|
|
from abc import abstractmethod, ABC |
|
|
import torch |
|
|
|
|
|
|
|
|
class SchedulerInterface(ABC): |
|
|
""" |
|
|
Base class for diffusion noise schedule. |
|
|
""" |
|
|
alphas_cumprod: torch.Tensor |
|
|
|
|
|
@abstractmethod |
|
|
def add_noise( |
|
|
self, clean_latent: torch.Tensor, |
|
|
noise: torch.Tensor, timestep: torch.Tensor |
|
|
): |
|
|
""" |
|
|
Diffusion forward corruption process. |
|
|
Input: |
|
|
- clean_latent: the clean latent with shape [B, C, H, W] |
|
|
- noise: the noise with shape [B, C, H, W] |
|
|
- timestep: the timestep with shape [B] |
|
|
Output: the corrupted latent with shape [B, C, H, W] |
|
|
""" |
|
|
pass |
|
|
|
|
|
def convert_x0_to_noise( |
|
|
self, x0: torch.Tensor, xt: torch.Tensor, |
|
|
timestep: torch.Tensor |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Convert the diffusion network's x0 prediction to noise predidction. |
|
|
x0: the predicted clean data with shape [B, C, H, W] |
|
|
xt: the input noisy data with shape [B, C, H, W] |
|
|
timestep: the timestep with shape [B] |
|
|
|
|
|
noise = (xt-sqrt(alpha_t)*x0) / sqrt(beta_t) (eq 11 in https://arxiv.org/abs/2311.18828) |
|
|
""" |
|
|
|
|
|
original_dtype = x0.dtype |
|
|
x0, xt, alphas_cumprod = map( |
|
|
lambda x: x.double().to(x0.device), [x0, xt, |
|
|
self.alphas_cumprod] |
|
|
) |
|
|
|
|
|
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1) |
|
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
noise_pred = (xt - alpha_prod_t ** |
|
|
(0.5) * x0) / beta_prod_t ** (0.5) |
|
|
return noise_pred.to(original_dtype) |
|
|
|
|
|
def convert_noise_to_x0( |
|
|
self, noise: torch.Tensor, xt: torch.Tensor, |
|
|
timestep: torch.Tensor |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Convert the diffusion network's noise prediction to x0 predidction. |
|
|
noise: the predicted noise with shape [B, C, H, W] |
|
|
xt: the input noisy data with shape [B, C, H, W] |
|
|
timestep: the timestep with shape [B] |
|
|
|
|
|
x0 = (x_t - sqrt(beta_t) * noise) / sqrt(alpha_t) (eq 11 in https://arxiv.org/abs/2311.18828) |
|
|
""" |
|
|
|
|
|
original_dtype = noise.dtype |
|
|
noise, xt, alphas_cumprod = map( |
|
|
lambda x: x.double().to(noise.device), [noise, xt, |
|
|
self.alphas_cumprod] |
|
|
) |
|
|
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1) |
|
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
x0_pred = (xt - beta_prod_t ** |
|
|
(0.5) * noise) / alpha_prod_t ** (0.5) |
|
|
return x0_pred.to(original_dtype) |
|
|
|
|
|
def convert_velocity_to_x0( |
|
|
self, velocity: torch.Tensor, xt: torch.Tensor, |
|
|
timestep: torch.Tensor |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Convert the diffusion network's velocity prediction to x0 predidction. |
|
|
velocity: the predicted noise with shape [B, C, H, W] |
|
|
xt: the input noisy data with shape [B, C, H, W] |
|
|
timestep: the timestep with shape [B] |
|
|
|
|
|
v = sqrt(alpha_t) * noise - sqrt(beta_t) x0 |
|
|
noise = (xt-sqrt(alpha_t)*x0) / sqrt(beta_t) |
|
|
given v, x_t, we have |
|
|
x0 = sqrt(alpha_t) * x_t - sqrt(beta_t) * v |
|
|
see derivations https://chatgpt.com/share/679fb6c8-3a30-8008-9b0e-d1ae892dac56 |
|
|
""" |
|
|
|
|
|
original_dtype = velocity.dtype |
|
|
velocity, xt, alphas_cumprod = map( |
|
|
lambda x: x.double().to(velocity.device), [velocity, xt, |
|
|
self.alphas_cumprod] |
|
|
) |
|
|
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1) |
|
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
x0_pred = (alpha_prod_t ** 0.5) * xt - (beta_prod_t ** 0.5) * velocity |
|
|
return x0_pred.to(original_dtype) |
|
|
|