from abc import abstractmethod, ABC import torch class SchedulerInterface(ABC): """ Base class for diffusion noise schedule. """ alphas_cumprod: torch.Tensor # [T], alphas for defining the noise schedule @abstractmethod def add_noise( self, clean_latent: torch.Tensor, noise: torch.Tensor, timestep: torch.Tensor ): """ Diffusion forward corruption process. Input: - clean_latent: the clean latent with shape [B, C, H, W] - noise: the noise with shape [B, C, H, W] - timestep: the timestep with shape [B] Output: the corrupted latent with shape [B, C, H, W] """ pass def convert_x0_to_noise( self, x0: torch.Tensor, xt: torch.Tensor, timestep: torch.Tensor ) -> torch.Tensor: """ Convert the diffusion network's x0 prediction to noise predidction. x0: the predicted clean data with shape [B, C, H, W] xt: the input noisy data with shape [B, C, H, W] timestep: the timestep with shape [B] noise = (xt-sqrt(alpha_t)*x0) / sqrt(beta_t) (eq 11 in https://arxiv.org/abs/2311.18828) """ # use higher precision for calculations original_dtype = x0.dtype x0, xt, alphas_cumprod = map( lambda x: x.double().to(x0.device), [x0, xt, self.alphas_cumprod] ) alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1) beta_prod_t = 1 - alpha_prod_t noise_pred = (xt - alpha_prod_t ** (0.5) * x0) / beta_prod_t ** (0.5) return noise_pred.to(original_dtype) def convert_noise_to_x0( self, noise: torch.Tensor, xt: torch.Tensor, timestep: torch.Tensor ) -> torch.Tensor: """ Convert the diffusion network's noise prediction to x0 predidction. noise: the predicted noise with shape [B, C, H, W] xt: the input noisy data with shape [B, C, H, W] timestep: the timestep with shape [B] x0 = (x_t - sqrt(beta_t) * noise) / sqrt(alpha_t) (eq 11 in https://arxiv.org/abs/2311.18828) """ # use higher precision for calculations original_dtype = noise.dtype noise, xt, alphas_cumprod = map( lambda x: x.double().to(noise.device), [noise, xt, self.alphas_cumprod] ) alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1) beta_prod_t = 1 - alpha_prod_t x0_pred = (xt - beta_prod_t ** (0.5) * noise) / alpha_prod_t ** (0.5) return x0_pred.to(original_dtype) def convert_velocity_to_x0( self, velocity: torch.Tensor, xt: torch.Tensor, timestep: torch.Tensor ) -> torch.Tensor: """ Convert the diffusion network's velocity prediction to x0 predidction. velocity: the predicted noise with shape [B, C, H, W] xt: the input noisy data with shape [B, C, H, W] timestep: the timestep with shape [B] v = sqrt(alpha_t) * noise - sqrt(beta_t) x0 noise = (xt-sqrt(alpha_t)*x0) / sqrt(beta_t) given v, x_t, we have x0 = sqrt(alpha_t) * x_t - sqrt(beta_t) * v see derivations https://chatgpt.com/share/679fb6c8-3a30-8008-9b0e-d1ae892dac56 """ # use higher precision for calculations original_dtype = velocity.dtype velocity, xt, alphas_cumprod = map( lambda x: x.double().to(velocity.device), [velocity, xt, self.alphas_cumprod] ) alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1) beta_prod_t = 1 - alpha_prod_t x0_pred = (alpha_prod_t ** 0.5) * xt - (beta_prod_t ** 0.5) * velocity return x0_pred.to(original_dtype)