # Input shape inp = Input(shape=(maxlen,)) # Embedding and CNN x = Embedding(max_features, 150)(inp) x = SpatialDropout1D(0.25)(x) x = Conv1D(filters=32, kernel_size=3, padding='same', activation='relu')(x) x = MaxPooling1D(pool_size=2)(x) x = Conv1D(filters=16, kernel_size=5, padding='same', activation='relu')(x) x = MaxPooling1D(pool_size=4)(x) x = Flatten()(x) # Output layer output = Dense(1, activation='sigmoid')(x) model = Model(inputs=inp, outputs=output) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, Y_train, epochs=5, batch_size=32, verbose=1) results = model.predict(X_test, batch_size=1, verbose=1) run_test(results, Y_test)
736280c58da00a16f404f5b4a72280841ea84398
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/domain/CreditResult.py
8d2525ee3bb58dde79eaaac5d267a9e344dcf688
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
6,171
py
CreditResult.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class CreditResult(object): def __init__(self): self._credit_line = None self._credit_no = None self._credit_term = None self._credit_term_unit = None self._effective_date = None self._expire_date = None self._fee_rate = None self._interest_rate = None self._loan_term = None self._loan_term_unit = None self._repayment_mode = None @property def credit_line(self): return self._credit_line @credit_line.setter def credit_line(self, value): self._credit_line = value @property def credit_no(self): return self._credit_no @credit_no.setter def credit_no(self, value): self._credit_no = value @property def credit_term(self): return self._credit_term @credit_term.setter def credit_term(self, value): self._credit_term = value @property def credit_term_unit(self): return self._credit_term_unit @credit_term_unit.setter def credit_term_unit(self, value): self._credit_term_unit = value @property def effective_date(self): return self._effective_date @effective_date.setter def effective_date(self, value): self._effective_date = value @property def expire_date(self): return self._expire_date @expire_date.setter def expire_date(self, value): self._expire_date = value @property def fee_rate(self): return self._fee_rate @fee_rate.setter def fee_rate(self, value): self._fee_rate = value @property def interest_rate(self): return self._interest_rate @interest_rate.setter def interest_rate(self, value): self._interest_rate = value @property def loan_term(self): return self._loan_term @loan_term.setter def loan_term(self, value): self._loan_term = value @property def loan_term_unit(self): return self._loan_term_unit @loan_term_unit.setter def loan_term_unit(self, value): self._loan_term_unit = value @property def repayment_mode(self): return self._repayment_mode @repayment_mode.setter def repayment_mode(self, value): self._repayment_mode = value def to_alipay_dict(self): params = dict() if self.credit_line: if hasattr(self.credit_line, 'to_alipay_dict'): params['credit_line'] = self.credit_line.to_alipay_dict() else: params['credit_line'] = self.credit_line if self.credit_no: if hasattr(self.credit_no, 'to_alipay_dict'): params['credit_no'] = self.credit_no.to_alipay_dict() else: params['credit_no'] = self.credit_no if self.credit_term: if hasattr(self.credit_term, 'to_alipay_dict'): params['credit_term'] = self.credit_term.to_alipay_dict() else: params['credit_term'] = self.credit_term if self.credit_term_unit: if hasattr(self.credit_term_unit, 'to_alipay_dict'): params['credit_term_unit'] = self.credit_term_unit.to_alipay_dict() else: params['credit_term_unit'] = self.credit_term_unit if self.effective_date: if hasattr(self.effective_date, 'to_alipay_dict'): params['effective_date'] = self.effective_date.to_alipay_dict() else: params['effective_date'] = self.effective_date if self.expire_date: if hasattr(self.expire_date, 'to_alipay_dict'): params['expire_date'] = self.expire_date.to_alipay_dict() else: params['expire_date'] = self.expire_date if self.fee_rate: if hasattr(self.fee_rate, 'to_alipay_dict'): params['fee_rate'] = self.fee_rate.to_alipay_dict() else: params['fee_rate'] = self.fee_rate if self.interest_rate: if hasattr(self.interest_rate, 'to_alipay_dict'): params['interest_rate'] = self.interest_rate.to_alipay_dict() else: params['interest_rate'] = self.interest_rate if self.loan_term: if hasattr(self.loan_term, 'to_alipay_dict'): params['loan_term'] = self.loan_term.to_alipay_dict() else: params['loan_term'] = self.loan_term if self.loan_term_unit: if hasattr(self.loan_term_unit, 'to_alipay_dict'): params['loan_term_unit'] = self.loan_term_unit.to_alipay_dict() else: params['loan_term_unit'] = self.loan_term_unit if self.repayment_mode: if hasattr(self.repayment_mode, 'to_alipay_dict'): params['repayment_mode'] = self.repayment_mode.to_alipay_dict() else: params['repayment_mode'] = self.repayment_mode return params @staticmethod def from_alipay_dict(d): if not d: return None o = CreditResult() if 'credit_line' in d: o.credit_line = d['credit_line'] if 'credit_no' in d: o.credit_no = d['credit_no'] if 'credit_term' in d: o.credit_term = d['credit_term'] if 'credit_term_unit' in d: o.credit_term_unit = d['credit_term_unit'] if 'effective_date' in d: o.effective_date = d['effective_date'] if 'expire_date' in d: o.expire_date = d['expire_date'] if 'fee_rate' in d: o.fee_rate = d['fee_rate'] if 'interest_rate' in d: o.interest_rate = d['interest_rate'] if 'loan_term' in d: o.loan_term = d['loan_term'] if 'loan_term_unit' in d: o.loan_term_unit = d['loan_term_unit'] if 'repayment_mode' in d: o.repayment_mode = d['repayment_mode'] return o
973a42b57c5afbd5bdbc0c84fed173e00d98b9b5
52f9d2edfe80b683f33832ecf81317ef04da7cd7
/src/pygubu/plugins/tk/__init__.py
825a2eb4647fc19ffc4bdab800498fdf234b7a2f
[ "MIT" ]
permissive
alejandroautalan/pygubu
bd1dd455509adadbe91338dec8588c76d4629a50
493eaf7f1954d289d996f6b87d35032861f6baac
refs/heads/master
2023-09-01T14:43:16.502055
2023-07-21T01:35:41
2023-07-21T01:35:41
8,170,146
2,026
289
MIT
2023-07-04T03:53:27
2013-02-13T00:02:24
Python
UTF-8
Python
false
false
443
py
__init__.py
from pygubu.api.v1 import BuilderLoaderPlugin class StandardTKWidgetsLoader(BuilderLoaderPlugin): _module = "pygubu.plugins.tk.tkstdwidgets" def do_activate(self) -> bool: return True def get_module_for(self, identifier: str) -> str: return self._module def get_all_modules(self): return (self._module,) def can_load(self, identifier: str) -> bool: return identifier.startswith("tk.")
5139851a8762b8b98399a781ccbd102191beb5e2
3daa53a2190f365ee2e2acae39ca4e84919f2f50
/swift/common/middleware/staticweb.py
c01f720f14e4ae123a829bac317dd456048c6ba1
[ "Apache-2.0" ]
permissive
openstack/swift
4c8e4a14c1c6f7efb049f983ede28e89bd2e9140
f06e5369579599648cc78e4b556887bc6d978c2b
refs/heads/master
2023-08-28T15:04:33.200849
2023-08-24T20:35:07
2023-08-24T21:05:48
790,019
2,370
957
Apache-2.0
2023-06-22T02:45:53
2010-07-22T01:50:07
Python
UTF-8
Python
false
false
24,807
py
staticweb.py
# Copyright (c) 2010-2016 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """ This StaticWeb WSGI middleware will serve container data as a static web site with index file and error file resolution and optional file listings. This mode is normally only active for anonymous requests. When using keystone for authentication set ``delay_auth_decision = true`` in the authtoken middleware configuration in your ``/etc/swift/proxy-server.conf`` file. If you want to use it with authenticated requests, set the ``X-Web-Mode: true`` header on the request. The ``staticweb`` filter should be added to the pipeline in your ``/etc/swift/proxy-server.conf`` file just after any auth middleware. Also, the configuration section for the ``staticweb`` middleware itself needs to be added. For example:: [DEFAULT] ... [pipeline:main] pipeline = catch_errors healthcheck proxy-logging cache ratelimit tempauth staticweb proxy-logging proxy-server ... [filter:staticweb] use = egg:swift#staticweb Any publicly readable containers (for example, ``X-Container-Read: .r:*``, see :ref:`acls` for more information on this) will be checked for X-Container-Meta-Web-Index and X-Container-Meta-Web-Error header values:: X-Container-Meta-Web-Index <index.name> X-Container-Meta-Web-Error <error.name.suffix> If X-Container-Meta-Web-Index is set, any <index.name> files will be served without having to specify the <index.name> part. For instance, setting ``X-Container-Meta-Web-Index: index.html`` will be able to serve the object .../pseudo/path/index.html with just .../pseudo/path or .../pseudo/path/ If X-Container-Meta-Web-Error is set, any errors (currently just 401 Unauthorized and 404 Not Found) will instead serve the .../<status.code><error.name.suffix> object. For instance, setting ``X-Container-Meta-Web-Error: error.html`` will serve .../404error.html for requests for paths not found. For pseudo paths that have no <index.name>, this middleware can serve HTML file listings if you set the ``X-Container-Meta-Web-Listings: true`` metadata item on the container. If listings are enabled, the listings can have a custom style sheet by setting the X-Container-Meta-Web-Listings-CSS header. For instance, setting ``X-Container-Meta-Web-Listings-CSS: listing.css`` will make listings link to the .../listing.css style sheet. If you "view source" in your browser on a listing page, you will see the well defined document structure that can be styled. By default, the listings will be rendered with a label of "Listing of /v1/account/container/path". This can be altered by setting a ``X-Container-Meta-Web-Listings-Label: <label>``. For example, if the label is set to "example.com", a label of "Listing of example.com/path" will be used instead. The content-type of directory marker objects can be modified by setting the ``X-Container-Meta-Web-Directory-Type`` header. If the header is not set, application/directory is used by default. Directory marker objects are 0-byte objects that represent directories to create a simulated hierarchical structure. Example usage of this middleware via ``swift``: Make the container publicly readable:: swift post -r '.r:*' container You should be able to get objects directly, but no index.html resolution or listings. Set an index file directive:: swift post -m 'web-index:index.html' container You should be able to hit paths that have an index.html without needing to type the index.html part. Turn on listings:: swift post -r '.r:*,.rlistings' container swift post -m 'web-listings: true' container Now you should see object listings for paths and pseudo paths that have no index.html. Enable a custom listings style sheet:: swift post -m 'web-listings-css:listings.css' container Set an error file:: swift post -m 'web-error:error.html' container Now 401's should load 401error.html, 404's should load 404error.html, etc. Set Content-Type of directory marker object:: swift post -m 'web-directory-type:text/directory' container Now 0-byte objects with a content-type of text/directory will be treated as directories rather than objects. """ import json import six import time from six.moves.urllib.parse import urlparse from swift.common.request_helpers import html_escape from swift.common.utils import human_readable, split_path, config_true_value, \ quote, get_logger from swift.common.registry import register_swift_info from swift.common.wsgi import make_env, WSGIContext from swift.common.http import is_success, is_redirection, HTTP_NOT_FOUND from swift.common.swob import Response, HTTPMovedPermanently, HTTPNotFound, \ Request, wsgi_quote, wsgi_to_str, str_to_wsgi from swift.proxy.controllers.base import get_container_info class _StaticWebContext(WSGIContext): """ The Static Web WSGI middleware filter; serves container data as a static web site. See `staticweb`_ for an overview. This _StaticWebContext is used by StaticWeb with each request that might need to be handled to make keeping contextual information about the request a bit simpler than storing it in the WSGI env. :param staticweb: The staticweb middleware object in use. :param version: A WSGI string representation of the swift api version. :param account: A WSGI string representation of the account name. :param container: A WSGI string representation of the container name. :param obj: A WSGI string representation of the object name. """ def __init__(self, staticweb, version, account, container, obj): WSGIContext.__init__(self, staticweb.app) self.version = version self.account = account self.container = container self.obj = obj self.app = staticweb.app self.url_scheme = staticweb.url_scheme self.url_host = staticweb.url_host self.agent = '%(orig)s StaticWeb' # Results from the last call to self._get_container_info. self._index = self._error = self._listings = self._listings_css = \ self._dir_type = self._listings_label = None def _error_response(self, response, env, start_response): """ Sends the error response to the remote client, possibly resolving a custom error response body based on x-container-meta-web-error. :param response: The error response we should default to sending. :param env: The original request WSGI environment. :param start_response: The WSGI start_response hook. """ if not self._error: start_response(self._response_status, self._response_headers, self._response_exc_info) return response save_response_status = self._response_status save_response_headers = self._response_headers save_response_exc_info = self._response_exc_info resp = self._app_call(make_env( env, 'GET', '/%s/%s/%s/%s%s' % ( self.version, self.account, self.container, self._get_status_int(), self._error), self.agent, swift_source='SW')) if is_success(self._get_status_int()): start_response(save_response_status, self._response_headers, self._response_exc_info) return resp start_response(save_response_status, save_response_headers, save_response_exc_info) return response def _get_container_info(self, env): """ Retrieves x-container-meta-web-index, x-container-meta-web-error, x-container-meta-web-listings, x-container-meta-web-listings-css, and x-container-meta-web-directory-type from memcache or from the cluster and stores the result in memcache and in self._index, self._error, self._listings, self._listings_css and self._dir_type. :param env: The WSGI environment dict. :return: The container_info dict. """ self._index = self._error = self._listings = self._listings_css = \ self._dir_type = None container_info = get_container_info( env, self.app, swift_source='SW') if is_success(container_info['status']): meta = container_info.get('meta', {}) self._index = meta.get('web-index', '').strip() self._error = meta.get('web-error', '').strip() self._listings = meta.get('web-listings', '').strip() self._listings_label = meta.get('web-listings-label', '').strip() self._listings_css = meta.get('web-listings-css', '').strip() self._dir_type = meta.get('web-directory-type', '').strip() return container_info def _listing(self, env, start_response, prefix=None): """ Sends an HTML object listing to the remote client. :param env: The original WSGI environment dict. :param start_response: The original WSGI start_response hook. :param prefix: Any WSGI-str prefix desired for the container listing. """ label = wsgi_to_str(env['PATH_INFO']) if self._listings_label: groups = wsgi_to_str(env['PATH_INFO']).split('/') label = '{0}/{1}'.format(self._listings_label, '/'.join(groups[4:])) if not config_true_value(self._listings): body = '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 ' \ 'Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">\n' \ '<html>\n' \ '<head>\n' \ '<title>Listing of %s</title>\n' % html_escape(label) if self._listings_css: body += ' <link rel="stylesheet" type="text/css" ' \ 'href="%s" />\n' % self._build_css_path(prefix or '') else: body += ' <style type="text/css">\n' \ ' h1 {font-size: 1em; font-weight: bold;}\n' \ ' p {font-size: 2}\n' \ ' </style>\n' body += '</head>\n<body>' \ ' <h1>Web Listing Disabled</h1>' \ ' <p>The owner of this web site has disabled web listing.' \ ' <p>If you are the owner of this web site, you can enable' \ ' web listing by setting X-Container-Meta-Web-Listings.</p>' if self._index: body += '<h1>Index File Not Found</h1>' \ ' <p>The owner of this web site has set ' \ ' <b>X-Container-Meta-Web-Index: %s</b>. ' \ ' However, this file is not found.</p>' % self._index body += ' </body>\n</html>\n' resp = HTTPNotFound(body=body)(env, self._start_response) return self._error_response(resp, env, start_response) tmp_env = make_env( env, 'GET', '/%s/%s/%s' % ( self.version, self.account, self.container), self.agent, swift_source='SW') tmp_env['QUERY_STRING'] = 'delimiter=/' if prefix: tmp_env['QUERY_STRING'] += '&prefix=%s' % wsgi_quote(prefix) else: prefix = '' resp = self._app_call(tmp_env) if not is_success(self._get_status_int()): return self._error_response(resp, env, start_response) listing = None body = b''.join(resp) if body: listing = json.loads(body) if prefix and not listing: resp = HTTPNotFound()(env, self._start_response) return self._error_response(resp, env, start_response) headers = {'Content-Type': 'text/html; charset=UTF-8'} body = '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 ' \ 'Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">\n' \ '<html>\n' \ ' <head>\n' \ ' <title>Listing of %s</title>\n' % \ html_escape(label) if self._listings_css: body += ' <link rel="stylesheet" type="text/css" ' \ 'href="%s" />\n' % (self._build_css_path(prefix)) else: body += ' <style type="text/css">\n' \ ' h1 {font-size: 1em; font-weight: bold;}\n' \ ' th {text-align: left; padding: 0px 1em 0px 1em;}\n' \ ' td {padding: 0px 1em 0px 1em;}\n' \ ' a {text-decoration: none;}\n' \ ' </style>\n' body += ' </head>\n' \ ' <body>\n' \ ' <h1 id="title">Listing of %s</h1>\n' \ ' <table id="listing">\n' \ ' <tr id="heading">\n' \ ' <th class="colname">Name</th>\n' \ ' <th class="colsize">Size</th>\n' \ ' <th class="coldate">Date</th>\n' \ ' </tr>\n' % html_escape(label) if prefix: body += ' <tr id="parent" class="item">\n' \ ' <td class="colname"><a href="../">../</a></td>\n' \ ' <td class="colsize">&nbsp;</td>\n' \ ' <td class="coldate">&nbsp;</td>\n' \ ' </tr>\n' for item in listing: if 'subdir' in item: subdir = item['subdir'] if six.PY3 else \ item['subdir'].encode('utf-8') if prefix: subdir = subdir[len(wsgi_to_str(prefix)):] body += ' <tr class="item subdir">\n' \ ' <td class="colname"><a href="%s">%s</a></td>\n' \ ' <td class="colsize">&nbsp;</td>\n' \ ' <td class="coldate">&nbsp;</td>\n' \ ' </tr>\n' % \ (quote(subdir), html_escape(subdir)) for item in listing: if 'name' in item: name = item['name'] if six.PY3 else \ item['name'].encode('utf-8') if prefix: name = name[len(wsgi_to_str(prefix)):] content_type = item['content_type'] if six.PY3 else \ item['content_type'].encode('utf-8') bytes = human_readable(item['bytes']) last_modified = ( html_escape(item['last_modified'] if six.PY3 else item['last_modified'].encode('utf-8')). split('.')[0].replace('T', ' ')) body += ' <tr class="item %s">\n' \ ' <td class="colname"><a href="%s">%s</a></td>\n' \ ' <td class="colsize">%s</td>\n' \ ' <td class="coldate">%s</td>\n' \ ' </tr>\n' % \ (' '.join('type-' + html_escape(t.lower()) for t in content_type.split('/')), quote(name), html_escape(name), bytes, last_modified) body += ' </table>\n' \ ' </body>\n' \ '</html>\n' resp = Response(headers=headers, body=body) return resp(env, start_response) def _build_css_path(self, prefix=''): """ Constructs a relative path from a given prefix within the container. URLs and paths starting with '/' are not modified. :param prefix: The prefix for the container listing. """ if self._listings_css.startswith(('/', 'http://', 'https://')): css_path = quote(self._listings_css, ':/') else: css_path = '../' * prefix.count('/') + quote(self._listings_css) return css_path def _redirect_with_slash(self, env_, start_response): env = {} env.update(env_) if self.url_scheme: env['wsgi.url_scheme'] = self.url_scheme if self.url_host: env['HTTP_HOST'] = self.url_host resp = HTTPMovedPermanently( location=wsgi_quote(env['PATH_INFO'] + '/')) return resp(env, start_response) def handle_container(self, env, start_response): """ Handles a possible static web request for a container. :param env: The original WSGI environment dict. :param start_response: The original WSGI start_response hook. """ container_info = self._get_container_info(env) req = Request(env) req.acl = container_info['read_acl'] # we checked earlier that swift.authorize is set in env aresp = env['swift.authorize'](req) if aresp: resp = aresp(env, self._start_response) return self._error_response(resp, env, start_response) if not self._listings and not self._index: if config_true_value(env.get('HTTP_X_WEB_MODE', 'f')): return HTTPNotFound()(env, start_response) return self.app(env, start_response) if not env['PATH_INFO'].endswith('/'): return self._redirect_with_slash(env, start_response) if not self._index: return self._listing(env, start_response) tmp_env = dict(env) tmp_env['HTTP_USER_AGENT'] = \ '%s StaticWeb' % env.get('HTTP_USER_AGENT') tmp_env['swift.source'] = 'SW' tmp_env['PATH_INFO'] += str_to_wsgi(self._index) resp = self._app_call(tmp_env) status_int = self._get_status_int() if status_int == HTTP_NOT_FOUND: return self._listing(env, start_response) elif not is_success(self._get_status_int()) and \ not is_redirection(self._get_status_int()): return self._error_response(resp, env, start_response) start_response(self._response_status, self._response_headers, self._response_exc_info) return resp def handle_object(self, env, start_response): """ Handles a possible static web request for an object. This object could resolve into an index or listing request. :param env: The original WSGI environment dict. :param start_response: The original WSGI start_response hook. """ tmp_env = dict(env) tmp_env['HTTP_USER_AGENT'] = \ '%s StaticWeb' % env.get('HTTP_USER_AGENT') tmp_env['swift.source'] = 'SW' resp = self._app_call(tmp_env) status_int = self._get_status_int() self._get_container_info(env) if is_success(status_int) or is_redirection(status_int): # Treat directory marker objects as not found if not self._dir_type: self._dir_type = 'application/directory' content_length = self._response_header_value('content-length') content_length = int(content_length) if content_length else 0 if self._response_header_value('content-type') == self._dir_type \ and content_length <= 1: status_int = HTTP_NOT_FOUND else: start_response(self._response_status, self._response_headers, self._response_exc_info) return resp if status_int != HTTP_NOT_FOUND: # Retaining the previous code's behavior of not using custom error # pages for non-404 errors. self._error = None return self._error_response(resp, env, start_response) if not self._listings and not self._index: start_response(self._response_status, self._response_headers, self._response_exc_info) return resp status_int = HTTP_NOT_FOUND if self._index: tmp_env = dict(env) tmp_env['HTTP_USER_AGENT'] = \ '%s StaticWeb' % env.get('HTTP_USER_AGENT') tmp_env['swift.source'] = 'SW' if not tmp_env['PATH_INFO'].endswith('/'): tmp_env['PATH_INFO'] += '/' tmp_env['PATH_INFO'] += str_to_wsgi(self._index) resp = self._app_call(tmp_env) status_int = self._get_status_int() if is_success(status_int) or is_redirection(status_int): if not env['PATH_INFO'].endswith('/'): return self._redirect_with_slash(env, start_response) start_response(self._response_status, self._response_headers, self._response_exc_info) return resp if status_int == HTTP_NOT_FOUND: if not env['PATH_INFO'].endswith('/'): tmp_env = make_env( env, 'GET', '/%s/%s/%s' % ( self.version, self.account, self.container), self.agent, swift_source='SW') tmp_env['QUERY_STRING'] = 'limit=1&delimiter=/&prefix=%s' % ( quote(wsgi_to_str(self.obj) + '/'), ) resp = self._app_call(tmp_env) body = b''.join(resp) if not is_success(self._get_status_int()) or not body or \ not json.loads(body): resp = HTTPNotFound()(env, self._start_response) return self._error_response(resp, env, start_response) return self._redirect_with_slash(env, start_response) return self._listing(env, start_response, self.obj) class StaticWeb(object): """ The Static Web WSGI middleware filter; serves container data as a static web site. See `staticweb`_ for an overview. The proxy logs created for any subrequests made will have swift.source set to "SW". :param app: The next WSGI application/filter in the paste.deploy pipeline. :param conf: The filter configuration dict. """ def __init__(self, app, conf): #: The next WSGI application/filter in the paste.deploy pipeline. self.app = app #: The filter configuration dict. Only used in tests. self.conf = conf self.logger = get_logger(conf, log_route='staticweb') # We expose a more general "url_base" parameter in case we want # to incorporate the path prefix later. Currently it is discarded. url_base = conf.get('url_base', None) self.url_scheme = None self.url_host = None if url_base: parsed = urlparse(url_base) self.url_scheme = parsed.scheme self.url_host = parsed.netloc def __call__(self, env, start_response): """ Main hook into the WSGI paste.deploy filter/app pipeline. :param env: The WSGI environment dict. :param start_response: The WSGI start_response hook. """ env['staticweb.start_time'] = time.time() if 'swift.authorize' not in env: self.logger.warning( 'No authentication middleware authorized request yet. ' 'Skipping staticweb') return self.app(env, start_response) try: (version, account, container, obj) = \ split_path(env['PATH_INFO'], 2, 4, True) except ValueError: return self.app(env, start_response) if env['REQUEST_METHOD'] not in ('HEAD', 'GET'): return self.app(env, start_response) if env.get('REMOTE_USER') and \ not config_true_value(env.get('HTTP_X_WEB_MODE', 'f')): return self.app(env, start_response) if not container: return self.app(env, start_response) context = _StaticWebContext(self, version, account, container, obj) if obj: return context.handle_object(env, start_response) return context.handle_container(env, start_response) def filter_factory(global_conf, **local_conf): """Returns a Static Web WSGI filter for use with paste.deploy.""" conf = global_conf.copy() conf.update(local_conf) register_swift_info('staticweb') def staticweb_filter(app): return StaticWeb(app, conf) return staticweb_filter
2532acae561f9626448d6ff9e8e297e668e75cbb
4e82d8497d6457cc47ade28494970d89e540aca5
/test/unit/analysis/plant_parts_eia_test.py
c333f59185a050910ecab6e26d6bb4d30507b6ac
[ "CC-BY-4.0", "MIT" ]
permissive
catalyst-cooperative/pudl
28f721a0caced2f50485fbba1b7c78f4465b2539
6afae8aade053408f23ac4332d5cbb438ab72dc6
refs/heads/main
2023-08-16T11:46:45.249665
2023-08-15T01:37:01
2023-08-15T01:37:01
80,646,423
382
101
MIT
2023-09-13T21:27:33
2017-02-01T17:45:40
Python
UTF-8
Python
false
false
21,551
py
plant_parts_eia_test.py
"""Tests for timeseries anomalies detection and imputation.""" from importlib import resources from typing import Literal import pandas as pd import pudl import pudl.analysis.plant_parts_eia GENS_MEGA = pd.DataFrame( { "plant_id_eia": [1, 1, 1, 1], "report_date": ["2020-01-01", "2020-01-01", "2020-01-01", "2020-01-01"], "utility_id_eia": [111, 111, 111, 111], "generator_id": ["a", "b", "c", "d"], "prime_mover_code": ["ST", "GT", "CT", "CA"], "energy_source_code_1": ["BIT", "NG", "NG", "NG"], "ownership_record_type": [ "total", "total", "total", "total", ], "operational_status_pudl": ["operating", "operating", "operating", "operating"], "capacity_mw": [400, 50, 125, 75], } ).astype({"report_date": "datetime64[ns]"}) def test_plant_ag(): """Test aggregation of the plant-part part list by plant. The only data col we are testing here is capacity_mw. """ # test aggregation by plant plant_ag_out = ( pudl.analysis.plant_parts_eia.PlantPart(part_name="plant") .ag_part_by_own_slice(GENS_MEGA, sum_cols=["capacity_mw"], wtavg_dict={}) .convert_dtypes() ) plant_ag_expected = ( pd.DataFrame( { "plant_id_eia": [1], "report_date": ["2020-01-01"], "operational_status_pudl": ["operating"], "utility_id_eia": [111], "ownership_record_type": ["total"], "capacity_mw": [650.0], } ) .astype({"report_date": "datetime64[ns]"}) .convert_dtypes() ) pd.testing.assert_frame_equal(plant_ag_out, plant_ag_expected) def test_prime_fuel_ag(): """Test aggregation of the plant-part part list by prime fuel. The only data col we are testing here is capacity_mw. """ # test aggregation by plant prime fuel plant_primary_fuel_ag_out = ( pudl.analysis.plant_parts_eia.PlantPart(part_name="plant_prime_fuel") .ag_part_by_own_slice(GENS_MEGA, sum_cols=["capacity_mw"], wtavg_dict={}) .convert_dtypes() ) plant_primary_fuel_ag_expected = ( pd.DataFrame( { "plant_id_eia": 1, "energy_source_code_1": ["BIT", "NG"], "report_date": "2020-01-01", "operational_status_pudl": "operating", "utility_id_eia": 111, "ownership_record_type": "total", "capacity_mw": [400.0, 250.0], } ) .astype({"report_date": "datetime64[ns]"}) .convert_dtypes() ) pd.testing.assert_frame_equal( plant_primary_fuel_ag_out, plant_primary_fuel_ag_expected ) def test_prime_mover_ag(): """Test aggregation of the plant-part part list by prime mover. The only data col we are testing here is capacity_mw. """ # test aggregation by plant prime mover plant_prime_mover_ag_out = ( pudl.analysis.plant_parts_eia.PlantPart(part_name="plant_prime_mover") .ag_part_by_own_slice(GENS_MEGA, sum_cols=["capacity_mw"], wtavg_dict={}) .convert_dtypes() ) plant_prime_mover_ag_expected = ( pd.DataFrame( { "plant_id_eia": 1, "prime_mover_code": ["CA", "CT", "GT", "ST"], "report_date": "2020-01-01", "operational_status_pudl": "operating", "utility_id_eia": 111, "ownership_record_type": "total", "capacity_mw": [75.0, 125.0, 50.0, 400.0], } ) .astype({"report_date": "datetime64[ns]"}) .convert_dtypes() ) pd.testing.assert_frame_equal( plant_prime_mover_ag_out, plant_prime_mover_ag_expected ) def test_plant_gen_ag(): """Test aggregation of the plant-part part list by generator. The only data col we are testing here is capacity_mw. """ # test aggregation by plant gen plant_gen_ag_out = ( pudl.analysis.plant_parts_eia.PlantPart(part_name="plant_gen") .ag_part_by_own_slice(GENS_MEGA, sum_cols=["capacity_mw"], wtavg_dict={}) .convert_dtypes() ) plant_gen_ag_expected = ( pd.DataFrame( { "plant_id_eia": 1, "generator_id": ["a", "b", "c", "d"], "report_date": "2020-01-01", "operational_status_pudl": "operating", "utility_id_eia": 111, "ownership_record_type": "total", "capacity_mw": [400.0, 50.0, 125.0, 75.0], } ) .astype({"report_date": "datetime64[ns]"}) .convert_dtypes() ) pd.testing.assert_frame_equal(plant_gen_ag_out, plant_gen_ag_expected) def test_make_mega_gen_tbl(): """Test the creation of the mega generator table. Integrates ownership with generators. """ # one plant with three generators mcoe = pd.DataFrame( { "plant_id_eia": 1, "report_date": "2020-01-01", "generator_id": ["a", "b", "c"], "utility_id_eia": [111, 111, 111], "unit_id_pudl": 1, "prime_mover_code": ["CT", "CT", "CA"], "technology_description": "Natural Gas Fired Combined Cycle", "operational_status": "existing", "generator_retirement_date": pd.NA, "capacity_mw": [50, 50, 100], "generator_operating_date": "2001-12-01", } ).astype( { "generator_retirement_date": "datetime64[ns]", "report_date": "datetime64[ns]", "generator_operating_date": "datetime64[ns]", } ) # one record for every owner of each generator df_own_eia860 = pd.DataFrame( { "plant_id_eia": 1, "report_date": "2020-01-01", "generator_id": ["a", "b", "c", "c"], "utility_id_eia": 111, "owner_utility_id_eia": [111, 111, 111, 888], "fraction_owned": [1, 1, 0.75, 0.25], } ).astype({"report_date": "datetime64[ns]"}) out = pudl.analysis.plant_parts_eia.MakeMegaGenTbl().execute( mcoe, df_own_eia860, slice_cols=["capacity_mw"] ) out_expected = ( pd.DataFrame( { "plant_id_eia": 1, "report_date": "2020-01-01", "generator_id": ["a", "b", "c", "c", "a", "b", "c", "c"], "unit_id_pudl": 1, "prime_mover_code": ["CT", "CT", "CA", "CA", "CT", "CT", "CA", "CA"], "technology_description": "Natural Gas Fired Combined Cycle", "operational_status": "existing", "generator_retirement_date": pd.NaT, "capacity_mw": [50.0, 50.0, 75.0, 25.0, 50.0, 50.0, 100.0, 100.0], "generator_operating_date": "2001-12-01", "ferc_acct_name": "Other", "generator_operating_year": 2001, "operational_status_pudl": "operating", "capacity_eoy_mw": [50, 50, 100, 100, 50, 50, 100, 100], "fraction_owned": [1.00, 1.00, 0.75, 0.25, 1.00, 1.00, 1.00, 1.00], "utility_id_eia": [111, 111, 111, 888, 111, 111, 111, 888], "ownership_record_type": [ "owned", "owned", "owned", "owned", "total", "total", "total", "total", ], } ) .astype( { "generator_retirement_date": "datetime64[ns]", "report_date": "datetime64[ns]", "generator_operating_date": "datetime64[ns]", "generator_operating_year": "Int64", "utility_id_eia": "Int64", # convert to pandas Int64 instead of numpy int64 } ) .set_index([[0, 1, 2, 3, 0, 1, 2, 3]]) ) pd.testing.assert_frame_equal(out, out_expected) def test_scale_by_ownership(): """Test the scale_by_ownership method.""" dtypes = {"report_date": "datetime64[ns]", "utility_id_eia": pd.Int64Dtype()} own_ex1 = pd.DataFrame( { "plant_id_eia": [1, 1, 1, 1], "report_date": ["2019-01-01", "2019-01-01", "2019-01-01", "2019-01-01"], "generator_id": ["a", "a", "b", "b"], "utility_id_eia": [3, 3, 3, 3], "owner_utility_id_eia": [3, 4, 3, 4], "fraction_owned": [0.7, 0.3, 0.1, 0.9], }, ).astype(dtypes) gens_mega_ex1 = pd.DataFrame( { "plant_id_eia": [1, 1], "report_date": [ "2019-01-01", "2019-01-01", ], "generator_id": [ "a", "b", ], "utility_id_eia": [ 3, 3, ], "total_fuel_cost": [4500, 1250], "net_generation_mwh": [10000, 5000], "capacity_mw": [100, 50], "capacity_eoy_mw": [100, 50], "total_mmbtu": [9000, 7800], }, ).astype(dtypes) out_ex1 = pd.DataFrame( { "plant_id_eia": [ 1, 1, 1, 1, 1, 1, 1, 1, ], "report_date": [ "2019-01-01", "2019-01-01", "2019-01-01", "2019-01-01", "2019-01-01", "2019-01-01", "2019-01-01", "2019-01-01", ], "generator_id": [ "a", "a", "b", "b", "a", "a", "b", "b", ], "total_fuel_cost": [ 4500 * 0.7, 4500 * 0.3, 1250 * 0.1, 1250 * 0.9, 4500, 4500, 1250, 1250, ], "net_generation_mwh": [ 10000 * 0.7, 10000 * 0.3, 5000 * 0.1, 5000 * 0.9, 10000, 10000, 5000, 5000, ], "capacity_mw": [ 100 * 0.7, 100 * 0.3, 50 * 0.1, 50 * 0.9, 100, 100, 50, 50, ], "capacity_eoy_mw": [ 100 * 0.7, 100 * 0.3, 50 * 0.1, 50 * 0.9, 100, 100, 50, 50, ], "total_mmbtu": [ 9000 * 0.7, 9000 * 0.3, 7800 * 0.1, 7800 * 0.9, 9000, 9000, 7800, 7800, ], "fraction_owned": [0.7, 0.3, 0.1, 0.9, 1, 1, 1, 1], "utility_id_eia": [3, 4, 3, 4, 3, 4, 3, 4], "ownership_record_type": [ "owned", "owned", "owned", "owned", "total", "total", "total", "total", ], }, ).astype(dtypes) scale_cols = [ "total_fuel_cost", "net_generation_mwh", "capacity_mw", "capacity_eoy_mw", "total_mmbtu", ] out = pudl.helpers.scale_by_ownership( gens=gens_mega_ex1, own_eia860=own_ex1, scale_cols=scale_cols ).reset_index(drop=True) pd.testing.assert_frame_equal(out_ex1, out) def test_label_true_grans(): """Test the labeling of true granularities in the plant part list.""" plant_part_list_input = pd.DataFrame( { "report_date": ["2020-01-01"] * 9, "record_id_eia": [ "plant_3", "unit_a", "unit_b", "gen_1", "gen_2", "gen_3", "gen_4", "tech_nat_gas", "match_gen2_4", ], "plant_id_eia": [3] * 9, "plant_part": [ "plant", "plant_unit", "plant_unit", "plant_gen", "plant_gen", "plant_gen", "plant_gen", "plant_technology", "plant_match_ferc1", ], "generator_id": [None, None, None, 1, 2, 3, 4, None, None], "unit_id_pudl": [None, "A", "B", "A", "B", "B", "B", None, None], "technology_description": ["nat_gas"] * 9, "operational_status_pudl": [None] * 9, "utility_id_eia": [None] * 9, "ownership_record_type": [None] * 9, "prime_mover_code": [None] * 9, "ferc_acct_name": [None] * 9, "energy_source_code_1": [None] * 9, "generator_operating_year": [None] * 9, "installation_year": [None] * 9, "construction_year": [None] * 9, "ferc1_generator_agg_id": [None, None, None, None, 0, None, 0, None, 0], } ).astype({"report_date": "datetime64[ns]"}) true_grans = pd.DataFrame( { "true_gran": [True, True, True, False, True, True, True, False, True], "appro_record_id_eia": [ "plant_3", "unit_a", "unit_b", "unit_a", "gen_2", "gen_3", "gen_4", "plant_3", "match_gen2_4", ], "appro_part_label": [ "plant", "plant_unit", "plant_unit", "plant_unit", "plant_gen", "plant_gen", "plant_gen", "plant", "plant_match_ferc1", ], } ).astype({"appro_part_label": "string"}) expected_out = pd.concat([plant_part_list_input, true_grans], axis=1) out = pudl.analysis.plant_parts_eia.TrueGranLabeler().execute(plant_part_list_input) pd.testing.assert_frame_equal(expected_out, out) class PudlTablMock: """Mock ``pudl_out`` object.""" freq: Literal["AS", "MS"] def __init__( self, freq="AS", ): self.freq = freq def execute(self): return self def test_one_to_many(): plant_part_list_input = pd.DataFrame( { "report_date": ["2020-01-01"] * 8, "record_id_eia": [ "plant_3", "unit_a", "unit_b", "gen_1", "gen_2", "gen_3", "gen_4", "tech_nat_gas", ], "plant_id_eia": [3] * 8, "plant_name_eia": ["sparky"] * 8, "plant_part": [ "plant", "plant_unit", "plant_unit", "plant_gen", "plant_gen", "plant_gen", "plant_gen", "plant_technology", ], "generator_id": [None, None, None, 1, 2, 3, 4, None], "unit_id_pudl": [1, 1, 2, 1, 2, 2, 2, 2], "technology_description": ["nat_gas"] * 8, "operational_status": ["operating"] * 8, "operational_status_pudl": ["operating"] * 8, "utility_id_eia": [1] * 8, "ownership_record_type": ["total"] * 8, "prime_mover_code": ["ch"] * 8, "ferc_acct_name": ["test"] * 8, "energy_source_code_1": ["source"] * 8, "generator_operating_year": [1979] * 8, "installation_year": [1979] * 8, "construction_year": [1979] * 8, "capacity_mw": [300] * 8, "capacity_eoy_mw": [300] * 8, "total_mmbtu": [10] * 8, "net_generation_mwh": [100] * 8, "total_fuel_cost": [100] * 8, "fuel_cost_per_mwh": [1] * 8, "heat_rate_mmbtu_mwh": [1] * 8, "fuel_cost_per_mmbtu": [1] * 8, "fuel_type_code_pudl": ["test"] * 8, "planned_generator_retirement_date": [2076] * 8, "generator_retirement_date": [2076] * 8, } ).astype( { "report_date": "datetime64[ns]", "generator_retirement_date": "datetime64[ns]", "planned_generator_retirement_date": "datetime64[ns]", } ) path_to_one_to_many = resources.files("pudl.package_data.test").joinpath( "test_one_to_many.csv", ) pudl_out = PudlTablMock() parts_compiler = pudl.analysis.plant_parts_eia.MakePlantParts(pudl_out) one_to_many_df = ( parts_compiler.add_one_to_many( plant_parts_eia=plant_part_list_input, part_name="plant_match_ferc1", path_to_one_to_many=path_to_one_to_many, ) .convert_dtypes() .set_index("record_id_eia") ) plant_gen_one_to_many_expected = ( pd.DataFrame( { "report_date": ["2020-01-01"] * 9, "record_id_eia": [ "plant_3", "unit_a", "unit_b", "gen_1", "gen_2", "gen_3", "gen_4", "tech_nat_gas", "3_0_2020_plant_match_ferc1_total_1", ], "plant_id_eia": [3] * 9, "plant_name_eia": ["sparky"] * 9, "plant_part": [ "plant", "plant_unit", "plant_unit", "plant_gen", "plant_gen", "plant_gen", "plant_gen", "plant_technology", "plant_match_ferc1", ], "generator_id": [None, None, None, 1, 2, 3, 4, None, None], "unit_id_pudl": [1, 1, 2, 1, 2, 2, 2, 2, 2], "technology_description": ["nat_gas"] * 9, "operational_status": [ "operating", "operating", "operating", "operating", "operating", "operating", "operating", "operating", None, ], "operational_status_pudl": ["operating"] * 9, "utility_id_eia": [1] * 9, "ownership_record_type": ["total"] * 9, "prime_mover_code": ["ch"] * 9, "ferc_acct_name": ["test"] * 9, "energy_source_code_1": ["source"] * 9, "generator_operating_year": [1979] * 9, "installation_year": [1979] * 9, "construction_year": [1979] * 9, "capacity_mw": [300, 300, 300, 300, 300, 300, 300, 300, 600], "capacity_eoy_mw": [300, 300, 300, 300, 300, 300, 300, 300, 600], "total_mmbtu": [10, 10, 10, 10, 10, 10, 10, 10, 20], "net_generation_mwh": [100, 100, 100, 100, 100, 100, 100, 100, 200], "total_fuel_cost": [100, 100, 100, 100, 100, 100, 100, 100, 200], "fuel_cost_per_mwh": [1] * 9, "heat_rate_mmbtu_mwh": [1] * 9, "fuel_cost_per_mmbtu": [1] * 9, "fuel_type_code_pudl": ["test"] * 9, "planned_generator_retirement_date": [2076] * 9, "generator_retirement_date": [2076] * 9, "gen_id": [None, None, None, None, "gen_2", "gen_3", None, None, None], "ferc1_generator_agg_id": [None, None, None, None, 0, 0, None, None, 0], "fraction_owned": [None, None, None, None, None, None, None, None, 1], "plant_part_id_eia": [ None, None, None, None, None, None, None, None, "3_0_plant_match_ferc1_total_1", ], "plant_name_ppe": [ None, None, None, None, None, None, None, None, "sparky 0", ], "record_count": [None, None, None, None, None, None, None, None, 1], } ) .astype( { "report_date": "datetime64[ns]", "generator_retirement_date": "datetime64[ns]", "planned_generator_retirement_date": "datetime64[ns]", } ) .convert_dtypes() .set_index("record_id_eia") ) pd.testing.assert_frame_equal(one_to_many_df, plant_gen_one_to_many_expected)
a6372b04d1a9180f03e23881edbaa67fd0e3cfe2
9d0228f3f7ee9cee0794319d4affc161b0a7adc2
/qmpy/web/views/api/optimade_api.py
bfee3b3a17eed1106664861ee60f0a1382a6e652
[ "MIT" ]
permissive
wolverton-research-group/qmpy
db8a450a5708aac63aa39e104745b5cb0a4fa930
dede5bdf4aa3ea1187a7bc273e86336c24aadb25
refs/heads/master
2023-01-24T17:18:48.335699
2022-08-23T01:12:29
2022-08-23T01:12:29
18,248,720
124
65
MIT
2023-01-11T02:04:51
2014-03-29T19:18:53
JavaScript
UTF-8
Python
false
false
10,034
py
optimade_api.py
from rest_framework import generics import django_filters.rest_framework from qmpy.web.serializers.optimade import OptimadeStructureSerializer from qmpy.materials.formation_energy import FormationEnergy from qmpy.materials.entry import Composition from qmpy.models import Formation from qmpy.utils import query_to_Q, parse_formula_regex from rest_framework.pagination import LimitOffsetPagination from rest_framework.response import Response from rest_framework.renderers import JSONRenderer, BrowsableAPIRenderer from rest_framework_xml.renderers import XMLRenderer from rest_framework_yaml.renderers import YAMLRenderer from qmpy.rester import qmpy_rester from django.http import HttpResponse, JsonResponse from collections import OrderedDict from qmpy.utils import oqmd_optimade as oqop import time import datetime BASE_URL = qmpy_rester.REST_OPTIMADE class OptimadeStructureDetail(generics.RetrieveAPIView): queryset = FormationEnergy.objects.filter(fit="standard") serializer_class = OptimadeStructureSerializer renderer_classes = [JSONRenderer, XMLRenderer, YAMLRenderer, BrowsableAPIRenderer] def retrieve(self, request, *args, **kwargs): structure_id = request.path.strip("/").split("/")[-1] self.queryset = self.queryset.filter(id=structure_id) instance = self.get_object() serializer = self.get_serializer(instance) _data = [serializer.data] data = [] for _item in _data: item = OrderedDict([("id", _item["id"]), ("type", _item["type"])]) del _item["id"] del _item["type"] item["attributes"] = _item data.append(item) _data = serializer.data data = OrderedDict([("id", _data["id"]), ("type", _data["type"])]) del _data["id"] del _data["type"] data["attributes"] = _data full_url = request.build_absolute_uri() representation = full_url.replace(BASE_URL, "") time_now = time.time() time_stamp = datetime.datetime.fromtimestamp(time_now).strftime( "%Y-%m-%d %H:%M:%S" ) meta_list = [ ( "query", { "representation": representation, }, ), ("api_version", "1.0.0"), ("time_stamp", time_stamp), ("data_returned", 1), ("data_available", Formation.objects.filter(fit="standard").count()), ("more_data_available", False), ( "provider", OrderedDict( [ ("name", "OQMD"), ("description", "The Open Quantum Materials Database"), ("prefix", "oqmd"), ("homepage", "http://oqmd.org"), ] ), ), ("warnings", []), ("response_message", "OK"), ] return Response( OrderedDict( [ ( "links", OrderedDict( [ ("next", None), ("previous", None), ( "base_url", { "href": BASE_URL, "meta": {"_oqmd_version": "1.0"}, }, ), ] ), ), ("resource", {}), ("data", data), ("meta", OrderedDict(meta_list)), ] ) ) class OptimadePagination(LimitOffsetPagination): default_limit = 50 offset_query_param = "page_offset" limit_query_param = "page_limit" def get_paginated_response(self, page_data): _data = page_data["data"] data = [] for _item in _data: item = OrderedDict([("id", _item["id"]), ("type", _item["type"])]) del _item["id"] del _item["type"] item["attributes"] = _item data.append(item) request = page_data["request"] full_url = request.build_absolute_uri() representation = full_url.replace(BASE_URL, "") time_now = time.time() time_stamp = datetime.datetime.fromtimestamp(time_now).strftime( "%Y-%m-%d %H:%M:%S" ) _oqmd_final_query = ( page_data["meta"]["django_query"] if "django_query" in page_data["meta"] else None ) _warnings = ( page_data["meta"]["warnings"] if "warnings" in page_data["meta"] else [] ) if (not _warnings) and (not _oqmd_final_query): _warnings = [ { "type": "warning", "detail": "_oqmd_NoFilterWarning: No filters were provided in the query", } ] meta_list = [ ( "query", { "representation": representation, "_oqmd_final_query": _oqmd_final_query, }, ), ("api_version", "1.0.0"), ("time_stamp", time_stamp), ( "_oqmd_data_in_response", min( self.get_limit(request), self.count - self.get_offset(request), ), ), ("data_returned", self.count), ("data_available", Formation.objects.filter(fit="standard").count()), ( "more_data_available", (self.get_next_link() != None) or (self.get_previous_link() != None), ), ( "provider", OrderedDict( [ ("name", "OQMD"), ("description", "The Open Quantum Materials Database"), ("prefix", "oqmd"), ("homepage", "http://oqmd.org"), ] ), ), ("warnings", _warnings), ("response_message", "OK"), ] return Response( OrderedDict( [ ( "links", OrderedDict( [ ("next", self.get_next_link()), ("previous", self.get_previous_link()), ( "base_url", { "href": BASE_URL, "meta": {"_oqmd_version": "1.0"}, }, ), ] ), ), ("resource", {}), ("data", data), ("meta", OrderedDict(meta_list)), ] ) ) class OptimadeStructureList(generics.ListAPIView): serializer_class = OptimadeStructureSerializer pagination_class = OptimadePagination renderer_classes = [JSONRenderer, XMLRenderer, YAMLRenderer, BrowsableAPIRenderer] def get_queryset(self): fes = FormationEnergy.objects.filter(fit="standard") fes, meta_info = self.filter(fes) return (fes, meta_info) def list(self, request, *args, **kwargs): query_set, meta_info = self.get_queryset() page = self.paginate_queryset(query_set) serializer = self.get_serializer(page, many=True) page_data = { "data": serializer.data, "request": self.request, "meta": meta_info, } return self.get_paginated_response(page_data) def filter(self, fes): request = self.request filters = request.GET.get("filter", False) if not filters: meta_data = { "warnings": [ { "type": "warning", "detail": "_oqmd_NoFilterWarning: No filters were provided in the query. Returning all structures", } ], } return fes, meta_data # shortcut to get all stable phases filters = filters.replace("stability=0", "stability<=0") filters = filters.replace("&", " AND ") filters = filters.replace("|", " OR ") filters = filters.replace("~", " NOT ") q, meta_info = query_to_Q(filters) if not q: return ([], meta_info) fes = fes.filter(q) return (fes, meta_info) def OptimadeInfoData(request): data = oqop.get_optimade_data("info") return HttpResponse(data, content_type="application/json") def OptimadeVersionsData(request): data = oqop.get_optimade_data("versions") return HttpResponse(data, content_type="text/plain") def OptimadeVersionPage(request): versions = oqop.get_optimade_data("versions").strip().split("\n")[1:] versions = ["v{}".format(item) for item in versions] request_version = request.path.strip("/").split("/")[-1] data = {"query": request.path} if request_version in versions: return JsonResponse(data) else: data["error"] = "Version not supported" return JsonResponse({"status": "false", "message": data}, status=553) def OptimadeLinksData(request): data = oqop.get_optimade_data("links") return HttpResponse(data, content_type="application/json") def OptimadeStructuresInfoData(request): data = oqop.get_optimade_data("info.structures") return HttpResponse(data, content_type="application/json")
c8d1d2221d5945821791c53b58cc17555fae4076
993252f0bab4d37b1ea0f0b9a95dbb96a200808f
/dccp/linearize.py
eb8fddd47ff7fa558daac20640a128b19dee65dc
[]
no_license
cvxgrp/dccp
4dba3e8e5c517a7c314a20d6144e2268c4cd61a1
c94aba9881e9f39119c1a693a5a752f23cf0d403
refs/heads/master
2023-06-09T08:50:12.835704
2022-07-09T21:22:12
2022-07-09T21:22:12
55,815,696
115
29
null
2020-12-02T04:47:42
2016-04-08T23:28:30
Python
UTF-8
Python
false
false
3,367
py
linearize.py
__author__ = "Xinyue" import numpy as np import cvxpy as cvx def linearize_para(expr): """ input: expr: an expression return: linear_expr: linearized expression zero_order: zero order parameter linear_dictionary: {variable: [value parameter, [gradient parameter]]} dom: domain """ zero_order = cvx.Parameter(expr.shape) # zero order linear_expr = zero_order linear_dictionary = {} for var in expr.variables(): value_para = cvx.Parameter(var.shape) if var.ndim > 1: # matrix to vector gr = [] for d in range(var.shape[1]): g = cvx.Parameter((var.shape[0], expr.shape[0])) # g = g.T linear_expr += g.T @ (var[:, d] - value_para[:, d]) # first order gr.append(g) linear_dictionary[var] = [value_para, gr] else: # vector to vector g = cvx.Parameter(var.shape[0], expr.shape[0]) linear_expr += g.T @ (var[:, d] - value_para[:, d]) # first order gr.append(g) linear_dictionary[var] = [value_para, gr] dom = expr.domain return linear_expr, zero_order, linear_dictionary, dom def linearize(expr): """Returns the tangent approximation to the expression. Gives an elementwise lower (upper) bound for convex (concave) expressions. No guarantees for non-DCP expressions. Args: expr: An expression. Returns: An affine expression. """ if expr.is_affine(): return expr else: if expr.value is None: raise ValueError( "Cannot linearize non-affine expression with missing variable values." ) tangent = np.real(expr.value) #+ np.imag(expr.value) grad_map = expr.grad for var in expr.variables(): if grad_map[var] is None: return None complex_flag = False if var.is_complex() or np.any(np.iscomplex(grad_map[var])): complex_flag = True if var.ndim > 1: temp = cvx.reshape( cvx.vec(var - var.value), (var.shape[0] * var.shape[1], 1) ) if complex_flag: flattened = np.transpose(np.real(grad_map[var])) @ cvx.real(temp) + \ np.transpose(np.imag(grad_map[var])) @ cvx.imag(temp) else: flattened = np.transpose(np.real(grad_map[var])) @ temp tangent = tangent + cvx.reshape(flattened, expr.shape) elif var.size > 1: if complex_flag: tangent = tangent + np.transpose(np.real(grad_map[var])) @ (cvx.real(var) - np.real(var.value)) \ + np.transpose(np.imag(grad_map[var])) @ (cvx.imag(var) - np.imag(var.value)) else: tangent = tangent + np.transpose(np.real(grad_map[var])) @ (var - var.value) else: if complex_flag: tangent = tangent + np.real(grad_map[var]) * (cvx.real(var) - np.real(var.value)) \ + np.imag(grad_map[var]) * (cvx.imag(var) - np.imag(var.value)) else: tangent = tangent + np.real(grad_map[var]) * (var - var.value) return tangent
e27ca211352d0a40f27fc2b34c8d45eaef545999
150a7b11cb531f8bc2a045aefcf2ebe1d151efa3
/ocs_ci/utility/localstorage.py
2f0d3b5f99dc9c65cbea61ac6608db9d95150777
[ "MIT" ]
permissive
red-hat-storage/ocs-ci
c7ac414e1b86552da0439223dfa9bca39977f31a
5e9e504957403148e413326f65c3769bf9d8eb39
refs/heads/master
2023-08-17T16:19:51.154403
2023-08-17T13:27:12
2023-08-17T13:27:12
179,558,938
146
210
MIT
2023-09-14T16:38:44
2019-04-04T19:00:02
Python
UTF-8
Python
false
false
9,040
py
localstorage.py
""" This module contains local-storage related methods """ import json import logging import os import shutil from distutils.version import LooseVersion import yaml from ocs_ci.framework import config from ocs_ci.ocs import constants, defaults from ocs_ci.ocs.exceptions import CommandFailed from ocs_ci.ocs.node import get_nodes from ocs_ci.ocs.ocp import OCP from ocs_ci.ocs.resources import csv from ocs_ci.ocs.resources.packagemanifest import PackageManifest from ocs_ci.utility.deployment import get_ocp_ga_version from ocs_ci.utility.retry import retry from ocs_ci.utility.utils import clone_repo, get_ocp_version, run_cmd from ocs_ci.utility.version import get_semantic_version logger = logging.getLogger(__name__) def fetch_all_device_paths(): """ Return all device paths inside worker nodes Returns: list : List containing all device paths """ path = os.path.join(constants.EXTERNAL_DIR, "device-by-id-ocp") clone_repo(constants.OCP_QE_DEVICEPATH_REPO, path) os.chdir(path) logger.info("Running script to fetch device paths...") run_cmd("ansible-playbook devices_by_id.yml") with open("local-storage-block.yaml") as local_storage_block: local_block = yaml.load(local_storage_block, Loader=yaml.FullLoader) dev_paths = local_block["spec"]["storageClassDevices"][0]["devicePaths"] logger.info(f"All devices are {dev_paths}") os.chdir(constants.TOP_DIR) shutil.rmtree(path) return dev_paths def get_new_device_paths(device_sets_required, osd_size_capacity_requested): """ Get new device paths to add capacity over Baremetal cluster Args: device_sets_required (int) : Count of device sets to be added osd_size_capacity_requested (int) : Requested OSD size capacity Returns: list : List containing added device paths """ ocp_obj = OCP( kind="localvolume", namespace=config.ENV_DATA["local_storage_namespace"] ) workers = get_nodes(node_type="worker") worker_names = [worker.name for worker in workers] config.ENV_DATA["worker_replicas"] = len(worker_names) output = ocp_obj.get(resource_name="local-block") # Fetch device paths present in the current LVCR cur_device_list = output["spec"]["storageClassDevices"][0]["devicePaths"] # Clone repo and run playbook to fetch all device paths from each node path = os.path.join(constants.EXTERNAL_DIR, "device-by-id-ocp") clone_repo(constants.OCP_QE_DEVICEPATH_REPO, path) os.chdir(path) run_cmd("ansible-playbook devices_by_id.yml") # Filter unused/unallocated device paths with open("local-storage-block.yaml", "r") as cloned_file: with open("local-block.yaml", "w") as our_file: device_from_worker = [1] * config.ENV_DATA["worker_replicas"] cur_line = cloned_file.readline() while "devicePaths:" not in cur_line: our_file.write(cur_line) cur_line = cloned_file.readline() our_file.write(cur_line) cur_line = cloned_file.readline() # Add required number of device path from each worker node while cur_line: if str(osd_size_capacity_requested) in cur_line: for i in range(len(worker_names)): if device_from_worker[i] and (str(worker_names[i]) in cur_line): if not any(s in cur_line for s in cur_device_list): our_file.write(cur_line) device_from_worker[i] = device_from_worker[i] - 1 cur_line = cloned_file.readline() local_block_yaml = open("local-block.yaml") lvcr = yaml.load(local_block_yaml, Loader=yaml.FullLoader) new_dev_paths = lvcr["spec"]["storageClassDevices"][0]["devicePaths"] logger.info(f"Newly added devices are: {new_dev_paths}") if new_dev_paths: assert len(new_dev_paths) == ( len(worker_names) * device_sets_required ), f"Current devices available = {len(new_dev_paths)}" os.chdir(constants.TOP_DIR) shutil.rmtree(path) # Return list of old device paths and newly added device paths cur_device_list.extend(new_dev_paths) return cur_device_list def check_local_volume_local_volume_set(): """ Function to check if Local-volume and Local volume set is present or not Returns: dict: dict for localvolume and localvolumeset """ lv_or_lvs_dict = {} logger.info("Checking if Local Volume is Present") if csv.get_csvs_start_with_prefix( csv_prefix=defaults.LOCAL_STORAGE_OPERATOR_NAME, namespace=config.ENV_DATA["local_storage_namespace"], ): ocp_obj = OCP() command = f"get localvolume local-block -n {config.ENV_DATA['local_storage_namespace']} " try: ocp_obj.exec_oc_cmd(command, out_yaml_format=False) lv_or_lvs_dict["localvolume"] = True except CommandFailed as ex: logger.debug(f"Local volume does not exists! Exception: {ex}") logger.info("No Local volume found") lv_or_lvs_dict["localvolume"] = False logger.info("Checking if Local Volume Set is Present") if csv.get_csvs_start_with_prefix( csv_prefix=defaults.LOCAL_STORAGE_OPERATOR_NAME, namespace=config.ENV_DATA["local_storage_namespace"], ): ocp_obj = OCP() command = ( f"get {constants.LOCAL_VOLUME_SET} {constants.LOCAL_BLOCK_RESOURCE} " f"-n {config.ENV_DATA['local_storage_namespace']} " ) try: ocp_obj.exec_oc_cmd(command, out_yaml_format=False) lv_or_lvs_dict["localvolumeset"] = True except CommandFailed as ex: logger.debug(f"Local volume Set does not exists! Exception: {ex}") lv_or_lvs_dict["localvolumeset"] = False return lv_or_lvs_dict @retry(AssertionError, 12, 10, 1) def check_pvs_created(num_pvs_required): """ Verify that exact number of PVs were created and are in the Available state Args: num_pvs_required (int): number of PVs required Raises: AssertionError: if the number of PVs are not in the Available state """ logger.info("Verifying PVs are created") out = run_cmd("oc get pv -o json") pv_json = json.loads(out) current_count = 0 for pv in pv_json["items"]: pv_state = pv["status"]["phase"] pv_name = pv["metadata"]["name"] logger.info("%s is %s", pv_name, pv_state) if pv_state == "Available": current_count = current_count + 1 assert ( current_count >= num_pvs_required ), f"Current Available PV count is {current_count}" def get_local_volume_cr(): """ Get localVolumeCR object Returns: local volume (obj): Local Volume object handler """ ocp_obj = OCP( kind=constants.LOCAL_VOLUME, namespace=config.ENV_DATA["local_storage_namespace"], ) return ocp_obj @retry(CommandFailed, 5, 30, 1) def get_lso_channel(): """ Get the channel to use for installing the local storage operator Returns: str: local storage operator channel """ ocp_version = get_ocp_version() # If OCP version is not GA, we will be using the Optional Operators CatalogSource # This means there are two PackageManifests with the name local-storage-operator # so we need to also use a selector to ensure we retrieve the correct one ocp_ga_version = get_ocp_ga_version(ocp_version) selector = constants.OPTIONAL_OPERATORS_SELECTOR if not ocp_ga_version else None # Retrieve available channels for LSO package_manifest = PackageManifest( resource_name=constants.LOCAL_STORAGE_CSV_PREFIX, selector=selector ) channels = package_manifest.get_channels() versions = [] stable_channel_found = False for channel in channels: if ocp_version == channel["name"]: return ocp_version else: if channel["name"] != "stable": versions.append(LooseVersion(channel["name"])) else: logger.debug(f"channel with name {channel['name']} found") stable_channel_found = True stable_channel_full_version = channel["currentCSVDesc"]["version"] stable_channel_version = get_semantic_version( stable_channel_full_version, only_major_minor=True ) # Ensure versions are sorted versions.sort() sorted_versions = [v.vstring for v in versions] if len(sorted_versions) >= 1: # Use latest channel if stable_channel_found: if stable_channel_version > get_semantic_version(sorted_versions[-1]): return "stable" else: return sorted_versions[-1] else: return channels[-1]["name"]
2b34bce0f50e1f3818115d92e020ca1fdbfc550f
444a9480bce2035565332d4d4654244c0b5cd47b
/research/cv/simclr/src/optimizer.py
485176be72b2869ee33aca7d6c403028e73834cb
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-proprietary-license" ]
permissive
mindspore-ai/models
7ede9c6454e77e995e674628204e1c6e76bd7b27
eab643f51336dbf7d711f02d27e6516e5affee59
refs/heads/master
2023-07-20T01:49:34.614616
2023-07-17T11:43:18
2023-07-17T11:43:18
417,393,380
301
92
Apache-2.0
2023-05-17T11:22:28
2021-10-15T06:38:37
Python
UTF-8
Python
false
false
2,543
py
optimizer.py
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """optimizer generator""" from mindspore import nn, Tensor from .lr_generator import get_lr def get_train_optimizer(net, steps_per_epoch, args): """ generate optimizer for updating the weights. """ if args.optimizer == "Adam": if args.run_distribute: lr = get_lr(lr_init=1e-4, lr_end=1e-6, lr_max=9e-4, warmup_epochs=args.warmup_epochs, total_epochs=args.epoch_size, steps_per_epoch=steps_per_epoch, lr_decay_mode="linear") else: lr = get_lr(lr_init=1e-5, lr_end=1e-7, lr_max=9e-5, warmup_epochs=args.warmup_epochs, total_epochs=args.epoch_size, steps_per_epoch=steps_per_epoch, lr_decay_mode="linear") lr = Tensor(lr) decayed_params = [] no_decayed_params = [] for param in net.trainable_params(): if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name: decayed_params.append(param) else: no_decayed_params.append(param) group_params = [{'params': decayed_params, 'weight_decay': args.weight_decay}, {'params': no_decayed_params}, {'order_params': net.trainable_params()}] optimizer = nn.Adam(params=group_params, learning_rate=lr) else: raise ValueError("Unsupported optimizer.") return optimizer def get_eval_optimizer(net, steps_per_epoch, args): lr = get_lr(lr_init=1e-3, lr_end=1e-5, lr_max=1e-2, warmup_epochs=5, total_epochs=args.epoch_size, steps_per_epoch=steps_per_epoch, lr_decay_mode="linear") lr = Tensor(lr) optimizer = nn.Adam(params=net.trainable_params(), learning_rate=lr) return optimizer
7b389bc63538659b70a1f8195a6444947148070e
9ed3b16b3da72e4c47a04f2f2e3ef395e9fd9f20
/contrib/openjdk17/update.py
c61f2e44e7288b82de836abf2244e5957ec61e1c
[ "BSD-2-Clause" ]
permissive
chimera-linux/cports
fdae59dc25856942be3041e10e3533dbf8f883c3
714680161cd719dd047452c95fbb9b447bc23a86
refs/heads/master
2023-09-03T19:30:40.720670
2023-09-03T15:07:40
2023-09-03T15:07:40
374,000,317
118
37
BSD-2-Clause
2023-09-14T20:31:08
2021-06-05T02:07:34
Python
UTF-8
Python
false
false
30
py
update.py
pattern = r">jdk-([\d.]+)-ga"
8fbec7887b739ccb3dbeec452eac76a132a01843
29b62d060fcb01eca2e319b70f4ca7b5c259d7c4
/alita/factory.py
f3ae2d11c646dd355b91c73b5efb15f5705a0d33
[]
no_license
dwpy/alita
eb4d58372b0d9d2988e63656511c61d8d6f88990
1d8a1565bc771e5ff16b454147cb44eadd19d237
refs/heads/master
2021-06-17T20:42:23.402187
2019-06-12T08:53:19
2019-06-12T08:53:19
174,462,948
119
2
null
2021-06-11T17:49:16
2019-03-08T03:31:05
Python
UTF-8
Python
false
false
2,508
py
factory.py
import os import sys import importlib from alita.base import BaseFactory def prepare_import(path): """ Given a filename this will try to calculate the python path, add it to the search path and return the actual module name that is expected. """ path = os.path.realpath(path) if os.path.splitext(path)[1] == '.py': path = os.path.splitext(path)[0] if os.path.basename(path) == '__init__': path = os.path.dirname(path) module_name = [] # move up until outside package structure (no __init__.py) while True: path, name = os.path.split(path) module_name.append(name) if not os.path.exists(os.path.join(path, '__init__.py')): break if sys.path[0] != path: sys.path.insert(0, path) return '.'.join(module_name[::-1]) class CliFactory: def load_app(self, app_file=None): try: if not app_file: app_file = os.environ.get('ALITA_APP') or "app.py" import_name = prepare_import(app_file) app_module = importlib.import_module(import_name) return getattr(app_module, 'app') except SyntaxError as e: message = ( 'Unable to import your app.py file:\n\n' 'File "%s", line %s\n' ' %s\n' 'SyntaxError: %s' ) % (getattr(e, 'filename'), e.lineno, e.text, e.msg) raise RuntimeError(message) class AppFactory(BaseFactory): def __init__(self, app=None): self.app = app def create_request_object(self, environ): from alita.request import Request return Request(self.app, environ) def create_base_response_class(self): from alita.response import HTTPResponse return HTTPResponse def create_base_exception_class(self): from alita.exceptions import HTTPException return HTTPException def create_exception_handler_object(self): from alita.handler import ExceptionHandler return ExceptionHandler(self.app) def create_router_object(self): from alita.routing import Router return Router(self.app) def create_static_handler(self): from alita.handler import StaticHandler return StaticHandler(self.app) def create_jinja_loader(self): from alita.templating import DispatchingJinjaLoader return DispatchingJinjaLoader(self.app)
6904ad10cbc4c211bba7adcc0ad4a73033261a3c
00c167b38fc1f6fc6d8a7bbf0b10b2a1a565dd34
/rsg
4433265b41fd89526af9753212df61249f132a29
[ "MIT" ]
permissive
mthbernardes/rsg
66772689028d0d2ab36e65fe7aca23d51795fcb9
2361cf88b30f9221296dc252f041d936b22dcb9f
refs/heads/master
2023-05-11T11:22:11.459761
2022-04-19T19:06:25
2022-04-19T19:06:25
113,935,763
579
137
MIT
2023-04-27T10:10:55
2017-12-12T02:57:07
Python
UTF-8
Python
false
false
2,376
rsg
#!/usr/bin/env python3 from sys import argv, exit as exit_code from os import system, path from re import findall from subprocess import check_output def GREEN(text): return "\033[32m{}\033[0m".format(str(text)) def usage(): print('''Usage: python3 {} <ip address> <port> [shell type] Examples: python3 {} 127.0.0.1 4444 python3 {} 192.168.0.1 443 bash'''.format(argv[0],argv[0],argv[0])) exit_code(-1) def verify_ip(ipaddr): output = check_output(['ip', 'address']).decode() candidate_ips = [ip for ip in findall(r"(?:\d{1,3}\.){3}\d{1,3}",output) if '255' not in ip] return ipaddr in candidate_ips def main(): if len(argv) < 3: usage() ipaddr, port = argv[1], argv[2] if not verify_ip(ipaddr): print("Invalid IP address! Exiting.") exit_code(-1) shells = path.join(path.dirname(path.realpath(__file__)), 'shells.txt') if len(argv) == 4: shell_type = argv[3].upper() else: shell_type = '' for shell in open(shells): desc, cmd = shell.split('|', 1) cmd = cmd.replace("[IPADDR]", ipaddr) cmd = cmd.replace("[PORT]", port) if shell_type in desc: print(GREEN(desc)) print(cmd) c = input('Select your payload, press "l" to listen on port {} or enter to exit: '.format(port)) if c == 'l': if int(port) < 1024: if shell_type == 'SOCAT': print(shell_type) system('sudo socat file:`tty`,raw,echo=0 tcp-listen:{},fork'.format(port)) # stablizied NC Listener elif: system('stty raw -echo; (echo \'script -qc "/bin/bash" /dev/null\';echo pty;echo "stty$(stty -a | awk -F \';\' \'{print $2 $3}\' | head -n 1)";echo export PATH=\\$PATH:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/tmp;echo export TERM=xterm-256color;echo alias ll=\'ls -lsaht\'; echo clear; echo id;cat) | nc -lvnp <port> && reset') else: system('sudo nc -n -v -l -s {} -p {}'.format(ipaddr, port)) else: if shell_type == 'SOCAT': print(shell_type) system('socat file:`tty`,raw,echo=0 tcp-listen:{},fork'.format(port)) else: system('nc -n -v -l -s {} -p {}'.format(ipaddr, port)) if __name__ == "__main__": main()
d81aa736c544dc23b100d36a5ac2a14d005d99f7
b8441dc1987be9e64fa3081d456b2a3060ec44d1
/mars/tensor/fuse/numexpr.py
c4da91f1400efc23f04e55cd226a197a2842b7c8
[ "BSD-3-Clause", "MIT", "ISC", "Apache-2.0", "CC0-1.0", "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
mars-project/mars
f99fefbce999d58a9249bc72046787a9731c9c73
c36c53fa22e10ef9477d9c454401a2f281375f31
refs/heads/master
2023-07-23T00:23:55.133015
2023-07-03T11:44:54
2023-07-03T11:44:54
160,543,708
2,704
362
Apache-2.0
2023-09-11T07:57:35
2018-12-05T16:04:03
Python
UTF-8
Python
false
false
6,225
py
numexpr.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from itertools import count try: import numexpr as ne NUMEXPR_INSTALLED = True except ImportError: ne = None NUMEXPR_INSTALLED = False import numpy as np from ..operands import TensorFuse from .. import arithmetic, reduction from ..array_utils import as_same_device from .core import TensorFuseChunkMixin class TensorNeFuseChunk(TensorFuse, TensorFuseChunkMixin): _op_type_ = None # no opcode, cannot be serialized @classmethod def execute(cls, ctx, op): chunk = op.outputs[0] inputs = as_same_device([ctx[c.key] for c in op.inputs], device=op.device) counter = count() # Unified the var names to V_0, V_1, ... for better cache hit. key_to_var = defaultdict(lambda: f"V_{counter.__next__()}") local_dict = {key_to_var[c.key]: i for c, i in zip(op.inputs, inputs)} expr = _evaluate(chunk).format_map(key_to_var) # The numexpr.evaluate is thread safe: https://github.com/pydata/numexpr/pull/200 try: res = ne.evaluate(expr, local_dict=local_dict, global_dict={}) except Exception as e: raise RuntimeError( f"Failed to evaluate numexpr {repr(expr)} on local dict {local_dict}." ) from e res = _maybe_keepdims(chunk, res) if chunk.ndim == 0 and res.ndim == 1 and res.size == 0: res = res.dtype.type(0) ctx[chunk.key] = res # execution part NE_UNARYOP_TO_STRING = { arithmetic.TensorNegative: "-", arithmetic.TensorAbs: "abs", arithmetic.TensorConj: "conj", arithmetic.TensorExp: "exp", arithmetic.TensorLog: "log", arithmetic.TensorLog10: "log10", arithmetic.TensorExpm1: "expm1", arithmetic.TensorLog1p: "log1p", arithmetic.TensorSqrt: "sqrt", arithmetic.TensorSin: "sin", arithmetic.TensorCos: "cos", arithmetic.TensorTan: "tan", arithmetic.TensorArcsin: "arcsin", arithmetic.TensorArccos: "arccos", arithmetic.TensorArctan: "arctan", arithmetic.TensorSinh: "sinh", arithmetic.TensorCosh: "cosh", arithmetic.TensorTanh: "tanh", arithmetic.TensorArcsinh: "arcsinh", arithmetic.TensorArccosh: "arccosh", arithmetic.TensorArctanh: "arctanh", arithmetic.TensorFloor: "floor", arithmetic.TensorCeil: "ceil", arithmetic.TensorNot: "~", } NE_BINOP_TO_STRING = { arithmetic.TensorAdd: "+", arithmetic.TensorSubtract: "-", arithmetic.TensorMultiply: "*", arithmetic.TensorDivide: "/", arithmetic.TensorMod: "%", arithmetic.TensorPower: "**", arithmetic.TensorLshift: "<<", arithmetic.TensorRshift: ">>", arithmetic.TensorEqual: "==", arithmetic.TensorNotEqual: "!=", arithmetic.TensorLessThan: "<", arithmetic.TensorLessEqual: "<=", arithmetic.TensorGreaterThan: ">", arithmetic.TensorGreaterEqual: ">=", arithmetic.TensorAnd: "and", arithmetic.TensorOr: "or", } NE_TREE_OP_TO_STRING = { arithmetic.TensorTreeAdd: "+", arithmetic.TensorTreeMultiply: "*", } NE_REDUCTION_TO_STRING = { reduction.TensorSum: "sum", reduction.TensorProd: "prod", reduction.TensorMax: "max", reduction.TensorMin: "min", } class _Default(dict): def __missing__(self, key): return f"{{{key}}}" def _handle_unary(chunk): if len(chunk.inputs) != 1: raise ValueError("unary operand inputs should be 1") data = chunk.inputs[0] unary_op = NE_UNARYOP_TO_STRING[type(chunk.op)] return f"{unary_op}({{{data.key}}})" def _decompose(chunk): expr = f"{{{chunk.key}}}" for node in reversed(chunk.composed): _expr = _evaluate(node) expr = expr.format_map(_Default([(node.key, f"({_expr})")])) return expr def _handle_bin(chunk): op = chunk.op lhs = str(op.lhs) if np.isscalar(op.lhs) else f"{{{op.lhs.key}}}" rhs = str(op.rhs) if np.isscalar(op.rhs) else f"{{{op.rhs.key}}}" reverse = getattr(op, "reverse", False) op = NE_BINOP_TO_STRING[type(op)] if reverse: exprs = [rhs, lhs] else: exprs = [lhs, rhs] return op.join(exprs) def _handle_tree(chunk): op = NE_TREE_OP_TO_STRING[type(chunk.op)] return op.join(f"{{{c.key}}}" for c in chunk.inputs) def _wrap_bool(data): if data.dtype == np.bool_: return f"where({{{data.key}}}, 1, 0)" return f"{{{data.key}}}" def _handle_reduction(chunk): ax = chunk.op.axis data = chunk.inputs[0] op_str = NE_REDUCTION_TO_STRING[type(chunk.op)] # TODO(hks): delete it if numexpr.sum fixed if len(ax) == data.ndim: return f"{op_str}({_wrap_bool(data)})" elif len(ax) == 1: return f"{op_str}({_wrap_bool(data)},axis={ax[0]})" else: raise ValueError("numexpr cannot encode axis") def _evaluate(chunk): op_type = type(chunk.op) if op_type in NE_UNARYOP_TO_STRING: return _handle_unary(chunk) elif op_type in NE_BINOP_TO_STRING: return _handle_bin(chunk) elif op_type in NE_TREE_OP_TO_STRING: return _handle_tree(chunk) elif op_type in NE_REDUCTION_TO_STRING: return _handle_reduction(chunk) elif op_type is TensorNeFuseChunk: return _decompose(chunk) else: raise TypeError(f"unsupported operator in numexpr: {op_type.__name__}") def _maybe_keepdims(chunk, res): out_chunk = chunk.composed[-1] if type(chunk.op) == TensorNeFuseChunk else chunk if type(out_chunk.op) in NE_REDUCTION_TO_STRING and out_chunk.op.keepdims: res = np.reshape(res, out_chunk.shape) return res
6bc8b1f6a8962e3ace644225156bc9a80829948d
3ccb023412acb22646d0132e25c41720e1522e1f
/Chapter 10/simple_keylogger.py
ae3eea636293f0561d9fb94e6a7a87e58a477dd7
[]
no_license
PacktPublishing/Learning-Python-for-Forensics
dfecefcb686d5b1acdb861f2832b2a0edffaf140
4ca1e5601e7672f5b80d6109bafff81b6c359f49
refs/heads/master
2023-02-06T17:15:50.186542
2023-01-30T08:32:59
2023-01-30T08:32:59
60,173,644
104
56
null
null
null
null
UTF-8
Python
false
false
654
py
simple_keylogger.py
import pythoncom,pyHook def OnKeyboardEvent(event): """ Process keyboard event """ if event.Ascii != 0 or event.Ascii != 8: # Skip Null & Backspace if event.Ascii == 13: # Handles a 'Enter' key press keylogs = '<return>' else: keylogs = chr(event.Ascii) print keylogs, # Create a hook manager object hm=pyHook.HookManager() try: # Set funciton for keystroke processing hm.KeyDown = OnKeyboardEvent except (TypeError, KeyboardInterrupt): pass # Allow us to ignore errors that may cause the code exit # Set the hook hm.HookKeyboard() # Wait forever pythoncom.PumpMessages()
c9749bc4cecf9be0ba723e814e459eb93c35130f
458518b66f3628f9e80d98aa718dec7bb1bc79a7
/pyecharts/render/display.py
78c93e2a084c6eeef0dd40b6a8348598fff81351
[ "MIT", "Apache-2.0" ]
permissive
pyecharts/pyecharts
e40f4829f6edeb85f76008cebbc5a1557f35db19
f92c839a51d3878eeb24504ad191706c9db2c2ed
refs/heads/master
2023-09-01T07:32:21.285521
2023-08-21T03:59:26
2023-08-21T03:59:26
95,067,884
12,973
2,786
MIT
2023-08-25T05:44:08
2017-06-22T02:50:25
Python
UTF-8
Python
false
false
2,364
py
display.py
from ..types import Optional, Sequence, Union from urllib.parse import urlparse import http.client class HTML: def __init__(self, data: Optional[str] = None): self.data = data def _repr_html_(self): return self.data def __html__(self): return self._repr_html_() _lib_t1 = """new Promise(function(resolve, reject) { var script = document.createElement("script"); script.onload = resolve; script.onerror = reject; script.src = "%s"; document.head.appendChild(script); }).then(() => { """ _lib_t2 = """ });""" _css_t = """var link = document.createElement("link"); link.ref = "stylesheet"; link.type = "text/css"; link.href = "%s"; document.head.appendChild(link); """ class Javascript: def __init__( self, data: Optional[str] = None, lib: Optional[Union[str, Sequence]] = None, css: Optional[Union[str, Sequence]] = None, ): if isinstance(lib, str): lib = [lib] elif lib is None: lib = [] if isinstance(css, str): css = [css] elif css is None: css = [] self.lib = lib self.css = css self.data = data or "" self.javascript_contents = dict() def _repr_javascript_(self): r = "" for c in self.css: r += _css_t % c for d in self.lib: r += _lib_t1 % d r += self.data r += _lib_t2 * len(self.lib) return r def load_javascript_contents(self): for lib in self.lib: parsed_url = urlparse(lib) host: str = str(parsed_url.hostname) port: int = parsed_url.port path: str = parsed_url.path resp: Optional[http.client.HTTPResponse] = None try: conn = http.client.HTTPSConnection(host, port) conn.request("GET", path) resp = conn.getresponse() if resp.status != 200: raise RuntimeError("Cannot load JavaScript lib: %s" % lib) self.javascript_contents[lib] = resp.read().decode("utf-8") finally: if resp is not None: resp.close() return self
0401bfbc6e5aa7085c7c88ac9ed3f5061fc49cad
512cc7446bfc05b392ba7e697d316eb00c620c01
/bin/fly_brain.py
495ec2a448a4ee484f924e895f6f32f2c05e72da
[ "MIT" ]
permissive
brianhie/scanorama
b4ce1c947b097a5098850aeafa92cb0126791ad1
3fbff622d8c6c0122e699e2e72e9ab4e2a531c7f
refs/heads/master
2022-12-13T05:23:11.764455
2022-11-28T18:50:30
2022-11-28T18:50:30
141,593,152
228
47
MIT
2022-11-28T18:48:41
2018-07-19T14:43:41
Python
UTF-8
Python
false
false
1,277
py
fly_brain.py
import numpy as np from process import load_names, merge_datasets from scanorama import process_data, find_alignments_table from time_align import time_align_correlate, time_align_visualize, time_dist NAMESPACE = 'fly_brain' data_names = [ 'data/fly_brain/DGRP-551_0d_rep1', 'data/fly_brain/DGRP-551_0d_rep2', 'data/fly_brain/DGRP-551_1d_rep1', 'data/fly_brain/DGRP-551_3d_rep1', 'data/fly_brain/DGRP-551_6d_rep1', 'data/fly_brain/DGRP-551_6d_rep2', 'data/fly_brain/DGRP-551_9d_rep1', 'data/fly_brain/DGRP-551_15d_rep1', 'data/fly_brain/DGRP-551_30d_rep1', 'data/fly_brain/DGRP-551_30d_rep2', 'data/fly_brain/DGRP-551_50d_rep1', ] if __name__ == '__main__': datasets, genes_list, n_cells = load_names(data_names) datasets, genes = merge_datasets(datasets, genes_list) datasets_dimred, genes = process_data(datasets, genes) _, A, _ = find_alignments_table(datasets_dimred) time = np.array([ 0, 0, 1, 3, 6, 6, 9, 15, 30, 30, 50 ]).reshape(-1, 1) time_align_correlate(A, time) time_dist(datasets_dimred, time) x = np.array([ 0, 0, 1, 2, 3, 3, 4, 5, 6, 6, 7 ]).reshape(-1, 1) y = [ -.1, .1, 0, 0, -.1, .1, 0, 0, -.1, .1, 0 ] time_align_visualize(A, x, y, namespace=NAMESPACE)
1576c12531b724098b4938bab203ebc568d50b66
a5a99f646e371b45974a6fb6ccc06b0a674818f2
/L1Trigger/GlobalTriggerAnalyzer/test/L1GtDataFromRawEmulAnalyzer_cfg.py
3133a9cb55093a07539170a5586f678e56c045e1
[ "Apache-2.0" ]
permissive
cms-sw/cmssw
4ecd2c1105d59c66d385551230542c6615b9ab58
19c178740257eb48367778593da55dcad08b7a4f
refs/heads/master
2023-08-23T21:57:42.491143
2023-08-22T20:22:40
2023-08-22T20:22:40
10,969,551
1,006
3,696
Apache-2.0
2023-09-14T19:14:28
2013-06-26T14:09:07
C++
UTF-8
Python
false
false
73,723
py
L1GtDataFromRawEmulAnalyzer_cfg.py
# # cfg file for: # # Unpack the GCT, GMT and GT data. # Run the L1 GT emulator on the unpacked GCT and GMT data. # Compare the GT data records with the GT emulated records # import FWCore.ParameterSet.Config as cms process = cms.Process("RunL1GtDataFromRawEmulAnalyzer") # number of events and source process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(5000) ) process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring('file:/afs/cern.ch/user/g/ghete/scratch0/CmsswTestFiles/testGt_DataFromRawEmulAnalyzer_source.root') ) process.PoolSource.fileNames = ['/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/003AD0A3-B51C-DD11-834F-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/020DA07C-9C1C-DD11-8B5C-0019DB29C614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/026FFDE2-B71C-DD11-9D4A-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/028925DF-A61C-DD11-BDF1-000423DC1A0C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/0401CDA0-A01C-DD11-9BDB-001617E30D06.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/0414D38E-9E1C-DD11-A7E5-001617E30D0A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/04F62EBD-B91C-DD11-BB9C-001617E30D06.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/0696D1C9-A41C-DD11-A411-000423D6A6F4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/0A052134-AF1C-DD11-8919-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/0A60D7DC-A41C-DD11-9075-001617E30CA4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/0A637587-B31C-DD11-B32A-000423D996C8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/0A71AABE-A21C-DD11-A9A1-000423D9870C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/0C3D3FB1-B11C-DD11-9B38-000423D992DC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/0C4A72B9-B91C-DD11-8A6F-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/0C60F77C-9C1C-DD11-BC75-001617C3B73A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/0C87A74D-9A1C-DD11-A29B-000423D99020.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/0E34B872-9C1C-DD11-8208-000423D98804.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/0E8A89B0-B91C-DD11-8EBA-000423D9939C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/0EF363E9-A61C-DD11-B75F-001617E30CE8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/105F2C89-9E1C-DD11-9D86-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/1211D927-B81C-DD11-91B3-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/121EDD5E-B11C-DD11-AEDE-001D09F23E53.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/12464707-A91C-DD11-B478-000423DD2F34.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/127649CF-A41C-DD11-B170-000423D6B5C4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/146566AE-B71C-DD11-A113-001617DC1F70.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/1483D99C-B51C-DD11-9274-000423D6CAF2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/148AB865-B11C-DD11-8B3F-001D09F24E39.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/14B76514-AB1C-DD11-BEFA-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/14E55CBD-B91C-DD11-A876-001617C3B64C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/14F7A391-A01C-DD11-9D9E-001617DC1F70.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/1607D3A0-A01C-DD11-9223-001617E30CA4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/16673A21-B81C-DD11-8D6F-001617E30CC8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/18096B2D-AF1C-DD11-A2A2-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/189AC9C5-A41C-DD11-868A-000423D9880C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/1A9B278C-A01C-DD11-842F-000423D6CAF2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/1AD12186-9E1C-DD11-815A-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/1C240A80-9E1C-DD11-99DD-000423D985E4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/1C7DCBDA-A61C-DD11-BFCA-000423D99020.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/1E24F97C-9C1C-DD11-8921-000423D6CA02.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/1E9EE338-9A1C-DD11-987A-000423D6A6F4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/2021DDD2-A41C-DD11-AAF1-001617E30D0A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/2064C823-AD1C-DD11-B86F-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/20675D3E-AF1C-DD11-B97D-001617E30D0A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/2072E22E-981C-DD11-B7A0-000423D986A8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/209E2E2B-AB1C-DD11-8B0F-000423DC1A0C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/20DFF4BD-A21C-DD11-AAE4-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/2201A985-9E1C-DD11-B808-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/22718B76-9C1C-DD11-95E1-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/228D717C-9E1C-DD11-B614-000423D6A6F4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/22B6FAD7-A41C-DD11-9238-001617DF785A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/242FCD06-AB1C-DD11-8213-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/2445DE33-981C-DD11-A43B-000423D992A4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/26B69B96-A01C-DD11-8FC4-001617C3B73A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/2812BEEF-B71C-DD11-8F46-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/2A2CCCA0-A01C-DD11-93B9-001617DBD556.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/2A59E006-A91C-DD11-A82B-000423D99020.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/2AB8E6D7-A41C-DD11-9CE5-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/2C6D88A5-B51C-DD11-82E3-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/2CA386B3-B91C-DD11-BDE5-001617C3B76E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/2E3E1A3E-9A1C-DD11-A7CE-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/2E9DA8C2-B91C-DD11-8DE2-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/32D12786-9E1C-DD11-847B-001617C3B70E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/32FB38BC-B91C-DD11-A8E5-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/32FD88CF-A41C-DD11-BB80-000423D6BA18.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/3465F6A3-B71C-DD11-814D-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/36588B7A-B11C-DD11-8EF1-001D09F24024.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/368E861F-B81C-DD11-B1B3-000423D6101A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/36B9546B-B41C-DD11-9F3D-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/36D22616-AB1C-DD11-BFCF-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/382BA240-AF1C-DD11-AF9F-000423D94C80.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/3AA50549-9A1C-DD11-AABD-001617C3B70E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/3AD70FB4-A21C-DD11-8A63-000423D6B2D8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/3ADAADE1-A61C-DD11-B2AA-001617E30E2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/3C096D93-A01C-DD11-B602-000423D6CA6E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/3C87B1E8-A61C-DD11-A4F2-000423D996C8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/3CCC829C-A01C-DD11-ACDF-000423D9880C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/3E22AFBB-A21C-DD11-AB9B-000423D6BA18.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/3E7BB98C-A01C-DD11-91C0-000423D6B5C4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/400B2EDA-A61C-DD11-B40A-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/403705CF-A41C-DD11-A0CC-000423D992A4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/40A83AB4-B91C-DD11-9009-001617DBD5AC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/426D436B-9C1C-DD11-9397-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/42E7BF93-A01C-DD11-B183-000423D6B48C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/42FFA897-A01C-DD11-BD31-000423D6A6F4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/442D1EDA-A41C-DD11-99E7-000423D6CAF2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/44BA378D-A01C-DD11-A315-000423D6B444.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/44BB2D77-9C1C-DD11-BB5A-001617C3B6CC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/462E23DA-A61C-DD11-8BB4-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/48626E2D-AF1C-DD11-AC76-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/48746689-9E1C-DD11-8636-0019DB29C5FC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/487B3F93-A01C-DD11-9494-000423D986A8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/4888D793-A01C-DD11-8015-000423D9870C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/48C529D3-A41C-DD11-A339-001617E30F4C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/48CED0AD-B51C-DD11-90F8-001617DBD556.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/4A251384-9E1C-DD11-ABCC-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/4CB2CE88-B31C-DD11-AFB6-000423DC1A0C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/4CC3CE79-B11C-DD11-9EDA-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/4EFE256E-9C1C-DD11-BB71-000423D992A4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/50F6304D-9A1C-DD11-B404-000423D985B0.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/50F86B89-9E1C-DD11-A8AF-001617E30D06.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/52756844-9A1C-DD11-8D8D-001617DBCF90.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/52E7ECA0-B51C-DD11-BB37-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/52F22F7D-B31C-DD11-A927-000423D99660.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/54387CBD-A21C-DD11-948C-000423D6B48C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/5689BB7C-9C1C-DD11-814E-001617C3B706.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/569DD041-9A1C-DD11-998E-000423D6C8EE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/56A0A3E6-A61C-DD11-9903-0019DB29C614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/584C9F03-A91C-DD11-B7CF-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/589FD448-9A1C-DD11-987B-001617C3B6DC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/58D1F7BD-A21C-DD11-868A-001617E30D12.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/58FE98E6-A61C-DD11-8D9F-001617DF785A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/5AC19AC4-A21C-DD11-9156-001617E30D40.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/5CC7329E-B51C-DD11-9263-001617DC1F70.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/5E91438D-9E1C-DD11-84C5-000423D6CA02.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/5EF53351-B81C-DD11-A03E-000423D99020.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/609D941F-AD1C-DD11-9C31-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/60D31125-B81C-DD11-BA96-000423DC1A0C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/60F55A71-9C1C-DD11-B2A5-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/62815270-B31C-DD11-8D5F-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/6286A3CE-A41C-DD11-B778-000423D6CA6E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/628AC3E4-A61C-DD11-B825-000423D99658.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/628C32BE-A21C-DD11-BF26-001617C3B73A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/64870171-9C1C-DD11-9446-001617E30E2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/64C37396-A01C-DD11-AC51-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/66382D71-B31C-DD11-A1EC-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/66A011A1-A01C-DD11-BB03-001617E30E28.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/66BF7047-9A1C-DD11-9E11-001617C3B6CC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/66C6BFDF-A61C-DD11-B38A-000423D94C68.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/68CADF33-AF1C-DD11-B816-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/68F15475-B31C-DD11-9003-000423D99020.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/6A447F52-B11C-DD11-ADF5-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/6A81039D-A01C-DD11-AB8C-000423D6BA18.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/6ADDF69C-B51C-DD11-AACF-000423D9863C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/6C22E3A6-A01C-DD11-BF27-001617C3B64C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/6C2A4D97-B11C-DD11-8199-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/6CA70D49-9A1C-DD11-A02B-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/6E3BEBE1-A61C-DD11-864F-001617DBCF1E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/6EDB6407-A91C-DD11-B38D-0016177CA7A0.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/701CC33D-9A1C-DD11-86A0-001617E30E2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/70D54482-B11C-DD11-8967-001D09F26C5C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/70FFC09B-B51C-DD11-B3E3-001617C3B654.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/724E9A61-B11C-DD11-BD5E-000423D94C80.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/72500CBD-B91C-DD11-9808-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/740C169F-B51C-DD11-B13D-000423DD2F34.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/740ECA5B-B11C-DD11-B2E9-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/74A18258-AF1C-DD11-95C3-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/74A67AE1-A61C-DD11-BA54-000423D8FA38.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/74F4C19C-B51C-DD11-8E0C-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/7603B179-9C1C-DD11-B7D4-0019DB29C5FC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/76867668-9C1C-DD11-B5ED-000423D6AF24.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/76B197DF-A61C-DD11-B053-000423D6101A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/7851BF3D-981C-DD11-98DE-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/7871E4B3-B91C-DD11-9810-001617C3B6E8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/78A51442-9A1C-DD11-82CE-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/78B68EE6-A61C-DD11-982C-000423D94A20.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/7AB72EDA-A61C-DD11-93AE-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/7C0BF6D7-B31C-DD11-A632-000423D9517C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/7E311039-981C-DD11-8455-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/80313A1F-B81C-DD11-BCAE-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/80345FC4-A41C-DD11-AA4B-000423D985E4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/8070C7DF-B71C-DD11-ADA3-000423D985E4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/822E46C5-A21C-DD11-92FE-001617E30CA4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/84267891-A01C-DD11-AC5E-001617E30D12.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/8482A33A-981C-DD11-BA59-000423D6A6F4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/848D9EC2-B91C-DD11-BD85-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/84F6D348-9A1C-DD11-AC69-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/84FD6FDF-A61C-DD11-9A4C-0019DB29C5FC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/865955BE-A21C-DD11-8B6B-001617E30D38.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/86B628BD-B91C-DD11-B16E-001617DBD224.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/86B85B3E-9A1C-DD11-8459-000423D992A4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/86E278C3-B91C-DD11-9EBB-0016177CA7A0.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/8A5F9D3D-9A1C-DD11-B194-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/8A8B30DD-A41C-DD11-A07F-001617DBD288.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/8AADB270-B31C-DD11-938C-000423D94C80.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/8C25D448-9A1C-DD11-BAA5-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/8C52216F-B31C-DD11-82EA-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/8CAD26DA-A61C-DD11-AE7E-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/8E592FC0-B91C-DD11-A920-001617E30D00.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/8E70E876-9C1C-DD11-84BE-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/8E896B1E-B81C-DD11-B712-001617C3B6E8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/8EA513BB-A21C-DD11-97DE-000423D6B444.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/8EA8A0ED-A81C-DD11-A65A-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/8EB8255F-B11C-DD11-B3D7-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/8EF6EF7C-B31C-DD11-B02E-000423D98EC8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/904AB138-9A1C-DD11-B0C7-000423D9880C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/904C3593-A01C-DD11-BCCC-000423D9939C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/9066B967-9C1C-DD11-BB3B-000423D6A6F4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/9067ACE6-A61C-DD11-B578-001617C3B77C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/90823880-B11C-DD11-A6BF-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/909250C9-A41C-DD11-8F66-000423D6B444.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/909962C1-A21C-DD11-A255-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/9262E0B9-A21C-DD11-BDED-000423D9880C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/9272C5EB-A81C-DD11-88D5-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/9449765E-B11C-DD11-B99D-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/94AE4A9E-B51C-DD11-A5FE-001617C3B76A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/94C8DE6D-9C1C-DD11-98FE-000423D986A8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/965BD87C-B31C-DD11-BCB0-001617C3B6CC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/96613A1F-B81C-DD11-B8A8-000423D985B0.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/98315DBA-B91C-DD11-A70D-001617E30F4C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/9837D448-9A1C-DD11-99DC-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/98577A34-981C-DD11-B699-000423D985E4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/987C6A38-981C-DD11-A3EB-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/98F26DFE-A81C-DD11-B151-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/9A9188C9-A41C-DD11-ADA5-000423D6B48C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/9C33A87C-9C1C-DD11-9622-001617C3B64C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/9C52E338-9A1C-DD11-BF41-000423D6AF24.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/9CBEB742-AF1C-DD11-91F0-000423DC1A0C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/9CC04B90-9E1C-DD11-B8DC-000423DD2F34.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/9E8233A0-B51C-DD11-9222-001617DBD316.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/A02EB8EA-A61C-DD11-A112-000423D99AA2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/A0A2198F-A01C-DD11-93EA-000423D6B2D8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/A0E37787-B31C-DD11-8321-000423D94990.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/A0E807CF-A41C-DD11-BB21-000423D992DC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/A216CE55-AF1C-DD11-88F0-000423D98B28.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/A451701D-B81C-DD11-8258-001617C3B64C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/A4586FA1-AB1C-DD11-BDF3-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/A4AD6A85-B31C-DD11-B9A7-001617DBD224.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/A6CA6BC4-A41C-DD11-A31B-000423D9863C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/A87757E1-A61C-DD11-AF56-000423D94C80.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/A8E6BAB3-A21C-DD11-A4ED-000423D992A4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/AA174A3A-AF1C-DD11-BF8D-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/AA1A101E-AD1C-DD11-A129-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/AAA9E68F-9E1C-DD11-A380-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/AC07D634-AF1C-DD11-8CDB-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/ACF22FB8-B91C-DD11-BA33-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/AE39ADB2-B71C-DD11-B430-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/AED27483-B31C-DD11-BAA1-000423D6C8EE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/B00336DD-A61C-DD11-8944-001617DBCF6A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/B08F9CF7-A81C-DD11-90F4-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/B0BFDCB7-B91C-DD11-AF2D-001617E30CC8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/B20AE9D7-A41C-DD11-ABE8-001617E30F48.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/B2382462-B11C-DD11-90FD-000423D6101A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/B24F8173-B31C-DD11-835C-000423D9939C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/B2713B89-9E1C-DD11-B1B2-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/B27A5B05-A91C-DD11-8492-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/B2BE5581-9E1C-DD11-AD50-000423D98804.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/B400E66F-B31C-DD11-B0D7-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/B649BBBA-A21C-DD11-9334-000423D6CA6E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/B8FAEEAA-B71C-DD11-8B35-001617C3B70E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/BA0F0ED1-A61C-DD11-A33A-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/BAE9B871-B31C-DD11-9BF0-000423D6101A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/BC6B566C-9C1C-DD11-8154-000423D6B2D8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/BCDBE12A-AB1C-DD11-AD5F-001617E30F4C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/BE3A3B3D-981C-DD11-9A57-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/BEEE307D-B31C-DD11-A4F8-000423D99AAA.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/C014F777-B11C-DD11-B9DD-000423DC1A0C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/C0FB9896-A01C-DD11-977A-001617E30F48.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/C0FDA089-9E1C-DD11-A3F0-001617C3B5E4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/C23AF9D7-A41C-DD11-BA77-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/C2CC26A6-B71C-DD11-89F4-001617C3B69C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/C4EEE3B3-B91C-DD11-85E5-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/C62A647C-9C1C-DD11-9136-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/C6708081-9E1C-DD11-8334-000423D986A8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/C6CF99B9-A21C-DD11-9D70-000423D6B5C4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/C8086ACA-A41C-DD11-ABC6-000423D6CA02.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/CCB28CBF-A21C-DD11-A343-001617C3B64C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/CCF1CF38-981C-DD11-B954-001617C3B73A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/CED1AE20-B81C-DD11-937A-001617C3B6E2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/CEE72F02-A91C-DD11-B45D-000423D6101A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/CEFC3E91-A01C-DD11-98CC-001617E30D0A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/D2885E89-9E1C-DD11-A1E6-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/D2B84A78-B61C-DD11-A238-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/D42B50C4-A41C-DD11-BFB7-000423D9870C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/D44B06B4-A21C-DD11-907F-000423D9863C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/D464867B-9C1C-DD11-8980-001617E30D06.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/D4EBE6BA-A21C-DD11-B8A7-000423D985E4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/D63FD683-9E1C-DD11-81FA-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/D67A46C5-A21C-DD11-AE60-001617DF785A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/D6A13F4E-9A1C-DD11-A008-000423DC1A0C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/D6D813A1-A01C-DD11-A609-0019DB2F3F9B.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/D814E871-B31C-DD11-9C71-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/D83944BB-A21C-DD11-8862-000423DD2F34.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/D8469596-A01C-DD11-83F0-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/D86B334D-9A1C-DD11-B5DE-0019DB29C5FC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/D8BB5636-981C-DD11-A230-000423D6AF24.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/D8E05E70-B31C-DD11-A757-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/DA16873D-9A1C-DD11-AE70-001617C3B73A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/DA4142AD-B71C-DD11-9DAA-001617C3B6CC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/DAA952E9-B71C-DD11-815B-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/DAC801D4-A41C-DD11-859E-000423D6B2D8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/DC0E836F-B31C-DD11-8C0C-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/DC6A381B-AB1C-DD11-A583-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/DC6BFCA3-B71C-DD11-A650-000423D6C8E6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/DC8E3F3D-9A1C-DD11-9FE1-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/DE98753B-AF1C-DD11-A990-000423D99020.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/E0EC4FE6-A61C-DD11-9AC0-001617DBD5B2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/E210BBAD-B71C-DD11-9B75-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/E4C16FD4-A61C-DD11-BCFE-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/E66F0446-AF1C-DD11-95F1-000423D6101A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/E690BA1F-B81C-DD11-8302-001617C3B6DE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/E8002A9C-A01C-DD11-B643-000423D98804.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/E89041EC-A81C-DD11-9B7B-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/E89EDDD2-A41C-DD11-A22C-001617E30D12.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/E8CFAD3D-981C-DD11-B22A-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/EA2B3732-AD1C-DD11-9725-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/EAA9076D-9C1C-DD11-82A1-000423D6C8EE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/EAACE083-B31C-DD11-88A3-000423D8F63C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/EACE846B-9C1C-DD11-8AE5-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/EAD127D4-A61C-DD11-A7F5-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/EAED757C-9E1C-DD11-9717-000423D992A4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/EC1807DE-A61C-DD11-8881-000423D985E4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/EC3D0181-9E1C-DD11-B761-000423D9870C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/EC455A18-AB1C-DD11-8DDD-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/EC48C57A-9E1C-DD11-8E79-000423D6AF24.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/EE8FAF34-981C-DD11-8D58-000423D9880C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/EE8FF989-9E1C-DD11-B8B5-001617C3B706.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/F068CE9B-A01C-DD11-A90A-000423D992A4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/F246A9A6-B71C-DD11-803B-001617C3B654.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/F25A5A88-B11C-DD11-B4F2-000423D99020.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/F274EE67-9C1C-DD11-A92E-000423D985E4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/F2D83EA9-B51C-DD11-89D5-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/F2DA1660-B11C-DD11-B258-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/F2E50819-AB1C-DD11-BB10-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/F4039A71-9C1C-DD11-B3A2-000423D9863C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/F899D8B7-B91C-DD11-9133-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/FAC2EFD0-A41C-DD11-A9D4-000423D6AF24.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/FC879E74-B31C-DD11-B356-001617E30CC8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/FCA0CCC5-A21C-DD11-BE49-000423D6A6F4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/FCA982D5-A61C-DD11-8A1F-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/FCB68476-9C1C-DD11-B496-001617DBCF90.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/FCD38880-9E1C-DD11-829C-000423D6B2D8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/FE098EF7-A81C-DD11-A0AE-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0006/FE134BB4-A21C-DD11-BDCC-000423D6CAF2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/000CD59C-CC1C-DD11-A498-000423D99020.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/0095DE1B-C01C-DD11-975B-000423D6C8EE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/00D397C3-D01C-DD11-AAD7-001617E30CE8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/0227DE52-C81C-DD11-910C-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/023E384A-C41C-DD11-B179-001617E30D0A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/02A0A458-C41C-DD11-BDAE-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/0472A1D8-D21C-DD11-8A1F-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/0484A412-C01C-DD11-845D-000423D99020.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/060B4FA8-CE1C-DD11-9550-001617E30D06.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/062E02B4-CE1C-DD11-9E2C-001617C3B710.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/063C069C-CA1C-DD11-A395-001617DBD5B2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/0664041F-C21C-DD11-A89C-001617E30F58.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/06DB5CC3-D01C-DD11-91CC-001617C3B710.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/06F29FCD-D01C-DD11-BC90-001617C3B778.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/08FAD35A-C41C-DD11-AE05-001617C3B79A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/0AF3CEE5-BB1C-DD11-8E38-000423D98B5C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/0C49504A-C41C-DD11-B41E-001617E30D38.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/0C50A1D6-D01C-DD11-818F-000423D6B444.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/0CA1115F-C81C-DD11-BFC9-001617E30CC8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/0E054203-C01C-DD11-AA43-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/0E14B5D2-B91C-DD11-8468-000423D98834.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/102F803D-C61C-DD11-9B28-000423D6CA72.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/108485A3-CE1C-DD11-B4E6-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/10A6495F-C81C-DD11-9BAA-001617E30D12.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/10E92BE2-BB1C-DD11-9356-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/121C2B53-C61C-DD11-B128-001617E30CA4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/12B2969B-CC1C-DD11-AE14-001617C3B73A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/12D4A753-C81C-DD11-ACAA-000423D6CAF2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/1459D199-CC1C-DD11-912B-000423D986A8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/14F7031F-C21C-DD11-84F6-001617C3B654.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/162C5398-CC1C-DD11-A72D-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/164BFF8D-CA1C-DD11-8932-000423DD2F34.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/16937EE7-CC1C-DD11-B23B-000423D98E6C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/1695C71C-C01C-DD11-866E-000423D6CAF2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/16D4ED53-C41C-DD11-8A8B-001617C3B778.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/16E75A61-C81C-DD11-8F7D-001617C3B706.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/181236C7-B91C-DD11-9101-001617DBD288.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/181B7712-C01C-DD11-A511-001617E30D12.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/184F93F8-BB1C-DD11-843D-001617E30D06.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/185F0E9E-CC1C-DD11-B1B4-000423D6CA02.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/186F2D03-C01C-DD11-9860-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/18AC3F95-CA1C-DD11-8B7A-001617C3B73A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/18F04319-C21C-DD11-B16C-001617DBD288.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/1A3A8508-BE1C-DD11-AE08-000423D98AF0.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/1AFB7BBB-D01C-DD11-8B27-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/1C006011-C21C-DD11-A5C9-000423D6A6F4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/1C2B095F-C81C-DD11-AA1F-001617DBD472.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/1C307446-C61C-DD11-850B-001617C3B6DE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/1C87B154-C41C-DD11-ABBA-001617C3B5D8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/1EA987EF-BB1C-DD11-A499-000423D98FBC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/1ED2084F-C61C-DD11-A76D-001617C3B5D8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/2043E634-C21C-DD11-85CD-001617DBCF1E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/205468CD-D21C-DD11-8B1A-000423D6CA02.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/2071A802-BE1C-DD11-B1E0-001617DBD288.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/220ABE65-C81C-DD11-9DF4-001617C3B77C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/220CC9F1-BB1C-DD11-9CC0-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/222FFF23-C21C-DD11-9C92-001617DBD332.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/227EA1AD-CE1C-DD11-8133-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/229C872E-C21C-DD11-B263-001617C3B778.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/2403325F-C41C-DD11-887E-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/2606130A-C01C-DD11-9BA6-001617DC1F70.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/26A522E2-BB1C-DD11-8605-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/26AF8BF4-BD1C-DD11-92C0-000423D9863C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/26F014F5-BB1C-DD11-9CDD-000423D33970.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/284795FB-BD1C-DD11-8134-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/28DAA6E5-BB1C-DD11-9497-000423D99020.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/2A629202-C01C-DD11-99AF-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/2A684F12-C01C-DD11-B52A-001617E30D0A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/2AC81D1E-C21C-DD11-9E3D-001617E30D0A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/2C06BFCE-D01C-DD11-ACBC-001617DBCF1E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/2C879CDF-BB1C-DD11-98B6-001617E30CC8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/2E5A7CD5-BB1C-DD11-8024-001617DBD288.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/2EC3BB1E-C01C-DD11-B657-000423D986A8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/2EFC81C8-D01C-DD11-BC93-001617C3B6CC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/2EFCB33C-C61C-DD11-9BDE-001617E30D12.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/30085D93-CC1C-DD11-95BF-001617C3B76A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/300A34D7-B91C-DD11-B8B8-001617E30CE8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/30184FA3-CE1C-DD11-B135-001617C3B73A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/3022C499-CC1C-DD11-A9F3-001617C3B77C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/306C0F0C-C01C-DD11-8997-0016177CA778.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/30AFFEA2-CE1C-DD11-9650-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/30B25C8A-CC1C-DD11-8F44-000423D9880C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/30B4DC4C-C41C-DD11-8D66-000423D6B48C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/32074B83-CA1C-DD11-A8A0-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/3279A90D-C01C-DD11-9288-001617E30E28.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/3288778F-CA1C-DD11-A8F8-000423D6CA6E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/32D57812-C21C-DD11-80A8-000423D6C8EE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/32E8D78D-CA1C-DD11-9B0C-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/342BF7D5-D21C-DD11-B3A7-000423D985E4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/34AA2ED9-D21C-DD11-9434-000423D6B444.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/34B5B163-C41C-DD11-AB48-001617DBCF1E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/34CA75D1-B91C-DD11-B4FD-000423D98930.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/36191416-C21C-DD11-8A6C-000423D9880C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/362838EC-BD1C-DD11-B8C7-001617E30CE8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/3636B1D0-BB1C-DD11-806E-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/366827C8-D01C-DD11-A7E9-000423D9870C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/36F3E11D-C21C-DD11-A1AF-001617E30D52.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/38032FF8-BF1C-DD11-BC36-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/383986EC-BB1C-DD11-987A-000423D98950.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/38935E7E-CA1C-DD11-88E5-000423D9939C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/38FBE115-C01C-DD11-A373-000423D6AF24.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/38FEBD81-CA1C-DD11-8C28-000423D98804.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/3A207592-CA1C-DD11-9F1B-001617C3B654.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/3A914003-BE1C-DD11-B42F-000423D992A4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/3AC9A6A1-CC1C-DD11-9962-000423D6101A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/3AD17346-C61C-DD11-B4D1-001617C3B69C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/3CA07EFF-BD1C-DD11-A85D-0019DB29C614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/3CC33988-CA1C-DD11-A9EC-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/3EA0B2D0-BB1C-DD11-A7F7-001617E30D40.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/404FC1CE-D01C-DD11-84F5-001617DBD5AC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/42A7E9D1-B91C-DD11-96A0-000423D94908.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/42E5A594-CA1C-DD11-8E72-001617C3B6E8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/4403FC5C-C81C-DD11-8187-001617C3B70E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/44200AB3-CE1C-DD11-981F-001617E30F4C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/460369CC-D01C-DD11-9907-0016177CA7A0.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/46285A63-C41C-DD11-8F4C-001617E30D12.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/4671328A-CC1C-DD11-9B21-001617E30D38.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/46E219D1-B91C-DD11-AE70-000423D98AF0.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/46FBF8CE-D21C-DD11-A2EA-000423D9853C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/48541196-CA1C-DD11-9E90-001617C3B77C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/485816A4-CC1C-DD11-A10D-000423D98AF0.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/4872EE1D-C01C-DD11-A5FD-000423D98C20.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/4885B4F9-BF1C-DD11-89B7-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/48F3F2A2-CE1C-DD11-8DD4-001617DBCF1E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/4A06FFA1-CC1C-DD11-87A2-000423D99996.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/4A9CB82A-C21C-DD11-AEE7-001617E30D38.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/4AD639F8-BB1C-DD11-AF29-000423D944F8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/4AFDEF53-C41C-DD11-A04C-001617C3B6DC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/4C0DF65E-C41C-DD11-9D7F-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/4CB55298-CC1C-DD11-A393-001617C3B6CC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/4E3E253C-C61C-DD11-B716-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/4E55CAD7-B91C-DD11-9856-000423D986A8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/4EA7B5F5-BD1C-DD11-892C-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/4EB6F2E2-BB1C-DD11-B989-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/4EBAD914-C21C-DD11-9C60-000423D6BA18.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/4EE090E8-BB1C-DD11-BC09-001617C3B65A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/500D4FD2-D01C-DD11-939D-001617DBD332.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5094F75E-C41C-DD11-B213-001617DC1F70.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/50F25166-C81C-DD11-85F3-001617C3B6DE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5226D48D-CA1C-DD11-A560-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/529811ED-BB1C-DD11-B009-001617C3B654.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5410534C-C41C-DD11-B43A-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/54770146-C41C-DD11-9790-000423D6CA72.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/549CC491-CC1C-DD11-8EB2-001617DBD472.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/54EC00E7-BD1C-DD11-86E8-001617C3B64C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5613B8D3-D21C-DD11-A49D-000423D9870C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/564941D8-D21C-DD11-B75D-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/580242EB-BD1C-DD11-B34E-001617DBD5B2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5807F882-CA1C-DD11-B19D-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5819A263-C41C-DD11-B93A-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5856C70C-BE1C-DD11-90DF-000423D98950.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/58BFC591-CC1C-DD11-9D51-001617C3B6C6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/58BFCDE8-BD1C-DD11-924A-000423D6CA42.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/58C248C6-D01C-DD11-B059-0019DB29C620.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5A00E33C-C61C-DD11-B95A-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5A22A0B4-CE1C-DD11-A7BD-001617E30D40.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5AB6A96D-C81C-DD11-9224-001617C3B73A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5ABCF4EA-BD1C-DD11-BEC4-001617C3B6E8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5C00E13C-C61C-DD11-BC62-001617E30E2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5C029908-BE1C-DD11-8D92-000423DC1A0C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5C8FF55E-C41C-DD11-A1B7-001617E30CC8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5EC8D0EF-BD1C-DD11-AF64-001617C3B5E4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5EDD9A34-C21C-DD11-83C7-001617DF785A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/5EE95EF0-BD1C-DD11-8A21-001617C3B6DE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/625095C3-D01C-DD11-9A3D-001617DBD556.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/62BB3764-C81C-DD11-BBD3-001617E30F58.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/62D3B406-BE1C-DD11-A3C3-000423D94AA8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/62E3211E-C01C-DD11-93FE-000423D99660.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/666DBCE5-BB1C-DD11-8798-000423D94AA8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/66F8A946-C41C-DD11-92FC-000423D98DB4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/68773EEE-BB1C-DD11-BABD-001617C3B5E4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/6A2E651E-C01C-DD11-84C1-000423D94990.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/6A44B7C8-D01C-DD11-8F4F-001617E30F4C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/6A6DB7F0-BB1C-DD11-9956-000423D94A20.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/6CCACD33-C21C-DD11-A4E2-001617E30CE8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/6E894A32-C21C-DD11-AD3B-000423D9880C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/703CC249-C41C-DD11-B7EE-001617E30F58.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/7042ABF9-BB1C-DD11-99CB-000423D996B4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/70929317-C01C-DD11-8762-000423D99996.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/72014426-C21C-DD11-AC2E-000423D98804.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/7442701B-C21C-DD11-B0D4-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/74E7AFF1-BB1C-DD11-BDEE-000423D944FC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/760CE253-C41C-DD11-9431-001617C3B5E4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/763379F4-BF1C-DD11-B9FF-000423D6C8E6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/7647D092-CA1C-DD11-922E-0019DB29C5FC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/766816D6-BB1C-DD11-BC35-001617C3B64C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/769F4256-C41C-DD11-858D-001617DBCF90.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/76AEBDBF-D01C-DD11-A47D-000423D6CA72.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/76C8B52A-C21C-DD11-BF56-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/78B3F914-C01C-DD11-B45B-001617DBD5AC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/78B871C3-D01C-DD11-AE14-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/78D879C3-D01C-DD11-AB54-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/7AA262D0-B91C-DD11-9AE8-000423DC1A0C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/7C5A8EDE-BB1C-DD11-8883-001617E30CE8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/7C91A4D1-D01C-DD11-9C38-001617E30D00.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/7CA38092-CC1C-DD11-B3CD-001617C3B6E2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/7CBF8F21-C21C-DD11-AE6F-001617DBD472.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/7CCAEC8D-CA1C-DD11-ACE0-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/7CD95E12-C01C-DD11-946F-000423D6101A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/7CF8CCB7-CE1C-DD11-BBC5-001617C3B64C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/7E88CB00-BE1C-DD11-A4F2-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/807685B9-CE1C-DD11-BDE9-001617DBD316.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/821564AD-CE1C-DD11-935B-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/827CD5E5-BD1C-DD11-8A9D-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/82E4352D-C21C-DD11-A609-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/8408B7F0-BB1C-DD11-8737-000423D98930.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/8434B0D0-BB1C-DD11-B3FF-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/86B26D4E-C41C-DD11-A476-001617C3B654.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/86B564D5-BB1C-DD11-8DAC-001617E30D06.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/86BB41EB-BD1C-DD11-AC05-001617E30CC8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/88C52BD1-B91C-DD11-9018-000423D94C80.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/88E8E765-C81C-DD11-B9F5-001617C3B6CE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/8A50CFD5-BB1C-DD11-A5AC-001617DBD5AC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/8ADC3A47-C61C-DD11-8B91-001617DBD332.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/8C313DA9-CE1C-DD11-886B-001617C3B77C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/8C5B3009-C01C-DD11-9CBD-001617C3B77C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/8C5EEA19-C01C-DD11-87DB-000423D98AF0.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/8CDE12B8-CE1C-DD11-B016-001617DBD5AC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/8CF25D88-CC1C-DD11-87AC-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/8E7CCBC9-B91C-DD11-9DC7-000423D6B5C4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/8EAAD7EF-BD1C-DD11-87A9-001617C3B65A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/8EB94A9D-CA1C-DD11-BD37-001617DBCF6A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/9002413D-C61C-DD11-8F13-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/904500F6-BF1C-DD11-A72B-000423D6B358.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/90650142-C61C-DD11-9D29-001617E30CE8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/906666A6-CE1C-DD11-8150-000423D9853C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/90C564AD-CE1C-DD11-8CB2-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/90D4F325-C21C-DD11-8AE2-000423D9939C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/927D4BCC-B91C-DD11-901B-000423D99020.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/9436CC91-CC1C-DD11-AAD9-001617C3B710.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/94DF6FBE-D01C-DD11-AF80-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/9623B3D8-D21C-DD11-87DF-000423DD2F34.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/96C5EF49-C41C-DD11-924D-001617E30CE8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/96FA9F95-CA1C-DD11-B4F2-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/9897F7DF-BB1C-DD11-9A1B-001617DBD332.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/9A03A402-C01C-DD11-8445-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/9A3AAC06-BE1C-DD11-ABCE-001617C3B654.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/9A3F7F01-BE1C-DD11-9163-001617DBD332.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/9AECBFAD-CE1C-DD11-8024-001617C3B5F4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/9CD29BC2-B91C-DD11-AA74-001617C3B65A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/9CE491F4-BB1C-DD11-99D6-000423D98750.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/9E0AB00E-C01C-DD11-B975-000423DD2F34.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/9E3A7467-C81C-DD11-8ED6-001617C3B5D8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/9EEA60D4-B91C-DD11-A2CC-000423D94A20.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/9EF3B958-C41C-DD11-B6DA-001617E30CA4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A039DFF6-BD1C-DD11-B92E-001617DBD224.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A054B619-C21C-DD11-B913-001617E30CA4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A0E92059-C41C-DD11-A68C-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A2287EA3-CC1C-DD11-9191-001617C3B5F4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A22A0AA2-CC1C-DD11-B64A-000423D94C80.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A24F3E0A-C01C-DD11-9FBB-001617C3B6C6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A298BAC8-B91C-DD11-B235-000423DD2F34.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A2C47E4E-C61C-DD11-9003-001617C3B6CE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A4412EE2-BD1C-DD11-91AD-000423D6CA6E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A441E958-C81C-DD11-87EF-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A45B800F-C01C-DD11-A4C3-001617E30F58.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A4743792-CC1C-DD11-8FF3-0019DB29C5FC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A4956AC1-D01C-DD11-831E-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A4C86A24-C21C-DD11-A311-001617DC1F70.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A600E0DA-BB1C-DD11-A3FA-0016177CA7A0.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A6C9CEAB-CE1C-DD11-9068-0019DB29C5FC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A83BF12B-C21C-DD11-BA3F-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A85100F9-BB1C-DD11-8610-000423D9989E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A85B574E-C41C-DD11-9727-001617DBD332.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A89BB268-C81C-DD11-B973-001617C3B6FE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/A8B4ACF4-BF1C-DD11-B38C-000423D6A6F4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/AA0830DB-D21C-DD11-8065-000423D6CA42.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/AA22C202-BE1C-DD11-9FB5-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/AAC9C441-C61C-DD11-8BD3-001617E30CC8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/ACA9E015-C21C-DD11-BA35-000423DD2F34.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/AE02DC53-C41C-DD11-8FE6-001617C3B6DE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/AE0D0D54-C41C-DD11-9BB8-001617C3B6CE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/AE240861-C81C-DD11-80B8-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/AE6999EC-BB1C-DD11-8866-000423D98E6C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/AE7136CC-B91C-DD11-9831-000423D98950.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/AE86A9B9-D01C-DD11-A29D-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/AE8F9A49-C41C-DD11-8B66-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B009918A-CA1C-DD11-982D-001617C3B6CC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B016F7FB-BD1C-DD11-B8B6-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B01F2516-C21C-DD11-8FC3-000423D6B444.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B02481F5-BD1C-DD11-8A72-001617E30D4A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B02B64D6-BB1C-DD11-A3CE-001617C3B6E8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B051A8FB-BD1C-DD11-B7AB-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B0683BFC-BD1C-DD11-B043-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B09FBB45-C21C-DD11-B2EE-001617E30D12.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B0A93C4F-C41C-DD11-8736-001617DBD5AC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B2B62AB9-D01C-DD11-B55B-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B41E2C53-C61C-DD11-A94F-001617DBCF90.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B438131A-C21C-DD11-B626-001617DBD5AC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B4517446-C61C-DD11-ACBC-001617C3B706.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B4779F8A-CC1C-DD11-BFB1-000423D6B2D8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B4CF580D-C01C-DD11-8B5D-001617E30CC8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B612C72A-C21C-DD11-BD75-001617C3B5E4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B67DD69E-CE1C-DD11-8F69-000423D9880C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B6897EC8-B91C-DD11-BD5F-001617E30D40.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B80F3696-CA1C-DD11-BD90-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B81950D8-D21C-DD11-B36F-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B81B443A-C61C-DD11-A800-001617E30D38.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B83C61F5-BD1C-DD11-B5FD-0016177CA7A0.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/B8599355-C81C-DD11-A68F-001617C3B5D6.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/BA002BE5-BB1C-DD11-A279-001617DBD5B2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/BA48FBA7-CC1C-DD11-BA37-000423D992A4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/BA68A5D2-B91C-DD11-8939-000423D98B5C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/BAB7A2F5-BD1C-DD11-8CE7-001617C3B6FE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/BAFBE4CF-D01C-DD11-AD5D-001617DC1F70.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/BC03A04C-C61C-DD11-B6C6-001617C3B654.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/BC58B4B7-CE1C-DD11-B473-0016177CA7A0.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/BE3C2165-C41C-DD11-BCB1-001617E30D52.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/BE708B20-C01C-DD11-9862-000423D98BC4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/BEA65F0C-C01C-DD11-983A-000423D6B5C4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/BEB2F75E-C41C-DD11-A2D1-001617C3B706.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C015805E-C81C-DD11-AF4A-001617E30CE8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C02B2DE2-BD1C-DD11-A5FD-000423D992A4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C2053F88-CA1C-DD11-890F-001617C3B76A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C26F6CB5-CE1C-DD11-A748-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C2A2F3D3-D21C-DD11-B7BE-000423D94700.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C2BFF2E5-BD1C-DD11-93D1-001617E30D40.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C2DC70C3-CC1C-DD11-8234-000423DC1A0C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C45BCFEF-BB1C-DD11-AF09-000423D99996.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C46CC141-C61C-DD11-9FDA-001617E30D52.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C4E9EB89-CC1C-DD11-AEC2-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C645C5B9-CE1C-DD11-BFD0-001617C3B78C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C65D8692-CC1C-DD11-B7B5-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C697C4F1-BD1C-DD11-8550-001617C3B66C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C6DB2D95-CC1C-DD11-8C3F-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C6E0A522-C21C-DD11-9C24-000423D6AF24.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C6ED43E7-BB1C-DD11-8A18-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C80D9AEC-BB1C-DD11-8974-001617C3B76E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C8335398-CC1C-DD11-A2D4-001617E30D2C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/C8E8C504-C01C-DD11-85C6-001617E30D38.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/CA2218B6-D01C-DD11-979F-000423D6B42C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/CA368935-C21C-DD11-9788-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/CA3844EB-BD1C-DD11-913E-001617C3B76E.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/CA65A6FA-BF1C-DD11-8CC1-000423D9880C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/CAB471E2-BD1C-DD11-9D4E-000423DD2F34.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/CC12A30D-C01C-DD11-8A10-001617E30CA4.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/CC8E9A1F-C21C-DD11-ADF9-001617DBCF90.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/CE497BC3-D01C-DD11-928A-001617C3B76A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/CE6685CE-D01C-DD11-BE9B-001617C3B64C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/D01B6C02-BE1C-DD11-897C-001617C3B69C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/D06A2FCC-B91C-DD11-A9DA-000423D6101A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/D221ABE5-BB1C-DD11-9DB3-001617E30F46.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/D28A8F02-C01C-DD11-9866-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/D2B2FDB2-CE1C-DD11-8F56-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/D47C0DE8-BD1C-DD11-9B8C-000423D94700.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/D6D574D2-BB1C-DD11-981F-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/D8776455-C81C-DD11-8D7F-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/D8B0FBB8-D01C-DD11-A27F-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/D8FF2B18-C01C-DD11-9B55-000423D94C80.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/DA4A4889-CC1C-DD11-8A16-001617C3B652.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/DAD4298E-CA1C-DD11-A10E-0019DB29C614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/DAEE505E-C81C-DD11-980A-0019DB29C614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/DC13C55E-C81C-DD11-BAC1-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/DC1B6554-C61C-DD11-BF49-001617C3B6E2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/DC4E4EA8-CE1C-DD11-8FC3-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/DC709BFC-BF1C-DD11-A6B7-000423D6B2D8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/DE27427E-CA1C-DD11-935C-000423D6CA02.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/DE504FEB-BD1C-DD11-B7B8-001617DBD556.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/E06A7CF4-BB1C-DD11-9694-000423D94908.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/E08DE8FC-BF1C-DD11-8C8E-000423D6B444.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/E0A9CA00-BE1C-DD11-9C4E-001617E30D06.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/E0DE281D-BE1C-DD11-8AA4-001617DBCF6A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/E28F4E88-CA1C-DD11-AD78-001617C3B6E2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/E2AC1367-C81C-DD11-9EA9-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/E2D03EA8-CE1C-DD11-BEBD-001617C3B6E2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/E41BC293-CC1C-DD11-8E24-001617DBD49A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/E438B3FA-BB1C-DD11-87A6-001617C3B6E8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/E43E694A-C41C-DD11-B161-001617DF785A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/E445BB2A-C21C-DD11-BFE6-0016177CA778.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/E451BF1C-C01C-DD11-8AB4-000423D98834.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/E60810B4-CE1C-DD11-812E-001617C3B6CC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/E8AFD30A-C01C-DD11-85A6-001617C3B778.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/E8CECFF9-BF1C-DD11-B9C7-000423D6C8EE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/EAC5E41D-C01C-DD11-8BE1-000423D94A20.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/EAF03AE7-BB1C-DD11-848C-000423D6101A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/EE214960-C81C-DD11-A182-001617DBD540.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/EE4E914E-C41C-DD11-A095-001617C3B69C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/EE5A5200-BE1C-DD11-81C8-001617DBD5AC.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/EEAFA849-C41C-DD11-8203-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/F0C47660-C81C-DD11-9107-001617C3B69C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/F2075E91-CA1C-DD11-B1C4-001617C3B710.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/F207EC43-C61C-DD11-A230-001617E30F58.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/F2300AB3-CE1C-DD11-A36B-001617C3B76A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/F2716924-C21C-DD11-B757-001617E30E28.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/F2790FCC-D01C-DD11-97CE-000423D9853C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/F29E7046-C61C-DD11-862A-001617DBD472.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/F2CDC2D1-D21C-DD11-91F2-000423D6C8EE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/F40BA1F2-BB1C-DD11-9148-000423D98834.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/F45D0661-C81C-DD11-A2A2-000423D6CA42.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/F4C05AC2-B91C-DD11-A0C5-001617C3B6FE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/F684A2FE-BF1C-DD11-8C85-001617E30D54.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/F6D667DC-BB1C-DD11-8993-001617DBD224.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/F877786C-C81C-DD11-9DBE-000423D9880C.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/F8EA1087-CA1C-DD11-BBC5-000423D6CA42.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/FAB1D0DA-BB1C-DD11-BB67-001617C3B6FE.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/FC2172D3-D21C-DD11-B9FB-000423D6CAF2.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/FCAB7B9D-CA1C-DD11-942F-000423D986A8.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/FE771D08-BE1C-DD11-A65E-001617E30F48.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/FEB8AC4D-C61C-DD11-A404-001617C3B79A.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/FEB8DB1D-C21C-DD11-96E7-001617C3B614.root', '/store/data/GlobalCruzet1/A/000/000/000/RAW/0007/FED38120-C21C-DD11-8253-001617C3B5D8.root'] # configuration # process.load("Configuration.StandardSequences.FakeConditions_cff") process.load("Configuration.StandardSequences.GeometryDB_cff") process.load("L1Trigger.Configuration.L1Config_cff") # L1 menu process.load("L1TriggerConfig.L1GtConfigProducers.Luminosity.lumi1x1032.L1Menu_CRUZET200805_gr7_muon_cff") # RawToDigi all data process.load("Configuration.StandardSequences.RawToDigi_Data_cff") # Global Trigger emulator import L1Trigger.GlobalTrigger.gtDigis_cfi process.l1GtEmulDigis = L1Trigger.GlobalTrigger.gtDigis_cfi.gtDigis.clone() # block GCT input and the technical triggers (only FDL and GMT active) 0x0101 process.l1GtParameters.DaqActiveBoards = 0x0105 # block GMT input (0xdd12) #process.l1GtParameters.DaqActiveBoards = 0x00FF # block both GCT and GMT (FDL and techTrig active) #process.l1GtParameters.DaqActiveBoards = 0x0003 # input tag for GMT readout collection: process.l1GtEmulDigis.GmtInputTag = 'gtDigis' # input tag for GCT readout collections: #process.l1GtEmulDigis.GctInputTag = 'gctDigis' # logical flag to produce the L1 GT DAQ readout record # if true, produce the record (default) #process.l1GtEmulDigis.ProduceL1GtDaqRecord = False # logical flag to produce the L1 GT EVM readout record # if true, produce the record (default) #process.l1GtEmulDigis.ProduceL1GtEvmRecord = False # logical flag to produce the L1 GT object map record # if true, produce the record (default) #process.l1GtEmulDigis.ProduceL1GtObjectMapRecord = False # logical flag to write the PSB content in the L1 GT DAQ record # if true, write the PSB content in the record (default) #process.l1GtEmulDigis.WritePsbL1GtDaqRecord = False # logical flag to read the technical trigger records # if true, it will read via getMany the available records (default) #process.l1GtEmulDigis.ReadTechnicalTriggerRecords = False # number of "bunch crossing in the event" (BxInEvent) to be emulated # symmetric around L1Accept (BxInEvent = 0): # 1 (BxInEvent = 0); 3 (F 0 1) (standard record); 5 (E F 0 1 2) (debug record) # even numbers (except 0) "rounded" to the nearest lower odd number # negative value: emulate TotalBxInEvent as given in EventSetup #process.l1GtEmulDigis.EmulateBxInEvent = 3 # Global Trigger report import L1Trigger.GlobalTriggerAnalyzer.l1GtTrigReport_cfi process.l1GtTrigReportData = L1Trigger.GlobalTriggerAnalyzer.l1GtTrigReport_cfi.l1GtTrigReport.clone() process.l1GtTrigReportData.L1GtRecordInputTag = 'gtDigis' # import L1Trigger.GlobalTriggerAnalyzer.l1GtTrigReport_cfi process.l1GtTrigReportEmul = L1Trigger.GlobalTriggerAnalyzer.l1GtTrigReport_cfi.l1GtTrigReport.clone() process.l1GtTrigReportEmul.L1GtRecordInputTag = 'l1GtEmulDigis' # # compare the L1 GT data and emulator digis process.load("L1Trigger.GlobalTriggerAnalyzer.l1GtDataEmulAnalyzer_cfi") process.l1GtDataEmulAnalyzer.L1GtEmulInputTag = 'l1GtEmulDigis' # path to be run process.p = cms.Path(process.RawToDigi*process.l1GtEmulDigis*process.l1GtDataEmulAnalyzer*process.l1GtTrigReportData*process.l1GtTrigReportEmul) # services # Message Logger process.load("FWCore.MessageLogger.MessageLogger_cfi") process.MessageLogger.cerr.enable = False process.MessageLogger.cout = cms.untracked.PSet( enable = cms.untracked.bool(True), threshold = cms.untracked.string('INFO'), INFO = cms.untracked.PSet( #limit = cms.untracked.int32(-1) limit = cms.untracked.int32(1000) )#, #threshold = cms.untracked.string('DEBUG'), ## DEBUG #DEBUG = cms.untracked.PSet( ## DEBUG, all messages # # limit = cms.untracked.int32(-1) #) ) process.MessageLogger.debugModules = ['l1GtEmulDigis', 'l1GtDataEmulAnalyzer'] # histogram service process.TFileService = cms.Service("TFileService", fileName = cms.string('L1GtDataFromRawEmulAnalyzer.root') ) # summary process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True) ) # output process.outputL1GtDataEmul = cms.OutputModule("PoolOutputModule", fileName = cms.untracked.string('testGt_DataFromRawEmulAnalyzer_output.root'), outputCommands = cms.untracked.vstring('drop *', 'keep *_l1GtDataDigis_*_*', 'keep *_l1GtEmulDigis_*_*', 'keep *_l1GctDataDigis_*_*') ) process.outpath = cms.EndPath(process.outputL1GtDataEmul)
cc4ac77ed4939c041e43e27a022c11153491a137
4e4b752c4dbecf0b0d9f7cb86f9f76bb0ffa5d32
/contrib/opencensus-ext-grpc/opencensus/ext/grpc/client_interceptor.py
288bf650b8f816dc5ea14ba6bc43cb06c29bc526
[ "Apache-2.0" ]
permissive
census-instrumentation/opencensus-python
ab6bcf12b16677d9ca7fc93a5f96c2946d138a0c
3a2d8dfe1db4e0129dc691c35901a0d12127afc1
refs/heads/master
2023-09-02T13:53:19.757971
2023-03-16T22:10:07
2023-03-16T22:10:07
96,581,030
701
289
Apache-2.0
2023-09-14T21:14:09
2017-07-07T22:28:28
Python
UTF-8
Python
false
false
7,892
py
client_interceptor.py
# Copyright 2017, OpenCensus Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import six import collections import logging import grpc from opencensus.ext import grpc as oc_grpc from opencensus.ext.grpc import utils as grpc_utils from opencensus.trace import attributes_helper, execution_context from opencensus.trace import span as span_module from opencensus.trace import time_event from opencensus.trace.propagation import binary_format log = logging.getLogger(__name__) ATTRIBUTE_COMPONENT = 'COMPONENT' ATTRIBUTE_ERROR_NAME = 'ERROR_NAME' ATTRIBUTE_ERROR_MESSAGE = 'ERROR_MESSAGE' GRPC_HOST_PORT = 'GRPC_HOST_PORT' GRPC_METHOD = 'GRPC_METHOD' SENT_PREFIX = 'Sent' TIMEOUT = 3 # Do not trace StackDriver Trace exporter activities to avoid deadlock. CLOUD_TRACE = 'google.devtools.cloudtrace' class _ClientCallDetails( collections.namedtuple( '_ClientCallDetails', ('method', 'timeout', 'metadata', 'credentials')), grpc.ClientCallDetails): pass class OpenCensusClientInterceptor(grpc.UnaryUnaryClientInterceptor, grpc.UnaryStreamClientInterceptor, grpc.StreamUnaryClientInterceptor, grpc.StreamStreamClientInterceptor): def __init__(self, tracer=None, host_port=None): self._tracer = tracer self.host_port = host_port self._propagator = binary_format.BinaryFormatPropagator() @property def tracer(self): return self._tracer or execution_context.get_opencensus_tracer() def _start_client_span(self, client_call_details): span = self.tracer.start_span( name=_get_span_name(client_call_details) ) span.span_kind = span_module.SpanKind.CLIENT # Add the component grpc to span attribute self.tracer.add_attribute_to_current_span( attribute_key=attributes_helper.COMMON_ATTRIBUTES.get( ATTRIBUTE_COMPONENT), attribute_value='grpc') # Add the host:port info to span attribute self.tracer.add_attribute_to_current_span( attribute_key=attributes_helper.GRPC_ATTRIBUTES.get( GRPC_HOST_PORT), attribute_value=self.host_port) # Add the method to span attribute self.tracer.add_attribute_to_current_span( attribute_key=attributes_helper.GRPC_ATTRIBUTES.get(GRPC_METHOD), attribute_value=str(client_call_details.method)) return span def _intercept_call( self, client_call_details, request_iterator, grpc_type ): metadata = () if client_call_details.metadata is not None: metadata = client_call_details.metadata # Start a span current_span = self._start_client_span(client_call_details) span_context = current_span.context_tracer.span_context header = self._propagator.to_header(span_context) grpc_trace_metadata = { oc_grpc.GRPC_TRACE_KEY: header, } if isinstance(metadata, list): metadata_to_append = list(six.iteritems(grpc_trace_metadata)) else: metadata_to_append = tuple(six.iteritems(grpc_trace_metadata)) metadata = metadata + metadata_to_append client_call_details = _ClientCallDetails( client_call_details.method, client_call_details.timeout, metadata, client_call_details.credentials) request_iterator = grpc_utils.wrap_iter_with_message_events( request_or_response_iter=request_iterator, span=current_span, message_event_type=time_event.Type.SENT ) return client_call_details, request_iterator, current_span def _callback(self, current_span): def callback(future_response): grpc_utils.add_message_event( proto_message=future_response.result(), span=current_span, message_event_type=time_event.Type.RECEIVED, ) self._trace_future_exception(future_response) self.tracer.end_span() return callback def _trace_future_exception(self, response): # Trace the exception for a grpc.Future if any exception = response.exception() if exception is not None: exception = str(exception) self.tracer.add_attribute_to_current_span( attribute_key=attributes_helper.COMMON_ATTRIBUTES.get( ATTRIBUTE_ERROR_MESSAGE), attribute_value=exception) def intercept_unary_unary( self, continuation, client_call_details, request ): if CLOUD_TRACE in client_call_details.method: response = continuation(client_call_details, request) return response new_details, new_request, current_span = self._intercept_call( client_call_details=client_call_details, request_iterator=iter((request,)), grpc_type=oc_grpc.UNARY_UNARY) response = continuation( new_details, next(new_request)) response.add_done_callback(self._callback(current_span)) return response def intercept_unary_stream( self, continuation, client_call_details, request ): if CLOUD_TRACE in client_call_details.method: response = continuation(client_call_details, request) return response new_details, new_request_iterator, current_span = self._intercept_call( client_call_details=client_call_details, request_iterator=iter((request,)), grpc_type=oc_grpc.UNARY_STREAM) return grpc_utils.WrappedResponseIterator( continuation(new_details, next(new_request_iterator)), current_span) def intercept_stream_unary( self, continuation, client_call_details, request_iterator ): if CLOUD_TRACE in client_call_details.method: response = continuation(client_call_details, request_iterator) return response new_details, new_request_iterator, current_span = self._intercept_call( client_call_details=client_call_details, request_iterator=request_iterator, grpc_type=oc_grpc.STREAM_UNARY) response = continuation( new_details, new_request_iterator) response.add_done_callback(self._callback(current_span)) return response def intercept_stream_stream( self, continuation, client_call_details, request_iterator ): if CLOUD_TRACE in client_call_details.method: response = continuation(client_call_details, request_iterator) return response new_details, new_request_iterator, current_span = self._intercept_call( client_call_details=client_call_details, request_iterator=request_iterator, grpc_type=oc_grpc.STREAM_STREAM) return grpc_utils.WrappedResponseIterator( continuation(new_details, new_request_iterator), current_span) def _get_span_name(client_call_details): """Generates a span name based off of the gRPC client call details""" method_name = client_call_details.method[1:].replace('/', '.') return '{}.{}'.format(SENT_PREFIX, method_name)
4b48032c72fcb49c29763eb725a7cb262efb4f26
4d28185e7a78a569f9a449f39f183cac3024f711
/packages/Python/lldbsuite/test/commands/command/script/import/foo/foo2.py
71657c299c219919a9e1b82ed4fbde338fb3e1b6
[ "NCSA", "Apache-2.0", "LLVM-exception" ]
permissive
apple/swift-lldb
2789bf44f648609a1674ee520ac20b64c95de072
d74be846ef3e62de946df343e8c234bde93a8912
refs/heads/stable
2023-04-06T00:28:15.882479
2019-10-25T22:46:59
2019-10-25T22:46:59
44,838,862
780
291
Apache-2.0
2020-01-10T19:28:43
2015-10-23T21:13:18
C++
UTF-8
Python
false
false
294
py
foo2.py
from __future__ import print_function def foo2_function(debugger, args, result, dict): print("foo2 says " + args, file=result) return None def __lldb_init_module(debugger, session_dict): debugger.HandleCommand("command script add -f foo2.foo2_function foo2cmd") return None
5c12be7f373ce7e8b27b06bb33dcd0308dcd8403
1acbcda9259365865756e6fa559c4b56600e00dc
/lwp/__init__.py
0a2564e236b316c44b667a78f1bbcd8ac107c371
[ "MIT" ]
permissive
lxc-webpanel/LXC-Web-Panel
a4ff2fcb99abd0b794526a650a2cd89bc625d849
262ac59b8a026cb01ff72a56278673c3fce9b9c0
refs/heads/0.2
2023-03-07T15:50:05.409894
2017-12-21T23:33:51
2017-12-21T23:33:51
8,950,398
441
211
MIT
2020-08-26T23:17:02
2013-03-22T11:17:26
Python
UTF-8
Python
false
false
13,884
py
__init__.py
# LXC Python Library # for compatibility with LXC 0.8 and 0.9 # on Ubuntu 12.04/12.10/13.04 # Author: Elie Deloumeau # Contact: elie@deloumeau.fr # The MIT License (MIT) # Copyright (c) 2013 Elie Deloumeau # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import sys sys.path.append('../') from lxclite import exists, stopped, ContainerDoesntExists import os import platform import re import subprocess import time from io import StringIO try: from urllib.request import urlopen except ImportError: from urllib2 import urlopen try: import configparser except ImportError: import ConfigParser as configparser class CalledProcessError(Exception): pass cgroup = {} cgroup['type'] = 'lxc.network.type' cgroup['link'] = 'lxc.network.link' cgroup['flags'] = 'lxc.network.flags' cgroup['hwaddr'] = 'lxc.network.hwaddr' cgroup['rootfs'] = 'lxc.rootfs' cgroup['utsname'] = 'lxc.utsname' cgroup['arch'] = 'lxc.arch' cgroup['ipv4'] = 'lxc.network.ipv4' cgroup['memlimit'] = 'lxc.cgroup.memory.limit_in_bytes' cgroup['swlimit'] = 'lxc.cgroup.memory.memsw.limit_in_bytes' cgroup['cpus'] = 'lxc.cgroup.cpuset.cpus' cgroup['shares'] = 'lxc.cgroup.cpu.shares' cgroup['deny'] = 'lxc.cgroup.devices.deny' cgroup['allow'] = 'lxc.cgroup.devices.allow' def FakeSection(fp): content = u"[DEFAULT]\n%s" % fp.read() return StringIO(content) def DelSection(filename=None): if filename: load = open(filename, 'r') read = load.readlines() load.close() i = 0 while i < len(read): if '[DEFAULT]' in read[i]: del read[i] break load = open(filename, 'w') load.writelines(read) load.close() def file_exist(filename): ''' checks if a given file exist or not ''' try: with open(filename) as f: f.close() return True except IOError: return False def ls_auto(): ''' returns a list of autostart containers ''' try: auto_list = os.listdir('/etc/lxc/auto/') except OSError: auto_list = [] return auto_list def memory_usage(name): ''' returns memory usage in MB ''' if not exists(name): raise ContainerDoesntExists( "The container (%s) does not exist!" % name) if name in stopped(): return 0 cmd = ['lxc-cgroup -n %s memory.usage_in_bytes' % name] try: out = subprocess.check_output(cmd, shell=True, universal_newlines=True).splitlines() except: return 0 return int(out[0])/1024/1024 def host_memory_usage(): ''' returns a dict of host memory usage values {'percent': int((used/total)*100), 'percent_cached':int((cached/total)*100), 'used': int(used/1024), 'total': int(total/1024)} ''' out = open('/proc/meminfo') for line in out: if 'MemTotal:' == line.split()[0]: split = line.split() total = float(split[1]) if 'MemFree:' == line.split()[0]: split = line.split() free = float(split[1]) if 'Buffers:' == line.split()[0]: split = line.split() buffers = float(split[1]) if 'Cached:' == line.split()[0]: split = line.split() cached = float(split[1]) out.close() used = (total - (free + buffers + cached)) return {'percent': int((used/total)*100), 'percent_cached': int(((cached)/total)*100), 'used': int(used/1024), 'total': int(total/1024)} def host_cpu_percent(): ''' returns CPU usage in percent ''' f = open('/proc/stat', 'r') line = f.readlines()[0] data = line.split() previdle = float(data[4]) prevtotal = float(data[1]) + float(data[2]) + \ float(data[3]) + float(data[4]) f.close() time.sleep(0.1) f = open('/proc/stat', 'r') line = f.readlines()[0] data = line.split() idle = float(data[4]) total = float(data[1]) + float(data[2]) + float(data[3]) + float(data[4]) f.close() intervaltotal = total - prevtotal percent = 100 * (intervaltotal - (idle - previdle)) / intervaltotal return str('%.1f' % percent) def host_disk_usage(partition=None): ''' returns a dict of disk usage values {'total': usage[1], 'used': usage[2], 'free': usage[3], 'percent': usage[4]} ''' if not partition: partition = '/' usage = subprocess.check_output(['df -h %s' % partition], universal_newlines=True, shell=True).split('\n')[1].split() return {'total': usage[1], 'used': usage[2], 'free': usage[3], 'percent': usage[4]} def host_uptime(): ''' returns a dict of the system uptime {'day': days, 'time': '%d:%02d' % (hours,minutes)} ''' f = open('/proc/uptime') uptime = int(f.readlines()[0].split('.')[0]) minutes = uptime / 60 % 60 hours = uptime / 60 / 60 % 24 days = uptime / 60 / 60 / 24 f.close() return {'day': days, 'time': '%d:%02d' % (hours, minutes)} def check_ubuntu(): ''' return the System version ''' dist = '%s %s' % (platform.linux_distribution()[0], platform.linux_distribution()[1]) return dist def get_templates_list(): ''' returns a sorted lxc templates list ''' templates = [] path = None try: path = os.listdir('/usr/share/lxc/templates') except: path = os.listdir('/usr/lib/lxc/templates') if path: for line in path: templates.append(line.replace('lxc-', '')) return sorted(templates) def check_version(): ''' returns latest LWP version (dict with current and latest) ''' f = open('version') current = float(f.read()) f.close() latest = float(urlopen('http://lxc-webpanel.github.com/version').read()) return {'current': current, 'latest': latest} def get_net_settings_fname(): filename = '/etc/default/lxc-net' if not file_exist(filename): filename = '/etc/default/lxc' if not file_exist(filename): filename = None return filename def get_net_settings(): ''' returns a dict of all known settings for LXC networking ''' filename = get_net_settings_fname() if not filename: return False config = configparser.SafeConfigParser() cfg = {} config.readfp(FakeSection(open(filename))) cfg['use'] = config.get('DEFAULT', 'USE_LXC_BRIDGE').strip('"') cfg['bridge'] = config.get('DEFAULT', 'LXC_BRIDGE').strip('"') cfg['address'] = config.get('DEFAULT', 'LXC_ADDR').strip('"') cfg['netmask'] = config.get('DEFAULT', 'LXC_NETMASK').strip('"') cfg['network'] = config.get('DEFAULT', 'LXC_NETWORK').strip('"') cfg['range'] = config.get('DEFAULT', 'LXC_DHCP_RANGE').strip('"') cfg['max'] = config.get('DEFAULT', 'LXC_DHCP_MAX').strip('"') return cfg def get_container_settings(name): ''' returns a dict of all utils settings for a container ''' if os.geteuid(): filename = os.path.expanduser('~/.local/share/lxc/%s/config' % name) else: filename = '/var/lib/lxc/%s/config' % name if not file_exist(filename): return False config = configparser.SafeConfigParser() cfg = {} config.readfp(FakeSection(open(filename))) try: cfg['type'] = config.get('DEFAULT', cgroup['type']) except configparser.NoOptionError: cfg['type'] = '' try: cfg['link'] = config.get('DEFAULT', cgroup['link']) except configparser.NoOptionError: cfg['link'] = '' try: cfg['flags'] = config.get('DEFAULT', cgroup['flags']) except configparser.NoOptionError: cfg['flags'] = '' try: cfg['hwaddr'] = config.get('DEFAULT', cgroup['hwaddr']) except configparser.NoOptionError: cfg['hwaddr'] = '' try: cfg['rootfs'] = config.get('DEFAULT', cgroup['rootfs']) except configparser.NoOptionError: cfg['rootfs'] = '' try: cfg['utsname'] = config.get('DEFAULT', cgroup['utsname']) except configparser.NoOptionError: cfg['utsname'] = '' try: cfg['arch'] = config.get('DEFAULT', cgroup['arch']) except configparser.NoOptionError: cfg['arch'] = '' try: cfg['ipv4'] = config.get('DEFAULT', cgroup['ipv4']) except configparser.NoOptionError: cfg['ipv4'] = '' try: cfg['memlimit'] = re.sub(r'[a-zA-Z]', '', config.get('DEFAULT', cgroup['memlimit'])) except configparser.NoOptionError: cfg['memlimit'] = '' try: cfg['swlimit'] = re.sub(r'[a-zA-Z]', '', config.get('DEFAULT', cgroup['swlimit'])) except configparser.NoOptionError: cfg['swlimit'] = '' try: cfg['cpus'] = config.get('DEFAULT', cgroup['cpus']) except configparser.NoOptionError: cfg['cpus'] = '' try: cfg['shares'] = config.get('DEFAULT', cgroup['shares']) except configparser.NoOptionError: cfg['shares'] = '' if '%s.conf' % name in ls_auto(): cfg['auto'] = True else: cfg['auto'] = False return cfg def push_net_value(key, value): ''' replace a var in the lxc-net config file ''' filename = get_net_settings_fname() if filename: config = configparser.RawConfigParser() config.readfp(FakeSection(open(filename))) if not value: config.remove_option('DEFAULT', key) else: config.set('DEFAULT', key, value) with open(filename, 'wb') as configfile: config.write(configfile) DelSection(filename=filename) load = open(filename, 'r') read = load.readlines() load.close() i = 0 while i < len(read): if ' = ' in read[i]: split = read[i].split(' = ') split[1] = split[1].strip('\n') if '\"' in split[1]: read[i] = '%s=%s\n' % (split[0].upper(), split[1]) else: read[i] = '%s=\"%s\"\n' % (split[0].upper(), split[1]) i += 1 load = open(filename, 'w') load.writelines(read) load.close() def push_config_value(key, value, container=None): ''' replace a var in a container config file ''' def save_cgroup_devices(filename=None): ''' returns multiple values (lxc.cgroup.devices.deny and lxc.cgroup.devices.allow) in a list because configparser cannot make this... ''' if filename: values = [] i = 0 load = open(filename, 'r') read = load.readlines() load.close() while i < len(read): if not read[i].startswith('#') and \ re.match('lxc.cgroup.devices.deny|' 'lxc.cgroup.devices.allow', read[i]): values.append(read[i]) i += 1 return values if container: if os.geteuid(): filename = os.path.expanduser('~/.local/share/lxc/%s/config' % container) else: filename = '/var/lib/lxc/%s/config' % container save = save_cgroup_devices(filename=filename) config = configparser.RawConfigParser() config.readfp(FakeSection(open(filename))) if not value: config.remove_option('DEFAULT', key) elif key == cgroup['memlimit'] or key == cgroup['swlimit'] \ and value is not False: config.set('DEFAULT', key, '%sM' % value) else: config.set('DEFAULT', key, value) # Bugfix (can't duplicate keys with config parser) if config.has_option('DEFAULT', cgroup['deny']) or \ config.has_option('DEFAULT', cgroup['allow']): config.remove_option('DEFAULT', cgroup['deny']) config.remove_option('DEFAULT', cgroup['allow']) with open(filename, 'wb') as configfile: config.write(configfile) DelSection(filename=filename) with open(filename, "a") as configfile: configfile.writelines(save) def net_restart(): ''' restarts LXC networking ''' cmd = ['/usr/sbin/service lxc-net restart'] try: subprocess.check_call(cmd, shell=True) return 0 except CalledProcessError: return 1
74f8b117608f9ecda972df88621b67d98baa62d5
02b8727cb27298f8f0c0f0c4235045bcc9c290f9
/habanero/cn_formats.py
a6bb94b54b456f50c2839ce75b4fbb6e5ba98e50
[ "MIT" ]
permissive
sckott/habanero
d97d678a39771b91941f6c4f4c2a4f6f410f8465
8cbe3a8f283f3bf3135459070022ad1324252a15
refs/heads/main
2023-09-01T02:46:52.231185
2023-07-27T21:51:28
2023-07-27T21:51:28
43,704,742
160
30
MIT
2023-09-13T13:03:58
2015-10-05T18:23:28
Python
UTF-8
Python
false
false
1,076
py
cn_formats.py
cn_formats = [ "rdf-xml", "turtle", "citeproc-json", "citeproc-json-ish", "text", "ris", "bibtex", "crossref-xml", "datacite-xml", "bibentry", "crossref-tdm", ] cn_format_headers = { "rdf-xml": "application/rdf+xml", "turtle": "text/turtle", "citeproc-json": "transform/application/vnd.citationstyles.csl+json", "text": "text/x-bibliography", "ris": "application/x-research-info-systems", "bibtex": "application/x-bibtex", "crossref-xml": "application/vnd.crossref.unixref+xml", "datacite-xml": "application/vnd.datacite.datacite+xml", "bibentry": "application/x-bibtex", "crossref-tdm": "application/vnd.crossref.unixsd+xml", } cn_types = { "rdf-xml": "text/xml", "turtle": "text/plain", "citeproc-json": "application/json", "citeproc-json-ish": "application/json", "text": "text/plain", "ris": "text/plain", "bibtex": "text/plain", "crossref-xml": "text/xml", "datacite-xml": "text/xml", "bibentry": "text/plain", "crossref-tdm": "text/xml", }
d6fbcf48b3bcbba76f9ef6b43566af61943caa4b
71acb7214efd91c0d327f6d8958e1798eadb4401
/locations/spiders/goldsmiths_gb.py
40d5ce6ddccfdb2bafbf5fbd059a3d6f99195c90
[ "CC0-1.0", "MIT" ]
permissive
alltheplaces/alltheplaces
21b9f8b4ace1352e52ae7b8f8825a930d2cb033e
1bcbb55cfcf06f2c714465570711f6e83f205c22
refs/heads/master
2023-08-30T19:45:35.098658
2023-08-30T17:51:54
2023-08-30T17:51:54
61,166,935
453
176
NOASSERTION
2023-09-14T17:16:40
2016-06-15T01:09:18
Python
UTF-8
Python
false
false
1,844
py
goldsmiths_gb.py
from scrapy import Spider from scrapy.http import JsonRequest from locations.dict_parser import DictParser from locations.hours import OpeningHours class GoldsmithsGBSpider(Spider): name = "goldsmiths_gb" item_attributes = {"brand": "Goldsmiths", "brand_wikidata": "Q16993095"} start_urls = ["https://www.goldsmiths.co.uk/store-finder?q=&latitude=0&longitude=0&page=0"] def parse(self, response, **kwargs): for location in response.json()["results"]: location["ref"] = location.pop("name") location["address"]["street_address"] = ", ".join( filter(None, [location["address"].get("line1"), location["address"].get("line2")]) ) location["address"]["country"] = location["address"]["country"]["isocode"] location["phone"] = location["address"]["phone"] location["email"] = location["address"]["email"] item = DictParser.parse(location) item["website"] = f'https://www.goldsmiths.co.uk/store/{item["ref"]}' item["opening_hours"] = OpeningHours() for rule in location["openingHours"]["weekDayOpeningList"]: if rule["closed"]: continue item["opening_hours"].add_range( rule["weekDay"], rule["openingTime"]["formattedHour"], rule["closingTime"]["formattedHour"], time_format="%I:%M %p", ) yield item current_page = response.json()["pagination"]["currentPage"] pages = response.json()["pagination"]["numberOfPages"] if current_page < pages: yield JsonRequest( url=f"https://www.goldsmiths.co.uk/store-finder?q=&latitude=0&longitude=0&page={current_page+1}" )
f9fb7840aa8d13f262b44b35e8d7585c0d37fd2a
5599d46fdd4ecfa3a7d9ccb8e2aee648a5a0044c
/tests/tests/test_evaluate.py
ddaab032534b3db6e7824edb4de29501ce69875d
[]
no_license
MrOlm/drep
552e95e7057bbe9550de832500fc51229b0bee27
27691e3d105693d7a42f2402366101c498186a27
refs/heads/master
2023-05-26T08:22:18.393677
2023-05-18T15:56:13
2023-05-18T15:56:13
69,408,336
200
44
null
2023-02-06T19:03:08
2016-09-27T23:55:43
Python
UTF-8
Python
false
false
2,774
py
test_evaluate.py
import os import glob import shutil import pandas as pd import importlib import logging import pytest import tests.test_utils as test_utils import drep from drep import argumentParser from drep.controller import Controller from drep.WorkDirectory import WorkDirectory @pytest.fixture() def self(): self = test_utils.load_common_self() yield self self.teardown() def test_tertiary_clustering_1(self): ''' Test --run_tertiary_clustering fully ''' test_dir = self.test_dir # Check that wont run without dereplicate args = drep.argumentParser.parse_args( ['compare', self.wd_loc, '--run_tertiary_clustering', '-g'] + self.genomes) try: drep.controller.Controller().parseArguments(args) assert False except ValueError: pass args = drep.argumentParser.parse_args( ['dereplicate', self.wd_loc, '--run_tertiary_clustering', '--ignoreGenomeQuality', '-g'] + self.genomes) drep.controller.Controller().parseArguments(args) # Load test results wd = drep.WorkDirectory.WorkDirectory(self.wd_loc) Cdb = wd.get_db('Cdb').sort_values('genome').reset_index(drop=True) # Load solutions wdS = drep.WorkDirectory.WorkDirectory(self.s_wd_loc) CdbS = wdS.get_db('Cdb').sort_values('genome').reset_index(drop=True) assert 'original_secondary_cluster' not in CdbS.columns assert 'original_secondary_cluster' in Cdb.columns def test_tertiary_clustering_2(self): ''' Quick tests for --run_tertiary_clustering fully ''' test_dir = self.test_dir # Edit Cdb and Wdb wd = drep.WorkDirectory.WorkDirectory(self.working_wd_loc) Cdb = wd.get_db('Cdb') Cdb['secondary_cluster'] = [c if g != 'Enterococcus_faecalis_T2.fna' else '1_3' for c, g in zip(Cdb['secondary_cluster'], Cdb['genome'])] Wdb = wd.get_db('Wdb') db = pd.DataFrame({'genome':['Enterococcus_faecalis_T2.fna'], 'cluster':['1_3'], 'score':[50]}) Wdb = pd.concat([Wdb, db]) assert len(Wdb) == 5 wd.store_db(Wdb, 'Wdb') wd.store_db(Cdb, 'Cdb') # Run tertiary clustering args = drep.argumentParser.parse_args( ['dereplicate', self.working_wd_loc, '--run_tertiary_clustering', '--S_algorithm', 'ANImf', '-sa', '0.99', '-g'] + self.genomes) drep.d_evaluate.d_evaluate_wrapper(args.work_directory, evaluate=['2'], **vars(args)) wd = drep.WorkDirectory.WorkDirectory(self.working_wd_loc) Cdb = wd.get_db('Cdb').sort_values('genome').reset_index(drop=True) Wdb = wd.get_db('Wdb').sort_values('genome').reset_index(drop=True) assert len(Cdb['secondary_cluster'].unique()) == 4 assert len(Cdb['original_secondary_cluster'].unique()) == 5 assert len(Wdb) == 4 assert '1_1.3' in Cdb['secondary_cluster'].tolist()
8b349f14090c69347de153c92f10bedd447785c8
157d84f8aafc76ba9ea0dbbf08ede744966b4250
/tools/development/setup_test_agent.py
cd7c1ae73a4085ab024cdf37e85a670379297d8b
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
rancher/cattle
81d165a0339a41950561fe534c7529ec74203c56
82d154a53f4089fecfb9f320caad826bb4f6055f
refs/heads/v1.6
2023-08-27T20:19:31.989806
2020-05-01T18:15:55
2020-05-01T20:11:28
18,023,059
487
233
Apache-2.0
2022-01-03T18:07:33
2014-03-23T00:19:52
Java
UTF-8
Python
false
false
957
py
setup_test_agent.py
#!/usr/bin/env python import cattle def find_instance(instance): hosts = instance.hosts() if len(hosts) > 0: return hosts[0].agent().uuid == 'test-agent' return False client = cattle.from_env() UUID = 'docker0-agent-instance-provider' nsp = client.list_network_service_provider(uuid=UUID)[0] instances = filter(find_instance, nsp.instances()) if len(instances) != 1: raise Exception('Found {} instances, expect 1. Try running a container' 'first'.format(len(instances))) account = instances[0].agent().account() found = False for cred in account.credentials(): if cred.kind == 'apiKey' and cred.publicValue == 'ai': found = True if not found: print 'Creating credential for account', account.id client.create_credential(accountId=account.id, publicValue='ai', secretValue='aipass', kind='apiKey')
cfa7f1cd22909e05461fc27046544abe96b7e2e8
1ffa0900d91ff7dc76e933489d354252edc5dbb9
/gateware/sim/test_slow_adc.py
d39476383cdc8bdce5a148724647ebf8b070dd22
[]
no_license
softerhardware/Hermes-Lite2
6b05ef86f83e2c2b83ae622d3867f790532bbce0
0a6e07c37a23cd3a8721b6c3089e28721c378883
refs/heads/master
2023-08-05T17:16:25.996884
2023-07-27T04:21:47
2023-07-27T04:21:47
74,639,005
177
82
null
2022-02-04T06:26:33
2016-11-24T04:53:08
HTML
UTF-8
Python
false
false
3,517
py
test_slow_adc.py
#!/usr/bin/env python from myhdl import * import os import i2c module = 'slow_adc' testbench = 'test_%s' % module srcs = [] srcs.append("../rtl/%s.v" % module) srcs.append("../rtl/i2c_master.v") srcs.append("%s.v" % testbench) src = ' '.join(srcs) build_cmd = "iverilog -g2012 -o %s.vvp %s" % (testbench, src) verilogtb = """ `timescale 1ns / 1ps /* * Testbench for i2c_master */ module test_slow_adc; // Parameters // Inputs reg clk = 0; reg rst = 0; reg [7:0] current_test = 0; reg scl_i = 1; reg sda_i = 1; // Outputs wire [11:0] ain0, ain1, ain2, ain3; wire scl_o; wire scl_t; wire sda_o; wire sda_t; initial begin // myhdl integration $from_myhdl( clk, rst, scl_i, sda_i ); $to_myhdl( ain0, ain1, ain2, ain3, scl_o, scl_t, sda_o, sda_t ); // dump file $dumpfile("test_slow_adc.lxt"); $dumpvars(0, test_slow_adc); end slow_adc UUT ( .clk(clk), .rst(rst), .ain0(ain0), .ain1(ain1), .ain2(ain2), .ain3(ain3), .scl_i(scl_i), .scl_o(scl_o), .scl_t(scl_t), .sda_i(sda_i), .sda_o(sda_o), .sda_t(sda_t) ); endmodule """ f = open(testbench+".v","w") f.write(verilogtb) f.close() def bench(): # Inputs clk = Signal(bool(0)) rst = Signal(bool(0)) ain0 = Signal(intbv(0)[12:]) ain1 = Signal(intbv(0)[12:]) ain2 = Signal(intbv(0)[12:]) ain3 = Signal(intbv(0)[12:]) scl_i = Signal(bool(1)) sda_i = Signal(bool(1)) scl_o = Signal(bool(1)) scl_t = Signal(bool(1)) sda_o = Signal(bool(1)) sda_t = Signal(bool(1)) s1_scl_i = Signal(bool(1)) s1_sda_i = Signal(bool(1)) s1_scl_o = Signal(bool(1)) s1_scl_t = Signal(bool(1)) s1_sda_o = Signal(bool(1)) s1_sda_t = Signal(bool(1)) # I2C memory model 1 i2c_mem_inst1 = i2c.I2CModMem(1024) i2c_mem_logic1 = i2c_mem_inst1.create_logic( scl_i=s1_scl_i, scl_o=s1_scl_o, scl_t=s1_scl_t, sda_i=s1_sda_i, sda_o=s1_sda_o, sda_t=s1_sda_t, abw=1, address=0x34, latency=0, name='slave1' ) # DUT if os.system(build_cmd): raise Exception("Error running build command") dut = Cosimulation( "vvp -m myhdl %s.vvp -lxt2" % testbench, clk=clk, rst=rst, ain0=ain0, ain1=ain1, ain2=ain2, ain3=ain3, scl_i=scl_i, scl_o=scl_o, scl_t=scl_t, sda_i=sda_i, sda_o=sda_o, sda_t=sda_t ) @always_comb def bus(): # emulate I2C wired AND ##print(scl_o) scl_i.next = scl_o & s1_scl_o; sda_i.next = sda_o & s1_sda_o; s1_scl_i.next = scl_o & s1_scl_o; s1_sda_i.next = sda_o & s1_sda_o; @always(delay(4)) def clkgen(): clk.next = not clk @instance def check(): yield delay(100) yield clk.posedge rst.next = 1 yield clk.posedge rst.next = 0 yield clk.posedge yield delay(100) for i in range(0,20100): yield clk.posedge assert ain0==0x0708 assert ain1==0x090a assert ain2==0x0b0c assert ain3==0x0d0e raise StopSimulation return dut, i2c_mem_logic1, bus, clkgen, check def test_bench(): sim = Simulation(bench()) sim.run() if __name__ == '__main__': print("Running test...") test_bench()
1922263dec3c33f098b31ceab79190b5379aac0c
cb3b27f0ed142ba31d73e44d7d3214c781b84eb6
/setup.py
df4098796e85d6dafb275b84d1d56610f7e8370f
[ "MIT" ]
permissive
mpcabd/python-arabic-reshaper
879f08f1d28f5460a87d721f1289cc1dfe58f904
2990ceb11276a278849abc97f245aa3eb09173cc
refs/heads/master
2023-02-01T18:04:47.534010
2023-01-10T14:33:44
2023-01-10T14:33:44
4,286,622
372
83
MIT
2022-10-13T14:04:07
2012-05-10T15:57:45
Python
UTF-8
Python
false
false
1,558
py
setup.py
#!/usr/bin/env python # coding=utf-8 from setuptools import setup import io import os with io.open('README.md', 'r', encoding='utf-8') as fh: long_description = fh.read() setup( name='arabic_reshaper', description=('Reconstruct Arabic sentences to be used in' ' applications that do not support Arabic'), long_description=long_description, long_description_content_type='text/markdown', version='3.0.0', platforms='ALL', license='MIT', packages=['arabic_reshaper'], extras_require={ 'with-fonttools': ['fonttools>=4.0'] }, author='Abdullah Diab', author_email='mpcabd@gmail.com', maintainer='Abdullah Diab', maintainer_email='mpcabd@gmail.com', package_dir={'arabic_reshaper': 'arabic_reshaper'}, test_suite='arabic_reshaper.tests', include_package_data=True, keywords='arabic shaping reshaping reshaper', url='https://github.com/mpcabd/python-arabic-reshaper/', download_url=('https://github.com/mpcabd/' 'python-arabic-reshaper/tarball/master'), classifiers=[ 'Natural Language :: Arabic', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: 3.11', 'Topic :: Software Development :: Libraries :: Python Modules', ], )
58bfe50a683c8dd71e4633887f79ec262f03ed1a
6fdb4eaf5b0e6dbd7db4bf947547541e9aebf110
/api/src/opentrons/calibration_storage/ot2/pipette_offset.py
83616a3737a85cd201129e914a4d324adfd912d5
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
Opentrons/opentrons
874321e01149184960eeaeaa31b1d21719a1ceda
026b523c8c9e5d45910c490efb89194d72595be9
refs/heads/edge
2023-09-02T02:51:49.579906
2023-08-31T16:02:45
2023-08-31T16:02:45
38,644,841
326
174
Apache-2.0
2023-09-14T21:47:20
2015-07-06T20:41:01
Python
UTF-8
Python
false
false
4,005
py
pipette_offset.py
import json import typing import logging from pydantic import ValidationError from dataclasses import asdict from opentrons import config, types from .. import file_operators as io, types as local_types from .models import v1 from opentrons.types import Mount, Point from opentrons.util.helpers import utc_now log = logging.getLogger(__name__) # Delete Pipette Offset Calibrations def delete_pipette_offset_file(pipette: str, mount: Mount) -> None: """ Delete pipette offset file based on mount and pipette serial number :param pipette: pipette serial number :param mount: pipette mount """ offset_dir = config.get_opentrons_path("pipette_calibration_dir") offset_path = offset_dir / mount.name.lower() / f"{pipette}.json" io.delete_file(offset_path) def clear_pipette_offset_calibrations() -> None: """ Delete all pipette offset calibration files. """ io._remove_json_files_in_directories( config.get_opentrons_path("pipette_calibration_dir") ) # Save Pipette Offset Calibrations def save_pipette_calibration( offset: Point, pip_id: str, mount: Mount, tiprack_hash: str, tiprack_uri: str, cal_status: typing.Optional[ typing.Union[local_types.CalibrationStatus, v1.CalibrationStatus] ] = None, ) -> None: pip_dir = config.get_opentrons_path("pipette_calibration_dir") / mount.name.lower() if isinstance(cal_status, local_types.CalibrationStatus): cal_status_model = v1.CalibrationStatus(**asdict(cal_status)) elif isinstance(cal_status, v1.CalibrationStatus): cal_status_model = cal_status else: cal_status_model = v1.CalibrationStatus() pipette_calibration = v1.InstrumentOffsetModel( offset=offset, tiprack=tiprack_hash, uri=tiprack_uri, last_modified=utc_now(), source=local_types.SourceType.user, status=cal_status_model, ) io.save_to_file(pip_dir, pip_id, pipette_calibration) # Get Pipette Offset Calibrations def get_pipette_offset( pipette_id: str, mount: Mount ) -> typing.Optional[v1.InstrumentOffsetModel]: try: pipette_calibration_filepath = ( config.get_opentrons_path("pipette_calibration_dir") / mount.name.lower() / f"{pipette_id}.json" ) return v1.InstrumentOffsetModel( **io.read_cal_file(pipette_calibration_filepath) ) except FileNotFoundError: log.warning(f"Calibrations for {pipette_id} on {mount} does not exist.") return None except (json.JSONDecodeError, ValidationError): log.warning( f"Malformed calibrations for {pipette_id} on {mount}. Please factory reset your calibrations." ) return None def get_all_pipette_offset_calibrations() -> typing.List[v1.PipetteOffsetCalibration]: """ A helper function that will list all of the pipette offset calibrations. :return: A list of dictionary objects representing all of the pipette offset calibration files found on the robot. """ pipette_calibration_dir = config.get_opentrons_path("pipette_calibration_dir") pipette_calibration_list = [] for filepath in pipette_calibration_dir.glob("**/*.json"): pipette_id = filepath.stem mount = Mount.string_to_mount(filepath.parent.stem) calibration = get_pipette_offset(pipette_id, mount) if calibration: pipette_calibration_list.append( v1.PipetteOffsetCalibration( pipette=pipette_id, mount=mount.name.lower(), offset=types.Point(*calibration.offset), tiprack=calibration.tiprack, uri=calibration.uri, last_modified=calibration.last_modified, source=calibration.source, status=calibration.status, ) ) return pipette_calibration_list
7f4efed1d9815d01a3e9507021162d0289279bb1
749af8e81d5ccd2d8714a34434a9c77772df551b
/statsmodels/tools/catadd.py
8016ba9630ff693b631ca6869a863d292a012687
[ "BSD-3-Clause" ]
permissive
statsmodels/statsmodels
98ca67192c08bcc611ed3a75edaded2c7181ab98
01b19d7d111b29c183f620ff0a949ef6391ff8ee
refs/heads/main
2023-09-05T13:05:49.497076
2023-09-01T10:54:50
2023-09-01T10:54:50
1,885,237
8,666
3,023
BSD-3-Clause
2023-09-13T17:51:48
2011-06-12T17:04:50
Python
UTF-8
Python
false
false
1,010
py
catadd.py
import numpy as np def add_indep(x, varnames, dtype=None): ''' construct array with independent columns x is either iterable (list, tuple) or instance of ndarray or a subclass of it. If x is an ndarray, then each column is assumed to represent a variable with observations in rows. ''' # TODO: this needs tests for subclasses if isinstance(x, np.ndarray) and x.ndim == 2: x = x.T nvars_orig = len(x) nobs = len(x[0]) if not dtype: dtype = np.asarray(x[0]).dtype xout = np.zeros((nobs, nvars_orig), dtype=dtype) count = 0 rank_old = 0 varnames_new = [] varnames_dropped = [] keepindx = [] for (xi, ni) in zip(x, varnames): xout[:, count] = xi rank_new = np.linalg.matrix_rank(xout) if rank_new > rank_old: varnames_new.append(ni) rank_old = rank_new count += 1 else: varnames_dropped.append(ni) return xout[:, :count], varnames_new
21d12c7d654f3963b1b5d7b24708a3f01b0af115
92d97211aebc18d62fdde441ea775198a231c362
/small_text/query_strategies/coresets.py
d7f7e0e7ab5a711e675d29a3fa9619d04d1c10d3
[ "MIT" ]
permissive
webis-de/small-text
4a510bc4dd9a2110976121603bcc859581a5141c
2bb16b7413f85f3b933887c7054db45b5652d3a2
refs/heads/main
2023-09-03T06:00:20.976398
2023-08-19T18:28:43
2023-08-19T18:28:43
370,275,343
476
58
MIT
2023-08-23T20:54:25
2021-05-24T08:06:41
Python
UTF-8
Python
false
false
7,393
py
coresets.py
import warnings import numpy as np from sklearn.metrics import pairwise_distances from small_text.query_strategies.strategies import EmbeddingBasedQueryStrategy _DISTANCE_METRICS = ['cosine', 'euclidean'] def _check_coreset_size(x, n): if n > x.shape[0]: raise ValueError(f'n (n={n}) is greater the number of available samples (num_samples={x.shape[0]})') def _cosine_distance(a, b, normalized=False): sim = np.matmul(a, b.T) if not normalized: sim = sim / np.dot(np.linalg.norm(a, axis=1)[:, np.newaxis], np.linalg.norm(b, axis=1)[np.newaxis, :]) return np.arccos(sim) / np.pi def _euclidean_distance(a, b, normalized=False): _ = normalized return pairwise_distances(a, b, metric='euclidean') def greedy_coreset(x, indices_unlabeled, indices_labeled, n, distance_metric='cosine', batch_size=100, normalized=False): """Computes a greedy coreset [SS17]_ over `x` with size `n`. Parameters ---------- x : np.ndarray A matrix of row-wise vector representations. indices_unlabeled : np.ndarray Indices (relative to `dataset`) for the unlabeled data. indices_labeled : np.ndarray Indices (relative to `dataset`) for the unlabeled data. n : int Size of the coreset (in number of instances). distance_metric : {'cosine', 'euclidean'} Distance metric to be used. batch_size : int Batch size. normalized : bool If `True` the data `x` is assumed to be normalized, otherwise it will be normalized where necessary. Returns ------- indices : numpy.ndarray Indices relative to `x`. References ---------- .. [SS17] Ozan Sener and Silvio Savarese. 2017. Active Learning for Convolutional Neural Networks: A Core-Set Approach. In International Conference on Learning Representations 2018 (ICLR 2018). """ _check_coreset_size(x, n) num_batches = int(np.ceil(x.shape[0] / batch_size)) ind_new = [] if distance_metric == 'cosine': dist_func = _cosine_distance elif distance_metric == 'euclidean': dist_func = _euclidean_distance else: raise ValueError(f'Invalid distance metric: {distance_metric}. ' f'Possible values: {_DISTANCE_METRICS}') for _ in range(n): indices_s = np.concatenate([indices_labeled, ind_new]).astype(np.int64) dists = np.array([], dtype=np.float32) for batch in np.array_split(x[indices_unlabeled], num_batches, axis=0): dist = dist_func(batch, x[indices_s], normalized=normalized) sims_batch = np.amin(dist, axis=1) dists = np.append(dists, sims_batch) dists[ind_new] = -np.inf index_new = np.argmax(dists) ind_new.append(index_new) return np.array(ind_new) class GreedyCoreset(EmbeddingBasedQueryStrategy): """Selects instances by constructing a greedy coreset [SS17]_ over document embeddings. """ def __init__(self, distance_metric='euclidean', normalize=True, batch_size=100): """ Parameters ---------- distance_metric : {'cosine', 'euclidean'} Distance metric to be used. .. versionadded:: 1.2.0 normalize : bool Embeddings will be normalized before the coreset construction if True. batch_size : int Batch size used for computing document distances. .. note:: The default distance metric before v1.2.0 used to be cosine distance. .. seealso:: Function :py:func:`.greedy_coreset` Docstrings of the underlying :py:func:`greedy_coreset` method. """ if distance_metric not in set(_DISTANCE_METRICS): raise ValueError(f'Invalid distance metric: {distance_metric}. ' f'Possible values: {_DISTANCE_METRICS}') if distance_metric != 'cosine': warnings.warn('Default distance metric has changed from "cosine" ' 'to "euclidean" in v1.2.0. This warning will disappear in ' 'v2.0.0.') self.distance_metric = distance_metric self.normalize = normalize self.batch_size = batch_size def sample(self, clf, dataset, indices_unlabeled, indices_labeled, y, n, embeddings, embeddings_proba=None): if self.normalize: from sklearn.preprocessing import normalize embeddings = normalize(embeddings, axis=1) return greedy_coreset(embeddings, indices_unlabeled, indices_labeled, n, distance_metric=self.distance_metric, normalized=self.normalize) def __str__(self): return f'GreedyCoreset(distance_metric={self.distance_metric}, ' \ f'normalize={self.normalize}, batch_size={self.batch_size})' def lightweight_coreset(x, x_mean, n, normalized=False, proba=None): """Computes a lightweight coreset [BLK18]_ of `x` with size `n`. Parameters ---------- x : np.ndarray 2D array in which each row represents a sample. x_mean : np.ndarray Elementwise mean over the columns of `x`. n : int Coreset size. normalized : bool If `True` the data `x` is assumed to be normalized, otherwise it will be normalized where necessary. proba : np.ndarray or None A probability distribution over `x`, which makes up half of the probability mass of the sampling distribution. If `proba` is not `None` a uniform distribution is used. Returns ------- indices : numpy.ndarray Indices relative to `x`. """ _check_coreset_size(x, n) sim = x.dot(x_mean) if not normalized: sim = sim / (np.linalg.norm(x, axis=1) * np.linalg.norm(x_mean)) dists = np.arccos(sim) / np.pi dists = np.square(dists) sum_dists = dists.sum() if proba is None: uniform = 0.5 * 1 / x.shape[0] proba = uniform + 0.5 * dists / sum_dists else: proba = 0.5 * proba / proba.sum() + 0.5 * dists / sum_dists proba = proba / np.linalg.norm(proba, ord=1) return np.random.choice(np.arange(x.shape[0]), n, replace=False, p=proba) class LightweightCoreset(EmbeddingBasedQueryStrategy): """Selects instances by constructing a lightweight coreset [BLK18]_ over document embeddings. """ def __init__(self, normalize=True): """ Parameters ---------- normalize : bool Embeddings will be normalized before the coreset construction if True. """ self.normalize = normalize def sample(self, clf, dataset, indices_unlabeled, _indices_labeled, _y, n, embeddings, embeddings_proba=None): embeddings = embeddings[indices_unlabeled] embeddings_mean = np.mean(embeddings, axis=0) if self.normalize: from sklearn.preprocessing import normalize embeddings = normalize(embeddings) embeddings_mean = normalize(embeddings_mean[np.newaxis, :]) embeddings_mean = embeddings_mean.ravel() return lightweight_coreset(embeddings, embeddings_mean, n, normalized=self.normalize) def __str__(self): return f'LightweightCoreset(normalize={self.normalize})'
44b24006ac794d6e8fbc0cb8380887bd98010bee
2909c14ac6232b4867a3aca166945634da5f9b7a
/tests/functional_tests/expected_values/linkedin.py
f2ee89bd22865a3c8e031d9264869d6f698c81f8
[ "MIT" ]
permissive
authomatic/authomatic
4c66cd6941e4309c8226ee935261ce2bd3bebde8
290e62e572f038fbd01d686a4556629f72037c15
refs/heads/master
2023-09-03T04:03:55.755212
2023-06-09T10:55:35
2023-06-09T10:55:35
8,073,983
289
67
MIT
2023-06-09T10:55:36
2013-02-07T14:13:35
Python
UTF-8
Python
false
false
2,360
py
linkedin.py
# -*- coding: utf-8 -*- import re import fixtures import constants from authomatic.providers import oauth2 conf = fixtures.get_configuration('linkedin') CONFIG = { 'login_xpath': '//*[@id="session_key-oauth2SAuthorizeForm"]', 'password_xpath': '//*[@id="session_password-oauth2SAuthorizeForm"]', 'consent_xpaths': [], 'class_': oauth2.LinkedIn, 'scope': oauth2.LinkedIn.user_info_scope, 'user': { 'birth_date': None, 'city': None, 'country': conf.user_country, 'email': conf.user_email, 'first_name': conf.user_first_name, 'gender': None, 'id': conf.user_id, 'last_name': conf.user_last_name, # 'link': re.compile(r'^https://www\.linkedin\.com/in/\w+$'), 'link': re.compile(r'^https://www\.linkedin\.com/.*'), 'locale': None, 'location': re.compile(r'^\w{2}$'), 'name': conf.user_name, 'nickname': None, 'phone': None, 'picture': re.compile(r'^https://media.licdn.com/mpr/mprx/[\w_-]+$'), 'postal_code': None, 'timezone': None, 'username': None, }, 'content_should_contain': [ conf.user_country, conf.user_email, conf.user_first_name, conf.user_id, conf.user_last_name, conf.user_name, # User info JSON keys 'code', 'country', 'emailAddress', 'firstName', 'formattedName', 'id', 'lastName', 'location', 'name', 'pictureUrl', 'publicProfileUrl', ], # Case insensitive 'content_should_not_contain': conf.no_birth_date + conf.no_city + conf.no_gender + conf.no_locale + conf.no_nickname + conf.no_phone + conf.no_postal_code + conf.no_timezone + conf.no_username, # True means that any truthy value is expected 'credentials': { 'token_type': None, 'provider_type_id': '2-9', '_expiration_time': True, 'consumer_key': None, 'provider_id': None, 'consumer_secret': None, 'token': True, 'token_secret': None, '_expire_in': True, 'provider_name': 'linkedin', 'refresh_token': None, 'provider_type': 'authomatic.providers.oauth2.OAuth2', 'refresh_status': constants.CREDENTIALS_REFRESH_NOT_SUPPORTED, }, }
880bab4e4f22fd0a8f487c6df885a4f3d45f5dfa
9577725de28e621e4b0ec275251a2b2e7ecb0261
/boxsdk/object/event.py
c18424c2aaac3d219790f2529bb1445833f7009f
[ "Apache-2.0" ]
permissive
box/box-python-sdk
0b7014d69da14baacf9ac777c347664b924325b5
4f11d7596488194fc740936fe987f42864003d41
refs/heads/main
2023-08-17T04:33:23.692675
2023-08-11T11:24:36
2023-08-11T11:24:36
30,386,388
424
285
Apache-2.0
2023-09-14T11:43:27
2015-02-06T00:30:55
Python
UTF-8
Python
false
false
140
py
event.py
from .api_json_object import APIJSONObject class Event(APIJSONObject): """Represents a single Box event.""" _item_type = 'event'
973aa55403d9182492c5b570e9ad171b5810fb0d
53a378e41f734a730c71815dd025b0f0b55b3ec6
/hfc/util/keyvaluestore.py
95a488800388467f573363b8f4af01b2d505ee01
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
hyperledger/fabric-sdk-py
9db7635ed2c106395dbae0e5ffddee130c1f5afc
0ca510569229217f81fb093682c38e1b4a0cd7c6
refs/heads/main
2023-08-24T06:13:49.843521
2023-03-20T18:33:01
2023-03-30T23:57:34
67,946,893
439
292
Apache-2.0
2023-06-10T19:07:14
2016-09-11T18:26:24
Python
UTF-8
Python
false
false
3,783
py
keyvaluestore.py
# Copyright IBM Corp. 2016 All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os from abc import ABCMeta, abstractmethod import rx import six @six.add_metaclass(ABCMeta) class KeyValueStore(object): """ An key value store for blockchain application state persistence. """ @abstractmethod def set_value(self, key, value): """Set a value with a specific key. :param key: key :param value: value """ @abstractmethod def get_value(self, key): """Get a value with a specific key. :param key: key :return: value """ @abstractmethod def async_set_value(self, key, value, scheduler=None): """Set a value with a specific key. :param scheduler: scheduler :param key: key :param value: value :return:a future object """ @abstractmethod def async_get_value(self, key, scheduler=None): """Get a value with a specific key. :param scheduler: scheduler :param key: key :return:a future object """ class FileKeyValueStore(KeyValueStore): """ A key value store implementation based file system. """ def __init__(self, path): """Init the file key value store. :param path: path of key value store :return: """ self.path = path _make_dir(path) def set_value(self, key, value): """Set a value with a specific key. Args: key: key value: value Returns: True when success Raises: File manipulate exceptions """ file_path = os.path.join(self.path, key) with open(file_path, 'w') as f: f.write(value) return True def get_value(self, key): """Get a value with a specific key. :param key: key :return: value """ try: file_path = os.path.join(self.path, key) with open(file_path) as f: return f.read() except IOError: return None def async_get_value(self, key, scheduler=None): """Get a value with a specific key. :param scheduler: scheduler :param key: key :return:a future object """ return rx.start(lambda: self.get_value(key), scheduler) def async_set_value(self, key, value, scheduler=None): """Set a value with a specific key. :param scheduler: scheduler :param key: key :param value: value :return:a future object """ return rx.start(lambda: self.set_value(key, value), scheduler) def get_attrs(self): return ",".join("{}={}" .format(k, getattr(self, k)) for k in self.__dict__.keys()) def __str__(self): return "[{}:{}]".format(self.__class__.__name__, self.get_attrs()) def _make_dir(path): try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise def file_key_value_store(path): """Factory method for creating file key value store. :param path: path :return an instance of file key value store """ return FileKeyValueStore(path)
2f6c0265ada5c332796bb9fe6bbec4f94ef4bfab
7f24023d365e013ec0924844c1a872edfb0c75b4
/pyxb/bundles/opengis/iso19139/v20070417/gco.py
94f530efcf32213ff94b19f1d115506ff5ee32a4
[ "Python-2.0", "MIT", "Apache-2.0" ]
permissive
pabigot/pyxb
cd42c024607572c6363682d389e9296caf3f2857
5ee5ba54c9f702dc9c9efc2731ee547ecd4dae4a
refs/heads/next
2023-05-11T03:23:19.599756
2023-04-29T20:38:15
2023-04-29T20:45:13
20,547,850
130
63
Apache-2.0
2021-08-19T16:52:18
2014-06-06T01:49:03
Python
UTF-8
Python
false
false
62
py
gco.py
from pyxb.bundles.opengis.iso19139.v20070417.raw.gco import *
1a0e27ad3def68364cc5de5e8916ed964c09b50c
e210c28eeed9d38eb78c14b3a6388eca1e0e85d8
/nvflare/private/fed/app/server/server_train.py
6da0de4ded7c5aba2bb69b56d92f8bc1f25ae483
[ "Apache-2.0" ]
permissive
NVIDIA/NVFlare
5a2d2e4c85a3fd0948e25f1ba510449727529a15
1433290c203bd23f34c29e11795ce592bc067888
refs/heads/main
2023-08-03T09:21:32.779763
2023-07-05T21:17:16
2023-07-05T21:17:16
388,876,833
442
140
Apache-2.0
2023-09-14T19:12:35
2021-07-23T17:26:12
Python
UTF-8
Python
false
false
5,786
py
server_train.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Federated server launching script.""" import argparse import logging import os import sys import time from nvflare.apis.fl_constant import JobConstants, SiteType, WorkspaceConstants from nvflare.apis.workspace import Workspace from nvflare.fuel.common.excepts import ConfigError from nvflare.fuel.f3.mpm import MainProcessMonitor as mpm from nvflare.fuel.utils.argument_utils import parse_vars from nvflare.private.defs import AppFolderConstants from nvflare.private.fed.app.fl_conf import FLServerStarterConfiger, create_privacy_manager from nvflare.private.fed.app.utils import create_admin_server from nvflare.private.fed.server.server_status import ServerStatus from nvflare.private.fed.utils.fed_utils import add_logfile_handler, fobs_initialize, security_init from nvflare.private.privacy_manager import PrivacyService from nvflare.security.logging import secure_format_exception def main(): if sys.version_info < (3, 7): raise RuntimeError("Please use Python 3.7 or above.") parser = argparse.ArgumentParser() parser.add_argument("--workspace", "-m", type=str, help="WORKSPACE folder", required=True) parser.add_argument( "--fed_server", "-s", type=str, help="an aggregation server specification json file", required=True ) parser.add_argument("--set", metavar="KEY=VALUE", nargs="*") args = parser.parse_args() kv_list = parse_vars(args.set) config_folder = kv_list.get("config_folder", "") if config_folder == "": args.server_config = JobConstants.SERVER_JOB_CONFIG else: args.server_config = os.path.join(config_folder, JobConstants.SERVER_JOB_CONFIG) # TODO:: remove env and train config since they are not core args.env = os.path.join("config", AppFolderConstants.CONFIG_ENV) args.train_config = os.path.join("config", AppFolderConstants.CONFIG_TRAIN) args.config_folder = config_folder logger = logging.getLogger() args.log_config = None workspace = Workspace(root_dir=args.workspace, site_name="server") for name in [WorkspaceConstants.RESTART_FILE, WorkspaceConstants.SHUTDOWN_FILE]: try: f = workspace.get_file_path_in_root(name) if os.path.exists(f): os.remove(f) except Exception: print(f"Could not remove file '{name}'. Please check your system before starting FL.") sys.exit(-1) try: os.chdir(args.workspace) fobs_initialize() conf = FLServerStarterConfiger( workspace=workspace, args=args, kv_list=args.set, ) log_level = os.environ.get("FL_LOG_LEVEL", "") numeric_level = getattr(logging, log_level.upper(), None) if isinstance(numeric_level, int): logging.getLogger().setLevel(numeric_level) logger.debug("loglevel debug enabled") logger.info("loglevel info enabled") logger.warning("loglevel warn enabled") logger.error("loglevel error enabled") logger.critical("loglevel critical enabled") conf.configure() log_file = workspace.get_log_file_path() add_logfile_handler(log_file) deployer = conf.deployer secure_train = conf.cmd_vars.get("secure_train", False) security_init( secure_train=secure_train, site_org=conf.site_org, workspace=workspace, app_validator=conf.app_validator, site_type=SiteType.SERVER, ) # initialize Privacy Service privacy_manager = create_privacy_manager(workspace, names_only=True) PrivacyService.initialize(privacy_manager) admin_server = None try: # Deploy the FL server services = deployer.deploy(args) first_server = sorted(conf.config_data["servers"])[0] # allow command to overwrite the admin_host if conf.cmd_vars.get("host", None): first_server["admin_host"] = conf.cmd_vars["host"] admin_server = create_admin_server( services, server_conf=first_server, args=args, secure_train=secure_train, ) admin_server.start() services.set_admin_server(admin_server) # mpm.add_cleanup_cb(admin_server.stop) finally: deployer.close() logger.info("Server started") # From Python 3.9 and above, the ThreadPoolExecutor does not allow submit() to create a new thread while the # main thread has exited. Use the ServerStatus.SHUTDOWN to keep the main thread waiting for the gRPC # server to be shutdown. while services.status != ServerStatus.SHUTDOWN: time.sleep(1.0) if admin_server: admin_server.stop() services.engine.close() except ConfigError as e: logger.exception(f"ConfigError: {secure_format_exception(e)}") raise e if __name__ == "__main__": """ This is the main program when starting the NVIDIA FLARE server process. """ mpm.run(main_func=main)
b65ffee007d5cde790b3d2d40fe7b65dfff158cb
9edbe7b1ec03b557aa8f5b8fc6b7623bdb9151b3
/sample_factory/utils/gpu_utils.py
d94673f30cc6895deda4b1aabfa322591d4e47eb
[ "MIT" ]
permissive
alex-petrenko/sample-factory
77c0370ef73902c5530acec7cb49cc1eff224173
7e1e69550f4de4cdc003d8db5bb39e186803aee9
refs/heads/master
2023-07-24T17:27:10.924055
2023-06-30T12:09:31
2023-06-30T12:09:31
192,824,415
644
99
MIT
2023-07-17T08:50:05
2019-06-20T00:59:01
Python
UTF-8
Python
false
false
3,428
py
gpu_utils.py
import os from typing import List, Optional import torch from sample_factory.utils.get_available_gpus import get_gpus_without_triggering_pytorch_cuda_initialization from sample_factory.utils.utils import log CUDA_ENVVAR = "CUDA_VISIBLE_DEVICES" def set_global_cuda_envvars(cfg): if CUDA_ENVVAR not in os.environ: if cfg.device == "cpu": available_gpus = "" else: available_gpus = get_gpus_without_triggering_pytorch_cuda_initialization(os.environ) os.environ[CUDA_ENVVAR] = available_gpus log.info(f"Environment var {CUDA_ENVVAR} is {os.environ[CUDA_ENVVAR]}") def get_available_gpus() -> List[int]: """ Returns indices of GPUs specified by CUDA_VISIBLE_DEVICES. """ orig_visible_devices = os.environ[f"{CUDA_ENVVAR}"] available_gpus = [int(g.strip()) for g in orig_visible_devices.split(",") if g and not g.isspace()] return available_gpus def gpus_for_process(process_idx: int, num_gpus_per_process: int, gpu_mask: Optional[List[int]] = None) -> List[int]: """ Returns indices of GPUs to use for a process. These indices already respect the CUDA_VISIBLE_DEVICES envvar. I.e. if CUDA_VISIBLE_DEVICES is '1,2,3', then from torch's there are three visible GPUs with indices 0, 1, and 2. Therefore, in this case gpus_for_process(0, 1) returns [0], gpus_for_process(1, 1) returns [1], etc. """ available_gpus = get_available_gpus() if gpu_mask is not None: assert len(available_gpus) >= len( gpu_mask ), f"Number of available GPUs ({len(available_gpus)}) is less than number of GPUs in mask ({len(gpu_mask)})" available_gpus = [available_gpus[g] for g in gpu_mask] num_gpus = len(available_gpus) gpus_to_use = [] if num_gpus == 0: return gpus_to_use first_gpu_idx = process_idx * num_gpus_per_process for i in range(num_gpus_per_process): index_mod_num_gpus = (first_gpu_idx + i) % num_gpus gpus_to_use.append(index_mod_num_gpus) log.debug( f"Using GPUs {gpus_to_use} for process {process_idx} (actually maps to GPUs {[available_gpus[g] for g in gpus_to_use]})" ) return gpus_to_use def set_gpus_for_process(process_idx, num_gpus_per_process, process_type, gpu_mask=None): # in this function we want to limit the number of GPUs visible to the process, i.e. if # CUDA_VISIBLE_DEVICES is '1,2,3' and we want to use GPU index 2, then we want to set # CUDA_VISIBLE_DEVICES to '3' for this process gpus_to_use = gpus_for_process(process_idx, num_gpus_per_process, gpu_mask) if not gpus_to_use: os.environ[CUDA_ENVVAR] = "" log.debug("Not using GPUs for %s process %d", process_type, process_idx) else: available_gpus = get_available_gpus() cuda_devices_to_use = ",".join([str(available_gpus[g]) for g in gpus_to_use]) os.environ[CUDA_ENVVAR] = cuda_devices_to_use log.info( "Set environment var %s to %r (GPU indices %r) for %s process %d", CUDA_ENVVAR, os.environ[CUDA_ENVVAR], gpus_to_use, process_type, process_idx, ) log.debug("Num visible devices: %r", torch.cuda.device_count()) return gpus_to_use # TODO: do we need this func? def cuda_envvars_for_policy(policy_id, process_type): set_gpus_for_process(policy_id, 1, process_type)
1445ff4a7981ffe618dce401e09f10f450923a7b
83b8b30ebb633eecd29ca0a7a20cc43a293c9333
/tests/basics/int_bytes.py
d42afac1fd4ecf4e3ee5f9b6c99084455dcc3555
[ "MIT", "GPL-1.0-or-later" ]
permissive
adafruit/circuitpython
430ec895149d1eb814b505db39b4977a35ee88a7
506dca71b0cbb7af749bb51f86b01021db5483b3
refs/heads/main
2023-08-21T16:30:46.781068
2023-08-20T00:39:44
2023-08-20T00:39:44
66,166,069
3,806
1,560
MIT
2023-09-14T19:23:51
2016-08-20T20:10:40
C
UTF-8
Python
false
false
1,303
py
int_bytes.py
print((10).to_bytes(1, "little")) print((-10).to_bytes(1, "little", signed=True)) # Test fitting in length that's not a power of two. print((0x10000).to_bytes(3, 'little')) print((111111).to_bytes(4, "little")) print((-111111).to_bytes(4, "little", signed=True)) print((100).to_bytes(10, "little")) print((-100).to_bytes(10, "little", signed=True)) # check that extra zero bytes don't change the internal int value print(int.from_bytes(bytes(20), "little") == 0) print(int.from_bytes(b"\x01" + bytes(20), "little") == 1) # big-endian conversion print((10).to_bytes(1, "big")) print((-10).to_bytes(1, "big", signed=True)) print((100).to_bytes(10, "big")) print((-100).to_bytes(10, "big", signed=True)) print(int.from_bytes(b"\0\0\0\0\0\0\0\0\0\x01", "big")) print(int.from_bytes(b"\x01\0", "big")) # negative number of bytes should raise an error try: (1).to_bytes(-1, "little") except ValueError: print("ValueError") # too small buffer should raise an error try: (256).to_bytes(1, "little") except OverflowError: print("OverflowError") # negative numbers should raise an error if signed=False try: (-256).to_bytes(2, "little") except OverflowError: print("OverflowError") try: (-256).to_bytes(2, "little", signed=False) except OverflowError: print("OverflowError")
833f1e7f7d9f960e689f8e18af5171a0012ce401
80529a0e7959d1165c14b8cfb2c61262d293421a
/transvar/parser.py
a6ca397e0177e3d4aa6339dbb21a02e6a98698b9
[ "MIT" ]
permissive
zwdzwd/transvar
32f126524d996832bb1e0153c0c5ec2575ff9b20
f7c17a8def902c00c403066fce791c3ad4eeb355
refs/heads/master
2023-04-29T17:36:43.585077
2022-01-11T19:35:55
2022-01-11T19:35:55
50,932,056
120
39
NOASSERTION
2023-04-19T22:39:27
2016-02-02T15:55:41
Python
UTF-8
Python
false
false
23,250
py
parser.py
""" The MIT License Copyright (c) 2015 The University of Texas MD Anderson Cancer Center Wanding Zhou, Tenghui Chen, Ken Chen (kchen3@mdanderson.org) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from .transcripts import * def parse_ucsc_refgene(map_file, name2gene): """ start 1-based, end 1-based """ cnt = 0 for line in opengz(map_file): if line.startswith('#'): continue fields = line.strip().split('\t') if fields[13] != 'cmpl' or fields[14] != 'cmpl': continue gene_name = fields[12].upper() if gene_name in name2gene: gene = name2gene[gene_name] else: gene = Gene(name=gene_name) name2gene[gene_name] = gene t = Transcript() t.name = fields[1] t.chrm = normalize_chrm(fields[2]) t.strand = fields[3] t.beg = int(fields[4])+1 t.end = int(fields[5]) t.cds_beg = int(fields[6])+1 t.cds_end = int(fields[7]) t.source = 'UCSC_refGene' ex_begs, ex_ends = fields[9], fields[10] for ex_beg, ex_end in zip([int(x)+1 for x in ex_begs.strip(',').split(',')], list(map(int, ex_ends.strip(',').split(',')))): t.exons.append((ex_beg, ex_end)) t.exons.sort() # keep exons sorted gene.tpts.append(t) t.gene = gene cnt += 1 err_print('loaded %d transcripts from UCSC refgene.' % cnt) return def parse_ucsc_refgene_customized(map_file, name2gene): """ start 1-based, end 1-based """ cnt = 0 for line in open(map_file): fields = line.strip().split() gene_name = fields[0].upper() if gene_name in name2gene: gene = name2gene[gene_name] else: gene = Gene(name=gene_name) name2gene[gene_name] = gene t = Transcript() t.chrm = normalize_chrm(fields[1]) t.strand = fields[2] t.beg = int(fields[3]) t.end = int(fields[4]) t.seq = fields[-1] t.cds_beg = int(fields[5]) t.cds_end = int(fields[6]) t.source = 'custom' t.name = '.' ex_begs, ex_ends = fields[8], fields[9] for ex_beg, ex_end in zip(list(map(int, ex_begs.split(','))), list(map(int, ex_ends.split(',')))): t.exons.append((ex_beg, ex_end)) t.exons.sort() # keep exons sorted gene.tpts.append(t) t.gene = gene cnt += 1 err_print('loaded %d transcripts from customized table.' % cnt) return def parse_refseq_gff(gff_fn, name2gene): id2ent = {} gff_fh = opengz(gff_fn) reg = None cnt = 0 for line in gff_fh: if line.startswith('#'): continue fields = line.strip().split('\t') # print line.strip() info = dict([_.split('=') for _ in fields[8].split(';')]) if fields[2] == 'region': if 'chromosome' in info: reg = Region(info['chromosome'], int(fields[3]), int(fields[4])) if 'map' in info and info['map']=='unlocalized': reg.unlocalized = False # else: # reg = None elif (reg and fields[2] == 'gene' and ('pseudo' not in info or info['pseudo'] != 'true')): if reg.unlocalized: continue gene_name = info['Name'].upper() if gene_name in name2gene: g = name2gene[gene_name] if hasattr(g, '_gene_id') and g._gene_id != info['ID']: continue # if a gene_name appears twice, then all the subsequent occurrences are all ignored. else: g = Gene(name=gene_name) name2gene[gene_name] = g g._gene_id = info['ID'] g.beg = int(fields[3]) g.end = int(fields[4]) id2ent[info['ID']] = g if 'Dbxref' in info: g.dbxref = info['Dbxref'] elif (fields[2] in ['mRNA', 'ncRNA', 'rRNA', 'tRNA'] and 'Parent' in info and info['Parent'] in id2ent): if reg.unlocalized: continue if fields[2] == 'mRNA': fields[2] = 'protein_coding' if fields[2] == 'ncRNA' and 'ncrna_class' in info: fields[2] = info['ncrna_class'] t = Transcript(transcript_type=fields[2]) t.chrm = normalize_chrm(reg.name) t.strand = fields[6] t.beg = int(fields[3]) t.end = int(fields[4]) t.name = info['Name'] if 'Name' in info else info['product'] t.gene = id2ent[info['Parent']] t.gene.tpts.append(t) t.source = 'RefSeq' id2ent[info['ID']] = t cnt += 1 elif fields[2] == 'exon' and info['Parent'] in id2ent: if reg.unlocalized: continue t = id2ent[info['Parent']] if (isinstance(t, Gene)): g = t if not hasattr(g, 'gene_t'): g.gene_t = Transcript() g.tpts.append(g.gene_t) g.gene_t.chrm = normalize_chrm(reg.name) g.gene_t.strand = fields[6] g.gene_t.gene = g g.gene_t.beg = g.beg g.gene_t.end = g.end g.gene_t.source = 'RefSeq' cnt += 1 t = g.gene_t t.exons.append((int(fields[3]), int(fields[4]))) elif fields[2] == 'CDS' and info['Parent'] in id2ent: if reg.unlocalized: continue t = id2ent[info['Parent']] if (isinstance(t, Gene)): g = t if not hasattr(g, 'gene_t'): g.gene_t = Transcript() g.tpts.append(g.gene_t) g.gene_t.chrm = normalize_chrm(reg.name) g.gene_t.strand = fields[6] g.gene_t.gene = g g.gene_t.beg = g.beg g.gene_t.end = g.end g.gene_t.source = 'RefSeq' cnt += 1 t = g.gene_t t.cds.append((int(fields[3]), int(fields[4]))) err_print("loaded %d transcripts from RefSeq GFF3 file." % cnt) def parse_ensembl_gtf(gtf_fn, name2gene): """ This parses the new GTF after or equal to hg19. The function does not handle hg18. gtf file is gffv2 parser does not assume order in the GTF file """ gtf_fh = opengz(gtf_fn) id2ent = {} cnt = 0 for line in gtf_fh: if line.startswith('#'): continue fields = line.strip().split('\t') info = dict(re.findall(r'\s*([^"]*) "([^"]*)";', fields[8])) # info = dict([_.split('=') for _ in fields[8].split(';')]) if fields[2] == 'gene': gene_id = info['gene_id'] if gene_id not in id2ent: id2ent[gene_id] = Gene(gene_type=info['gene_biotype']) g = id2ent[gene_id] if 'gene_name' in info: g.name = info['gene_name'].upper() else: g.name = gene_id if g.name not in name2gene: name2gene[g.name] = g g.beg = int(fields[3]) g.end = int(fields[4]) elif fields[2] == 'transcript': # there exits two transcript format in ensembl gtf # the old version has no 'transcript_biotype' # the equivalent transcript_biotype is fields[1] tid = info['transcript_id'] if tid not in id2ent: transcript_type = info['transcript_biotype'] if 'transcript_biotype' in info else fields[1] id2ent[tid] = Transcript(transcript_type=transcript_type) t = id2ent[tid] t.chrm = normalize_chrm(fields[0]) t.strand = fields[6] t.beg = int(fields[3]) t.end = int(fields[4]) t.name = info['transcript_id'] gene_id = info['gene_id'] if gene_id not in id2ent: id2ent[gene_id] = Gene(gene_type=info['gene_biotype']) t.gene = id2ent[gene_id] t.gene.tpts.append(t) t.source = 'Ensembl' cnt += 1 elif fields[2] == 'exon': tid = info['transcript_id'] if tid not in id2ent: transcript_type = info['transcript_biotype'] if 'transcript_biotype' in info else fields[1] id2ent[tid] = Transcript(transcript_type=transcript_type) t = id2ent[tid] t.exons.append((int(fields[3]), int(fields[4]))) elif fields[2] == 'CDS': tid = info['transcript_id'] if tid not in id2ent: transcript_type = info['transcript_biotype'] if 'transcript_biotype' in info else fields[1] id2ent[tid] = Transcript(transcript_type=transcript_type) t = id2ent[tid] t.cds.append((int(fields[3]), int(fields[4]))) err_print("loaded %d transcripts from Ensembl GTF file." % cnt) def parse_ensembl_gtf_hg18(gtf_fn, name2gene): """ This parses the old ensembl GTF before or equal to hg18. The function does not handle hg19 or later. """ gtf_fh = opengz(gtf_fn) tid2transcript = {} cnt = 0 for line in gtf_fh: if line.startswith('#'): continue fields = line.strip().split('\t') info = dict(re.findall(r'\s*([^"]*) "([^"]*)";', fields[8])) if fields[2] == "exon": if info['transcript_id'] in tid2transcript: t = tid2transcript[info['transcript_id']] else: t = Transcript(transcript_type=fields[1]) t.chrm = normalize_chrm(fields[0]) t.strand = fields[6] t.name = info['transcript_id'] tid2transcript[t.name] = t if info['gene_name'] in name2gene: g = name2gene[info['gene_name']] else: g = Gene() g.name = info['gene_name'] name2gene[g.name] = g t.gene = g g.tpts.append(t) t.source = 'Ensembl' cnt += 1 t.exons.append((int(fields[3]), int(fields[4]))) elif fields[2] == 'CDS': if info['transcript_id'] in tid2transcript: t = tid2transcript[info['transcript_id']] else: t = Transcript(transcript_type=fields[1]) t.chrm = normalize_chrm(fields[0]) t.strand = fields[6] t.name = info['transcript_id'] tid2transcript[t.name] = t if info['gene_name'] in name2gene: g = name2gene[info['gene_name']] else: g = Gene() g.name = info['gene_name'] name2gene[g.name] = g t.gene = g g.tpts.append(t) t.source = 'Ensembl' cnt += 1 t.cds.append((int(fields[3]), int(fields[4]))) for t in list(tid2transcript.values()): t.exons.sort() t.beg = t.exons[0][0] t.end = t.exons[-1][1] err_print("loaded %d transcripts from Ensembl GTF file." % cnt) def parse_ccds_table(ccds_fn, name2gene): """ start 0-based end 0-based """ ccds_fh = open(ccds_fn) ccds_fh.readline() cnt = 0 for line in ccds_fh: fields = line.strip().split('\t') if fields[5] != 'Public': continue gene_name = fields[2].upper() if gene_name not in name2gene: name2gene[gene_name] = Gene(name=gene_name) g = name2gene[gene_name] t = Transcript() t.chrm = normalize_chrm(fields[0]) t.strand = fields[6] t.cds_beg = int(fields[7])+1 t.cds_end = int(fields[8])+1 # without UTR information, take CDS boundary as the exon boundary t.beg = t.cds_beg t.end = t.cds_end t.name = fields[4] # note that CCDS do not annotate UTR, so all the exons are equivalently cds t.exons = [(int(b)+1, int(e)+1) for b,e in re.findall(r"[\s\[](\d+)-(\d+)[,\]]", fields[9])] t.source = 'CDDS' t.gene = g g.tpts.append(t) cnt += 1 err_print("loaded %d transcripts from CCDS table." % cnt) def parse_ucsc_kg_table(kg_fn, alias_fn, name2gene): kg_fh = opengz(kg_fn) id2aliases = {} if alias_fn: alias_fh = opengz(alias_fn) for line in alias_fh: if line.startswith('#'): continue fields = line.strip().split('\t') if fields[0] in id2aliases: id2aliases[fields[0]].append(fields[1]) else: id2aliases[fields[0]] = [fields[1]] cnt = 0 for line in kg_fh: if line.startswith('#'): continue fields = line.strip().split('\t') g = None if fields[0] in id2aliases: for alias in id2aliases[fields[0]]: if alias in name2gene: g = name2gene[alias] if not g: g = Gene(name=fields[0]) for alias in id2aliases[fields[0]]: name2gene[alias] = g else: if fields[0] in name2gene: g = name2gene[fields[0]] else: g = Gene(name=fields[0]) name2gene[fields[0]] = g t = Transcript() t.name = fields[0] t.chrm = normalize_chrm(fields[1]) t.strand = fields[2] t.beg = int(fields[3]) t.end = int(fields[4]) t.cds_beg = int(fields[5]) t.cds_end = int(fields[6]) t.source = 'UCSC_knownGene' ex_begs, ex_ends = fields[8], fields[9] for ex_beg, ex_end in zip(list(map(int, ex_begs.strip(',').split(','))), list(map(int, ex_ends.strip(',').split(',')))): t.exons.append((ex_beg, ex_end)) t.exons.sort() g.tpts.append(t) t.gene = g cnt += 1 err_print("loaded %d transcripts from UCSC knownGene table." % cnt) def parse_gencode_gtf(gencode_fn, name2gene): id2ent = {} gencode_fh = opengz(gencode_fn) cnt = 0 for line in gencode_fh: # if cnt > 1000: # break if line.startswith('#'): continue fields = line.strip().split('\t') info = dict(re.findall(r'\s*([^"]*) "([^"]*)";', fields[8])) if fields[2] == 'gene': gene_name = info['gene_name'].upper() gid = info['gene_id'] if gene_name in name2gene: g = name2gene[gene_name] id2ent[gid] = g else: if gid not in id2ent: id2ent[gid] = Gene(name=gene_name, gene_type=info['gene_type']) g = id2ent[gid] name2gene[gene_name] = g g.beg = int(fields[3]) g.end = int(fields[4]) # if info['gene_type'] == 'pseudogene': # g.pseudo = True elif fields[2] == 'transcript': tid = info['transcript_id'] if tid not in id2ent: id2ent[tid] = Transcript(transcript_type=info['transcript_type']) t = id2ent[tid] t.chrm = normalize_chrm(fields[0]) t.strand = fields[6] t.beg = int(fields[3]) t.end = int(fields[4]) t.name = tid gid = info['gene_id'] if gid not in id2ent: id2ent[gid] = Gene(gene_type=info['gene_type']) t.gene = id2ent[gid] t.gene.tpts.append(t) t.source = 'GENCODE' id2ent[t.name] = t cnt += 1 elif fields[2] == 'exon': tid = info['transcript_id'] if tid not in id2ent: id2ent[tid] = Transcript(transcript_type=info['transcript_type']) t = id2ent[tid] t.exons.append((int(fields[3]), int(fields[4]))) elif fields[2] == 'CDS': tid = info['transcript_id'] if tid not in id2ent: id2ent[tid] = Transcript(transcript_type=info['transcript_type']) if tid not in id2ent: id2ent[tid] = Transcript() t = id2ent[tid] t.cds.append((int(fields[3]), int(fields[4]))) err_print("loaded %d transcripts from GENCODE GTF file." % cnt) def parse_aceview_transcripts(aceview_gff_fn, name2gene): id2tpt = {} aceview_fh = opengz(aceview_gff_fn) for line in aceview_fh: if line.startswith('#'): continue fields = line.strip().split('\t') if len(fields) < 9: continue # the old transcript definition (hg18) from AceView is a bit corrupted. info = dict(re.findall(r'\s*(\S+) (\S+);', fields[8])) if fields[2] == 'CDS': gene_name = info['gene_id'].upper() if gene_name in name2gene: g = name2gene[gene_name] else: g = Gene(name=gene_name) name2gene[gene_name] = g if info['transcript_id'] in id2tpt: t = id2tpt[info['transcript_id']] else: t = Transcript() t.chrm = normalize_chrm(fields[0]) t.strand = fields[6] t.name = info['transcript_id'] id2tpt[t.name] = t t.gene = g g.tpts.append(t) t.source = 'AceView' t.cds.append((int(fields[3]), int(fields[4]))) elif fields[2] == 'exon': gene_name = info['gene_id'].upper() if gene_name in name2gene: g = name2gene[gene_name] else: g = Gene(name=gene_name) name2gene[gene_name] = g if info['transcript_id'] in id2tpt: t = id2tpt[info['transcript_id']] else: t = Transcript() t.chrm = normalize_chrm(fields[0]) t.strand = fields[6] t.name = info['transcript_id'] id2tpt[t.name] = t t.gene = g g.tpts.append(t) t.source = 'AceView' t.exons.append((int(fields[3]), int(fields[4]))) # skip transcripts without CDS, e.g., LOC391566.aAug10-unspliced for tid, t in id2tpt.items(): if t.cds and t.exons: t.exons.sort() t.beg = t.exons[0][0] t.end = t.exons[-1][1] else: t.gene.tpts.remove(t) err_print("loaded %d transcripts from AceView GFF file." % len(id2tpt)) def parse_uniprot_mapping(fn): tid2uniprot = {} for line in opengz(fn): fields = line.strip().split('\t') if fields[2] != fields[0]: # tid2uniprot[fields[2]] = fields[0] if fields[0] in tid2uniprot: tid2uniprot[fields[0]].append(fields[2]) else: tid2uniprot[fields[0]] = [fields[2]] err_print('loaded %d transcript with UniProt mapping.' % len(tid2uniprot)) return tid2uniprot # def parse_annotation(args): # name2gene = {} # if args.ensembl: # if args.refversion in ['hg18']: # parse_ensembl_gtf_hg18(args.ensembl, name2gene) # else: # parse_ensembl_gtf(args.ensembl, name2gene) # if args.refseq: # parse_refseq_gff(args.refseq, name2gene) # if args.ccds: # parse_ccds_table(args.ccds, name2gene) # if args.gencode: # parse_gencode_gtf(args.gencode, name2gene) # # try: # # import pysam # # args.ffhs['GENCODE'] = pysam.Tabixfile(args.gencode) # # except: # # err_print("Cannot import non-coding features (may need pysam).") # if args.ucsc: # parse_ucsc_refgene(args.ucsc, name2gene) # # if args.custom: # # parse_ucsc_refgene_customized(args.custom, name2gene) # if args.kg: # parse_ucsc_kg_table(args.kg, args.alias, name2gene) # if args.aceview: # parse_aceview_transcripts(args.aceview, name2gene) # # remove genes without transcripts # names_no_tpts = [] # for name, gene in name2gene.items(): # # print gene, len(gene.tpts) # if not gene.tpts: # names_no_tpts.append(name) # for name in names_no_tpts: # del name2gene[name] # err_print('loaded %d genes.' % len(name2gene)) # # index transcripts in a gene # thash = THash() # genes = set(name2gene.values()) # for g in genes: # for t in g.tpts: # t.exons.sort() # if not (hasattr(t, 'cds_beg') and hasattr(t, 'cds_end')): # if t.cds: # t.cds.sort() # t.cds_beg = t.cds[0][0] # t.cds_end = t.cds[-1][1] # elif hasattr(t,'beg') and hasattr(t,'end'): # t.cds_beg = t.beg # t.cds_end = t.end # else: # t.cds_beg = t.exons[0][0] # t.cds_end = t.exons[-1][1] # thash.insert(t) # if len(t.exons) == 0: # if no exon, use cds # t.exons = t.cds[:] # g.std_tpt = g.longest_tpt() # if args.uniprot: # tid2uniprot = parse_uniprot_mapping(args.uniprot) # name2protein = {} # for name, gene in name2gene.items(): # for tpt in gene.tpts: # if tpt.name in tid2uniprot: # uniprot = tid2uniprot[tpt.name] # if uniprot not in name2protein: # name2protein[uniprot] = Gene(uniprot) # prot = name2protein[uniprot] # prot.tpts.append(tpt) # return name2protein, thash # else: # return name2gene, thash
8100129a2ce5842d9423399fcc8273b3032faa8f
9cc6f9d9eed9aceb5efa56e3b2f364900df11051
/improver_tests/precipitation_type/hail_fraction/test_HailFraction.py
79882230168536e46eceac2bc74d807f30025588
[ "BSD-3-Clause", "LicenseRef-scancode-proprietary-license" ]
permissive
metoppv/improver
8553a4f8b93c88291bde0db8f5dfd7b577c04b92
cd2c9019944345df1e703bf8f625db537ad9f559
refs/heads/master
2023-08-30T19:01:04.946698
2023-08-25T13:57:20
2023-08-25T13:57:20
85,334,761
101
88
BSD-3-Clause
2023-09-14T19:07:45
2017-03-17T16:51:29
Python
UTF-8
Python
false
false
7,280
py
test_HailFraction.py
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown copyright. The Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Tests for the HailFraction plugin.""" import iris import numpy as np import pytest from improver.precipitation_type.hail_fraction import HailFraction from improver.synthetic_data.set_up_test_cubes import set_up_variable_cube COMMON_ATTRS = { "source": "Unit test", "institution": "Met Office", "title": "Post-Processed IMPROVER unit test", } def setup_cubes(): """Set up cubes for testing.""" vertical_updraught_data = np.zeros((2, 2), dtype=np.float32) vertical_updraught = set_up_variable_cube( vertical_updraught_data, "maximum_vertical_updraught", "m s-1", spatial_grid="equalarea", attributes=COMMON_ATTRS, standard_grid_metadata="gl_ens", ) hail_size_data = np.zeros((2, 2), dtype=np.float32) hail_size = set_up_variable_cube( hail_size_data, "size_of_hail_stones", "m", spatial_grid="equalarea", attributes=COMMON_ATTRS, standard_grid_metadata="gl_ens", ) cloud_condensation_level_data = np.zeros((2, 2), dtype=np.float32) cloud_condensation_level = set_up_variable_cube( cloud_condensation_level_data, "air_temperature_at_condensation_level", "K", spatial_grid="equalarea", attributes=COMMON_ATTRS, standard_grid_metadata="gl_ens", ) convective_cloud_top_data = np.zeros((2, 2), dtype=np.float32) convective_cloud_top = set_up_variable_cube( convective_cloud_top_data, "air_temperature_at_convective_cloud_top", "K", spatial_grid="equalarea", attributes=COMMON_ATTRS, standard_grid_metadata="gl_ens", ) hail_melting_level_data = np.zeros((2, 2), dtype=np.float32) hail_melting_level = set_up_variable_cube( hail_melting_level_data, "altitude_of_rain_from_hail_falling_level", "m", spatial_grid="equalarea", attributes=COMMON_ATTRS, standard_grid_metadata="gl_ens", ) altitude_data = np.zeros((2, 2), dtype=np.float32) altitude = set_up_variable_cube( altitude_data, "altitude", "m", spatial_grid="equalarea", attributes=COMMON_ATTRS, standard_grid_metadata="gl_ens", ) return ( vertical_updraught, hail_size, cloud_condensation_level, convective_cloud_top, hail_melting_level, altitude, ) @pytest.mark.parametrize("model_id_attr", (None, "mosg__model_configuration")) @pytest.mark.parametrize( "vertical_updraught_value,hail_size_value,cloud_condensation_level_value," + "convective_cloud_top_value,hail_melting_level_value,altitude_value,expected", ( # No indications of hail (1, 0.0, 263.15, 261.15, 100, 50, 0), # Larger updraught, no other indications of hail (25, 0.001, 263.15, 261.15, 100, 50, 0), # Low vertical updraught prevents hail (5, 0.001, 271.15, 253.15, 20, 50, 0), # Sufficient vertical updraught, non-zero hail fraction (25, 0.001, 271.15, 253.15, 20, 50, 1 / 9), # Sufficient vertical updraught, non-zero hail fraction (50, 0.001, 271.15, 253.15, 20, 50, 0.25), # Large vertical updraught, non-zero hail fraction (75, 0.001, 271.15, 253.15, 20, 50, 0.25), # Hail size indicates non-zero hail fraction (1, 0.003, 271.15, 253.15, 20, 50, 0.05), # Cloud condensation level temperature prevents hail (75, 0.001, 263.15, 253.15, 20, 50, 0), # Convective cloud top temperature prevents hail (75, 0.001, 271.15, 263.15, 20, 50, 0), # Hail melting level prevents hail (75, 0.001, 271.15, 253.15, 100, 50, 0), # Hail size causes non-zero hail fraction despite inhibitive cloud condensation # level temperature, convective cloud top temperature and hail melting level (1, 0.003, 263.15, 263.15, 100, 50, 0.05), ), ) def test_basic( vertical_updraught_value, hail_size_value, cloud_condensation_level_value, convective_cloud_top_value, hail_melting_level_value, altitude_value, expected, model_id_attr, ): """Test hail fraction plugin.""" expected_attributes = COMMON_ATTRS.copy() if model_id_attr: expected_attributes[model_id_attr] = setup_cubes()[0].attributes[model_id_attr] ( vertical_updraught, hail_size, cloud_condensation_level, convective_cloud_top, hail_melting_level, altitude, ) = setup_cubes() vertical_updraught.data = np.full_like( vertical_updraught.data, vertical_updraught_value ) hail_size.data = np.full_like(hail_size.data, hail_size_value) cloud_condensation_level.data = np.full_like( cloud_condensation_level.data, cloud_condensation_level_value, ) convective_cloud_top.data = np.full_like( convective_cloud_top.data, convective_cloud_top_value, ) hail_melting_level.data = np.full_like( hail_melting_level.data, hail_melting_level_value ) altitude.data = np.full_like(altitude.data, altitude_value) result = HailFraction(model_id_attr=model_id_attr)( vertical_updraught, hail_size, cloud_condensation_level, convective_cloud_top, hail_melting_level, altitude, ) assert isinstance(result, iris.cube.Cube) assert str(result.units) == "1" assert result.name() == "hail_fraction" assert result.attributes == expected_attributes np.testing.assert_allclose(result.data, expected)
9cf6a3d42c9b1303b6c6acf68313d6e5642e4962
a4ea525e226d6c401fdb87a6e9adfdc5d07e6020
/src/azure-cli/azure/cli/command_modules/vm/manual/custom.py
70ff60d5600ca9dbcab8e1fff1e6217fa06e0a60
[ "MIT", "BSD-3-Clause", "LGPL-2.0-or-later", "GPL-1.0-or-later", "MPL-2.0", "LGPL-2.1-only", "Apache-2.0", "LGPL-2.1-or-later", "BSD-2-Clause" ]
permissive
Azure/azure-cli
13340eeca2e288e66e84d393fa1c8a93d46c8686
a40fd14ad0b6e89720a2e58d4d9be3a6ce1535ca
refs/heads/dev
2023-08-17T06:25:37.431463
2023-08-17T06:00:10
2023-08-17T06:00:10
51,040,886
4,018
3,310
MIT
2023-09-14T11:11:05
2016-02-04T00:21:51
Python
UTF-8
Python
false
false
2,278
py
custom.py
# -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- # pylint: disable=too-many-lines from knack.log import get_logger logger = get_logger(__name__) def sshkey_create(client, resource_group_name, ssh_public_key_name, location, tags=None, public_key=None): import time from pathlib import Path parameters = { 'location': location, 'tags': tags, 'public_key': public_key } client.create(resource_group_name=resource_group_name, ssh_public_key_name=ssh_public_key_name, parameters=parameters) if public_key is None: # Generate one if public key is None logger.warning('No public key is provided. A key pair is being generated for you.') key_pair = client.generate_key_pair( resource_group_name=resource_group_name, ssh_public_key_name=ssh_public_key_name) # Save keys to local files private_key = key_pair.private_key public_key = key_pair.public_key sshpath = Path.home().joinpath('.ssh') # Create ~/.ssh if it does not exist if not sshpath.exists(): sshpath.mkdir() # File path private_key_file = str(sshpath.joinpath(str(time.time()).replace('.', '_'))) public_key_file = private_key_file + '.pub' # Write to files with open(private_key_file, 'w', newline='\n') as f: f.write(private_key) logger.warning('Private key is saved to "%s".', private_key_file) with open(public_key_file, 'w', newline='\n') as f: f.write(public_key) logger.warning('Public key is saved to "%s".', public_key_file) return client.get(resource_group_name=resource_group_name, ssh_public_key_name=ssh_public_key_name)
6790aa64d0d5c99e0405168728d8c7e2ddc8439a
b347bc4b850dee4a8a9a171b563a3f31230ce1c7
/sktime/regression/interval_based/__init__.py
571711f5be59a3afc980128eefc579bcfe4eba46
[ "BSD-3-Clause" ]
permissive
sktime/sktime
5963962df338c5931a2f9f1794d1203c50ddc27e
70b2bfaaa597eb31bc3a1032366dcc0e1f4c8a9f
refs/heads/main
2023-08-22T18:20:08.022950
2023-08-22T15:24:39
2023-08-22T15:24:39
156,401,841
1,117
268
BSD-3-Clause
2023-09-14T20:44:21
2018-11-06T15:08:24
Python
UTF-8
Python
false
false
235
py
__init__.py
#!/usr/bin/env python3 -u """Implement interval based time series regression estimators.""" __author__ = ["mloning"] __all__ = ["TimeSeriesForestRegressor"] from sktime.regression.interval_based._tsf import TimeSeriesForestRegressor
e5da547a20e7ecef06da556fac6d2946578f4b24
a115d1ea106a890a877d902efc70e3f806525de8
/tests/test_metric_logger.py
a5b884c908103f4cbdf364b94f4894083cff420b
[ "Python-2.0", "MIT" ]
permissive
KaihuaTang/Scene-Graph-Benchmark.pytorch
7b59051e78d566f1b94836280ca91a61e2503bb4
4b6b71a90d4198d9dae574d42b062a5e534da291
refs/heads/master
2023-08-04T18:32:27.979660
2022-07-29T06:16:23
2022-07-29T06:16:23
241,830,209
1,002
261
MIT
2023-07-30T08:37:14
2020-02-20T08:23:54
Jupyter Notebook
UTF-8
Python
false
false
789
py
test_metric_logger.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import unittest from maskrcnn_benchmark.utils.metric_logger import MetricLogger class TestMetricLogger(unittest.TestCase): def test_update(self): meter = MetricLogger() for i in range(10): meter.update(metric=float(i)) m = meter.meters["metric"] self.assertEqual(m.count, 10) self.assertEqual(m.total, 45) self.assertEqual(m.median, 4) self.assertEqual(m.avg, 4.5) def test_no_attr(self): meter = MetricLogger() _ = meter.meters _ = meter.delimiter def broken(): _ = meter.not_existent self.assertRaises(AttributeError, broken) if __name__ == "__main__": unittest.main()
a8e76955a12ee407cb121f7a519f41ce6ce2f16a
f509ab9825c542e09b0c6591d86ef1f9feb540a6
/pkgs/ops-pkg/src/genie/libs/ops/route_policy/iosxr/tests/route_policy_output.py
8bcd587c92b9db2be20bacae9b6aae42ad124a47
[ "Apache-2.0" ]
permissive
CiscoTestAutomation/genielibs
97f597117193aaa18028defeb69078ebb241173a
e42e51475cddcb10f5c7814d0fe892ac865742ba
refs/heads/master
2023-08-11T16:39:41.959947
2023-07-27T17:58:42
2023-07-27T17:58:42
130,717,047
109
60
Apache-2.0
2023-08-29T22:32:08
2018-04-23T15:21:56
Python
UTF-8
Python
false
false
15,150
py
route_policy_output.py
''' RoutePolicy Genie Ops Object Outputs for IOSXR. ''' class RoutePolicyOutput(object): showRplRoutePolicy = {'NO-EXPORT': {'description': 'test15', 'statements': {10: {'actions': {'actions': 'pass', 'set_community_list': 'no-export'}, 'conditions': {'match_prefix_list': 'NO-EXPORT'}}}}, 'all-pass': {'statements': {1: {'actions': {'actions': 'pass'}, 'conditions': {}}}}, 'allpass': {'statements': {10: {'actions': {'actions': 'pass'}, 'conditions': {}}}}, 'as-path': {'statements': {10: {'actions': {}, 'conditions': {}}}}, 'aspath': {'statements': {10: {'actions': {'actions': 'pass'}, 'conditions': {'match_as_path_list': 'test'}}, 20: {'actions': {'actions': 'drop'}, 'conditions': {}}}}, 'test': {'statements': {10: {'actions': {'set_route_origin': 'incomplete'}, 'conditions': {'match_local_pref_eq': '123'}}, 20: {'actions': {'set_weight': '44'}, 'conditions': {'match_med_eq': 100}}, 1: {'actions': {'set_route_origin': 'incomplete'}, 'conditions': {}}}}, 'test-community': {'statements': {10: {'actions': {'set_community': ['100:1','200:1','300:1'], 'set_community_no_advertise': True, 'set_community_no_export': True}, 'conditions': {}}, 20: {'actions': {'set_community': ['111:1','222:1'], 'set_community_additive': True, 'set_community_no_advertise': True, 'set_ext_community_rt': ['100:1','200:1'], 'set_ext_community_rt_additive': True}, 'conditions': {}}}}, 'test2': {'statements': {10: {'actions': {'actions': 'pass'}, 'conditions': {'match_origin_eq': 'eg'}}, 20: {'actions': {'actions': 'pass'}, 'conditions': {'match_nexthop_in': 'prefix-set'}}, 30: {'actions': {'actions': 'pass'}, 'conditions': {'match_local_pref_eq': '13'}}}}, 'test3': {'statements': {10: {'actions': {'actions': 'pass'}, 'conditions': {}}, 20: {'actions': {'actions': 'pass'}, 'conditions': {'match_area_eq': '1'}}, 30: {'actions': {'actions': 'pass'}, 'conditions': {'match_prefix_list': 'prefix-set'}}, 40: {'actions': {'actions': 'pass'}, 'conditions': {}}, 50: {'actions': {'set_as_path_prepend': 100, 'set_as_path_prepend_repeat_n': 10, 'set_community': ['100:100'], 'set_community_additive': True, 'set_community_delete': 'test', 'set_community_list': 'test', 'set_community_no_advertise': True, 'set_community_no_export': True, 'set_ext_community_delete': 'test', 'set_ext_community_rt': ['300:1','300:2'], 'set_ext_community_rt_additive': True, 'set_ext_community_soo': '100:100', 'set_ext_community_soo_additive': True, 'set_level': 'level-1-2', 'set_local_pref': 100, 'set_med': 113, 'set_metric': '100', 'set_metric_type': 'type-2', 'set_next_hop': '10.4.1.1', 'set_ospf_metric': '100', 'set_route_origin': 'egp', 'set_tag': '111'}, 'conditions': {}}}}, 'testtest': {'statements': {10: {'actions': {'set_local_pref': 120, 'set_med': 111, 'set_metric_type': 'type-1', 'set_next_hop': '192.168.1.1'}, 'conditions': {'match_med_eq': 10} } } } } RoutePolicy = {'info': {'NO-EXPORT': {'description': 'test15', 'statements': {10: {'actions': {'actions': 'pass', 'set_community_list': 'no-export'}, 'conditions': {'match_prefix_list': 'NO-EXPORT'}}}}, 'all-pass': {'statements': {1: {'actions': {'actions': 'pass'}, 'conditions': {}}}}, 'allpass': {'statements': {10: {'actions': {'actions': 'pass'}, 'conditions': {}}}}, 'as-path': {'statements': {10: {'actions': {}, 'conditions': {}}}}, 'aspath': {'statements': {10: {'actions': {'actions': 'pass'}, 'conditions': {'match_as_path_list': 'test'}}, 20: {'actions': {'actions': 'drop'}, 'conditions': {}}}}, 'test': {'statements': {10: {'actions': {'set_route_origin': 'incomplete'}, 'conditions': {'match_local_pref_eq': '123'}}, 20: {'actions': {'set_weight': '44'}, 'conditions': {'match_med_eq': 100}}, 1: {'actions': {'set_route_origin': 'incomplete'}, 'conditions': {}}}}, 'test-community': {'statements': {10: {'actions': {'set_community': ['100:1','200:1','300:1'], 'set_community_no_advertise': True, 'set_community_no_export': True}, 'conditions': {}}, 20: {'actions': {'set_community': ['111:1','222:1'], 'set_community_additive': True, 'set_community_no_advertise': True, 'set_ext_community_rt': ['100:1','200:1'], 'set_ext_community_rt_additive': True}, 'conditions': {}}}}, 'test2': {'statements': {10: {'actions': {'actions': 'pass'}, 'conditions': {'match_origin_eq': 'eg'}}, 20: {'actions': {'actions': 'pass'}, 'conditions': {'match_nexthop_in': 'prefix-set'}}, 30: {'actions': {'actions': 'pass'}, 'conditions': {'match_local_pref_eq': '13'}}}}, 'test3': {'statements': {10: {'actions': {'actions': 'pass'}, 'conditions': {}}, 20: {'actions': {'actions': 'pass'}, 'conditions': {'match_area_eq': '1'}}, 30: {'actions': {'actions': 'pass'}, 'conditions': {'match_prefix_list': 'prefix-set'}}, 40: {'actions': {'actions': 'pass'}, 'conditions': {}}, 50: {'actions': {'set_as_path_prepend': 100, 'set_as_path_prepend_repeat_n': 10, 'set_community': ['100:100'], 'set_community_additive': True, 'set_community_delete': 'test', 'set_community_list': 'test', 'set_community_no_advertise': True, 'set_community_no_export': True, 'set_ext_community_delete': 'test', 'set_ext_community_rt': ['300:1','300:2'], 'set_ext_community_rt_additive': True, 'set_ext_community_soo': '100:100', 'set_ext_community_soo_additive': True, 'set_level': 'level-1-2', 'set_local_pref': 100, 'set_med': 113, 'set_metric': '100', 'set_metric_type': 'type-2', 'set_next_hop': '10.4.1.1', 'set_ospf_metric': '100', 'set_route_origin': 'egp', 'set_tag': '111'}, 'conditions': {}}}}, 'testtest': {'statements': {10: {'actions': {'set_local_pref': 120, 'set_med': 111, 'set_metric_type': 'type-1', 'set_next_hop': '192.168.1.1'}, 'conditions': {'match_med_eq': 10} } } } } }
e151f2e12925d3600374d2cf0fa97780e7221baa
df87814cb32990ad8c27d0b13a821aabce012819
/kolibri/utils/pskolibri/_pslinux.py
0e328942d96fef56ebc317029aebe6196f2226da
[ "MIT" ]
permissive
learningequality/kolibri
26812d4ae771f3b389d3317a586bc032fc84866b
cc9da2a6acd139acac3cd71c4cb05c15d4465712
refs/heads/release-v0.16.x
2023-09-01T18:07:29.720772
2023-08-31T15:43:47
2023-08-31T15:43:47
49,976,939
689
682
MIT
2023-09-14T20:02:29
2016-01-19T19:22:07
Python
UTF-8
Python
false
false
10,293
py
_pslinux.py
"""Linux platform implementation.""" from __future__ import absolute_import from __future__ import division import errno import functools import os import re import sys from collections import namedtuple from kolibri.utils.pskolibri.common import AccessDenied from kolibri.utils.pskolibri.common import b from kolibri.utils.pskolibri.common import memoize from kolibri.utils.pskolibri.common import memoize_when_activated from kolibri.utils.pskolibri.common import NoSuchProcess from kolibri.utils.pskolibri.common import open_binary from kolibri.utils.pskolibri.common import open_text from kolibri.utils.pskolibri.common import pcputimes CLOCK_TICKS = os.sysconf("SC_CLK_TCK") PAGESIZE = os.sysconf("SC_PAGE_SIZE") BOOT_TIME = None # set later svmem = namedtuple("svmem", ["total", "used"]) pmem = namedtuple("pmem", "rss vms shared text lib data dirty") def get_procfs_path(): """Return updated psutil.PROCFS_PATH constant.""" return sys.modules["kolibri.utils.pskolibri"].PROCFS_PATH @memoize def set_scputimes_ntuple(procfs_path): """Set a namedtuple of variable fields depending on the CPU times available on this Linux kernel version which may be: (user, nice, system, idle, iowait, irq, softirq, [steal, [guest, [guest_nice]]]) Used by cpu_times() function. """ global scputimes with open_binary("%s/stat" % procfs_path) as f: values = f.readline().split()[1:] fields = ["user", "nice", "system", "idle", "iowait", "irq", "softirq"] vlen = len(values) if vlen >= 8: # Linux >= 2.6.11 fields.append("steal") if vlen >= 9: # Linux >= 2.6.24 fields.append("guest") if vlen >= 10: # Linux >= 3.2.0 fields.append("guest_nice") scputimes = namedtuple("scputimes", fields) def cpu_times(): """Return a named tuple representing the following system-wide CPU times: (user, nice, system, idle, iowait, irq, softirq [steal, [guest, [guest_nice]]]) Last 3 fields may not be available on all Linux kernel versions. """ procfs_path = get_procfs_path() set_scputimes_ntuple(procfs_path) with open_binary("%s/stat" % procfs_path) as f: values = f.readline().split() fields = values[1 : len(scputimes._fields) + 1] fields = [float(x) / CLOCK_TICKS for x in fields] return scputimes(*fields) def virtual_memory(): """Report virtual memory stats. This implementation matches "free" and "vmstat -s" cmdline utility values and procps-ng-3.3.12 source was used as a reference (2016-09-18): https://gitlab.com/procps-ng/procps/blob/ 24fd2605c51fccc375ab0287cec33aa767f06718/proc/sysinfo.c For reference, procps-ng-3.3.10 is the version available on Ubuntu 16.04. Note about "available" memory: up until psutil 4.3 it was calculated as "avail = (free + buffers + cached)". Now "MemAvailable:" column (kernel 3.14) from /proc/meminfo is used as it's more accurate. That matches "available" column in newer versions of "free". """ missing_fields = [] mems = {} with open_binary("%s/meminfo" % get_procfs_path()) as f: for line in f: fields = line.split() mems[fields[0]] = int(fields[1]) * 1024 # /proc doc states that the available fields in /proc/meminfo vary # by architecture and compile options, but these 3 values are also # returned by sysinfo(2); as such we assume they are always there. total = mems[b"MemTotal:"] free = mems[b"MemFree:"] try: buffers = mems[b"Buffers:"] except KeyError: buffers = 0 missing_fields.append("buffers") try: cached = mems[b"Cached:"] except KeyError: cached = 0 missing_fields.append("cached") else: cached += mems.get(b"SReclaimable:", 0) # since kernel 2.6.19 used = total - free - cached - buffers if used < 0: # May be symptomatic of running within a LCX container where such # values will be dramatically distorted over those of the host. used = total - free return svmem(total, used) def pids(): """Returns a list of PIDs currently running on the system.""" return [int(x) for x in os.listdir(b(get_procfs_path())) if x.isdigit()] def cpu_count_logical(): """Return the number of logical CPUs in the system.""" try: return os.sysconf("SC_NPROCESSORS_ONLN") except ValueError: # as a second fallback we try to parse /proc/cpuinfo num = 0 with open_binary("%s/cpuinfo" % get_procfs_path()) as f: for line in f: if line.lower().startswith(b"processor"): num += 1 # unknown format (e.g. amrel/sparc architectures), see: # https://github.com/giampaolo/psutil/issues/200 # try to parse /proc/stat as a last resort if num == 0: search = re.compile(r"cpu\d") with open_text("%s/stat" % get_procfs_path()) as f: for line in f: line = line.split(" ")[0] if search.match(line): num += 1 if num == 0: # mimic os.cpu_count() return None return num def wrap_exceptions(fun): """Decorator which translates bare OSError and IOError exceptions into NoSuchProcess and AccessDenied. """ @functools.wraps(fun) def wrapper(self, *args, **kwargs): try: return fun(self, *args, **kwargs) except EnvironmentError as err: if err.errno in (errno.EPERM, errno.EACCES): raise AccessDenied() # ESRCH (no such process) can be raised on read() if # process is gone in the meantime. if err.errno == errno.ESRCH: raise NoSuchProcess() # ENOENT (no such file or directory) can be raised on open(). if err.errno == errno.ENOENT and not os.path.exists( "%s/%s" % (self._procfs_path, self.pid) ): raise NoSuchProcess() # Note: zombies will keep existing under /proc until they're # gone so there's no way to distinguish them in here. raise return wrapper def boot_time(): """Return the system boot time expressed in seconds since the epoch.""" global BOOT_TIME path = "%s/stat" % get_procfs_path() with open_binary(path) as f: for line in f: if line.startswith(b"btime"): ret = float(line.strip().split()[1]) BOOT_TIME = ret return ret raise RuntimeError("line 'btime' not found in %s" % path) class Process(object): """Linux process implementation.""" __slots__ = ["pid", "_name", "_ppid", "_procfs_path"] def __init__(self, pid): self.pid = pid self._name = None self._ppid = None self._procfs_path = get_procfs_path() @memoize_when_activated def _parse_stat_file(self): """Parse /proc/{pid}/stat file. Return a list of fields where process name is in position 0. Using "man proc" as a reference: where "man proc" refers to position N, always substract 2 (e.g starttime pos 22 in 'man proc' == pos 20 in the list returned here). The return value is cached in case oneshot() ctx manager is in use. """ with open_binary("%s/%s/stat" % (self._procfs_path, self.pid)) as f: data = f.read() # Process name is between parentheses. It can contain spaces and # other parentheses. This is taken into account by looking for # the first occurrence of "(" and the last occurence of ")". rpar = data.rfind(b")") name = data[data.find(b"(") + 1 : rpar] others = data[rpar + 2 :].split() return [name] + others @wrap_exceptions def cmdline(self): with open_text("%s/%s/cmdline" % (self._procfs_path, self.pid)) as f: data = f.read() if not data: # may happen in case of zombie process return [] sep = "\x00" if data.endswith("\x00") else " " if data.endswith(sep): data = data[:-1] return [x for x in data.split(sep)] @wrap_exceptions def create_time(self): values = self._parse_stat_file() # According to documentation, starttime is in field 21 and the # unit is jiffies (clock ticks). # We first divide it for clock ticks and then add uptime returning # seconds since the epoch, in UTC. # Also use cached value if available. bt = BOOT_TIME or boot_time() return (float(values[20]) / CLOCK_TICKS) + bt @wrap_exceptions def memory_info(self): # ============================================================ # | FIELD | DESCRIPTION | AKA | TOP | # ============================================================ # | rss | resident set size | | RES | # | vms | total program size | size | VIRT | # | shared | shared pages (from shared mappings) | | SHR | # | text | text ('code') | trs | CODE | # | lib | library (unused in Linux 2.6) | lrs | | # | data | data + stack | drs | DATA | # | dirty | dirty pages (unused in Linux 2.6) | dt | | # ============================================================ with open_binary("%s/%s/statm" % (self._procfs_path, self.pid)) as f: vms, rss, shared, text, lib, data, dirty = [ int(x) * PAGESIZE for x in f.readline().split()[:7] ] return pmem(rss, vms, shared, text, lib, data, dirty) @wrap_exceptions def cpu_times(self): values = self._parse_stat_file() utime = float(values[12]) / CLOCK_TICKS stime = float(values[13]) / CLOCK_TICKS children_utime = float(values[14]) / CLOCK_TICKS children_stime = float(values[15]) / CLOCK_TICKS return pcputimes(utime, stime, children_utime, children_stime)
39491ca36706604b130735169f6e384f441266c3
5105403f2b75990654519438d8ceabcf80962ebf
/examples/topics/hierarchical/crosstab.py
a9b5c9ea94b404bb5ee90b53237839d0dce3e921
[ "BSD-3-Clause" ]
permissive
bokeh/bokeh
ed1d81eb07d27d27c6710c9fec9114886047f528
310cb2cbeabc4c4b8180cbda566df16039737cdc
refs/heads/branch-3.3
2023-08-31T23:53:06.537061
2023-08-30T03:43:05
2023-08-30T03:43:05
3,834,332
17,174
5,251
BSD-3-Clause
2023-09-14T11:37:23
2012-03-26T15:40:01
Python
UTF-8
Python
false
false
2,098
py
crosstab.py
''' An adjacent bar plot of Pandas crosstab data. .. bokeh-example-metadata:: :sampledata: sample_superstore :apis: bokeh.plotting.figure.hbar, bokeh.models.sources.ColumnDataSource :refs: :ref:`ug_topics_hierarchical_crosstab` :keywords: hierarchical, crosstab ''' import pandas as pd from bokeh.core.properties import value from bokeh.plotting import ColumnDataSource, figure, show from bokeh.sampledata.sample_superstore import data as df from bokeh.transform import cumsum, factor_cmap rows = pd.crosstab(df.Category, df.Region, aggfunc='sum', values=df.Sales, normalize="index") source = ColumnDataSource(rows.T) cats = ["Office Supplies", "Furniture", "Technology"] regions = source.data["Region"] p = figure(y_range=cats, x_range=(-0.55, 1.02), height=400, width=700, tools="", x_axis_location=None, toolbar_location=None, outline_line_color=None) p.grid.grid_line_color = None p.yaxis.fixed_location = 0 p.axis.major_tick_line_color = None p.axis.major_label_text_color = None p.axis.axis_line_color = "#4a4a4a" p.axis.axis_line_width = 6 source.data["color"] = [ "#dadada","#dadada", "#4a4a4a", "#dadada"] for y in cats: left, right = cumsum(y, include_zero=True), cumsum(y) p.hbar(y=value(y), left=left, right=right, source=source, height=0.9, color=factor_cmap("Region", "MediumContrast4", regions)) pcts = source.data[y] source.data[f"{y} text"] = [f"{r}\n{x*100:0.1f}%" for r, x in zip(regions, pcts)] p.text(y=value(y), x=left, text=f"{y} text", source=source, x_offset=10, text_color="color", text_baseline="middle", text_font_size="15px") totals = pd.crosstab(df.Category, df.Region, margins=True, aggfunc='sum', values=df.Sales, normalize="columns").All p.hbar(right=0, left=-totals, y=totals.index, height=0.9, color="#dadada") text = [f"{name} ({totals.loc[name]*100:0.1f}%)" for name in cats] p.text(y=cats, x=0, text=text, text_baseline="middle", text_align="right", x_offset=-12, text_color="#4a4a4a", text_font_size="20px", text_font_style="bold") show(p)
e74a29234ec4c5b900eb06217926843e04ee1183
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/helpers/typeshed/stdlib/syslog.pyi
cfa8df887c1b413c1c3bf5ad384179b6e3bca828
[ "MIT", "Apache-2.0" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
1,357
pyi
syslog.pyi
import sys from typing import overload from typing_extensions import Literal if sys.platform != "win32": LOG_ALERT: Literal[1] LOG_AUTH: Literal[32] LOG_AUTHPRIV: Literal[80] LOG_CONS: Literal[2] LOG_CRIT: Literal[2] LOG_CRON: Literal[72] LOG_DAEMON: Literal[24] LOG_DEBUG: Literal[7] LOG_EMERG: Literal[0] LOG_ERR: Literal[3] LOG_INFO: Literal[6] LOG_KERN: Literal[0] LOG_LOCAL0: Literal[128] LOG_LOCAL1: Literal[136] LOG_LOCAL2: Literal[144] LOG_LOCAL3: Literal[152] LOG_LOCAL4: Literal[160] LOG_LOCAL5: Literal[168] LOG_LOCAL6: Literal[176] LOG_LOCAL7: Literal[184] LOG_LPR: Literal[48] LOG_MAIL: Literal[16] LOG_NDELAY: Literal[8] LOG_NEWS: Literal[56] LOG_NOTICE: Literal[5] LOG_NOWAIT: Literal[16] LOG_ODELAY: Literal[4] LOG_PERROR: Literal[32] LOG_PID: Literal[1] LOG_SYSLOG: Literal[40] LOG_USER: Literal[8] LOG_UUCP: Literal[64] LOG_WARNING: Literal[4] def LOG_MASK(a: int) -> int: ... def LOG_UPTO(a: int) -> int: ... def closelog() -> None: ... def openlog(ident: str = ..., logoption: int = ..., facility: int = ...) -> None: ... def setlogmask(x: int) -> int: ... @overload def syslog(priority: int, message: str) -> None: ... @overload def syslog(message: str) -> None: ...
7a19a3dbe28dac8c9481a4f3e9c27b19512770e5
f2e07495a5792290008ca6190650860a77d666de
/handcalcs/global_config.py
7de335bf528311aef1655a2175eca1bcce7c8c79
[ "Apache-2.0" ]
permissive
connorferster/handcalcs
9c9a644117ceb42f5dadd47e7d60d30a2353b6a0
56d36d2c0e51a7f0c482e991c124e50fb578cacb
refs/heads/main
2023-09-04T12:33:01.144692
2022-12-27T18:49:10
2022-12-27T18:49:10
241,504,436
5,413
457
Apache-2.0
2022-12-27T18:47:11
2020-02-19T01:18:42
CSS
UTF-8
Python
false
false
2,405
py
global_config.py
# Copyright 2020 Connor Ferster # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from typing import Any import pathlib _config = {} def _load_global_config(config_file_name: str): with open(config_file_name, "r") as config_file: _config_data = json.load(config_file) return _config_data _here = pathlib.Path(__file__).parent _config_file = _here / "config.json" _config = _load_global_config(_config_file) _OPTIONS = [] for key, value in _config.items(): if isinstance(value, str): str_value = f"'{value}'" if "\n" in str_value: str_value = str_value.replace("\n", "\\n") else: str_value = str(value) _OPTIONS.append(f"{key} -> {type(value)} (default = {str_value})") # _OPTIONS = [f"{key} -> {type(value)} (default = {value})" for key, value in _config.items()] _OPTIONS_TEXT = "Configuration can be set on the following options:\n\t" + "\n\t".join( _OPTIONS ) def set_option(option: str, value: Any) -> None: if option in _config and isinstance(value, type(_config[option])): _config[option] = value elif option in _config and not isinstance(value, type(_config[option])): raise ValueError( f"Option, {option}, must be set with a value of type {type(_config[option])}," f" not {type(value)}." ) else: raise ValueError(f"{option} is not a valid option that can be set.") def save_config() -> None: """ Returns None. Saves the current global configuration as the default configuration that will be loaded upon module import. """ with open(_config_file, "w", newline="") as config_file: json.dump(_config, config_file, indent=4) config_file.truncate() set_option.__doc__ = f""" Returns None. Sets the value of 'option' to 'value' in the global config. {_OPTIONS_TEXT} """
3d5dd9de735d71d2ca724eb2c7f4c7bef321d5ec
085cf6512c946d615eda58a3a0d353c0aa1db8cf
/deepfence_backend/utils/response.py
5ca439c921da09bbc11960fbdc97efa2b7474b6a
[ "Apache-2.0" ]
permissive
deepfence/ThreatMapper
00c38c65ed2f014004c9818f03d5e129496b4dd8
748b0c8782507eaf351625b9c9fad46903ad6237
refs/heads/main
2023-08-31T11:13:53.813651
2023-03-02T00:49:57
2023-03-02T00:49:57
238,662,977
4,540
481
Apache-2.0
2023-09-14T13:24:37
2020-02-06T10:30:09
TypeScript
UTF-8
Python
false
false
521
py
response.py
from flask import jsonify def set_response(data=None, error=None, status=200, headers=None): response = format_response(data=data, error=error, status=status) if headers: return jsonify(response), status, headers return jsonify(response), status def format_response(data=None, error=None, status=200): if 200 <= status < 400: code = True else: code = False response = { 'data': data, 'success': code, 'error': error } return response
cabc2f3bdbb368486ca3bd279137795b109117be
c618bbf2719431999b1007461df0865bab60c883
/docs/examples/use_cases/mxnet/resnetn/symbols/lenet.py
f2cc106f60acbc9e9fc3491db0355ad9889a826e
[ "Apache-2.0" ]
permissive
NVIDIA/DALI
3d0d061135d19e092647e6522046b2ff23d4ef03
92ebbe5c20e460050abd985acb590e6c27199517
refs/heads/main
2023-09-04T01:53:59.033608
2023-09-01T13:45:03
2023-09-01T13:45:03
135,768,037
4,851
648
Apache-2.0
2023-09-12T18:00:22
2018-06-01T22:18:01
C++
UTF-8
Python
false
false
2,957
py
lenet.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ LeCun, Yann, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE (1998) """ import mxnet as mx def get_loc(data, attr={'lr_mult':'0.01'}): """ the localisation network in lenet-stn, it will increase acc about more than 1%, when num-epoch >=15 """ loc = mx.symbol.Convolution(data=data, num_filter=30, kernel=(5, 5), stride=(2,2)) loc = mx.symbol.Activation(data = loc, act_type='relu') loc = mx.symbol.Pooling(data=loc, kernel=(2, 2), stride=(2, 2), pool_type='max') loc = mx.symbol.Convolution(data=loc, num_filter=60, kernel=(3, 3), stride=(1,1), pad=(1, 1)) loc = mx.symbol.Activation(data = loc, act_type='relu') loc = mx.symbol.Pooling(data=loc, global_pool=True, kernel=(2, 2), pool_type='avg') loc = mx.symbol.Flatten(data=loc) loc = mx.symbol.FullyConnected(data=loc, num_hidden=6, name="stn_loc", attr=attr) return loc def get_symbol(num_classes=10, add_stn=False, **kwargs): data = mx.symbol.Variable('data') if add_stn: data = mx.sym.SpatialTransformer(data=data, loc=get_loc(data), target_shape = (28,28), transform_type="affine", sampler_type="bilinear") # first conv conv1 = mx.symbol.Convolution(data=data, kernel=(5,5), num_filter=20) tanh1 = mx.symbol.Activation(data=conv1, act_type="tanh") pool1 = mx.symbol.Pooling(data=tanh1, pool_type="max", kernel=(2,2), stride=(2,2)) # second conv conv2 = mx.symbol.Convolution(data=pool1, kernel=(5,5), num_filter=50) tanh2 = mx.symbol.Activation(data=conv2, act_type="tanh") pool2 = mx.symbol.Pooling(data=tanh2, pool_type="max", kernel=(2,2), stride=(2,2)) # first fullc flatten = mx.symbol.Flatten(data=pool2) fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=500) tanh3 = mx.symbol.Activation(data=fc1, act_type="tanh") # second fullc fc2 = mx.symbol.FullyConnected(data=tanh3, num_hidden=num_classes) # loss lenet = mx.symbol.SoftmaxOutput(data=fc2, name='softmax') return lenet