Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- exp_code/1_benchmark/CausVid/causvid/__pycache__/bidirectional_trajectory_pipeline.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/__pycache__/data.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/__pycache__/dmd.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/__pycache__/loss.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/__pycache__/ode_regression.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/__pycache__/scheduler.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/__pycache__/util.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/bidirectional_trajectory_pipeline.py +47 -0
- exp_code/1_benchmark/CausVid/causvid/data.py +74 -0
- exp_code/1_benchmark/CausVid/causvid/dmd.py +497 -0
- exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/captions_coco14_test.txt +0 -0
- exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/__init__.py +0 -0
- exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/clip_features.py +38 -0
- exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/downloads_helper.py +73 -0
- exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/features.py +85 -0
- exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/fid.py +635 -0
- exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/inception_pytorch.py +332 -0
- exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/inception_torchscript.py +57 -0
- exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/leaderboard.py +43 -0
- exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/resize.py +133 -0
- exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/utils.py +98 -0
- exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/wrappers.py +108 -0
- exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/coco_evaluator.py +246 -0
- exp_code/1_benchmark/CausVid/causvid/evaluation/eval_sdxl_coco.py +135 -0
- exp_code/1_benchmark/CausVid/causvid/evaluation/inference_sdxl.py +146 -0
- exp_code/1_benchmark/CausVid/causvid/evaluation/parallel_sdxl_eval.sh +54 -0
- exp_code/1_benchmark/CausVid/causvid/loss.py +82 -0
- exp_code/1_benchmark/CausVid/causvid/models/__init__.py +56 -0
- exp_code/1_benchmark/CausVid/causvid/models/__pycache__/__init__.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/models/__pycache__/model_interface.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/models/model_interface.py +114 -0
- exp_code/1_benchmark/CausVid/causvid/models/sdxl/__pycache__/sdxl_wrapper.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/models/sdxl/sdxl_wrapper.py +200 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/__init__.py +0 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/__pycache__/__init__.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/__pycache__/causal_inference.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/__pycache__/causal_model.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/__pycache__/flow_match.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/__pycache__/wan_wrapper.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/bidirectional_inference.py +69 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/causal_inference.py +204 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/causal_model.py +749 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/flow_match.py +83 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/generate_ode_pairs.py +125 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/wan_base/README.md +2 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/wan_base/__init__.py +3 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/wan_base/__pycache__/__init__.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/wan_base/__pycache__/image2video.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/wan_base/__pycache__/text2video.cpython-312.pyc +0 -0
- exp_code/1_benchmark/CausVid/causvid/models/wan/wan_base/configs/__init__.py +42 -0
exp_code/1_benchmark/CausVid/causvid/__pycache__/bidirectional_trajectory_pipeline.cpython-312.pyc
ADDED
|
Binary file (2.8 kB). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/__pycache__/data.cpython-312.pyc
ADDED
|
Binary file (4.22 kB). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/__pycache__/dmd.cpython-312.pyc
ADDED
|
Binary file (24.9 kB). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/__pycache__/loss.cpython-312.pyc
ADDED
|
Binary file (4.58 kB). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/__pycache__/ode_regression.cpython-312.pyc
ADDED
|
Binary file (8.92 kB). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/__pycache__/scheduler.cpython-312.pyc
ADDED
|
Binary file (5.48 kB). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/__pycache__/util.cpython-312.pyc
ADDED
|
Binary file (7.96 kB). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/bidirectional_trajectory_pipeline.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from causvid.models.model_interface import (
|
| 2 |
+
InferencePipelineInterface,
|
| 3 |
+
DiffusionModelInterface,
|
| 4 |
+
TextEncoderInterface
|
| 5 |
+
)
|
| 6 |
+
from causvid.scheduler import SchedulerInterface
|
| 7 |
+
from typing import List
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class BidirectionalInferenceWrapper(InferencePipelineInterface):
|
| 12 |
+
def __init__(self, denoising_step_list: List[int],
|
| 13 |
+
scheduler: SchedulerInterface,
|
| 14 |
+
generator: DiffusionModelInterface, **kwargs):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.scheduler = scheduler
|
| 17 |
+
self.generator = generator
|
| 18 |
+
self.denoising_step_list = denoising_step_list
|
| 19 |
+
|
| 20 |
+
def inference_with_trajectory(self, noise: torch.Tensor, conditional_dict: dict) -> torch.Tensor:
|
| 21 |
+
output_list = [noise]
|
| 22 |
+
|
| 23 |
+
# initial point
|
| 24 |
+
noisy_image_or_video = noise
|
| 25 |
+
|
| 26 |
+
# use the last n-1 timesteps to simulate the generator's input
|
| 27 |
+
for index, current_timestep in enumerate(self.denoising_step_list[:-1]):
|
| 28 |
+
pred_image_or_video = self.generator(
|
| 29 |
+
noisy_image_or_video=noisy_image_or_video,
|
| 30 |
+
conditional_dict=conditional_dict,
|
| 31 |
+
timestep=torch.ones(
|
| 32 |
+
noise.shape[:2], dtype=torch.long, device=noise.device) * current_timestep
|
| 33 |
+
) # [B, F, C, H, W]
|
| 34 |
+
|
| 35 |
+
# TODO: Change backward simulation for causal video
|
| 36 |
+
next_timestep = self.denoising_step_list[index + 1] * torch.ones(
|
| 37 |
+
noise.shape[:2], dtype=torch.long, device=noise.device)
|
| 38 |
+
noisy_image_or_video = self.scheduler.add_noise(
|
| 39 |
+
pred_image_or_video.flatten(0, 1),
|
| 40 |
+
torch.randn_like(pred_image_or_video.flatten(0, 1)),
|
| 41 |
+
next_timestep.flatten(0, 1)
|
| 42 |
+
).unflatten(0, noise.shape[:2])
|
| 43 |
+
output_list.append(noisy_image_or_video)
|
| 44 |
+
|
| 45 |
+
# [B, T, F, C, H, W]
|
| 46 |
+
output = torch.stack(output_list, dim=1)
|
| 47 |
+
return output
|
exp_code/1_benchmark/CausVid/causvid/data.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from causvid.ode_data.create_lmdb_iterative import get_array_shape_from_lmdb, retrieve_row_from_lmdb
|
| 2 |
+
from torch.utils.data import Dataset
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import lmdb
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class TextDataset(Dataset):
|
| 9 |
+
def __init__(self, data_path):
|
| 10 |
+
self.texts = []
|
| 11 |
+
with open(data_path, "r") as f:
|
| 12 |
+
for line in f:
|
| 13 |
+
self.texts.append(line.strip())
|
| 14 |
+
|
| 15 |
+
def __len__(self):
|
| 16 |
+
return len(self.texts)
|
| 17 |
+
|
| 18 |
+
def __getitem__(self, idx):
|
| 19 |
+
return self.texts[idx]
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class ODERegressionDataset(Dataset):
|
| 23 |
+
def __init__(self, data_path, max_pair=int(1e8)):
|
| 24 |
+
self.data_dict = torch.load(data_path, weights_only=False)
|
| 25 |
+
self.max_pair = max_pair
|
| 26 |
+
|
| 27 |
+
def __len__(self):
|
| 28 |
+
return min(len(self.data_dict['prompts']), self.max_pair)
|
| 29 |
+
|
| 30 |
+
def __getitem__(self, idx):
|
| 31 |
+
"""
|
| 32 |
+
Outputs:
|
| 33 |
+
- prompts: List of Strings
|
| 34 |
+
- latents: Tensor of shape (num_denoising_steps, num_frames, num_channels, height, width). It is ordered from pure noise to clean image.
|
| 35 |
+
"""
|
| 36 |
+
return {
|
| 37 |
+
"prompts": self.data_dict['prompts'][idx],
|
| 38 |
+
"ode_latent": self.data_dict['latents'][idx].squeeze(0),
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class ODERegressionLMDBDataset(Dataset):
|
| 43 |
+
def __init__(self, data_path: str, max_pair: int = int(1e8)):
|
| 44 |
+
self.env = lmdb.open(data_path, readonly=True,
|
| 45 |
+
lock=False, readahead=False, meminit=False)
|
| 46 |
+
|
| 47 |
+
self.latents_shape = get_array_shape_from_lmdb(self.env, 'latents')
|
| 48 |
+
self.max_pair = max_pair
|
| 49 |
+
|
| 50 |
+
def __len__(self):
|
| 51 |
+
return min(self.latents_shape[0], self.max_pair)
|
| 52 |
+
|
| 53 |
+
def __getitem__(self, idx):
|
| 54 |
+
"""
|
| 55 |
+
Outputs:
|
| 56 |
+
- prompts: List of Strings
|
| 57 |
+
- latents: Tensor of shape (num_denoising_steps, num_frames, num_channels, height, width). It is ordered from pure noise to clean image.
|
| 58 |
+
"""
|
| 59 |
+
latents = retrieve_row_from_lmdb(
|
| 60 |
+
self.env,
|
| 61 |
+
"latents", np.float16, idx, shape=self.latents_shape[1:]
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
if len(latents.shape) == 4:
|
| 65 |
+
latents = latents[None, ...]
|
| 66 |
+
|
| 67 |
+
prompts = retrieve_row_from_lmdb(
|
| 68 |
+
self.env,
|
| 69 |
+
"prompts", str, idx
|
| 70 |
+
)
|
| 71 |
+
return {
|
| 72 |
+
"prompts": prompts,
|
| 73 |
+
"ode_latent": torch.tensor(latents, dtype=torch.float32)
|
| 74 |
+
}
|
exp_code/1_benchmark/CausVid/causvid/dmd.py
ADDED
|
@@ -0,0 +1,497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from causvid.models.model_interface import InferencePipelineInterface
|
| 2 |
+
from causvid.models import (
|
| 3 |
+
get_diffusion_wrapper,
|
| 4 |
+
get_text_encoder_wrapper,
|
| 5 |
+
get_vae_wrapper,
|
| 6 |
+
get_inference_pipeline_wrapper
|
| 7 |
+
)
|
| 8 |
+
from causvid.loss import get_denoising_loss
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
from typing import Tuple
|
| 11 |
+
from torch import nn
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class DMD(nn.Module):
|
| 16 |
+
def __init__(self, args, device):
|
| 17 |
+
"""
|
| 18 |
+
Initialize the DMD (Distribution Matching Distillation) module.
|
| 19 |
+
This class is self-contained and compute generator and fake score losses
|
| 20 |
+
in the forward pass.
|
| 21 |
+
"""
|
| 22 |
+
super().__init__()
|
| 23 |
+
|
| 24 |
+
# Step 1: Initialize all models
|
| 25 |
+
|
| 26 |
+
self.generator_model_name = getattr(
|
| 27 |
+
args, "generator_name", args.model_name)
|
| 28 |
+
self.real_model_name = getattr(args, "real_name", args.model_name)
|
| 29 |
+
self.fake_model_name = getattr(args, "fake_name", args.model_name)
|
| 30 |
+
|
| 31 |
+
self.generator_task_type = getattr(
|
| 32 |
+
args, "generator_task_type", args.generator_task)
|
| 33 |
+
self.real_task_type = getattr(
|
| 34 |
+
args, "real_task_type", args.generator_task)
|
| 35 |
+
self.fake_task_type = getattr(
|
| 36 |
+
args, "fake_task_type", args.generator_task)
|
| 37 |
+
|
| 38 |
+
self.generator = get_diffusion_wrapper(
|
| 39 |
+
model_name=self.generator_model_name)()
|
| 40 |
+
self.generator.set_module_grad(
|
| 41 |
+
module_grad=args.generator_grad
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
if getattr(args, "generator_ckpt", False):
|
| 45 |
+
print(f"Loading pretrained generator from {args.generator_ckpt}")
|
| 46 |
+
state_dict = torch.load(args.generator_ckpt, map_location="cpu")[
|
| 47 |
+
'generator']
|
| 48 |
+
self.generator.load_state_dict(
|
| 49 |
+
state_dict, strict=True
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
self.num_frame_per_block = getattr(args, "num_frame_per_block", 1)
|
| 53 |
+
|
| 54 |
+
if self.num_frame_per_block > 1:
|
| 55 |
+
self.generator.model.num_frame_per_block = self.num_frame_per_block
|
| 56 |
+
|
| 57 |
+
self.real_score = get_diffusion_wrapper(
|
| 58 |
+
model_name=self.real_model_name)()
|
| 59 |
+
self.real_score.set_module_grad(
|
| 60 |
+
module_grad=args.real_score_grad
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
self.fake_score = get_diffusion_wrapper(
|
| 64 |
+
model_name=self.fake_model_name)()
|
| 65 |
+
self.fake_score.set_module_grad(
|
| 66 |
+
module_grad=args.fake_score_grad
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
if args.gradient_checkpointing:
|
| 70 |
+
self.generator.enable_gradient_checkpointing()
|
| 71 |
+
self.fake_score.enable_gradient_checkpointing()
|
| 72 |
+
|
| 73 |
+
self.text_encoder = get_text_encoder_wrapper(
|
| 74 |
+
model_name=args.model_name)()
|
| 75 |
+
self.text_encoder.requires_grad_(False)
|
| 76 |
+
|
| 77 |
+
self.vae = get_vae_wrapper(model_name=args.model_name)()
|
| 78 |
+
self.vae.requires_grad_(False)
|
| 79 |
+
|
| 80 |
+
# this will be init later with fsdp-wrapped modules
|
| 81 |
+
self.inference_pipeline: InferencePipelineInterface = None
|
| 82 |
+
|
| 83 |
+
# Step 2: Initialize all dmd hyperparameters
|
| 84 |
+
|
| 85 |
+
self.denoising_step_list = torch.tensor(
|
| 86 |
+
args.denoising_step_list, dtype=torch.long, device=device)
|
| 87 |
+
self.num_train_timestep = args.num_train_timestep
|
| 88 |
+
self.min_step = int(0.02 * self.num_train_timestep)
|
| 89 |
+
self.max_step = int(0.98 * self.num_train_timestep)
|
| 90 |
+
self.real_guidance_scale = args.real_guidance_scale
|
| 91 |
+
self.timestep_shift = getattr(args, "timestep_shift", 1.0)
|
| 92 |
+
|
| 93 |
+
self.args = args
|
| 94 |
+
self.device = device
|
| 95 |
+
self.dtype = torch.bfloat16 if args.mixed_precision else torch.float32
|
| 96 |
+
self.scheduler = self.generator.get_scheduler()
|
| 97 |
+
self.denoising_loss_func = get_denoising_loss(
|
| 98 |
+
args.denoising_loss_type)()
|
| 99 |
+
|
| 100 |
+
if args.warp_denoising_step: # Warp the denoising step according to the scheduler time
|
| 101 |
+
timesteps = torch.cat((self.scheduler.timesteps.cpu(), torch.tensor([0], dtype=torch.float32))).cuda().cuda()
|
| 102 |
+
self.denoising_step_list = timesteps[1000 - self.denoising_step_list]
|
| 103 |
+
|
| 104 |
+
if getattr(self.scheduler, "alphas_cumprod", None) is not None:
|
| 105 |
+
self.scheduler.alphas_cumprod = self.scheduler.alphas_cumprod.to(
|
| 106 |
+
device)
|
| 107 |
+
else:
|
| 108 |
+
self.scheduler.alphas_cumprod = None
|
| 109 |
+
|
| 110 |
+
def _process_timestep(self, timestep: torch.Tensor, type: str) -> torch.Tensor:
|
| 111 |
+
"""
|
| 112 |
+
Pre-process the randomly generated timestep based on the generator's task type.
|
| 113 |
+
Input:
|
| 114 |
+
- timestep: [batch_size, num_frame] tensor containing the randomly generated timestep.
|
| 115 |
+
- type: a string indicating the type of the current model (image, bidirectional_video, or causal_video).
|
| 116 |
+
Output Behavior:
|
| 117 |
+
- image: check that the second dimension (num_frame) is 1.
|
| 118 |
+
- bidirectional_video: broadcast the timestep to be the same for all frames.
|
| 119 |
+
- causal_video: broadcast the timestep to be the same for all frames **in a block**.
|
| 120 |
+
"""
|
| 121 |
+
if type == "image":
|
| 122 |
+
assert timestep.shape[1] == 1
|
| 123 |
+
return timestep
|
| 124 |
+
elif type == "bidirectional_video":
|
| 125 |
+
for index in range(timestep.shape[0]):
|
| 126 |
+
timestep[index] = timestep[index, 0]
|
| 127 |
+
return timestep
|
| 128 |
+
elif type == "causal_video":
|
| 129 |
+
# make the noise level the same within every motion block
|
| 130 |
+
timestep = timestep.reshape(timestep.shape[0], -1, self.num_frame_per_block)
|
| 131 |
+
timestep[:, :, 1:] = timestep[:, :, 0:1]
|
| 132 |
+
timestep = timestep.reshape(timestep.shape[0], -1)
|
| 133 |
+
return timestep
|
| 134 |
+
else:
|
| 135 |
+
raise NotImplementedError("Unsupported model type {}".format(type))
|
| 136 |
+
|
| 137 |
+
def _compute_kl_grad(
|
| 138 |
+
self, noisy_image_or_video: torch.Tensor,
|
| 139 |
+
estimated_clean_image_or_video: torch.Tensor,
|
| 140 |
+
timestep: torch.Tensor,
|
| 141 |
+
conditional_dict: dict, unconditional_dict: dict,
|
| 142 |
+
normalization: bool = True
|
| 143 |
+
) -> Tuple[torch.Tensor, dict]:
|
| 144 |
+
"""
|
| 145 |
+
Compute the KL grad (eq 7 in https://arxiv.org/abs/2311.18828).
|
| 146 |
+
Input:
|
| 147 |
+
- noisy_image_or_video: a tensor with shape [B, F, C, H, W] where the number of frame is 1 for images.
|
| 148 |
+
- estimated_clean_image_or_video: a tensor with shape [B, F, C, H, W] representing the estimated clean image or video.
|
| 149 |
+
- timestep: a tensor with shape [B, F] containing the randomly generated timestep.
|
| 150 |
+
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
|
| 151 |
+
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
|
| 152 |
+
- normalization: a boolean indicating whether to normalize the gradient.
|
| 153 |
+
Output:
|
| 154 |
+
- kl_grad: a tensor representing the KL grad.
|
| 155 |
+
- kl_log_dict: a dictionary containing the intermediate tensors for logging.
|
| 156 |
+
"""
|
| 157 |
+
# Step 1: Compute the fake score
|
| 158 |
+
pred_fake_image = self.fake_score(
|
| 159 |
+
noisy_image_or_video=noisy_image_or_video,
|
| 160 |
+
conditional_dict=conditional_dict,
|
| 161 |
+
timestep=timestep
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
# Step 2: Compute the real score
|
| 165 |
+
# We compute the conditional and unconditional prediction
|
| 166 |
+
# and add them together to achieve cfg (https://arxiv.org/abs/2207.12598)
|
| 167 |
+
pred_real_image_cond = self.real_score(
|
| 168 |
+
noisy_image_or_video=noisy_image_or_video,
|
| 169 |
+
conditional_dict=conditional_dict,
|
| 170 |
+
timestep=timestep
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
pred_real_image_uncond = self.real_score(
|
| 174 |
+
noisy_image_or_video=noisy_image_or_video,
|
| 175 |
+
conditional_dict=unconditional_dict,
|
| 176 |
+
timestep=timestep
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
pred_real_image = pred_real_image_cond + (
|
| 180 |
+
pred_real_image_cond - pred_real_image_uncond
|
| 181 |
+
) * self.real_guidance_scale
|
| 182 |
+
|
| 183 |
+
# Step 3: Compute the DMD gradient (DMD paper eq. 7).
|
| 184 |
+
grad = (pred_fake_image - pred_real_image)
|
| 185 |
+
|
| 186 |
+
# TODO: Change the normalizer for causal teacher
|
| 187 |
+
if normalization:
|
| 188 |
+
# Step 4: Gradient normalization (DMD paper eq. 8).
|
| 189 |
+
p_real = (estimated_clean_image_or_video - pred_real_image)
|
| 190 |
+
normalizer = torch.abs(p_real).mean(dim=[1, 2, 3, 4], keepdim=True)
|
| 191 |
+
grad = grad / normalizer
|
| 192 |
+
grad = torch.nan_to_num(grad)
|
| 193 |
+
|
| 194 |
+
return grad, {
|
| 195 |
+
"dmdtrain_clean_latent": estimated_clean_image_or_video.detach(),
|
| 196 |
+
"dmdtrain_noisy_latent": noisy_image_or_video.detach(),
|
| 197 |
+
"dmdtrain_pred_real_image": pred_real_image.detach(),
|
| 198 |
+
"dmdtrain_pred_fake_image": pred_fake_image.detach(),
|
| 199 |
+
"dmdtrain_gradient_norm": torch.mean(torch.abs(grad)).detach(),
|
| 200 |
+
"timestep": timestep.detach()
|
| 201 |
+
}
|
| 202 |
+
|
| 203 |
+
def compute_distribution_matching_loss(
|
| 204 |
+
self, image_or_video: torch.Tensor, conditional_dict: dict,
|
| 205 |
+
unconditional_dict: dict, gradient_mask: torch.Tensor = None
|
| 206 |
+
) -> Tuple[torch.Tensor, dict]:
|
| 207 |
+
"""
|
| 208 |
+
Compute the DMD loss (eq 7 in https://arxiv.org/abs/2311.18828).
|
| 209 |
+
Input:
|
| 210 |
+
- image_or_video: a tensor with shape [B, F, C, H, W] where the number of frame is 1 for images.
|
| 211 |
+
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
|
| 212 |
+
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
|
| 213 |
+
- gradient_mask: a boolean tensor with the same shape as image_or_video indicating which pixels to compute loss .
|
| 214 |
+
Output:
|
| 215 |
+
- dmd_loss: a scalar tensor representing the DMD loss.
|
| 216 |
+
- dmd_log_dict: a dictionary containing the intermediate tensors for logging.
|
| 217 |
+
"""
|
| 218 |
+
original_latent = image_or_video
|
| 219 |
+
|
| 220 |
+
batch_size, num_frame = image_or_video.shape[:2]
|
| 221 |
+
|
| 222 |
+
with torch.no_grad():
|
| 223 |
+
# Step 1: Randomly sample timestep based on the given schedule and corresponding noise
|
| 224 |
+
timestep = torch.randint(
|
| 225 |
+
0,
|
| 226 |
+
self.num_train_timestep,
|
| 227 |
+
[batch_size, num_frame],
|
| 228 |
+
device=self.device,
|
| 229 |
+
dtype=torch.long
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
timestep = self._process_timestep(
|
| 233 |
+
timestep, type=self.real_task_type)
|
| 234 |
+
|
| 235 |
+
# TODO: Add timestep warping
|
| 236 |
+
if self.timestep_shift > 1:
|
| 237 |
+
timestep = self.timestep_shift * \
|
| 238 |
+
(timestep / 1000) / \
|
| 239 |
+
(1 + (self.timestep_shift - 1) * (timestep / 1000)) * 1000
|
| 240 |
+
timestep = timestep.clamp(self.min_step, self.max_step)
|
| 241 |
+
|
| 242 |
+
noise = torch.randn_like(image_or_video)
|
| 243 |
+
noisy_latent = self.scheduler.add_noise(
|
| 244 |
+
image_or_video.flatten(0, 1),
|
| 245 |
+
noise.flatten(0, 1),
|
| 246 |
+
timestep.flatten(0, 1)
|
| 247 |
+
).detach().unflatten(0, (batch_size, num_frame))
|
| 248 |
+
|
| 249 |
+
# Step 2: Compute the KL grad
|
| 250 |
+
grad, dmd_log_dict = self._compute_kl_grad(
|
| 251 |
+
noisy_image_or_video=noisy_latent,
|
| 252 |
+
estimated_clean_image_or_video=original_latent,
|
| 253 |
+
timestep=timestep,
|
| 254 |
+
conditional_dict=conditional_dict,
|
| 255 |
+
unconditional_dict=unconditional_dict
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
if gradient_mask is not None:
|
| 259 |
+
dmd_loss = 0.5 * F.mse_loss(original_latent.double()[gradient_mask], (original_latent.double() - grad.double()).detach()[gradient_mask], reduction="mean")
|
| 260 |
+
else:
|
| 261 |
+
dmd_loss = 0.5 * F.mse_loss(original_latent.double(), (original_latent.double() - grad.double()).detach(), reduction="mean")
|
| 262 |
+
return dmd_loss, dmd_log_dict
|
| 263 |
+
|
| 264 |
+
def _initialize_inference_pipeline(self):
|
| 265 |
+
"""
|
| 266 |
+
Lazy initialize the inference pipeline during the first backward simulation run.
|
| 267 |
+
Here we encapsulate the inference code with a model-dependent outside function.
|
| 268 |
+
We pass our FSDP-wrapped modules into the pipeline to save memory.
|
| 269 |
+
"""
|
| 270 |
+
self.inference_pipeline = get_inference_pipeline_wrapper(
|
| 271 |
+
self.generator_model_name,
|
| 272 |
+
denoising_step_list=self.denoising_step_list,
|
| 273 |
+
scheduler=self.scheduler,
|
| 274 |
+
generator=self.generator,
|
| 275 |
+
num_frame_per_block=self.num_frame_per_block
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
@torch.no_grad()
|
| 279 |
+
def _consistency_backward_simulation(self, noise: torch.Tensor, conditional_dict: dict) -> torch.Tensor:
|
| 280 |
+
"""
|
| 281 |
+
Simulate the generator's input from noise to avoid training/inference mismatch.
|
| 282 |
+
See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details.
|
| 283 |
+
Here we use the consistency sampler (https://arxiv.org/abs/2303.01469)
|
| 284 |
+
Input:
|
| 285 |
+
- noise: a tensor sampled from N(0, 1) with shape [B, F, C, H, W] where the number of frame is 1 for images.
|
| 286 |
+
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
|
| 287 |
+
Output:
|
| 288 |
+
- output: a tensor with shape [B, T, F, C, H, W].
|
| 289 |
+
T is the total number of timesteps. output[0] is a pure noise and output[i] and i>0
|
| 290 |
+
represents the x0 prediction at each timestep.
|
| 291 |
+
"""
|
| 292 |
+
if self.inference_pipeline is None:
|
| 293 |
+
self._initialize_inference_pipeline()
|
| 294 |
+
|
| 295 |
+
return self.inference_pipeline.inference_with_trajectory(noise=noise, conditional_dict=conditional_dict)
|
| 296 |
+
|
| 297 |
+
def _run_generator(self, image_or_video_shape, conditional_dict: dict, unconditional_dict: dict, clean_latent: torch.tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 298 |
+
"""
|
| 299 |
+
Optionally simulate the generator's input from noise using backward simulation
|
| 300 |
+
and then run the generator for one-step.
|
| 301 |
+
Input:
|
| 302 |
+
- image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W].
|
| 303 |
+
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
|
| 304 |
+
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
|
| 305 |
+
- clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used.
|
| 306 |
+
Output:
|
| 307 |
+
- pred_image: a tensor with shape [B, F, C, H, W].
|
| 308 |
+
"""
|
| 309 |
+
# Step 1: Sample noise and backward simulate the generator's input
|
| 310 |
+
if getattr(self.args, "backward_simulation", True):
|
| 311 |
+
simulated_noisy_input = self._consistency_backward_simulation(
|
| 312 |
+
noise=torch.randn(image_or_video_shape,
|
| 313 |
+
device=self.device, dtype=self.dtype),
|
| 314 |
+
conditional_dict=conditional_dict
|
| 315 |
+
)
|
| 316 |
+
else:
|
| 317 |
+
simulated_noisy_input = []
|
| 318 |
+
for timestep in self.denoising_step_list:
|
| 319 |
+
noise = torch.randn(
|
| 320 |
+
image_or_video_shape, device=self.device, dtype=self.dtype)
|
| 321 |
+
|
| 322 |
+
noisy_timestep = timestep * torch.ones(
|
| 323 |
+
image_or_video_shape[:2], device=self.device, dtype=torch.long)
|
| 324 |
+
|
| 325 |
+
if timestep != 0:
|
| 326 |
+
noisy_image = self.scheduler.add_noise(
|
| 327 |
+
clean_latent.flatten(0, 1),
|
| 328 |
+
noise.flatten(0, 1),
|
| 329 |
+
noisy_timestep.flatten(0, 1)
|
| 330 |
+
).unflatten(0, image_or_video_shape[:2])
|
| 331 |
+
else:
|
| 332 |
+
noisy_image = clean_latent
|
| 333 |
+
|
| 334 |
+
simulated_noisy_input.append(noisy_image)
|
| 335 |
+
|
| 336 |
+
simulated_noisy_input = torch.stack(simulated_noisy_input, dim=1)
|
| 337 |
+
|
| 338 |
+
# Step 2: Randomly sample a timestep and pick the corresponding input
|
| 339 |
+
index = torch.randint(0, len(self.denoising_step_list), [image_or_video_shape[0], image_or_video_shape[1]], device=self.device, dtype=torch.long)
|
| 340 |
+
index = self._process_timestep(index, type=self.generator_task_type)
|
| 341 |
+
|
| 342 |
+
# select the corresponding timestep's noisy input from the stacked tensor [B, T, F, C, H, W]
|
| 343 |
+
noisy_input = torch.gather(
|
| 344 |
+
simulated_noisy_input, dim=1,
|
| 345 |
+
index=index.reshape(index.shape[0], 1, index.shape[1], 1, 1, 1).expand(
|
| 346 |
+
-1, -1, -1, *image_or_video_shape[2:])
|
| 347 |
+
).squeeze(1)
|
| 348 |
+
|
| 349 |
+
timestep = self.denoising_step_list[index]
|
| 350 |
+
|
| 351 |
+
pred_image_or_video = self.generator(
|
| 352 |
+
noisy_image_or_video=noisy_input,
|
| 353 |
+
conditional_dict=conditional_dict,
|
| 354 |
+
timestep=timestep
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
gradient_mask = None # timestep != 0
|
| 358 |
+
|
| 359 |
+
# pred_image_or_video = noisy_input * \
|
| 360 |
+
# (1-gradient_mask.float()).reshape(*gradient_mask.shape, 1, 1, 1) + \
|
| 361 |
+
# pred_image_or_video * gradient_mask.float().reshape(*gradient_mask.shape, 1, 1, 1)
|
| 362 |
+
|
| 363 |
+
pred_image_or_video = pred_image_or_video.type_as(noisy_input)
|
| 364 |
+
|
| 365 |
+
return pred_image_or_video, gradient_mask
|
| 366 |
+
|
| 367 |
+
def generator_loss(self, image_or_video_shape, conditional_dict: dict, unconditional_dict: dict, clean_latent: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
| 368 |
+
"""
|
| 369 |
+
Generate image/videos from noise and compute the DMD loss.
|
| 370 |
+
The noisy input to the generator is backward simulated.
|
| 371 |
+
This removes the need of any datasets during distillation.
|
| 372 |
+
See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details.
|
| 373 |
+
Input:
|
| 374 |
+
- image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W].
|
| 375 |
+
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
|
| 376 |
+
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
|
| 377 |
+
- clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used.
|
| 378 |
+
Output:
|
| 379 |
+
- loss: a scalar tensor representing the generator loss.
|
| 380 |
+
- generator_log_dict: a dictionary containing the intermediate tensors for logging.
|
| 381 |
+
"""
|
| 382 |
+
# Step 1: Run generator on backward simulated noisy input
|
| 383 |
+
pred_image, gradient_mask = self._run_generator(
|
| 384 |
+
image_or_video_shape=image_or_video_shape,
|
| 385 |
+
conditional_dict=conditional_dict,
|
| 386 |
+
unconditional_dict=unconditional_dict,
|
| 387 |
+
clean_latent=clean_latent
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
# Step 2: Compute the DMD loss
|
| 391 |
+
dmd_loss, dmd_log_dict = self.compute_distribution_matching_loss(
|
| 392 |
+
image_or_video=pred_image,
|
| 393 |
+
conditional_dict=conditional_dict,
|
| 394 |
+
unconditional_dict=unconditional_dict,
|
| 395 |
+
gradient_mask=gradient_mask
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
# Step 3: TODO: Implement the GAN loss
|
| 399 |
+
|
| 400 |
+
return dmd_loss, dmd_log_dict
|
| 401 |
+
|
| 402 |
+
def critic_loss(self, image_or_video_shape, conditional_dict: dict, unconditional_dict: dict, clean_latent: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
| 403 |
+
"""
|
| 404 |
+
Generate image/videos from noise and train the critic with generated samples.
|
| 405 |
+
The noisy input to the generator is backward simulated.
|
| 406 |
+
This removes the need of any datasets during distillation.
|
| 407 |
+
See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details.
|
| 408 |
+
Input:
|
| 409 |
+
- image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W].
|
| 410 |
+
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
|
| 411 |
+
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
|
| 412 |
+
- clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used.
|
| 413 |
+
Output:
|
| 414 |
+
- loss: a scalar tensor representing the generator loss.
|
| 415 |
+
- critic_log_dict: a dictionary containing the intermediate tensors for logging.
|
| 416 |
+
"""
|
| 417 |
+
|
| 418 |
+
# Step 1: Run generator on backward simulated noisy input
|
| 419 |
+
with torch.no_grad():
|
| 420 |
+
generated_image, _ = self._run_generator(
|
| 421 |
+
image_or_video_shape=image_or_video_shape,
|
| 422 |
+
conditional_dict=conditional_dict,
|
| 423 |
+
unconditional_dict=unconditional_dict,
|
| 424 |
+
clean_latent=clean_latent
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
# Step 2: Compute the fake prediction
|
| 428 |
+
critic_timestep = torch.randint(
|
| 429 |
+
0,
|
| 430 |
+
self.num_train_timestep,
|
| 431 |
+
image_or_video_shape[:2],
|
| 432 |
+
device=self.device,
|
| 433 |
+
dtype=torch.long
|
| 434 |
+
)
|
| 435 |
+
critic_timestep = self._process_timestep(
|
| 436 |
+
critic_timestep, type=self.fake_task_type)
|
| 437 |
+
|
| 438 |
+
# TODO: Add timestep warping
|
| 439 |
+
if self.timestep_shift > 1:
|
| 440 |
+
critic_timestep = self.timestep_shift * \
|
| 441 |
+
(critic_timestep / 1000) / (1 + (self.timestep_shift - 1) * (critic_timestep / 1000)) * 1000
|
| 442 |
+
|
| 443 |
+
critic_timestep = critic_timestep.clamp(self.min_step, self.max_step)
|
| 444 |
+
|
| 445 |
+
critic_noise = torch.randn_like(generated_image)
|
| 446 |
+
noisy_generated_image = self.scheduler.add_noise(
|
| 447 |
+
generated_image.flatten(0, 1),
|
| 448 |
+
critic_noise.flatten(0, 1),
|
| 449 |
+
critic_timestep.flatten(0, 1)
|
| 450 |
+
).unflatten(0, image_or_video_shape[:2])
|
| 451 |
+
|
| 452 |
+
pred_fake_image = self.fake_score(
|
| 453 |
+
noisy_image_or_video=noisy_generated_image,
|
| 454 |
+
conditional_dict=conditional_dict,
|
| 455 |
+
timestep=critic_timestep
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
# Step 3: Compute the denoising loss for the fake critic
|
| 459 |
+
if self.args.denoising_loss_type == "flow":
|
| 460 |
+
assert "wan" in self.args.model_name
|
| 461 |
+
from causvid.models.wan.wan_wrapper import WanDiffusionWrapper
|
| 462 |
+
flow_pred = WanDiffusionWrapper._convert_x0_to_flow_pred(
|
| 463 |
+
scheduler=self.scheduler,
|
| 464 |
+
x0_pred=pred_fake_image.flatten(0, 1),
|
| 465 |
+
xt=noisy_generated_image.flatten(0, 1),
|
| 466 |
+
timestep=critic_timestep.flatten(0, 1)
|
| 467 |
+
)
|
| 468 |
+
pred_fake_noise = None
|
| 469 |
+
else:
|
| 470 |
+
flow_pred = None
|
| 471 |
+
pred_fake_noise = self.scheduler.convert_x0_to_noise(
|
| 472 |
+
x0=pred_fake_image.flatten(0, 1),
|
| 473 |
+
xt=noisy_generated_image.flatten(0, 1),
|
| 474 |
+
timestep=critic_timestep.flatten(0, 1)
|
| 475 |
+
).unflatten(0, image_or_video_shape[:2])
|
| 476 |
+
|
| 477 |
+
denoising_loss = self.denoising_loss_func(
|
| 478 |
+
x=generated_image.flatten(0, 1),
|
| 479 |
+
x_pred=pred_fake_image.flatten(0, 1),
|
| 480 |
+
noise=critic_noise.flatten(0, 1),
|
| 481 |
+
noise_pred=pred_fake_noise,
|
| 482 |
+
alphas_cumprod=self.scheduler.alphas_cumprod,
|
| 483 |
+
timestep=critic_timestep.flatten(0, 1),
|
| 484 |
+
flow_pred=flow_pred
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
# Step 4: TODO: Compute the GAN loss
|
| 488 |
+
|
| 489 |
+
# Step 5: Debugging Log
|
| 490 |
+
critic_log_dict = {
|
| 491 |
+
"critictrain_latent": generated_image.detach(),
|
| 492 |
+
"critictrain_noisy_latent": noisy_generated_image.detach(),
|
| 493 |
+
"critictrain_pred_image": pred_fake_image.detach(),
|
| 494 |
+
"critic_timestep": critic_timestep.detach()
|
| 495 |
+
}
|
| 496 |
+
|
| 497 |
+
return denoising_loss, critic_log_dict
|
exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/captions_coco14_test.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/__init__.py
ADDED
|
File without changes
|
exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/clip_features.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pip install git+https://github.com/openai/CLIP.git
|
| 2 |
+
import pdb
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torchvision.transforms as transforms
|
| 7 |
+
import clip
|
| 8 |
+
from causvid.evaluation.coco_eval.cleanfid.fid import compute_fid
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def img_preprocess_clip(img_np):
|
| 12 |
+
x = Image.fromarray(img_np.astype(np.uint8)).convert("RGB")
|
| 13 |
+
T = transforms.Compose([
|
| 14 |
+
transforms.Resize(
|
| 15 |
+
224, interpolation=transforms.InterpolationMode.BICUBIC),
|
| 16 |
+
transforms.CenterCrop(224),
|
| 17 |
+
])
|
| 18 |
+
return np.asarray(T(x)).clip(0, 255).astype(np.uint8)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class CLIP_fx():
|
| 22 |
+
def __init__(self, name="ViT-B/32", device="cuda"):
|
| 23 |
+
self.model, _ = clip.load(name, device=device)
|
| 24 |
+
self.model.eval()
|
| 25 |
+
self.name = "clip_" + name.lower().replace("-", "_").replace("/", "_")
|
| 26 |
+
|
| 27 |
+
def __call__(self, img_t):
|
| 28 |
+
img_x = img_t / 255.0
|
| 29 |
+
T_norm = transforms.Normalize(
|
| 30 |
+
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
| 31 |
+
img_x = T_norm(img_x)
|
| 32 |
+
assert torch.is_tensor(img_x)
|
| 33 |
+
if len(img_x.shape) == 3:
|
| 34 |
+
img_x = img_x.unsqueeze(0)
|
| 35 |
+
B, C, H, W = img_x.shape
|
| 36 |
+
with torch.no_grad():
|
| 37 |
+
z = self.model.encode_image(img_x)
|
| 38 |
+
return z
|
exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/downloads_helper.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import urllib.request
|
| 3 |
+
import requests
|
| 4 |
+
import shutil
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
inception_url = "https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/inception-2015-12-05.pt"
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
"""
|
| 11 |
+
Download the pretrined inception weights if it does not exists
|
| 12 |
+
ARGS:
|
| 13 |
+
fpath - output folder path
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def check_download_inception(fpath="./"):
|
| 18 |
+
inception_path = os.path.join(fpath, "inception-2015-12-05.pt")
|
| 19 |
+
if not os.path.exists(inception_path):
|
| 20 |
+
# download the file
|
| 21 |
+
with urllib.request.urlopen(inception_url) as response, open(inception_path, 'wb') as f:
|
| 22 |
+
shutil.copyfileobj(response, f)
|
| 23 |
+
return inception_path
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
"""
|
| 27 |
+
Download any url if it does not exist
|
| 28 |
+
ARGS:
|
| 29 |
+
local_folder - output folder path
|
| 30 |
+
url - the weburl to download
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def check_download_url(local_folder, url):
|
| 35 |
+
name = os.path.basename(url)
|
| 36 |
+
local_path = os.path.join(local_folder, name)
|
| 37 |
+
if not os.path.exists(local_path):
|
| 38 |
+
os.makedirs(local_folder, exist_ok=True)
|
| 39 |
+
print(f"downloading statistics to {local_path}")
|
| 40 |
+
with urllib.request.urlopen(url) as response, open(local_path, 'wb') as f:
|
| 41 |
+
shutil.copyfileobj(response, f)
|
| 42 |
+
return local_path
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
"""
|
| 46 |
+
Download a file from google drive
|
| 47 |
+
ARGS:
|
| 48 |
+
file_id - id of the google drive file
|
| 49 |
+
out_path - output folder path
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def download_google_drive(file_id, out_path):
|
| 54 |
+
def get_confirm_token(response):
|
| 55 |
+
for key, value in response.cookies.items():
|
| 56 |
+
if key.startswith('download_warning'):
|
| 57 |
+
return value
|
| 58 |
+
return None
|
| 59 |
+
|
| 60 |
+
URL = "https://drive.google.com/uc?export=download"
|
| 61 |
+
session = requests.Session()
|
| 62 |
+
response = session.get(URL, params={'id': file_id}, stream=True)
|
| 63 |
+
token = get_confirm_token(response)
|
| 64 |
+
|
| 65 |
+
if token:
|
| 66 |
+
params = {'id': file_id, 'confirm': token}
|
| 67 |
+
response = session.get(URL, params=params, stream=True)
|
| 68 |
+
|
| 69 |
+
CHUNK_SIZE = 32768
|
| 70 |
+
with open(out_path, "wb") as f:
|
| 71 |
+
for chunk in response.iter_content(CHUNK_SIZE):
|
| 72 |
+
if chunk:
|
| 73 |
+
f.write(chunk)
|
exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/features.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
helpers for extracting features from image
|
| 3 |
+
"""
|
| 4 |
+
import os
|
| 5 |
+
import platform
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
import causvid.evaluation.coco_eval.cleanfid
|
| 9 |
+
from causvid.evaluation.coco_eval.cleanfid.downloads_helper import check_download_url
|
| 10 |
+
from causvid.evaluation.coco_eval.cleanfid.inception_pytorch import InceptionV3
|
| 11 |
+
from causvid.evaluation.coco_eval.cleanfid.inception_torchscript import InceptionV3W
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
"""
|
| 15 |
+
returns a functions that takes an image in range [0,255]
|
| 16 |
+
and outputs a feature embedding vector
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def feature_extractor(name="torchscript_inception", device=torch.device("cuda"), resize_inside=False, use_dataparallel=True):
|
| 21 |
+
if name == "torchscript_inception":
|
| 22 |
+
path = "./" if platform.system() == "Windows" else "/tmp"
|
| 23 |
+
model = InceptionV3W(path, download=True, resize_inside=resize_inside).to(device)
|
| 24 |
+
model.eval()
|
| 25 |
+
if use_dataparallel:
|
| 26 |
+
model = torch.nn.DataParallel(model)
|
| 27 |
+
|
| 28 |
+
def model_fn(x): return model(x)
|
| 29 |
+
elif name == "pytorch_inception":
|
| 30 |
+
model = InceptionV3(output_blocks=[3], resize_input=False).to(device)
|
| 31 |
+
model.eval()
|
| 32 |
+
if use_dataparallel:
|
| 33 |
+
model = torch.nn.DataParallel(model)
|
| 34 |
+
|
| 35 |
+
def model_fn(x): return model(x / 255)[0].squeeze(-1).squeeze(-1)
|
| 36 |
+
else:
|
| 37 |
+
raise ValueError(f"{name} feature extractor not implemented")
|
| 38 |
+
return model_fn
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
"""
|
| 42 |
+
Build a feature extractor for each of the modes
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def build_feature_extractor(mode, device=torch.device("cuda"), use_dataparallel=True):
|
| 47 |
+
if mode == "legacy_pytorch":
|
| 48 |
+
feat_model = feature_extractor(name="pytorch_inception", resize_inside=False, device=device, use_dataparallel=use_dataparallel)
|
| 49 |
+
elif mode == "legacy_tensorflow":
|
| 50 |
+
feat_model = feature_extractor(name="torchscript_inception", resize_inside=True, device=device, use_dataparallel=use_dataparallel)
|
| 51 |
+
elif mode == "clean":
|
| 52 |
+
feat_model = feature_extractor(name="torchscript_inception", resize_inside=False, device=device, use_dataparallel=use_dataparallel)
|
| 53 |
+
return feat_model
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
"""
|
| 57 |
+
Load precomputed reference statistics for commonly used datasets
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_reference_statistics(name, res, mode="clean", model_name="inception_v3", seed=0, split="test", metric="FID"):
|
| 62 |
+
base_url = "https://www.cs.cmu.edu/~clean-fid/stats/"
|
| 63 |
+
if split == "custom":
|
| 64 |
+
res = "na"
|
| 65 |
+
if model_name == "inception_v3":
|
| 66 |
+
model_modifier = ""
|
| 67 |
+
else:
|
| 68 |
+
model_modifier = "_" + model_name
|
| 69 |
+
if metric == "FID":
|
| 70 |
+
rel_path = (f"{name}_{mode}{model_modifier}_{split}_{res}.npz").lower()
|
| 71 |
+
url = f"{base_url}/{rel_path}"
|
| 72 |
+
mod_path = os.path.dirname(cleanfid.__file__)
|
| 73 |
+
stats_folder = os.path.join(mod_path, "stats")
|
| 74 |
+
fpath = check_download_url(local_folder=stats_folder, url=url)
|
| 75 |
+
stats = np.load(fpath)
|
| 76 |
+
mu, sigma = stats["mu"], stats["sigma"]
|
| 77 |
+
return mu, sigma
|
| 78 |
+
elif metric == "KID":
|
| 79 |
+
rel_path = (f"{name}_{mode}{model_modifier}_{split}_{res}_kid.npz").lower()
|
| 80 |
+
url = f"{base_url}/{rel_path}"
|
| 81 |
+
mod_path = os.path.dirname(cleanfid.__file__)
|
| 82 |
+
stats_folder = os.path.join(mod_path, "stats")
|
| 83 |
+
fpath = check_download_url(local_folder=stats_folder, url=url)
|
| 84 |
+
stats = np.load(fpath)
|
| 85 |
+
return stats["feats"]
|
exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/fid.py
ADDED
|
@@ -0,0 +1,635 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
from glob import glob
|
| 5 |
+
import torch
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from scipy import linalg
|
| 9 |
+
import zipfile
|
| 10 |
+
from causvid.evaluation.coco_eval import cleanfid
|
| 11 |
+
from causvid.evaluation.coco_eval.cleanfid.utils import *
|
| 12 |
+
from causvid.evaluation.coco_eval.cleanfid.features import build_feature_extractor, get_reference_statistics
|
| 13 |
+
from causvid.evaluation.coco_eval.cleanfid.resize import *
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
"""
|
| 17 |
+
Numpy implementation of the Frechet Distance.
|
| 18 |
+
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
|
| 19 |
+
and X_2 ~ N(mu_2, C_2) is
|
| 20 |
+
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
|
| 21 |
+
Stable version by Danica J. Sutherland.
|
| 22 |
+
Params:
|
| 23 |
+
mu1 : Numpy array containing the activations of a layer of the
|
| 24 |
+
inception net (like returned by the function 'get_predictions')
|
| 25 |
+
for generated samples.
|
| 26 |
+
mu2 : The sample mean over activations, precalculated on an
|
| 27 |
+
representative data set.
|
| 28 |
+
sigma1: The covariance matrix over activations for generated samples.
|
| 29 |
+
sigma2: The covariance matrix over activations, precalculated on an
|
| 30 |
+
representative data set.
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
|
| 35 |
+
mu1 = np.atleast_1d(mu1)
|
| 36 |
+
mu2 = np.atleast_1d(mu2)
|
| 37 |
+
sigma1 = np.atleast_2d(sigma1)
|
| 38 |
+
sigma2 = np.atleast_2d(sigma2)
|
| 39 |
+
|
| 40 |
+
assert mu1.shape == mu2.shape, \
|
| 41 |
+
'Training and test mean vectors have different lengths'
|
| 42 |
+
assert sigma1.shape == sigma2.shape, \
|
| 43 |
+
'Training and test covariances have different dimensions'
|
| 44 |
+
|
| 45 |
+
diff = mu1 - mu2
|
| 46 |
+
|
| 47 |
+
# Product might be almost singular
|
| 48 |
+
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
|
| 49 |
+
if not np.isfinite(covmean).all():
|
| 50 |
+
msg = ('fid calculation produces singular product; '
|
| 51 |
+
'adding %s to diagonal of cov estimates') % eps
|
| 52 |
+
print(msg)
|
| 53 |
+
offset = np.eye(sigma1.shape[0]) * eps
|
| 54 |
+
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
|
| 55 |
+
|
| 56 |
+
# Numerical error might give slight imaginary component
|
| 57 |
+
if np.iscomplexobj(covmean):
|
| 58 |
+
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
|
| 59 |
+
m = np.max(np.abs(covmean.imag))
|
| 60 |
+
raise ValueError('Imaginary component {}'.format(m))
|
| 61 |
+
covmean = covmean.real
|
| 62 |
+
|
| 63 |
+
tr_covmean = np.trace(covmean)
|
| 64 |
+
|
| 65 |
+
return (diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
"""
|
| 69 |
+
Compute the KID score given the sets of features
|
| 70 |
+
"""
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def kernel_distance(feats1, feats2, num_subsets=100, max_subset_size=1000):
|
| 74 |
+
n = feats1.shape[1]
|
| 75 |
+
m = min(min(feats1.shape[0], feats2.shape[0]), max_subset_size)
|
| 76 |
+
t = 0
|
| 77 |
+
for _subset_idx in range(num_subsets):
|
| 78 |
+
x = feats2[np.random.choice(feats2.shape[0], m, replace=False)]
|
| 79 |
+
y = feats1[np.random.choice(feats1.shape[0], m, replace=False)]
|
| 80 |
+
a = (x @ x.T / n + 1) ** 3 + (y @ y.T / n + 1) ** 3
|
| 81 |
+
b = (x @ y.T / n + 1) ** 3
|
| 82 |
+
t += (a.sum() - np.diag(a).sum()) / (m - 1) - b.sum() * 2 / m
|
| 83 |
+
kid = t / num_subsets / m
|
| 84 |
+
return float(kid)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
"""
|
| 88 |
+
Compute the inception features for a batch of images
|
| 89 |
+
"""
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_batch_features(batch, model, device):
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
feat = model(batch.to(device))
|
| 95 |
+
return feat.detach().cpu().numpy()
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
"""
|
| 99 |
+
Compute the inception features for a list of files
|
| 100 |
+
"""
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def get_files_features(l_files, model=None, num_workers=12,
|
| 104 |
+
batch_size=128, device=torch.device("cuda"),
|
| 105 |
+
mode="clean", custom_fn_resize=None,
|
| 106 |
+
description="", fdir=None, verbose=True,
|
| 107 |
+
custom_image_tranform=None):
|
| 108 |
+
# wrap the images in a dataloader for parallelizing the resize operation
|
| 109 |
+
dataset = ResizeDataset(l_files, fdir=fdir, mode=mode)
|
| 110 |
+
if custom_image_tranform is not None:
|
| 111 |
+
dataset.custom_image_tranform = custom_image_tranform
|
| 112 |
+
if custom_fn_resize is not None:
|
| 113 |
+
dataset.fn_resize = custom_fn_resize
|
| 114 |
+
|
| 115 |
+
dataloader = torch.utils.data.DataLoader(dataset,
|
| 116 |
+
batch_size=batch_size, shuffle=False,
|
| 117 |
+
drop_last=False, num_workers=num_workers)
|
| 118 |
+
|
| 119 |
+
# collect all inception features
|
| 120 |
+
l_feats = []
|
| 121 |
+
if verbose:
|
| 122 |
+
pbar = tqdm(dataloader, desc=description)
|
| 123 |
+
else:
|
| 124 |
+
pbar = dataloader
|
| 125 |
+
|
| 126 |
+
for batch in pbar:
|
| 127 |
+
l_feats.append(get_batch_features(batch, model, device))
|
| 128 |
+
np_feats = np.concatenate(l_feats)
|
| 129 |
+
return np_feats
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
"""
|
| 133 |
+
Compute the inception features for a numpy array
|
| 134 |
+
"""
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def get_array_features(l_array, model=None, num_workers=12,
|
| 138 |
+
batch_size=128, device=torch.device("cuda"),
|
| 139 |
+
mode="clean", custom_fn_resize=None,
|
| 140 |
+
description="", verbose=True,
|
| 141 |
+
custom_image_tranform=None):
|
| 142 |
+
# wrap the images in a dataloader for parallelizing the resize operation
|
| 143 |
+
dataset = ResizeArrayDataset(l_array, mode=mode)
|
| 144 |
+
if custom_image_tranform is not None:
|
| 145 |
+
dataset.custom_image_tranform = custom_image_tranform
|
| 146 |
+
if custom_fn_resize is not None:
|
| 147 |
+
dataset.fn_resize = custom_fn_resize
|
| 148 |
+
|
| 149 |
+
dataloader = torch.utils.data.DataLoader(dataset,
|
| 150 |
+
batch_size=batch_size, shuffle=False,
|
| 151 |
+
drop_last=False, num_workers=num_workers)
|
| 152 |
+
|
| 153 |
+
# collect all inception features
|
| 154 |
+
l_feats = []
|
| 155 |
+
if verbose:
|
| 156 |
+
pbar = tqdm(dataloader, desc=description)
|
| 157 |
+
else:
|
| 158 |
+
pbar = dataloader
|
| 159 |
+
|
| 160 |
+
for batch in pbar:
|
| 161 |
+
l_feats.append(get_batch_features(batch, model, device))
|
| 162 |
+
np_feats = np.concatenate(l_feats)
|
| 163 |
+
return np_feats
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
"""
|
| 167 |
+
Compute the inception features for a folder of image files
|
| 168 |
+
"""
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def get_folder_features(fdir, model=None, num_workers=12, num=None,
|
| 172 |
+
shuffle=False, seed=0, batch_size=128, device=torch.device("cuda"),
|
| 173 |
+
mode="clean", custom_fn_resize=None, description="", verbose=True,
|
| 174 |
+
custom_image_tranform=None):
|
| 175 |
+
# get all relevant files in the dataset
|
| 176 |
+
if ".zip" in fdir:
|
| 177 |
+
files = list(set(zipfile.ZipFile(fdir).namelist()))
|
| 178 |
+
# remove the non-image files inside the zip
|
| 179 |
+
files = [x for x in files if os.path.splitext(x)[1].lower()[
|
| 180 |
+
1:] in EXTENSIONS]
|
| 181 |
+
else:
|
| 182 |
+
files = sorted([file for ext in EXTENSIONS
|
| 183 |
+
for file in glob(os.path.join(fdir, f"**/*.{ext}"), recursive=True)])
|
| 184 |
+
if verbose:
|
| 185 |
+
print(f"Found {len(files)} images in the folder {fdir}")
|
| 186 |
+
# use a subset number of files if needed
|
| 187 |
+
if num is not None:
|
| 188 |
+
if shuffle:
|
| 189 |
+
random.seed(seed)
|
| 190 |
+
random.shuffle(files)
|
| 191 |
+
files = files[:num]
|
| 192 |
+
np_feats = get_files_features(files, model, num_workers=num_workers,
|
| 193 |
+
batch_size=batch_size, device=device, mode=mode,
|
| 194 |
+
custom_fn_resize=custom_fn_resize,
|
| 195 |
+
custom_image_tranform=custom_image_tranform,
|
| 196 |
+
description=description, fdir=fdir, verbose=verbose)
|
| 197 |
+
return np_feats
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
"""
|
| 201 |
+
Compute the FID score given the inception features stack
|
| 202 |
+
"""
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def fid_from_feats(feats1, feats2):
|
| 206 |
+
mu1, sig1 = np.mean(feats1, axis=0), np.cov(feats1, rowvar=False)
|
| 207 |
+
mu2, sig2 = np.mean(feats2, axis=0), np.cov(feats2, rowvar=False)
|
| 208 |
+
return frechet_distance(mu1, sig1, mu2, sig2)
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
"""
|
| 212 |
+
Computes the FID score for a folder of images for a specific dataset
|
| 213 |
+
and a specific resolution
|
| 214 |
+
"""
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def fid_folder(fdir, dataset_name, dataset_res, dataset_split,
|
| 218 |
+
model=None, mode="clean", model_name="inception_v3", num_workers=12,
|
| 219 |
+
batch_size=128, device=torch.device("cuda"), verbose=True,
|
| 220 |
+
custom_image_tranform=None, custom_fn_resize=None):
|
| 221 |
+
# Load reference FID statistics (download if needed)
|
| 222 |
+
ref_mu, ref_sigma = get_reference_statistics(dataset_name, dataset_res,
|
| 223 |
+
mode=mode, model_name=model_name, seed=0, split=dataset_split)
|
| 224 |
+
fbname = os.path.basename(fdir)
|
| 225 |
+
# get all inception features for folder images
|
| 226 |
+
np_feats = get_folder_features(fdir, model, num_workers=num_workers,
|
| 227 |
+
batch_size=batch_size, device=device,
|
| 228 |
+
mode=mode, description=f"FID {fbname} : ", verbose=verbose,
|
| 229 |
+
custom_image_tranform=custom_image_tranform,
|
| 230 |
+
custom_fn_resize=custom_fn_resize)
|
| 231 |
+
mu = np.mean(np_feats, axis=0)
|
| 232 |
+
sigma = np.cov(np_feats, rowvar=False)
|
| 233 |
+
fid = frechet_distance(mu, sigma, ref_mu, ref_sigma)
|
| 234 |
+
return fid
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
"""
|
| 238 |
+
Compute the FID stats from a generator model
|
| 239 |
+
"""
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def get_model_features(G, model, mode="clean", z_dim=512,
|
| 243 |
+
num_gen=50_000, batch_size=128, device=torch.device("cuda"),
|
| 244 |
+
desc="FID model: ", verbose=True, return_z=False,
|
| 245 |
+
custom_image_tranform=None, custom_fn_resize=None):
|
| 246 |
+
if custom_fn_resize is None:
|
| 247 |
+
fn_resize = build_resizer(mode)
|
| 248 |
+
else:
|
| 249 |
+
fn_resize = custom_fn_resize
|
| 250 |
+
|
| 251 |
+
# Generate test features
|
| 252 |
+
num_iters = int(np.ceil(num_gen / batch_size))
|
| 253 |
+
l_feats = []
|
| 254 |
+
latents = []
|
| 255 |
+
if verbose:
|
| 256 |
+
pbar = tqdm(range(num_iters), desc=desc)
|
| 257 |
+
else:
|
| 258 |
+
pbar = range(num_iters)
|
| 259 |
+
for idx in pbar:
|
| 260 |
+
with torch.no_grad():
|
| 261 |
+
z_batch = torch.randn((batch_size, z_dim)).to(device)
|
| 262 |
+
if return_z:
|
| 263 |
+
latents.append(z_batch)
|
| 264 |
+
# generated image is in range [0,255]
|
| 265 |
+
img_batch = G(z_batch)
|
| 266 |
+
# split into individual batches for resizing if needed
|
| 267 |
+
if mode != "legacy_tensorflow":
|
| 268 |
+
l_resized_batch = []
|
| 269 |
+
for idx in range(batch_size):
|
| 270 |
+
curr_img = img_batch[idx]
|
| 271 |
+
img_np = curr_img.cpu().numpy().transpose((1, 2, 0))
|
| 272 |
+
if custom_image_tranform is not None:
|
| 273 |
+
img_np = custom_image_tranform(img_np)
|
| 274 |
+
img_resize = fn_resize(img_np)
|
| 275 |
+
l_resized_batch.append(torch.tensor(
|
| 276 |
+
img_resize.transpose((2, 0, 1))).unsqueeze(0))
|
| 277 |
+
resized_batch = torch.cat(l_resized_batch, dim=0)
|
| 278 |
+
else:
|
| 279 |
+
resized_batch = img_batch
|
| 280 |
+
feat = get_batch_features(resized_batch, model, device)
|
| 281 |
+
l_feats.append(feat)
|
| 282 |
+
np_feats = np.concatenate(l_feats)[:num_gen]
|
| 283 |
+
if return_z:
|
| 284 |
+
latents = torch.cat(latents, 0)
|
| 285 |
+
return np_feats, latents
|
| 286 |
+
return np_feats
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
"""
|
| 290 |
+
Computes the FID score for a generator model for a specific dataset
|
| 291 |
+
and a specific resolution
|
| 292 |
+
"""
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
def fid_model(G, dataset_name, dataset_res, dataset_split,
|
| 296 |
+
model=None, model_name="inception_v3", z_dim=512, num_gen=50_000,
|
| 297 |
+
mode="clean", num_workers=0, batch_size=128,
|
| 298 |
+
device=torch.device("cuda"), verbose=True,
|
| 299 |
+
custom_image_tranform=None, custom_fn_resize=None):
|
| 300 |
+
# Load reference FID statistics (download if needed)
|
| 301 |
+
ref_mu, ref_sigma = get_reference_statistics(dataset_name, dataset_res,
|
| 302 |
+
mode=mode, model_name=model_name,
|
| 303 |
+
seed=0, split=dataset_split)
|
| 304 |
+
# Generate features of images generated by the model
|
| 305 |
+
np_feats = get_model_features(G, model, mode=mode,
|
| 306 |
+
z_dim=z_dim, num_gen=num_gen,
|
| 307 |
+
batch_size=batch_size, device=device, verbose=verbose,
|
| 308 |
+
custom_image_tranform=custom_image_tranform, custom_fn_resize=custom_fn_resize)
|
| 309 |
+
mu = np.mean(np_feats, axis=0)
|
| 310 |
+
sigma = np.cov(np_feats, rowvar=False)
|
| 311 |
+
fid = frechet_distance(mu, sigma, ref_mu, ref_sigma)
|
| 312 |
+
return fid
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
"""
|
| 316 |
+
Computes the FID score between the two given folders
|
| 317 |
+
"""
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
def compare_folders(fdir1, fdir2, feat_model, mode, num_workers=0,
|
| 321 |
+
batch_size=8, device=torch.device("cuda"), verbose=True,
|
| 322 |
+
custom_image_tranform=None, custom_fn_resize=None):
|
| 323 |
+
# get all inception features for the first folder
|
| 324 |
+
fbname1 = os.path.basename(fdir1)
|
| 325 |
+
np_feats1 = get_folder_features(fdir1, feat_model, num_workers=num_workers,
|
| 326 |
+
batch_size=batch_size, device=device, mode=mode,
|
| 327 |
+
description=f"FID {fbname1} : ", verbose=verbose,
|
| 328 |
+
custom_image_tranform=custom_image_tranform,
|
| 329 |
+
custom_fn_resize=custom_fn_resize)
|
| 330 |
+
mu1 = np.mean(np_feats1, axis=0)
|
| 331 |
+
sigma1 = np.cov(np_feats1, rowvar=False)
|
| 332 |
+
# get all inception features for the second folder
|
| 333 |
+
fbname2 = os.path.basename(fdir2)
|
| 334 |
+
np_feats2 = get_folder_features(fdir2, feat_model, num_workers=num_workers,
|
| 335 |
+
batch_size=batch_size, device=device, mode=mode,
|
| 336 |
+
description=f"FID {fbname2} : ", verbose=verbose,
|
| 337 |
+
custom_image_tranform=custom_image_tranform,
|
| 338 |
+
custom_fn_resize=custom_fn_resize)
|
| 339 |
+
mu2 = np.mean(np_feats2, axis=0)
|
| 340 |
+
sigma2 = np.cov(np_feats2, rowvar=False)
|
| 341 |
+
fid = frechet_distance(mu1, sigma1, mu2, sigma2)
|
| 342 |
+
return fid
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
"""
|
| 346 |
+
Test if a custom statistic exists
|
| 347 |
+
"""
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
def test_stats_exists(name, mode, model_name="inception_v3", metric="FID"):
|
| 351 |
+
stats_folder = os.path.join(os.path.dirname(cleanfid.__file__), "stats")
|
| 352 |
+
split, res = "custom", "na"
|
| 353 |
+
if model_name == "inception_v3":
|
| 354 |
+
model_modifier = ""
|
| 355 |
+
else:
|
| 356 |
+
model_modifier = "_" + model_name
|
| 357 |
+
if metric == "FID":
|
| 358 |
+
fname = f"{name}_{mode}{model_modifier}_{split}_{res}.npz"
|
| 359 |
+
elif metric == "KID":
|
| 360 |
+
fname = f"{name}_{mode}{model_modifier}_{split}_{res}_kid.npz"
|
| 361 |
+
fpath = os.path.join(stats_folder, fname)
|
| 362 |
+
return os.path.exists(fpath)
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
"""
|
| 366 |
+
Remove the custom FID features from the stats folder
|
| 367 |
+
"""
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
def remove_custom_stats(name, mode="clean", model_name="inception_v3"):
|
| 371 |
+
stats_folder = os.path.join(os.path.dirname(cleanfid.__file__), "stats")
|
| 372 |
+
# remove the FID stats
|
| 373 |
+
split, res = "custom", "na"
|
| 374 |
+
if model_name == "inception_v3":
|
| 375 |
+
model_modifier = ""
|
| 376 |
+
else:
|
| 377 |
+
model_modifier = "_" + model_name
|
| 378 |
+
outf = os.path.join(
|
| 379 |
+
stats_folder, f"{name}_{mode}{model_modifier}_{split}_{res}.npz".lower())
|
| 380 |
+
if not os.path.exists(outf):
|
| 381 |
+
msg = f"The stats file {name} does not exist."
|
| 382 |
+
raise Exception(msg)
|
| 383 |
+
os.remove(outf)
|
| 384 |
+
# remove the KID stats
|
| 385 |
+
outf = os.path.join(
|
| 386 |
+
stats_folder, f"{name}_{mode}{model_modifier}_{split}_{res}_kid.npz")
|
| 387 |
+
if not os.path.exists(outf):
|
| 388 |
+
msg = f"The stats file {name} does not exist."
|
| 389 |
+
raise Exception(msg)
|
| 390 |
+
os.remove(outf)
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
"""
|
| 394 |
+
Cache a custom dataset statistics file
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
def make_custom_stats(name, fdir, num=None, mode="clean", model_name="inception_v3",
|
| 399 |
+
num_workers=0, batch_size=64, device=torch.device("cuda"), verbose=True):
|
| 400 |
+
stats_folder = os.path.join(os.path.dirname(cleanfid.__file__), "stats")
|
| 401 |
+
os.makedirs(stats_folder, exist_ok=True)
|
| 402 |
+
split, res = "custom", "na"
|
| 403 |
+
if model_name == "inception_v3":
|
| 404 |
+
model_modifier = ""
|
| 405 |
+
else:
|
| 406 |
+
model_modifier = "_" + model_name
|
| 407 |
+
outf = os.path.join(
|
| 408 |
+
stats_folder, f"{name}_{mode}{model_modifier}_{split}_{res}.npz".lower())
|
| 409 |
+
# if the custom stat file already exists
|
| 410 |
+
if os.path.exists(outf):
|
| 411 |
+
msg = f"The statistics file {name} already exists. "
|
| 412 |
+
msg += "Use remove_custom_stats function to delete it first."
|
| 413 |
+
raise Exception(msg)
|
| 414 |
+
if model_name == "inception_v3":
|
| 415 |
+
feat_model = build_feature_extractor(mode, device)
|
| 416 |
+
custom_fn_resize = None
|
| 417 |
+
custom_image_tranform = None
|
| 418 |
+
elif model_name == "clip_vit_b_32":
|
| 419 |
+
from causvid.evaluation.coco_eval.cleanfid.clip_features import CLIP_fx, img_preprocess_clip
|
| 420 |
+
clip_fx = CLIP_fx("ViT-B/32")
|
| 421 |
+
feat_model = clip_fx
|
| 422 |
+
custom_fn_resize = img_preprocess_clip
|
| 423 |
+
custom_image_tranform = None
|
| 424 |
+
else:
|
| 425 |
+
raise ValueError(
|
| 426 |
+
f"The entered model name - {model_name} was not recognized.")
|
| 427 |
+
|
| 428 |
+
# get all inception features for folder images
|
| 429 |
+
np_feats = get_folder_features(fdir, feat_model, num_workers=num_workers, num=num,
|
| 430 |
+
batch_size=batch_size, device=device, verbose=verbose,
|
| 431 |
+
mode=mode, description=f"custom stats: {os.path.basename(fdir)} : ",
|
| 432 |
+
custom_image_tranform=custom_image_tranform,
|
| 433 |
+
custom_fn_resize=custom_fn_resize)
|
| 434 |
+
|
| 435 |
+
mu = np.mean(np_feats, axis=0)
|
| 436 |
+
sigma = np.cov(np_feats, rowvar=False)
|
| 437 |
+
print(f"saving custom FID stats to {outf}")
|
| 438 |
+
np.savez_compressed(outf, mu=mu, sigma=sigma)
|
| 439 |
+
|
| 440 |
+
# KID stats
|
| 441 |
+
outf = os.path.join(
|
| 442 |
+
stats_folder, f"{name}_{mode}{model_modifier}_{split}_{res}_kid.npz".lower())
|
| 443 |
+
print(f"saving custom KID stats to {outf}")
|
| 444 |
+
np.savez_compressed(outf, feats=np_feats)
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def compute_kid(fdir1=None, fdir2=None, gen=None,
|
| 448 |
+
mode="clean", num_workers=12, batch_size=32,
|
| 449 |
+
device=torch.device("cuda"), dataset_name="FFHQ",
|
| 450 |
+
dataset_res=1024, dataset_split="train", num_gen=50_000, z_dim=512,
|
| 451 |
+
verbose=True, use_dataparallel=True):
|
| 452 |
+
# build the feature extractor based on the mode
|
| 453 |
+
feat_model = build_feature_extractor(
|
| 454 |
+
mode, device, use_dataparallel=use_dataparallel)
|
| 455 |
+
|
| 456 |
+
# if both dirs are specified, compute KID between folders
|
| 457 |
+
if fdir1 is not None and fdir2 is not None:
|
| 458 |
+
if verbose:
|
| 459 |
+
print("compute KID between two folders")
|
| 460 |
+
# get all inception features for the first folder
|
| 461 |
+
fbname1 = os.path.basename(fdir1)
|
| 462 |
+
np_feats1 = get_folder_features(fdir1, feat_model, num_workers=num_workers,
|
| 463 |
+
batch_size=batch_size, device=device, mode=mode,
|
| 464 |
+
description=f"KID {fbname1} : ", verbose=verbose)
|
| 465 |
+
# get all inception features for the second folder
|
| 466 |
+
fbname2 = os.path.basename(fdir2)
|
| 467 |
+
np_feats2 = get_folder_features(fdir2, feat_model, num_workers=num_workers,
|
| 468 |
+
batch_size=batch_size, device=device, mode=mode,
|
| 469 |
+
description=f"KID {fbname2} : ", verbose=verbose)
|
| 470 |
+
score = kernel_distance(np_feats1, np_feats2)
|
| 471 |
+
return score
|
| 472 |
+
|
| 473 |
+
# compute kid of a folder
|
| 474 |
+
elif fdir1 is not None and fdir2 is None:
|
| 475 |
+
if verbose:
|
| 476 |
+
print(f"compute KID of a folder with {dataset_name} statistics")
|
| 477 |
+
ref_feats = get_reference_statistics(dataset_name, dataset_res,
|
| 478 |
+
mode=mode, seed=0, split=dataset_split, metric="KID")
|
| 479 |
+
fbname = os.path.basename(fdir1)
|
| 480 |
+
# get all inception features for folder images
|
| 481 |
+
np_feats = get_folder_features(fdir1, feat_model, num_workers=num_workers,
|
| 482 |
+
batch_size=batch_size, device=device, mode=mode,
|
| 483 |
+
description=f"KID {fbname} : ", verbose=verbose)
|
| 484 |
+
score = kernel_distance(ref_feats, np_feats)
|
| 485 |
+
return score
|
| 486 |
+
|
| 487 |
+
# compute kid for a generator, using images in fdir2
|
| 488 |
+
elif gen is not None and fdir2 is not None:
|
| 489 |
+
if verbose:
|
| 490 |
+
print(f"compute KID of a model, using references in fdir2")
|
| 491 |
+
# get all inception features for the second folder
|
| 492 |
+
fbname2 = os.path.basename(fdir2)
|
| 493 |
+
ref_feats = get_folder_features(fdir2, feat_model, num_workers=num_workers,
|
| 494 |
+
batch_size=batch_size, device=device, mode=mode,
|
| 495 |
+
description=f"KID {fbname2} : ")
|
| 496 |
+
# Generate test features
|
| 497 |
+
np_feats = get_model_features(gen, feat_model, mode=mode,
|
| 498 |
+
z_dim=z_dim, num_gen=num_gen, desc="KID model: ",
|
| 499 |
+
batch_size=batch_size, device=device)
|
| 500 |
+
score = kernel_distance(ref_feats, np_feats)
|
| 501 |
+
return score
|
| 502 |
+
|
| 503 |
+
# compute fid for a generator, using reference statistics
|
| 504 |
+
elif gen is not None:
|
| 505 |
+
if verbose:
|
| 506 |
+
print(
|
| 507 |
+
f"compute KID of a model with {dataset_name}-{dataset_res} statistics")
|
| 508 |
+
ref_feats = get_reference_statistics(dataset_name, dataset_res,
|
| 509 |
+
mode=mode, seed=0, split=dataset_split, metric="KID")
|
| 510 |
+
# Generate test features
|
| 511 |
+
np_feats = get_model_features(gen, feat_model, mode=mode,
|
| 512 |
+
z_dim=z_dim, num_gen=num_gen, desc="KID model: ",
|
| 513 |
+
batch_size=batch_size, device=device, verbose=verbose)
|
| 514 |
+
score = kernel_distance(ref_feats, np_feats)
|
| 515 |
+
return score
|
| 516 |
+
|
| 517 |
+
else:
|
| 518 |
+
raise ValueError(
|
| 519 |
+
"invalid combination of directories and models entered")
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
"""
|
| 523 |
+
custom_image_tranform:
|
| 524 |
+
function that takes an np_array image as input [0,255] and
|
| 525 |
+
applies a custom transform such as cropping
|
| 526 |
+
"""
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
def compute_fid(fdir1=None, fdir2=None, gen=None,
|
| 530 |
+
mode="clean", model_name="inception_v3", num_workers=12,
|
| 531 |
+
batch_size=32, device=torch.device("cuda"), dataset_name="FFHQ",
|
| 532 |
+
dataset_res=1024, dataset_split="train", num_gen=50_000, z_dim=512,
|
| 533 |
+
custom_feat_extractor=None, verbose=True,
|
| 534 |
+
custom_image_tranform=None, custom_fn_resize=None,
|
| 535 |
+
use_dataparallel=True, pred_arr=None
|
| 536 |
+
):
|
| 537 |
+
# build the feature extractor based on the mode and the model to be used
|
| 538 |
+
if custom_feat_extractor is None and model_name == "inception_v3":
|
| 539 |
+
feat_model = build_feature_extractor(
|
| 540 |
+
mode, device, use_dataparallel=use_dataparallel)
|
| 541 |
+
elif custom_feat_extractor is None and model_name == "clip_vit_b_32":
|
| 542 |
+
from causvid.evaluation.coco_eval.cleanfid.clip_features import CLIP_fx, img_preprocess_clip
|
| 543 |
+
clip_fx = CLIP_fx("ViT-B/32", device=device)
|
| 544 |
+
feat_model = clip_fx
|
| 545 |
+
custom_fn_resize = img_preprocess_clip
|
| 546 |
+
else:
|
| 547 |
+
feat_model = custom_feat_extractor
|
| 548 |
+
|
| 549 |
+
# if both dirs are specified, compute FID between folders
|
| 550 |
+
if fdir1 is not None and fdir2 is not None:
|
| 551 |
+
if verbose:
|
| 552 |
+
print("compute FID between two folders")
|
| 553 |
+
score = compare_folders(fdir1, fdir2, feat_model,
|
| 554 |
+
mode=mode, batch_size=batch_size,
|
| 555 |
+
num_workers=num_workers, device=device,
|
| 556 |
+
custom_image_tranform=custom_image_tranform,
|
| 557 |
+
custom_fn_resize=custom_fn_resize,
|
| 558 |
+
verbose=verbose)
|
| 559 |
+
return score
|
| 560 |
+
|
| 561 |
+
# compute fid of a folder
|
| 562 |
+
elif fdir1 is not None and fdir2 is None:
|
| 563 |
+
if verbose:
|
| 564 |
+
print(f"compute FID of a folder with {dataset_name} statistics")
|
| 565 |
+
score = fid_folder(fdir1, dataset_name, dataset_res, dataset_split,
|
| 566 |
+
model=feat_model, mode=mode, model_name=model_name,
|
| 567 |
+
custom_fn_resize=custom_fn_resize, custom_image_tranform=custom_image_tranform,
|
| 568 |
+
num_workers=num_workers, batch_size=batch_size, device=device, verbose=verbose)
|
| 569 |
+
return score
|
| 570 |
+
|
| 571 |
+
# compute fid for a generator, using images in fdir2
|
| 572 |
+
elif gen is not None and fdir2 is not None:
|
| 573 |
+
if verbose:
|
| 574 |
+
print(f"compute FID of a model, using references in fdir2")
|
| 575 |
+
# get all inception features for the second folder
|
| 576 |
+
fbname2 = os.path.basename(fdir2)
|
| 577 |
+
np_feats2 = get_folder_features(fdir2, feat_model, num_workers=num_workers,
|
| 578 |
+
batch_size=batch_size, device=device, mode=mode,
|
| 579 |
+
description=f"FID {fbname2} : ", verbose=verbose,
|
| 580 |
+
custom_fn_resize=custom_fn_resize,
|
| 581 |
+
custom_image_tranform=custom_image_tranform)
|
| 582 |
+
mu2 = np.mean(np_feats2, axis=0)
|
| 583 |
+
sigma2 = np.cov(np_feats2, rowvar=False)
|
| 584 |
+
# Generate test features
|
| 585 |
+
np_feats = get_model_features(gen, feat_model, mode=mode,
|
| 586 |
+
z_dim=z_dim, num_gen=num_gen,
|
| 587 |
+
custom_fn_resize=custom_fn_resize,
|
| 588 |
+
custom_image_tranform=custom_image_tranform,
|
| 589 |
+
batch_size=batch_size, device=device, verbose=verbose)
|
| 590 |
+
|
| 591 |
+
mu = np.mean(np_feats, axis=0)
|
| 592 |
+
sigma = np.cov(np_feats, rowvar=False)
|
| 593 |
+
fid = frechet_distance(mu, sigma, mu2, sigma2)
|
| 594 |
+
return fid
|
| 595 |
+
|
| 596 |
+
# compute fid for a generator, using reference statistics
|
| 597 |
+
elif gen is not None:
|
| 598 |
+
if verbose:
|
| 599 |
+
print(
|
| 600 |
+
f"compute FID of a model with {dataset_name}-{dataset_res} statistics")
|
| 601 |
+
score = fid_model(gen, dataset_name, dataset_res, dataset_split,
|
| 602 |
+
model=feat_model, model_name=model_name, z_dim=z_dim, num_gen=num_gen,
|
| 603 |
+
mode=mode, num_workers=num_workers, batch_size=batch_size,
|
| 604 |
+
custom_image_tranform=custom_image_tranform, custom_fn_resize=custom_fn_resize,
|
| 605 |
+
device=device, verbose=verbose)
|
| 606 |
+
return score
|
| 607 |
+
|
| 608 |
+
elif pred_arr is not None:
|
| 609 |
+
if verbose:
|
| 610 |
+
print(f"compute FID of a model, using references in fdir2")
|
| 611 |
+
# get all inception features for the second folder
|
| 612 |
+
fbname2 = os.path.basename(fdir2)
|
| 613 |
+
np_feats2 = get_folder_features(fdir2, feat_model, num_workers=num_workers,
|
| 614 |
+
batch_size=batch_size, device=device, mode=mode,
|
| 615 |
+
description=f"FID {fbname2} : ", verbose=verbose,
|
| 616 |
+
custom_fn_resize=custom_fn_resize,
|
| 617 |
+
custom_image_tranform=custom_image_tranform)
|
| 618 |
+
mu2 = np.mean(np_feats2, axis=0)
|
| 619 |
+
sigma2 = np.cov(np_feats2, rowvar=False)
|
| 620 |
+
|
| 621 |
+
# compute fid statistcs using the numpy array
|
| 622 |
+
np_feats = get_array_features(
|
| 623 |
+
pred_arr, model=feat_model, num_workers=num_workers,
|
| 624 |
+
batch_size=batch_size, device=device, mode=mode,
|
| 625 |
+
custom_fn_resize=custom_fn_resize,
|
| 626 |
+
custom_image_tranform=custom_image_tranform
|
| 627 |
+
)
|
| 628 |
+
mu = np.mean(np_feats, axis=0)
|
| 629 |
+
sigma = np.cov(np_feats, rowvar=False)
|
| 630 |
+
fid = frechet_distance(mu, sigma, mu2, sigma2)
|
| 631 |
+
return fid
|
| 632 |
+
# return fid, np_feats, np_feats2
|
| 633 |
+
else:
|
| 634 |
+
raise ValueError(
|
| 635 |
+
"invalid combination of directories and models entered")
|
exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/inception_pytorch.py
ADDED
|
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
File from: https://github.com/mseitzer/pytorch-fid
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
import torchvision
|
| 10 |
+
|
| 11 |
+
try:
|
| 12 |
+
from torchvision.models.utils import load_state_dict_from_url
|
| 13 |
+
except ImportError:
|
| 14 |
+
from torch.utils.model_zoo import load_url as load_state_dict_from_url
|
| 15 |
+
|
| 16 |
+
# Inception weights ported to Pytorch from
|
| 17 |
+
# http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
|
| 18 |
+
FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' # noqa: E501
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class InceptionV3(nn.Module):
|
| 22 |
+
"""Pretrained InceptionV3 network returning feature maps"""
|
| 23 |
+
|
| 24 |
+
# Index of default block of inception to return,
|
| 25 |
+
# corresponds to output of final average pooling
|
| 26 |
+
DEFAULT_BLOCK_INDEX = 3
|
| 27 |
+
|
| 28 |
+
# Maps feature dimensionality to their output blocks indices
|
| 29 |
+
BLOCK_INDEX_BY_DIM = {
|
| 30 |
+
64: 0, # First max pooling features
|
| 31 |
+
192: 1, # Second max pooling featurs
|
| 32 |
+
768: 2, # Pre-aux classifier features
|
| 33 |
+
2048: 3 # Final average pooling features
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
def __init__(self,
|
| 37 |
+
output_blocks=(DEFAULT_BLOCK_INDEX,),
|
| 38 |
+
resize_input=True,
|
| 39 |
+
normalize_input=True,
|
| 40 |
+
requires_grad=False,
|
| 41 |
+
use_fid_inception=True):
|
| 42 |
+
"""Build pretrained InceptionV3
|
| 43 |
+
Parameters
|
| 44 |
+
----------
|
| 45 |
+
output_blocks : list of int
|
| 46 |
+
Indices of blocks to return features of. Possible values are:
|
| 47 |
+
- 0: corresponds to output of first max pooling
|
| 48 |
+
- 1: corresponds to output of second max pooling
|
| 49 |
+
- 2: corresponds to output which is fed to aux classifier
|
| 50 |
+
- 3: corresponds to output of final average pooling
|
| 51 |
+
resize_input : bool
|
| 52 |
+
If true, bilinearly resizes input to width and height 299 before
|
| 53 |
+
feeding input to model. As the network without fully connected
|
| 54 |
+
layers is fully convolutional, it should be able to handle inputs
|
| 55 |
+
of arbitrary size, so resizing might not be strictly needed
|
| 56 |
+
normalize_input : bool
|
| 57 |
+
If true, scales the input from range (0, 1) to the range the
|
| 58 |
+
pretrained Inception network expects, namely (-1, 1)
|
| 59 |
+
requires_grad : bool
|
| 60 |
+
If true, parameters of the model require gradients. Possibly useful
|
| 61 |
+
for finetuning the network
|
| 62 |
+
use_fid_inception : bool
|
| 63 |
+
If true, uses the pretrained Inception model used in Tensorflow's
|
| 64 |
+
FID implementation. If false, uses the pretrained Inception model
|
| 65 |
+
available in torchvision. The FID Inception model has different
|
| 66 |
+
weights and a slightly different structure from torchvision's
|
| 67 |
+
Inception model. If you want to compute FID scores, you are
|
| 68 |
+
strongly advised to set this parameter to true to get comparable
|
| 69 |
+
results.
|
| 70 |
+
"""
|
| 71 |
+
super(InceptionV3, self).__init__()
|
| 72 |
+
|
| 73 |
+
self.resize_input = resize_input
|
| 74 |
+
self.normalize_input = normalize_input
|
| 75 |
+
self.output_blocks = sorted(output_blocks)
|
| 76 |
+
self.last_needed_block = max(output_blocks)
|
| 77 |
+
|
| 78 |
+
assert self.last_needed_block <= 3, \
|
| 79 |
+
'Last possible output block index is 3'
|
| 80 |
+
|
| 81 |
+
self.blocks = nn.ModuleList()
|
| 82 |
+
|
| 83 |
+
if use_fid_inception:
|
| 84 |
+
inception = fid_inception_v3()
|
| 85 |
+
else:
|
| 86 |
+
inception = _inception_v3(pretrained=True)
|
| 87 |
+
|
| 88 |
+
# Block 0: input to maxpool1
|
| 89 |
+
block0 = [
|
| 90 |
+
inception.Conv2d_1a_3x3,
|
| 91 |
+
inception.Conv2d_2a_3x3,
|
| 92 |
+
inception.Conv2d_2b_3x3,
|
| 93 |
+
nn.MaxPool2d(kernel_size=3, stride=2)
|
| 94 |
+
]
|
| 95 |
+
self.blocks.append(nn.Sequential(*block0))
|
| 96 |
+
|
| 97 |
+
# Block 1: maxpool1 to maxpool2
|
| 98 |
+
if self.last_needed_block >= 1:
|
| 99 |
+
block1 = [
|
| 100 |
+
inception.Conv2d_3b_1x1,
|
| 101 |
+
inception.Conv2d_4a_3x3,
|
| 102 |
+
nn.MaxPool2d(kernel_size=3, stride=2)
|
| 103 |
+
]
|
| 104 |
+
self.blocks.append(nn.Sequential(*block1))
|
| 105 |
+
|
| 106 |
+
# Block 2: maxpool2 to aux classifier
|
| 107 |
+
if self.last_needed_block >= 2:
|
| 108 |
+
block2 = [
|
| 109 |
+
inception.Mixed_5b,
|
| 110 |
+
inception.Mixed_5c,
|
| 111 |
+
inception.Mixed_5d,
|
| 112 |
+
inception.Mixed_6a,
|
| 113 |
+
inception.Mixed_6b,
|
| 114 |
+
inception.Mixed_6c,
|
| 115 |
+
inception.Mixed_6d,
|
| 116 |
+
inception.Mixed_6e,
|
| 117 |
+
]
|
| 118 |
+
self.blocks.append(nn.Sequential(*block2))
|
| 119 |
+
|
| 120 |
+
# Block 3: aux classifier to final avgpool
|
| 121 |
+
if self.last_needed_block >= 3:
|
| 122 |
+
block3 = [
|
| 123 |
+
inception.Mixed_7a,
|
| 124 |
+
inception.Mixed_7b,
|
| 125 |
+
inception.Mixed_7c,
|
| 126 |
+
nn.AdaptiveAvgPool2d(output_size=(1, 1))
|
| 127 |
+
]
|
| 128 |
+
self.blocks.append(nn.Sequential(*block3))
|
| 129 |
+
|
| 130 |
+
for param in self.parameters():
|
| 131 |
+
param.requires_grad = requires_grad
|
| 132 |
+
|
| 133 |
+
def forward(self, inp):
|
| 134 |
+
"""Get Inception feature maps
|
| 135 |
+
Parameters
|
| 136 |
+
----------
|
| 137 |
+
inp : torch.autograd.Variable
|
| 138 |
+
Input tensor of shape Bx3xHxW. Values are expected to be in
|
| 139 |
+
range (0, 1)
|
| 140 |
+
Returns
|
| 141 |
+
-------
|
| 142 |
+
List of torch.autograd.Variable, corresponding to the selected output
|
| 143 |
+
block, sorted ascending by index
|
| 144 |
+
"""
|
| 145 |
+
outp = []
|
| 146 |
+
x = inp
|
| 147 |
+
|
| 148 |
+
if self.resize_input:
|
| 149 |
+
raise ValueError("should not resize here")
|
| 150 |
+
x = F.interpolate(x,
|
| 151 |
+
size=(299, 299),
|
| 152 |
+
mode='bilinear',
|
| 153 |
+
align_corners=False)
|
| 154 |
+
|
| 155 |
+
if self.normalize_input:
|
| 156 |
+
x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1)
|
| 157 |
+
|
| 158 |
+
for idx, block in enumerate(self.blocks):
|
| 159 |
+
x = block(x)
|
| 160 |
+
if idx in self.output_blocks:
|
| 161 |
+
outp.append(x)
|
| 162 |
+
|
| 163 |
+
if idx == self.last_needed_block:
|
| 164 |
+
break
|
| 165 |
+
|
| 166 |
+
return outp
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def _inception_v3(*args, **kwargs):
|
| 170 |
+
"""Wraps `torchvision.models.inception_v3`
|
| 171 |
+
Skips default weight inititialization if supported by torchvision version.
|
| 172 |
+
See https://github.com/mseitzer/pytorch-fid/issues/28.
|
| 173 |
+
"""
|
| 174 |
+
try:
|
| 175 |
+
version = tuple(map(int, torchvision.__version__.split('.')[:2]))
|
| 176 |
+
except ValueError:
|
| 177 |
+
# Just a caution against weird version strings
|
| 178 |
+
version = (0,)
|
| 179 |
+
|
| 180 |
+
if version >= (0, 6):
|
| 181 |
+
kwargs['init_weights'] = False
|
| 182 |
+
|
| 183 |
+
return torchvision.models.inception_v3(*args, **kwargs)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def fid_inception_v3():
|
| 187 |
+
"""Build pretrained Inception model for FID computation
|
| 188 |
+
The Inception model for FID computation uses a different set of weights
|
| 189 |
+
and has a slightly different structure than torchvision's Inception.
|
| 190 |
+
This method first constructs torchvision's Inception and then patches the
|
| 191 |
+
necessary parts that are different in the FID Inception model.
|
| 192 |
+
"""
|
| 193 |
+
inception = _inception_v3(num_classes=1008,
|
| 194 |
+
aux_logits=False,
|
| 195 |
+
pretrained=False)
|
| 196 |
+
inception.Mixed_5b = FIDInceptionA(192, pool_features=32)
|
| 197 |
+
inception.Mixed_5c = FIDInceptionA(256, pool_features=64)
|
| 198 |
+
inception.Mixed_5d = FIDInceptionA(288, pool_features=64)
|
| 199 |
+
inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128)
|
| 200 |
+
inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160)
|
| 201 |
+
inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160)
|
| 202 |
+
inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192)
|
| 203 |
+
inception.Mixed_7b = FIDInceptionE_1(1280)
|
| 204 |
+
inception.Mixed_7c = FIDInceptionE_2(2048)
|
| 205 |
+
|
| 206 |
+
state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=False)
|
| 207 |
+
inception.load_state_dict(state_dict)
|
| 208 |
+
return inception
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class FIDInceptionA(torchvision.models.inception.InceptionA):
|
| 212 |
+
"""InceptionA block patched for FID computation"""
|
| 213 |
+
|
| 214 |
+
def __init__(self, in_channels, pool_features):
|
| 215 |
+
super(FIDInceptionA, self).__init__(in_channels, pool_features)
|
| 216 |
+
|
| 217 |
+
def forward(self, x):
|
| 218 |
+
branch1x1 = self.branch1x1(x)
|
| 219 |
+
|
| 220 |
+
branch5x5 = self.branch5x5_1(x)
|
| 221 |
+
branch5x5 = self.branch5x5_2(branch5x5)
|
| 222 |
+
|
| 223 |
+
branch3x3dbl = self.branch3x3dbl_1(x)
|
| 224 |
+
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
| 225 |
+
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
|
| 226 |
+
|
| 227 |
+
# Patch: Tensorflow's average pool does not use the padded zero's in
|
| 228 |
+
# its average calculation
|
| 229 |
+
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
|
| 230 |
+
count_include_pad=False)
|
| 231 |
+
branch_pool = self.branch_pool(branch_pool)
|
| 232 |
+
|
| 233 |
+
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
|
| 234 |
+
return torch.cat(outputs, 1)
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
class FIDInceptionC(torchvision.models.inception.InceptionC):
|
| 238 |
+
"""InceptionC block patched for FID computation"""
|
| 239 |
+
|
| 240 |
+
def __init__(self, in_channels, channels_7x7):
|
| 241 |
+
super(FIDInceptionC, self).__init__(in_channels, channels_7x7)
|
| 242 |
+
|
| 243 |
+
def forward(self, x):
|
| 244 |
+
branch1x1 = self.branch1x1(x)
|
| 245 |
+
|
| 246 |
+
branch7x7 = self.branch7x7_1(x)
|
| 247 |
+
branch7x7 = self.branch7x7_2(branch7x7)
|
| 248 |
+
branch7x7 = self.branch7x7_3(branch7x7)
|
| 249 |
+
|
| 250 |
+
branch7x7dbl = self.branch7x7dbl_1(x)
|
| 251 |
+
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
|
| 252 |
+
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
|
| 253 |
+
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
|
| 254 |
+
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
|
| 255 |
+
|
| 256 |
+
# Patch: Tensorflow's average pool does not use the padded zero's in
|
| 257 |
+
# its average calculation
|
| 258 |
+
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
|
| 259 |
+
count_include_pad=False)
|
| 260 |
+
branch_pool = self.branch_pool(branch_pool)
|
| 261 |
+
|
| 262 |
+
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
|
| 263 |
+
return torch.cat(outputs, 1)
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
class FIDInceptionE_1(torchvision.models.inception.InceptionE):
|
| 267 |
+
"""First InceptionE block patched for FID computation"""
|
| 268 |
+
|
| 269 |
+
def __init__(self, in_channels):
|
| 270 |
+
super(FIDInceptionE_1, self).__init__(in_channels)
|
| 271 |
+
|
| 272 |
+
def forward(self, x):
|
| 273 |
+
branch1x1 = self.branch1x1(x)
|
| 274 |
+
|
| 275 |
+
branch3x3 = self.branch3x3_1(x)
|
| 276 |
+
branch3x3 = [
|
| 277 |
+
self.branch3x3_2a(branch3x3),
|
| 278 |
+
self.branch3x3_2b(branch3x3),
|
| 279 |
+
]
|
| 280 |
+
branch3x3 = torch.cat(branch3x3, 1)
|
| 281 |
+
|
| 282 |
+
branch3x3dbl = self.branch3x3dbl_1(x)
|
| 283 |
+
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
| 284 |
+
branch3x3dbl = [
|
| 285 |
+
self.branch3x3dbl_3a(branch3x3dbl),
|
| 286 |
+
self.branch3x3dbl_3b(branch3x3dbl),
|
| 287 |
+
]
|
| 288 |
+
branch3x3dbl = torch.cat(branch3x3dbl, 1)
|
| 289 |
+
|
| 290 |
+
# Patch: Tensorflow's average pool does not use the padded zero's in
|
| 291 |
+
# its average calculation
|
| 292 |
+
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
|
| 293 |
+
count_include_pad=False)
|
| 294 |
+
branch_pool = self.branch_pool(branch_pool)
|
| 295 |
+
|
| 296 |
+
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
|
| 297 |
+
return torch.cat(outputs, 1)
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
class FIDInceptionE_2(torchvision.models.inception.InceptionE):
|
| 301 |
+
"""Second InceptionE block patched for FID computation"""
|
| 302 |
+
|
| 303 |
+
def __init__(self, in_channels):
|
| 304 |
+
super(FIDInceptionE_2, self).__init__(in_channels)
|
| 305 |
+
|
| 306 |
+
def forward(self, x):
|
| 307 |
+
branch1x1 = self.branch1x1(x)
|
| 308 |
+
|
| 309 |
+
branch3x3 = self.branch3x3_1(x)
|
| 310 |
+
branch3x3 = [
|
| 311 |
+
self.branch3x3_2a(branch3x3),
|
| 312 |
+
self.branch3x3_2b(branch3x3),
|
| 313 |
+
]
|
| 314 |
+
branch3x3 = torch.cat(branch3x3, 1)
|
| 315 |
+
|
| 316 |
+
branch3x3dbl = self.branch3x3dbl_1(x)
|
| 317 |
+
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
| 318 |
+
branch3x3dbl = [
|
| 319 |
+
self.branch3x3dbl_3a(branch3x3dbl),
|
| 320 |
+
self.branch3x3dbl_3b(branch3x3dbl),
|
| 321 |
+
]
|
| 322 |
+
branch3x3dbl = torch.cat(branch3x3dbl, 1)
|
| 323 |
+
|
| 324 |
+
# Patch: The FID Inception model uses max pooling instead of average
|
| 325 |
+
# pooling. This is likely an error in this specific Inception
|
| 326 |
+
# implementation, as other Inception models use average pooling here
|
| 327 |
+
# (which matches the description in the paper).
|
| 328 |
+
branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
|
| 329 |
+
branch_pool = self.branch_pool(branch_pool)
|
| 330 |
+
|
| 331 |
+
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
|
| 332 |
+
return torch.cat(outputs, 1)
|
exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/inception_torchscript.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from causvid.evaluation.coco_eval.cleanfid.downloads_helper import *
|
| 5 |
+
import contextlib
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@contextlib.contextmanager
|
| 9 |
+
def disable_gpu_fuser_on_pt19():
|
| 10 |
+
# On PyTorch 1.9 a CUDA fuser bug prevents the Inception JIT model to run. See
|
| 11 |
+
# https://github.com/GaParmar/clean-fid/issues/5
|
| 12 |
+
# https://github.com/pytorch/pytorch/issues/64062
|
| 13 |
+
if torch.__version__.startswith('1.9.'):
|
| 14 |
+
old_val = torch._C._jit_can_fuse_on_gpu()
|
| 15 |
+
torch._C._jit_override_can_fuse_on_gpu(False)
|
| 16 |
+
yield
|
| 17 |
+
if torch.__version__.startswith('1.9.'):
|
| 18 |
+
torch._C._jit_override_can_fuse_on_gpu(old_val)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class InceptionV3W(nn.Module):
|
| 22 |
+
"""
|
| 23 |
+
Wrapper around Inception V3 torchscript model provided here
|
| 24 |
+
https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/inception-2015-12-05.pt
|
| 25 |
+
|
| 26 |
+
path: locally saved inception weights
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
def __init__(self, path, download=True, resize_inside=False):
|
| 30 |
+
super(InceptionV3W, self).__init__()
|
| 31 |
+
# download the network if it is not present at the given directory
|
| 32 |
+
# use the current directory by default
|
| 33 |
+
if download:
|
| 34 |
+
check_download_inception(fpath=path)
|
| 35 |
+
path = os.path.join(path, "inception-2015-12-05.pt")
|
| 36 |
+
self.base = torch.jit.load(path).eval()
|
| 37 |
+
self.layers = self.base.layers
|
| 38 |
+
self.resize_inside = resize_inside
|
| 39 |
+
|
| 40 |
+
"""
|
| 41 |
+
Get the inception features without resizing
|
| 42 |
+
x: Image with values in range [0,255]
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
def forward(self, x):
|
| 46 |
+
with disable_gpu_fuser_on_pt19():
|
| 47 |
+
bs = x.shape[0]
|
| 48 |
+
if self.resize_inside:
|
| 49 |
+
features = self.base(x, return_features=True).view((bs, 2048))
|
| 50 |
+
else:
|
| 51 |
+
# make sure it is resized already
|
| 52 |
+
assert (x.shape[2] == 299) and (x.shape[3] == 299)
|
| 53 |
+
# apply normalization
|
| 54 |
+
x1 = x - 128
|
| 55 |
+
x2 = x1 / 128
|
| 56 |
+
features = self.layers.forward(x2, ).view((bs, 2048))
|
| 57 |
+
return features
|
exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/leaderboard.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import csv
|
| 3 |
+
import shutil
|
| 4 |
+
import urllib.request
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def get_score(model_name=None, dataset_name=None,
|
| 8 |
+
dataset_res=None, dataset_split=None, task_name=None):
|
| 9 |
+
# download the csv file from server
|
| 10 |
+
url = "https://www.cs.cmu.edu/~clean-fid/files/leaderboard.csv"
|
| 11 |
+
local_path = "/tmp/leaderboard.csv"
|
| 12 |
+
with urllib.request.urlopen(url) as response, open(local_path, 'wb') as f:
|
| 13 |
+
shutil.copyfileobj(response, f)
|
| 14 |
+
|
| 15 |
+
d_field2idx = {}
|
| 16 |
+
l_matches = []
|
| 17 |
+
with open(local_path, 'r') as f:
|
| 18 |
+
csvreader = csv.reader(f)
|
| 19 |
+
l_fields = next(csvreader)
|
| 20 |
+
for idx, val in enumerate(l_fields):
|
| 21 |
+
d_field2idx[val.strip()] = idx
|
| 22 |
+
# iterate through all rows
|
| 23 |
+
for row in csvreader:
|
| 24 |
+
# skip empty rows
|
| 25 |
+
if len(row) == 0:
|
| 26 |
+
continue
|
| 27 |
+
# skip if the filter doesn't match
|
| 28 |
+
if model_name is not None and (row[d_field2idx["model_name"]].strip() != model_name):
|
| 29 |
+
continue
|
| 30 |
+
if dataset_name is not None and (row[d_field2idx["dataset_name"]].strip() != dataset_name):
|
| 31 |
+
continue
|
| 32 |
+
if dataset_res is not None and (row[d_field2idx["dataset_res"]].strip() != dataset_res):
|
| 33 |
+
continue
|
| 34 |
+
if dataset_split is not None and (row[d_field2idx["dataset_split"]].strip() != dataset_split):
|
| 35 |
+
continue
|
| 36 |
+
if task_name is not None and (row[d_field2idx["task_name"]].strip() != task_name):
|
| 37 |
+
continue
|
| 38 |
+
curr = {}
|
| 39 |
+
for f in l_fields:
|
| 40 |
+
curr[f.strip()] = row[d_field2idx[f.strip()]].strip()
|
| 41 |
+
l_matches.append(curr)
|
| 42 |
+
os.remove(local_path)
|
| 43 |
+
return l_matches
|
exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/resize.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Helpers for resizing with multiple CPU cores
|
| 3 |
+
"""
|
| 4 |
+
import os
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def build_resizer(mode):
|
| 12 |
+
if mode == "clean":
|
| 13 |
+
return make_resizer("PIL", False, "bicubic", (299, 299))
|
| 14 |
+
# if using legacy tensorflow, do not manually resize outside the network
|
| 15 |
+
elif mode == "legacy_tensorflow":
|
| 16 |
+
return lambda x: x
|
| 17 |
+
elif mode == "legacy_pytorch":
|
| 18 |
+
return make_resizer("PyTorch", False, "bilinear", (299, 299))
|
| 19 |
+
else:
|
| 20 |
+
raise ValueError(f"Invalid mode {mode} specified")
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
"""
|
| 24 |
+
Construct a function that resizes a numpy image based on the
|
| 25 |
+
flags passed in.
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def make_resizer(library, quantize_after, filter, output_size):
|
| 30 |
+
if library == "PIL" and quantize_after:
|
| 31 |
+
name_to_filter = {
|
| 32 |
+
"bicubic": Image.BICUBIC,
|
| 33 |
+
"bilinear": Image.BILINEAR,
|
| 34 |
+
"nearest": Image.NEAREST,
|
| 35 |
+
"lanczos": Image.LANCZOS,
|
| 36 |
+
"box": Image.BOX
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
def func(x):
|
| 40 |
+
x = Image.fromarray(x)
|
| 41 |
+
x = x.resize(output_size, resample=name_to_filter[filter])
|
| 42 |
+
x = np.asarray(x).clip(0, 255).astype(np.uint8)
|
| 43 |
+
return x
|
| 44 |
+
elif library == "PIL" and not quantize_after:
|
| 45 |
+
name_to_filter = {
|
| 46 |
+
"bicubic": Image.BICUBIC,
|
| 47 |
+
"bilinear": Image.BILINEAR,
|
| 48 |
+
"nearest": Image.NEAREST,
|
| 49 |
+
"lanczos": Image.LANCZOS,
|
| 50 |
+
"box": Image.BOX
|
| 51 |
+
}
|
| 52 |
+
s1, s2 = output_size
|
| 53 |
+
|
| 54 |
+
def resize_single_channel(x_np):
|
| 55 |
+
img = Image.fromarray(x_np.astype(np.float32), mode='F')
|
| 56 |
+
img = img.resize(output_size, resample=name_to_filter[filter])
|
| 57 |
+
return np.asarray(img).clip(0, 255).reshape(s2, s1, 1)
|
| 58 |
+
|
| 59 |
+
def func(x):
|
| 60 |
+
x = [resize_single_channel(x[:, :, idx]) for idx in range(3)]
|
| 61 |
+
x = np.concatenate(x, axis=2).astype(np.float32)
|
| 62 |
+
return x
|
| 63 |
+
elif library == "PyTorch":
|
| 64 |
+
import warnings
|
| 65 |
+
# ignore the numpy warnings
|
| 66 |
+
warnings.filterwarnings("ignore")
|
| 67 |
+
|
| 68 |
+
def func(x):
|
| 69 |
+
x = torch.Tensor(x.transpose((2, 0, 1)))[None, ...]
|
| 70 |
+
x = F.interpolate(x, size=output_size, mode=filter, align_corners=False)
|
| 71 |
+
x = x[0, ...].cpu().data.numpy().transpose((1, 2, 0)).clip(0, 255)
|
| 72 |
+
if quantize_after:
|
| 73 |
+
x = x.astype(np.uint8)
|
| 74 |
+
return x
|
| 75 |
+
elif library == "TensorFlow":
|
| 76 |
+
import warnings
|
| 77 |
+
# ignore the numpy warnings
|
| 78 |
+
warnings.filterwarnings("ignore")
|
| 79 |
+
import tensorflow as tf
|
| 80 |
+
|
| 81 |
+
def func(x):
|
| 82 |
+
x = tf.constant(x)[tf.newaxis, ...]
|
| 83 |
+
x = tf.image.resize(x, output_size, method=filter)
|
| 84 |
+
x = x[0, ...].numpy().clip(0, 255)
|
| 85 |
+
if quantize_after:
|
| 86 |
+
x = x.astype(np.uint8)
|
| 87 |
+
return x
|
| 88 |
+
elif library == "OpenCV":
|
| 89 |
+
import cv2
|
| 90 |
+
name_to_filter = {
|
| 91 |
+
"bilinear": cv2.INTER_LINEAR,
|
| 92 |
+
"bicubic": cv2.INTER_CUBIC,
|
| 93 |
+
"lanczos": cv2.INTER_LANCZOS4,
|
| 94 |
+
"nearest": cv2.INTER_NEAREST,
|
| 95 |
+
"area": cv2.INTER_AREA
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
def func(x):
|
| 99 |
+
x = cv2.resize(x, output_size, interpolation=name_to_filter[filter])
|
| 100 |
+
x = x.clip(0, 255)
|
| 101 |
+
if quantize_after:
|
| 102 |
+
x = x.astype(np.uint8)
|
| 103 |
+
return x
|
| 104 |
+
else:
|
| 105 |
+
raise NotImplementedError('library [%s] is not include' % library)
|
| 106 |
+
return func
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
class FolderResizer(torch.utils.data.Dataset):
|
| 110 |
+
def __init__(self, files, outpath, fn_resize, output_ext=".png"):
|
| 111 |
+
self.files = files
|
| 112 |
+
self.outpath = outpath
|
| 113 |
+
self.output_ext = output_ext
|
| 114 |
+
self.fn_resize = fn_resize
|
| 115 |
+
|
| 116 |
+
def __len__(self):
|
| 117 |
+
return len(self.files)
|
| 118 |
+
|
| 119 |
+
def __getitem__(self, i):
|
| 120 |
+
path = str(self.files[i])
|
| 121 |
+
img_np = np.asarray(Image.open(path))
|
| 122 |
+
img_resize_np = self.fn_resize(img_np)
|
| 123 |
+
# swap the output extension
|
| 124 |
+
basename = os.path.basename(path).split(".")[0] + self.output_ext
|
| 125 |
+
outname = os.path.join(self.outpath, basename)
|
| 126 |
+
if self.output_ext == ".npy":
|
| 127 |
+
np.save(outname, img_resize_np)
|
| 128 |
+
elif self.output_ext == ".png":
|
| 129 |
+
img_resized_pil = Image.fromarray(img_resize_np)
|
| 130 |
+
img_resized_pil.save(outname)
|
| 131 |
+
else:
|
| 132 |
+
raise ValueError("invalid output extension")
|
| 133 |
+
return 0
|
exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/utils.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
import torchvision
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from causvid.evaluation.coco_eval.cleanfid.resize import build_resizer
|
| 6 |
+
import zipfile
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class ResizeDataset(torch.utils.data.Dataset):
|
| 10 |
+
"""
|
| 11 |
+
A placeholder Dataset that enables parallelizing the resize operation
|
| 12 |
+
using multiple CPU cores
|
| 13 |
+
|
| 14 |
+
files: list of all files in the folder
|
| 15 |
+
fn_resize: function that takes an np_array as input [0,255]
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
def __init__(self, files, mode, size=(299, 299), fdir=None):
|
| 19 |
+
self.files = files
|
| 20 |
+
self.fdir = fdir
|
| 21 |
+
self.transforms = torchvision.transforms.ToTensor()
|
| 22 |
+
self.size = size
|
| 23 |
+
self.fn_resize = build_resizer(mode)
|
| 24 |
+
self.custom_image_tranform = lambda x: x
|
| 25 |
+
self._zipfile = None
|
| 26 |
+
|
| 27 |
+
def _get_zipfile(self):
|
| 28 |
+
assert self.fdir is not None and '.zip' in self.fdir
|
| 29 |
+
if self._zipfile is None:
|
| 30 |
+
self._zipfile = zipfile.ZipFile(self.fdir)
|
| 31 |
+
return self._zipfile
|
| 32 |
+
|
| 33 |
+
def __len__(self):
|
| 34 |
+
return len(self.files)
|
| 35 |
+
|
| 36 |
+
def __getitem__(self, i):
|
| 37 |
+
path = str(self.files[i])
|
| 38 |
+
if self.fdir is not None and '.zip' in self.fdir:
|
| 39 |
+
with self._get_zipfile().open(path, 'r') as f:
|
| 40 |
+
img_np = np.array(Image.open(f).convert('RGB'))
|
| 41 |
+
elif ".npy" in path:
|
| 42 |
+
img_np = np.load(path)
|
| 43 |
+
else:
|
| 44 |
+
img_pil = Image.open(path).convert('RGB')
|
| 45 |
+
img_np = np.array(img_pil)
|
| 46 |
+
|
| 47 |
+
# apply a custom image transform before resizing the image to 299x299
|
| 48 |
+
img_np = self.custom_image_tranform(img_np)
|
| 49 |
+
# fn_resize expects a np array and returns a np array
|
| 50 |
+
img_resized = self.fn_resize(img_np)
|
| 51 |
+
|
| 52 |
+
# ToTensor() converts to [0,1] only if input in uint8
|
| 53 |
+
if img_resized.dtype == "uint8":
|
| 54 |
+
img_t = self.transforms(np.array(img_resized)) * 255
|
| 55 |
+
elif img_resized.dtype == "float32":
|
| 56 |
+
img_t = self.transforms(img_resized)
|
| 57 |
+
|
| 58 |
+
return img_t
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
EXTENSIONS = {'bmp', 'jpg', 'jpeg', 'pgm', 'png', 'ppm',
|
| 62 |
+
'tif', 'tiff', 'webp', 'npy', 'JPEG', 'JPG', 'PNG'}
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class ResizeArrayDataset(torch.utils.data.Dataset):
|
| 66 |
+
"""
|
| 67 |
+
A placeholder Dataset that enables parallelizing the resize operation
|
| 68 |
+
using multiple CPU cores
|
| 69 |
+
|
| 70 |
+
files: list of all files in the folder
|
| 71 |
+
fn_resize: function that takes an np_array as input [0,255]
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
def __init__(self, array, mode, size=(299, 299)):
|
| 75 |
+
self.array = array
|
| 76 |
+
self.transforms = torchvision.transforms.ToTensor()
|
| 77 |
+
self.size = size
|
| 78 |
+
self.fn_resize = build_resizer(mode)
|
| 79 |
+
self.custom_image_tranform = lambda x: x
|
| 80 |
+
|
| 81 |
+
def __len__(self):
|
| 82 |
+
return len(self.array)
|
| 83 |
+
|
| 84 |
+
def __getitem__(self, i):
|
| 85 |
+
img_np = self.array[i]
|
| 86 |
+
|
| 87 |
+
# apply a custom image transform before resizing the image to 299x299
|
| 88 |
+
img_np = self.custom_image_tranform(img_np)
|
| 89 |
+
# fn_resize expects a np array and returns a np array
|
| 90 |
+
img_resized = self.fn_resize(img_np)
|
| 91 |
+
|
| 92 |
+
# ToTensor() converts to [0,1] only if input in uint8
|
| 93 |
+
if img_resized.dtype == "uint8":
|
| 94 |
+
img_t = self.transforms(np.array(img_resized)) * 255
|
| 95 |
+
elif img_resized.dtype == "float32":
|
| 96 |
+
img_t = self.transforms(img_resized)
|
| 97 |
+
|
| 98 |
+
return img_t
|
exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/cleanfid/wrappers.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from causvid.evaluation.coco_eval.cleanfid.features import build_feature_extractor, get_reference_statistics
|
| 5 |
+
from causvid.evaluation.coco_eval.cleanfid.fid import get_batch_features, fid_from_feats
|
| 6 |
+
from causvid.evaluation.coco_eval.cleanfid.resize import build_resizer
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
"""
|
| 10 |
+
A helper class that allowing adding the images one batch at a time.
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class CleanFID():
|
| 15 |
+
def __init__(self, mode="clean", model_name="inception_v3", device="cuda"):
|
| 16 |
+
self.real_features = []
|
| 17 |
+
self.gen_features = []
|
| 18 |
+
self.mode = mode
|
| 19 |
+
self.device = device
|
| 20 |
+
if model_name == "inception_v3":
|
| 21 |
+
self.feat_model = build_feature_extractor(mode, device)
|
| 22 |
+
self.fn_resize = build_resizer(mode)
|
| 23 |
+
elif model_name == "clip_vit_b_32":
|
| 24 |
+
from causvid.evaluation.coco_eval.cleanfid.clip_features import CLIP_fx, img_preprocess_clip
|
| 25 |
+
clip_fx = CLIP_fx("ViT-B/32")
|
| 26 |
+
self.feat_model = clip_fx
|
| 27 |
+
self.fn_resize = img_preprocess_clip
|
| 28 |
+
|
| 29 |
+
"""
|
| 30 |
+
Funtion that takes an image (PIL.Image or np.array or torch.tensor)
|
| 31 |
+
and returns the corresponding feature embedding vector.
|
| 32 |
+
The image x is expected to be in range [0, 255]
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
def compute_features(self, x):
|
| 36 |
+
# if x is a PIL Image
|
| 37 |
+
if isinstance(x, Image.Image):
|
| 38 |
+
x_np = np.array(x)
|
| 39 |
+
x_np_resized = self.fn_resize(x_np)
|
| 40 |
+
x_t = torch.tensor(x_np_resized.transpose((2, 0, 1))).unsqueeze(0)
|
| 41 |
+
x_feat = get_batch_features(x_t, self.feat_model, self.device)
|
| 42 |
+
elif isinstance(x, np.ndarray):
|
| 43 |
+
x_np_resized = self.fn_resize(x)
|
| 44 |
+
x_t = torch.tensor(x_np_resized.transpose(
|
| 45 |
+
(2, 0, 1))).unsqueeze(0).to(self.device)
|
| 46 |
+
# normalization happens inside the self.feat_model, expected image range here is [0,255]
|
| 47 |
+
x_feat = get_batch_features(x_t, self.feat_model, self.device)
|
| 48 |
+
elif isinstance(x, torch.Tensor):
|
| 49 |
+
# pdb.set_trace()
|
| 50 |
+
# add the batch dimension if x is passed in as C,H,W
|
| 51 |
+
if len(x.shape) == 3:
|
| 52 |
+
x = x.unsqueeze(0)
|
| 53 |
+
b, c, h, w = x.shape
|
| 54 |
+
# convert back to np array and resize
|
| 55 |
+
l_x_np_resized = []
|
| 56 |
+
for _ in range(b):
|
| 57 |
+
x_np = x[_].cpu().numpy().transpose((1, 2, 0))
|
| 58 |
+
l_x_np_resized.append(self.fn_resize(x_np)[None,])
|
| 59 |
+
x_np_resized = np.concatenate(l_x_np_resized)
|
| 60 |
+
x_t = torch.tensor(x_np_resized.transpose(
|
| 61 |
+
(0, 3, 1, 2))).to(self.device)
|
| 62 |
+
# normalization happens inside the self.feat_model, expected image range here is [0,255]
|
| 63 |
+
x_feat = get_batch_features(x_t, self.feat_model, self.device)
|
| 64 |
+
else:
|
| 65 |
+
raise ValueError("image type could not be inferred")
|
| 66 |
+
return x_feat
|
| 67 |
+
|
| 68 |
+
"""
|
| 69 |
+
Extract the faetures from x and add to the list of reference real images
|
| 70 |
+
"""
|
| 71 |
+
|
| 72 |
+
def add_real_images(self, x):
|
| 73 |
+
x_feat = self.compute_features(x)
|
| 74 |
+
self.real_features.append(x_feat)
|
| 75 |
+
|
| 76 |
+
"""
|
| 77 |
+
Extract the faetures from x and add to the list of generated images
|
| 78 |
+
"""
|
| 79 |
+
|
| 80 |
+
def add_gen_images(self, x):
|
| 81 |
+
x_feat = self.compute_features(x)
|
| 82 |
+
self.gen_features.append(x_feat)
|
| 83 |
+
|
| 84 |
+
"""
|
| 85 |
+
Compute FID between the real and generated images added so far
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
def calculate_fid(self, verbose=True):
|
| 89 |
+
feats1 = np.concatenate(self.real_features)
|
| 90 |
+
feats2 = np.concatenate(self.gen_features)
|
| 91 |
+
if verbose:
|
| 92 |
+
print(f"# real images = {feats1.shape[0]}")
|
| 93 |
+
print(f"# generated images = {feats2.shape[0]}")
|
| 94 |
+
return fid_from_feats(feats1, feats2)
|
| 95 |
+
|
| 96 |
+
"""
|
| 97 |
+
Remove the real image features added so far
|
| 98 |
+
"""
|
| 99 |
+
|
| 100 |
+
def reset_real_features(self):
|
| 101 |
+
self.real_features = []
|
| 102 |
+
|
| 103 |
+
"""
|
| 104 |
+
Remove the generated image features added so far
|
| 105 |
+
"""
|
| 106 |
+
|
| 107 |
+
def reset_gen_features(self):
|
| 108 |
+
self.gen_features = []
|
exp_code/1_benchmark/CausVid/causvid/evaluation/coco_eval/coco_evaluator.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Part of this code is modified from GigaGAN: https://github.com/mingukkang/GigaGAN
|
| 2 |
+
# The MIT License (MIT)
|
| 3 |
+
from causvid.evaluation.coco_eval.cleanfid import fid
|
| 4 |
+
from torchvision.transforms import InterpolationMode
|
| 5 |
+
import torchvision.transforms as transforms
|
| 6 |
+
from torch.utils.data import DataLoader
|
| 7 |
+
from torch.utils.data import Dataset
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import numpy as np
|
| 10 |
+
import shutil
|
| 11 |
+
import torch
|
| 12 |
+
import time
|
| 13 |
+
import os
|
| 14 |
+
|
| 15 |
+
resizer_collection = {"nearest": InterpolationMode.NEAREST,
|
| 16 |
+
"box": InterpolationMode.BOX,
|
| 17 |
+
"bilinear": InterpolationMode.BILINEAR,
|
| 18 |
+
"hamming": InterpolationMode.HAMMING,
|
| 19 |
+
"bicubic": InterpolationMode.BICUBIC,
|
| 20 |
+
"lanczos": InterpolationMode.LANCZOS}
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class CenterCropLongEdge(object):
|
| 24 |
+
"""
|
| 25 |
+
this code is borrowed from https://github.com/ajbrock/BigGAN-PyTorch
|
| 26 |
+
MIT License
|
| 27 |
+
Copyright (c) 2019 Andy Brock
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
def __call__(self, img):
|
| 31 |
+
return transforms.functional.center_crop(img, min(img.size))
|
| 32 |
+
|
| 33 |
+
def __repr__(self):
|
| 34 |
+
return self.__class__.__name__
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@torch.no_grad()
|
| 38 |
+
def compute_fid(fake_arr, gt_dir, device,
|
| 39 |
+
resize_size=None, feature_extractor="inception",
|
| 40 |
+
patch_fid=False):
|
| 41 |
+
center_crop_trsf = CenterCropLongEdge()
|
| 42 |
+
|
| 43 |
+
def resize_and_center_crop(image_np):
|
| 44 |
+
image_pil = Image.fromarray(image_np)
|
| 45 |
+
if patch_fid:
|
| 46 |
+
# if image_pil.size[0] != 1024 and image_pil.size[1] != 1024:
|
| 47 |
+
# image_pil = image_pil.resize([1024, 1024])
|
| 48 |
+
|
| 49 |
+
# directly crop to the 299 x 299 patch expected by the inception network
|
| 50 |
+
if image_pil.size[0] >= 299 and image_pil.size[1] >= 299:
|
| 51 |
+
image_pil = transforms.functional.center_crop(image_pil, 299)
|
| 52 |
+
# else:
|
| 53 |
+
# raise ValueError("Image is too small to crop to 299 x 299")
|
| 54 |
+
else:
|
| 55 |
+
image_pil = center_crop_trsf(image_pil)
|
| 56 |
+
|
| 57 |
+
if resize_size is not None:
|
| 58 |
+
image_pil = image_pil.resize((resize_size, resize_size),
|
| 59 |
+
Image.LANCZOS)
|
| 60 |
+
return np.array(image_pil)
|
| 61 |
+
|
| 62 |
+
if feature_extractor == "inception":
|
| 63 |
+
model_name = "inception_v3"
|
| 64 |
+
elif feature_extractor == "clip":
|
| 65 |
+
model_name = "clip_vit_b_32"
|
| 66 |
+
else:
|
| 67 |
+
raise ValueError(
|
| 68 |
+
"Unrecognized feature extractor [%s]" % feature_extractor)
|
| 69 |
+
# fid, fake_feats, real_feats = fid.compute_fid(
|
| 70 |
+
stat = fid.compute_fid(
|
| 71 |
+
None,
|
| 72 |
+
gt_dir,
|
| 73 |
+
model_name=model_name,
|
| 74 |
+
custom_image_tranform=resize_and_center_crop,
|
| 75 |
+
use_dataparallel=False,
|
| 76 |
+
device=device,
|
| 77 |
+
pred_arr=fake_arr
|
| 78 |
+
)
|
| 79 |
+
# return fid, fake_feats, real_feats
|
| 80 |
+
return stat
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def evaluate_model(args, device, all_images, patch_fid=False):
|
| 84 |
+
fid = compute_fid(
|
| 85 |
+
fake_arr=all_images,
|
| 86 |
+
gt_dir=args.ref_dir,
|
| 87 |
+
device=device,
|
| 88 |
+
resize_size=args.eval_res,
|
| 89 |
+
feature_extractor="inception",
|
| 90 |
+
patch_fid=patch_fid
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
return fid
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def tensor2pil(image: torch.Tensor):
|
| 97 |
+
''' output image : tensor to PIL
|
| 98 |
+
'''
|
| 99 |
+
if isinstance(image, list) or image.ndim == 4:
|
| 100 |
+
return [tensor2pil(im) for im in image]
|
| 101 |
+
|
| 102 |
+
assert image.ndim == 3
|
| 103 |
+
output_image = Image.fromarray(((image + 1.0) * 127.5).clamp(
|
| 104 |
+
0.0, 255.0).to(torch.uint8).permute(1, 2, 0).detach().cpu().numpy())
|
| 105 |
+
return output_image
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class CLIPScoreDataset(Dataset):
|
| 109 |
+
def __init__(self, images, captions, transform, preprocessor) -> None:
|
| 110 |
+
super().__init__()
|
| 111 |
+
self.images = images
|
| 112 |
+
self.captions = captions
|
| 113 |
+
self.transform = transform
|
| 114 |
+
self.preprocessor = preprocessor
|
| 115 |
+
|
| 116 |
+
def __len__(self):
|
| 117 |
+
return len(self.images)
|
| 118 |
+
|
| 119 |
+
def __getitem__(self, index):
|
| 120 |
+
image = self.images[index]
|
| 121 |
+
image_pil = self.transform(image)
|
| 122 |
+
image_pil = self.preprocessor(image_pil)
|
| 123 |
+
caption = self.captions[index]
|
| 124 |
+
return image_pil, caption
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
@torch.no_grad()
|
| 128 |
+
def compute_clip_score(
|
| 129 |
+
images, captions, clip_model="ViT-B/32", device="cuda", how_many=30000):
|
| 130 |
+
print("Computing CLIP score")
|
| 131 |
+
import clip as openai_clip
|
| 132 |
+
if clip_model == "ViT-B/32":
|
| 133 |
+
clip, clip_preprocessor = openai_clip.load("ViT-B/32", device=device)
|
| 134 |
+
clip = clip.eval()
|
| 135 |
+
elif clip_model == "ViT-G/14":
|
| 136 |
+
import open_clip
|
| 137 |
+
clip, _, clip_preprocessor = open_clip.create_model_and_transforms(
|
| 138 |
+
"ViT-g-14", pretrained="laion2b_s12b_b42k")
|
| 139 |
+
clip = clip.to(device)
|
| 140 |
+
clip = clip.eval()
|
| 141 |
+
clip = clip.float()
|
| 142 |
+
else:
|
| 143 |
+
raise NotImplementedError
|
| 144 |
+
|
| 145 |
+
def resize_and_center_crop(image_np, resize_size=256):
|
| 146 |
+
image_pil = Image.fromarray(image_np)
|
| 147 |
+
image_pil = CenterCropLongEdge()(image_pil)
|
| 148 |
+
|
| 149 |
+
if resize_size is not None:
|
| 150 |
+
image_pil = image_pil.resize((resize_size, resize_size),
|
| 151 |
+
Image.LANCZOS)
|
| 152 |
+
return image_pil
|
| 153 |
+
|
| 154 |
+
def simple_collate(batch):
|
| 155 |
+
images, captions = [], []
|
| 156 |
+
for img, cap in batch:
|
| 157 |
+
images.append(img)
|
| 158 |
+
captions.append(cap)
|
| 159 |
+
return images, captions
|
| 160 |
+
|
| 161 |
+
dataset = CLIPScoreDataset(
|
| 162 |
+
images, captions, transform=resize_and_center_crop,
|
| 163 |
+
preprocessor=clip_preprocessor
|
| 164 |
+
)
|
| 165 |
+
dataloader = DataLoader(
|
| 166 |
+
dataset, batch_size=64,
|
| 167 |
+
shuffle=False, num_workers=8,
|
| 168 |
+
collate_fn=simple_collate
|
| 169 |
+
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
cos_sims = []
|
| 173 |
+
count = 0
|
| 174 |
+
# for imgs, txts in zip(images, captions):
|
| 175 |
+
for index, (imgs_pil, txts) in enumerate(dataloader):
|
| 176 |
+
# imgs_pil = [resize_and_center_crop(imgs)]
|
| 177 |
+
# txts = [txts]
|
| 178 |
+
# imgs_pil = [clip_preprocessor(img) for img in imgs]
|
| 179 |
+
imgs = torch.stack(imgs_pil, dim=0).to(device)
|
| 180 |
+
tokens = openai_clip.tokenize(txts, truncate=True).to(device)
|
| 181 |
+
# Prepending text prompts with "A photo depicts "
|
| 182 |
+
# https://arxiv.org/abs/2104.08718
|
| 183 |
+
prepend_text = "A photo depicts "
|
| 184 |
+
prepend_text_token = openai_clip.tokenize(prepend_text)[
|
| 185 |
+
:, 1:4].to(device)
|
| 186 |
+
prepend_text_tokens = prepend_text_token.expand(tokens.shape[0], -1)
|
| 187 |
+
|
| 188 |
+
start_tokens = tokens[:, :1]
|
| 189 |
+
new_text_tokens = torch.cat(
|
| 190 |
+
[start_tokens, prepend_text_tokens, tokens[:, 1:]], dim=1)[:, :77]
|
| 191 |
+
last_cols = new_text_tokens[:, 77 - 1:77]
|
| 192 |
+
last_cols[last_cols > 0] = 49407 # eot token
|
| 193 |
+
new_text_tokens = torch.cat(
|
| 194 |
+
[new_text_tokens[:, :76], last_cols], dim=1)
|
| 195 |
+
|
| 196 |
+
img_embs = clip.encode_image(imgs)
|
| 197 |
+
text_embs = clip.encode_text(new_text_tokens)
|
| 198 |
+
|
| 199 |
+
similarities = torch.nn.functional.cosine_similarity(
|
| 200 |
+
img_embs, text_embs, dim=1)
|
| 201 |
+
cos_sims.append(similarities)
|
| 202 |
+
count += similarities.shape[0]
|
| 203 |
+
if count >= how_many:
|
| 204 |
+
break
|
| 205 |
+
|
| 206 |
+
clip_score = torch.cat(cos_sims, dim=0)[:how_many].mean()
|
| 207 |
+
clip_score = clip_score.detach().cpu().numpy()
|
| 208 |
+
return clip_score
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
@torch.no_grad()
|
| 212 |
+
def compute_image_reward(
|
| 213 |
+
images, captions, device
|
| 214 |
+
):
|
| 215 |
+
import ImageReward as RM
|
| 216 |
+
from tqdm import tqdm
|
| 217 |
+
model = RM.load("ImageReward-v1.0", device=device)
|
| 218 |
+
rewards = []
|
| 219 |
+
for image, prompt in tqdm(zip(images, captions)):
|
| 220 |
+
reward = model.score(prompt, Image.fromarray(image))
|
| 221 |
+
rewards.append(reward)
|
| 222 |
+
return np.mean(np.array(rewards))
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
@torch.no_grad()
|
| 226 |
+
def compute_diversity_score(
|
| 227 |
+
lpips_loss_func, images, device
|
| 228 |
+
):
|
| 229 |
+
# resize all image to 512 and convert to tensor
|
| 230 |
+
images = [Image.fromarray(image) for image in images]
|
| 231 |
+
images = [image.resize((512, 512), Image.LANCZOS) for image in images]
|
| 232 |
+
images = np.stack([np.array(image) for image in images], axis=0)
|
| 233 |
+
images = torch.tensor(images).to(device).float() / 255.0
|
| 234 |
+
images = images.permute(0, 3, 1, 2)
|
| 235 |
+
|
| 236 |
+
num_images = images.shape[0]
|
| 237 |
+
loss_list = []
|
| 238 |
+
|
| 239 |
+
for i in range(num_images):
|
| 240 |
+
for j in range(i + 1, num_images):
|
| 241 |
+
image1 = images[i].unsqueeze(0)
|
| 242 |
+
image2 = images[j].unsqueeze(0)
|
| 243 |
+
loss = lpips_loss_func(image1, image2)
|
| 244 |
+
|
| 245 |
+
loss_list.append(loss.item())
|
| 246 |
+
return np.mean(loss_list)
|
exp_code/1_benchmark/CausVid/causvid/evaluation/eval_sdxl_coco.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pip install git+https://github.com/openai/CLIP.git
|
| 2 |
+
# pip install open_clip_torch
|
| 3 |
+
from causvid.evaluation.coco_eval.coco_evaluator import evaluate_model, compute_clip_score
|
| 4 |
+
from diffusers import DiffusionPipeline, LCMScheduler, DDIMScheduler
|
| 5 |
+
from causvid.util import launch_distributed_job
|
| 6 |
+
import torch.distributed as dist
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
import numpy as np
|
| 9 |
+
import argparse
|
| 10 |
+
import torch
|
| 11 |
+
import time
|
| 12 |
+
import os
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def load_generator(checkpoint_path, generator):
|
| 16 |
+
# sometime the state_dict is not fully saved yet
|
| 17 |
+
counter = 0
|
| 18 |
+
while True:
|
| 19 |
+
try:
|
| 20 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")[
|
| 21 |
+
'generator']
|
| 22 |
+
break
|
| 23 |
+
except:
|
| 24 |
+
print(f"fail to load checkpoint {checkpoint_path}")
|
| 25 |
+
time.sleep(1)
|
| 26 |
+
|
| 27 |
+
counter += 1
|
| 28 |
+
|
| 29 |
+
if counter > 100:
|
| 30 |
+
return None
|
| 31 |
+
|
| 32 |
+
state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
|
| 33 |
+
print(generator.load_state_dict(state_dict, strict=True))
|
| 34 |
+
return generator
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def sample(pipeline, prompt_list, denoising_step_list, batch_size):
|
| 38 |
+
num_prompts = len(prompt_list)
|
| 39 |
+
num_steps = len(denoising_step_list)
|
| 40 |
+
|
| 41 |
+
images = []
|
| 42 |
+
all_prompts = []
|
| 43 |
+
for i in tqdm(range(0, num_prompts, batch_size)):
|
| 44 |
+
batch_prompt = prompt_list[i:i + batch_size]
|
| 45 |
+
timesteps = None if isinstance(
|
| 46 |
+
pipeline.scheduler, DDIMScheduler) else denoising_step_list
|
| 47 |
+
batch_images = pipeline(prompt=batch_prompt, num_inference_steps=num_steps, timesteps=timesteps,
|
| 48 |
+
guidance_scale=0, output_type='np').images
|
| 49 |
+
batch_images = (batch_images * 255.0).astype("uint8")
|
| 50 |
+
images.extend(batch_images)
|
| 51 |
+
all_prompts.extend(batch_prompt)
|
| 52 |
+
|
| 53 |
+
torch.cuda.empty_cache()
|
| 54 |
+
|
| 55 |
+
all_images = np.stack(images, axis=0)
|
| 56 |
+
|
| 57 |
+
data_dict = {"all_images": all_images, "all_captions": all_prompts}
|
| 58 |
+
|
| 59 |
+
return data_dict
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
@torch.no_grad()
|
| 63 |
+
def main():
|
| 64 |
+
parser = argparse.ArgumentParser()
|
| 65 |
+
parser.add_argument("--denoising_step_list", type=int,
|
| 66 |
+
nargs="+", required=True)
|
| 67 |
+
parser.add_argument("--batch_size", type=int, default=16)
|
| 68 |
+
parser.add_argument("--prompt_path", type=str, required=True)
|
| 69 |
+
parser.add_argument("--checkpoint_path", type=str, required=True)
|
| 70 |
+
parser.add_argument("--local_rank", type=int, default=-1)
|
| 71 |
+
parser.add_argument("--ref_dir", type=str, required=True)
|
| 72 |
+
parser.add_argument("--eval_res", type=int, default=256)
|
| 73 |
+
parser.add_argument("--scheduler", type=str,
|
| 74 |
+
choices=['ddim', 'lcm'], default='lcm')
|
| 75 |
+
|
| 76 |
+
args = parser.parse_args()
|
| 77 |
+
|
| 78 |
+
# Step 1: Setup the environment
|
| 79 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 80 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 81 |
+
torch.set_grad_enabled(False)
|
| 82 |
+
|
| 83 |
+
# Step 2: Create the generator
|
| 84 |
+
launch_distributed_job()
|
| 85 |
+
device = torch.cuda.current_device()
|
| 86 |
+
|
| 87 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
| 88 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float32).to(device)
|
| 89 |
+
if args.scheduler == "ddim":
|
| 90 |
+
pipeline.scheduler = DDIMScheduler.from_config(
|
| 91 |
+
pipeline.scheduler.config, timestep_spacing="trailing")
|
| 92 |
+
elif args.scheduler == "lcm":
|
| 93 |
+
pipeline.scheduler = LCMScheduler.from_config(
|
| 94 |
+
pipeline.scheduler.config)
|
| 95 |
+
pipeline.set_progress_bar_config(disable=True)
|
| 96 |
+
pipeline.safety_checker = None
|
| 97 |
+
|
| 98 |
+
# Step 3: Generate images
|
| 99 |
+
prompt_list = []
|
| 100 |
+
with open(args.prompt_path, "r") as f:
|
| 101 |
+
for line in f:
|
| 102 |
+
prompt_list.append(line.strip())
|
| 103 |
+
|
| 104 |
+
generator = load_generator(os.path.join(
|
| 105 |
+
args.checkpoint_path, "model.pt"), pipeline.unet)
|
| 106 |
+
|
| 107 |
+
if generator is None:
|
| 108 |
+
return
|
| 109 |
+
|
| 110 |
+
pipeline.unet = generator
|
| 111 |
+
data_dict = sample(pipeline, prompt_list,
|
| 112 |
+
args.denoising_step_list, args.batch_size)
|
| 113 |
+
|
| 114 |
+
# Step 4: Evaluate the generated images
|
| 115 |
+
|
| 116 |
+
# evaluate and write stats to file
|
| 117 |
+
if dist.get_rank() == 0:
|
| 118 |
+
fid = evaluate_model(
|
| 119 |
+
args, device, data_dict["all_images"], patch_fid=False)
|
| 120 |
+
|
| 121 |
+
clip_score = compute_clip_score(
|
| 122 |
+
images=data_dict["all_images"],
|
| 123 |
+
captions=data_dict["all_captions"],
|
| 124 |
+
clip_model="ViT-G/14",
|
| 125 |
+
device=device,
|
| 126 |
+
how_many=len(data_dict["all_images"])
|
| 127 |
+
)
|
| 128 |
+
print(f"fid {fid} clip score {clip_score}")
|
| 129 |
+
|
| 130 |
+
with open(os.path.join(args.checkpoint_path, "eval_stats.txt"), "w") as f:
|
| 131 |
+
f.write(f"fid {fid} clip score {clip_score}")
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
if __name__ == "__main__":
|
| 135 |
+
main()
|
exp_code/1_benchmark/CausVid/causvid/evaluation/inference_sdxl.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pip install git+https://github.com/openai/CLIP.git
|
| 2 |
+
# pip install open_clip_torch
|
| 3 |
+
from diffusers import StableDiffusionXLPipeline, LCMScheduler, DDIMScheduler
|
| 4 |
+
from causvid.util import launch_distributed_job
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
import numpy as np
|
| 8 |
+
import argparse
|
| 9 |
+
import torch
|
| 10 |
+
import time
|
| 11 |
+
import os
|
| 12 |
+
import re
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def load_generator(checkpoint_path, generator):
|
| 16 |
+
# sometime the state_dict is not fully saved yet
|
| 17 |
+
counter = 0
|
| 18 |
+
while True:
|
| 19 |
+
try:
|
| 20 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")[
|
| 21 |
+
'generator']
|
| 22 |
+
break
|
| 23 |
+
except:
|
| 24 |
+
print(f"fail to load checkpoint {checkpoint_path}")
|
| 25 |
+
time.sleep(1)
|
| 26 |
+
|
| 27 |
+
counter += 1
|
| 28 |
+
|
| 29 |
+
if counter > 100:
|
| 30 |
+
return None
|
| 31 |
+
|
| 32 |
+
state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
|
| 33 |
+
print(generator.load_state_dict(state_dict, strict=True))
|
| 34 |
+
return generator
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def sample(pipeline, prompt_list, denoising_step_list, batch_size):
|
| 38 |
+
num_prompts = len(prompt_list)
|
| 39 |
+
num_steps = len(denoising_step_list)
|
| 40 |
+
|
| 41 |
+
images = []
|
| 42 |
+
all_prompts = []
|
| 43 |
+
for i in tqdm(range(0, num_prompts, batch_size)):
|
| 44 |
+
batch_prompt = prompt_list[i:i + batch_size]
|
| 45 |
+
timesteps = None if isinstance(
|
| 46 |
+
pipeline.scheduler, DDIMScheduler) else denoising_step_list
|
| 47 |
+
batch_images = pipeline(prompt=batch_prompt, num_inference_steps=num_steps, timesteps=timesteps,
|
| 48 |
+
guidance_scale=0, output_type='np').images
|
| 49 |
+
batch_images = (batch_images * 255.0).astype("uint8")
|
| 50 |
+
images.extend(batch_images)
|
| 51 |
+
all_prompts.extend(batch_prompt)
|
| 52 |
+
|
| 53 |
+
torch.cuda.empty_cache()
|
| 54 |
+
|
| 55 |
+
all_images = np.stack(images, axis=0)
|
| 56 |
+
|
| 57 |
+
data_dict = {"all_images": all_images, "all_captions": all_prompts}
|
| 58 |
+
|
| 59 |
+
return data_dict
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
@torch.no_grad()
|
| 63 |
+
def main():
|
| 64 |
+
parser = argparse.ArgumentParser()
|
| 65 |
+
parser.add_argument("--denoising_step_list", type=int,
|
| 66 |
+
nargs="+", required=True)
|
| 67 |
+
parser.add_argument("--batch_size", type=int, default=16)
|
| 68 |
+
parser.add_argument("--prompt_path", type=str, required=True)
|
| 69 |
+
parser.add_argument("--checkpoint_path", type=str, required=True)
|
| 70 |
+
parser.add_argument("--output_dir", type=str, default="./output")
|
| 71 |
+
parser.add_argument("--local_rank", type=int, default=-1)
|
| 72 |
+
parser.add_argument("--scheduler", type=str, choices=['ddim', 'lcm'], default='lcm')
|
| 73 |
+
|
| 74 |
+
args = parser.parse_args()
|
| 75 |
+
|
| 76 |
+
# Step 1: Setup the environment
|
| 77 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 78 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 79 |
+
torch.set_grad_enabled(False)
|
| 80 |
+
|
| 81 |
+
# Step 2: Create the generator
|
| 82 |
+
launch_distributed_job()
|
| 83 |
+
device = torch.cuda.current_device()
|
| 84 |
+
|
| 85 |
+
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
| 86 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float32).to(device)
|
| 87 |
+
if args.scheduler == "ddim":
|
| 88 |
+
pipeline.scheduler = DDIMScheduler.from_config(
|
| 89 |
+
pipeline.scheduler.config, timestep_spacing="trailing")
|
| 90 |
+
elif args.scheduler == "lcm":
|
| 91 |
+
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
|
| 92 |
+
|
| 93 |
+
pipeline.set_progress_bar_config(disable=True)
|
| 94 |
+
pipeline.safety_checker = None
|
| 95 |
+
|
| 96 |
+
# Step 3: Generate images
|
| 97 |
+
prompt_list = []
|
| 98 |
+
with open(args.prompt_path, "r") as f:
|
| 99 |
+
for line in f:
|
| 100 |
+
prompt_list.append(line.strip())
|
| 101 |
+
|
| 102 |
+
generator = load_generator(os.path.join(
|
| 103 |
+
args.checkpoint_path, "model.pt"), pipeline.unet)
|
| 104 |
+
|
| 105 |
+
if generator is None:
|
| 106 |
+
return
|
| 107 |
+
|
| 108 |
+
pipeline.unet = generator
|
| 109 |
+
data_dict = sample(pipeline, prompt_list,
|
| 110 |
+
args.denoising_step_list, args.batch_size)
|
| 111 |
+
|
| 112 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 113 |
+
|
| 114 |
+
def sanitize_filename(name):
|
| 115 |
+
"""
|
| 116 |
+
Remove any characters that are not alphanumeric, spaces, underscores, or hyphens.
|
| 117 |
+
Then replace spaces with underscores.
|
| 118 |
+
"""
|
| 119 |
+
# Remove unwanted characters (anything not a word character, space, or hyphen)
|
| 120 |
+
name = re.sub(r'[^\w\s-]', '', name)
|
| 121 |
+
# Replace spaces with underscores and strip leading/trailing whitespace
|
| 122 |
+
return name.strip().replace(' ', '_')
|
| 123 |
+
|
| 124 |
+
for idx, (img_array, prompt) in enumerate(zip(data_dict['all_images'], data_dict['all_captions'])):
|
| 125 |
+
# Split the prompt into words and take the first four words.
|
| 126 |
+
words = prompt.split()
|
| 127 |
+
if len(words) >= 10:
|
| 128 |
+
base_name = ' '.join(words[:10])
|
| 129 |
+
else:
|
| 130 |
+
base_name = ' '.join(words)
|
| 131 |
+
|
| 132 |
+
# Sanitize the base file name to remove problematic characters.
|
| 133 |
+
base_name = sanitize_filename(base_name)
|
| 134 |
+
|
| 135 |
+
# Append the index to ensure uniqueness (in case two prompts share the same first four words).
|
| 136 |
+
file_name = f"{base_name}_{idx}.jpg"
|
| 137 |
+
|
| 138 |
+
# Create a PIL Image from the numpy array.
|
| 139 |
+
image = Image.fromarray(img_array)
|
| 140 |
+
|
| 141 |
+
# Save the image in the specified folder.
|
| 142 |
+
image.save(os.path.join(args.output_dir, file_name))
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
if __name__ == "__main__":
|
| 146 |
+
main()
|
exp_code/1_benchmark/CausVid/causvid/evaluation/parallel_sdxl_eval.sh
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env bash
|
| 2 |
+
|
| 3 |
+
# ----------------------
|
| 4 |
+
# User-defined variables
|
| 5 |
+
# ----------------------
|
| 6 |
+
CHECKPOINT_DIR="/mnt/localssd/sdxl_logs/2025-01-23-15-16-31.765725_seed228885"
|
| 7 |
+
PROMPT_PATH="captions_coco10k.txt"
|
| 8 |
+
REF_DIR="/mnt/localssd/coco10k/subset/"
|
| 9 |
+
DENOSING_STEPS="999 749 499 249"
|
| 10 |
+
|
| 11 |
+
# Adjust this if you have a different number of GPUs available
|
| 12 |
+
NUM_GPUS=8
|
| 13 |
+
|
| 14 |
+
# -------------
|
| 15 |
+
# Main script
|
| 16 |
+
# -------------
|
| 17 |
+
# Grab all checkpoints in the folder
|
| 18 |
+
CHECKPOINTS=(${CHECKPOINT_DIR}/checkpoint_model_*)
|
| 19 |
+
|
| 20 |
+
# Print how many checkpoints were found
|
| 21 |
+
echo "Found ${#CHECKPOINTS[@]} checkpoints in ${CHECKPOINT_DIR}"
|
| 22 |
+
|
| 23 |
+
# Loop over each checkpoint and launch a job
|
| 24 |
+
for ((i=0; i<${#CHECKPOINTS[@]}; i++)); do
|
| 25 |
+
|
| 26 |
+
# GPU to use (round-robin assignment)
|
| 27 |
+
GPU_ID=$(( i % NUM_GPUS ))
|
| 28 |
+
|
| 29 |
+
# Pick a unique port for each process. For example, offset from 29500.
|
| 30 |
+
# Feel free to choose any range that won't collide with other applications.
|
| 31 |
+
MASTER_PORT=$((29500 + i))
|
| 32 |
+
|
| 33 |
+
echo "Launching eval for checkpoint: ${CHECKPOINTS[$i]} on GPU ${GPU_ID}, master_port ${MASTER_PORT}"
|
| 34 |
+
|
| 35 |
+
# Run eval on GPU_ID, put the process in the background
|
| 36 |
+
CUDA_VISIBLE_DEVICES=$GPU_ID torchrun --nproc_per_node 1 \
|
| 37 |
+
--master_port ${MASTER_PORT} \
|
| 38 |
+
causvid/evaluation/eval_sdxl_coco.py \
|
| 39 |
+
--denoising_step_list $DENOSING_STEPS \
|
| 40 |
+
--prompt_path "$PROMPT_PATH" \
|
| 41 |
+
--checkpoint_path "${CHECKPOINTS[$i]}" \
|
| 42 |
+
--ref_dir "$REF_DIR" &
|
| 43 |
+
|
| 44 |
+
# If we've launched as many parallel tasks as GPUs, wait for this batch to finish
|
| 45 |
+
if (( (i+1) % NUM_GPUS == 0 )); then
|
| 46 |
+
echo "Waiting for batch of $NUM_GPUS processes to finish..."
|
| 47 |
+
wait
|
| 48 |
+
fi
|
| 49 |
+
done
|
| 50 |
+
|
| 51 |
+
# If there are leftover tasks that didn't perfectly divide into NUM_GPUS, wait again
|
| 52 |
+
wait
|
| 53 |
+
|
| 54 |
+
echo "All evaluations have completed."
|
exp_code/1_benchmark/CausVid/causvid/loss.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import ABC, abstractmethod
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class DenoisingLoss(ABC):
|
| 6 |
+
@abstractmethod
|
| 7 |
+
def __call__(
|
| 8 |
+
self, x: torch.Tensor, x_pred: torch.Tensor,
|
| 9 |
+
noise: torch.Tensor, noise_pred: torch.Tensor,
|
| 10 |
+
alphas_cumprod: torch.Tensor,
|
| 11 |
+
timestep: torch.Tensor,
|
| 12 |
+
**kwargs
|
| 13 |
+
) -> torch.Tensor:
|
| 14 |
+
"""
|
| 15 |
+
Base class for denoising loss.
|
| 16 |
+
Input:
|
| 17 |
+
- x: the clean data with shape [B, F, C, H, W]
|
| 18 |
+
- x_pred: the predicted clean data with shape [B, F, C, H, W]
|
| 19 |
+
- noise: the noise with shape [B, F, C, H, W]
|
| 20 |
+
- noise_pred: the predicted noise with shape [B, F, C, H, W]
|
| 21 |
+
- alphas_cumprod: the cumulative product of alphas (defining the noise schedule) with shape [T]
|
| 22 |
+
- timestep: the current timestep with shape [B, F]
|
| 23 |
+
"""
|
| 24 |
+
pass
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class X0PredLoss(DenoisingLoss):
|
| 28 |
+
def __call__(
|
| 29 |
+
self, x: torch.Tensor, x_pred: torch.Tensor,
|
| 30 |
+
noise: torch.Tensor, noise_pred: torch.Tensor,
|
| 31 |
+
alphas_cumprod: torch.Tensor,
|
| 32 |
+
timestep: torch.Tensor,
|
| 33 |
+
**kwargs
|
| 34 |
+
) -> torch.Tensor:
|
| 35 |
+
return torch.mean((x - x_pred) ** 2)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class VPredLoss(DenoisingLoss):
|
| 39 |
+
def __call__(
|
| 40 |
+
self, x: torch.Tensor, x_pred: torch.Tensor,
|
| 41 |
+
noise: torch.Tensor, noise_pred: torch.Tensor,
|
| 42 |
+
alphas_cumprod: torch.Tensor,
|
| 43 |
+
timestep: torch.Tensor,
|
| 44 |
+
**kwargs
|
| 45 |
+
) -> torch.Tensor:
|
| 46 |
+
weights = 1 / \
|
| 47 |
+
(1 - alphas_cumprod[timestep].reshape(*timestep.shape, 1, 1, 1))
|
| 48 |
+
return torch.mean(weights * (x - x_pred) ** 2)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class NoisePredLoss(DenoisingLoss):
|
| 52 |
+
def __call__(
|
| 53 |
+
self, x: torch.Tensor, x_pred: torch.Tensor,
|
| 54 |
+
noise: torch.Tensor, noise_pred: torch.Tensor,
|
| 55 |
+
alphas_cumprod: torch.Tensor,
|
| 56 |
+
timestep: torch.Tensor,
|
| 57 |
+
**kwargs
|
| 58 |
+
) -> torch.Tensor:
|
| 59 |
+
return torch.mean((noise - noise_pred) ** 2)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class FlowPredLoss(DenoisingLoss):
|
| 63 |
+
def __call__(
|
| 64 |
+
self, x: torch.Tensor, x_pred: torch.Tensor,
|
| 65 |
+
noise: torch.Tensor, noise_pred: torch.Tensor,
|
| 66 |
+
alphas_cumprod: torch.Tensor,
|
| 67 |
+
timestep: torch.Tensor,
|
| 68 |
+
**kwargs
|
| 69 |
+
) -> torch.Tensor:
|
| 70 |
+
return torch.mean((kwargs["flow_pred"] - (noise - x)) ** 2)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
NAME_TO_CLASS = {
|
| 74 |
+
"x0": X0PredLoss,
|
| 75 |
+
"v": VPredLoss,
|
| 76 |
+
"noise": NoisePredLoss,
|
| 77 |
+
"flow": FlowPredLoss
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def get_denoising_loss(loss_type: str) -> DenoisingLoss:
|
| 82 |
+
return NAME_TO_CLASS[loss_type]
|
exp_code/1_benchmark/CausVid/causvid/models/__init__.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .wan.wan_wrapper import WanTextEncoder, WanVAEWrapper, WanDiffusionWrapper, CausalWanDiffusionWrapper
|
| 2 |
+
from causvid.bidirectional_trajectory_pipeline import BidirectionalInferenceWrapper
|
| 3 |
+
from .sdxl.sdxl_wrapper import SDXLWrapper, SDXLTextEncoder, SDXLVAE
|
| 4 |
+
from transformers.models.t5.modeling_t5 import T5Block
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
DIFFUSION_NAME_TO_CLASS = {
|
| 8 |
+
"sdxl": SDXLWrapper,
|
| 9 |
+
"wan": WanDiffusionWrapper,
|
| 10 |
+
"causal_wan": CausalWanDiffusionWrapper
|
| 11 |
+
}
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def get_diffusion_wrapper(model_name):
|
| 15 |
+
return DIFFUSION_NAME_TO_CLASS[model_name]
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
TEXTENCODER_NAME_TO_CLASS = {
|
| 19 |
+
"sdxl": SDXLTextEncoder,
|
| 20 |
+
"wan": WanTextEncoder,
|
| 21 |
+
"causal_wan": WanTextEncoder
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def get_text_encoder_wrapper(model_name):
|
| 26 |
+
return TEXTENCODER_NAME_TO_CLASS[model_name]
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
VAE_NAME_TO_CLASS = {
|
| 30 |
+
"sdxl": SDXLVAE,
|
| 31 |
+
"wan": WanVAEWrapper,
|
| 32 |
+
"causal_wan": WanVAEWrapper # TODO: Change the VAE to the causal version
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def get_vae_wrapper(model_name):
|
| 37 |
+
return VAE_NAME_TO_CLASS[model_name]
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
PIPELINE_NAME_TO_CLASS = {
|
| 41 |
+
"sdxl": BidirectionalInferenceWrapper,
|
| 42 |
+
"wan": BidirectionalInferenceWrapper
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def get_inference_pipeline_wrapper(model_name, **kwargs):
|
| 47 |
+
return PIPELINE_NAME_TO_CLASS[model_name](**kwargs)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
BLOCK_NAME_TO_BLOCK_CLASS = {
|
| 51 |
+
"T5Block": T5Block
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def get_block_class(model_name):
|
| 56 |
+
return BLOCK_NAME_TO_BLOCK_CLASS[model_name]
|
exp_code/1_benchmark/CausVid/causvid/models/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (1.66 kB). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/models/__pycache__/model_interface.cpython-312.pyc
ADDED
|
Binary file (7.17 kB). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/models/model_interface.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from causvid.scheduler import SchedulerInterface
|
| 2 |
+
from abc import abstractmethod, ABC
|
| 3 |
+
from typing import List, Optional
|
| 4 |
+
import torch
|
| 5 |
+
import types
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class DiffusionModelInterface(ABC, torch.nn.Module):
|
| 9 |
+
scheduler: SchedulerInterface
|
| 10 |
+
|
| 11 |
+
@abstractmethod
|
| 12 |
+
def forward(
|
| 13 |
+
self, noisy_image_or_video: torch.Tensor, conditional_dict: dict,
|
| 14 |
+
timestep: torch.Tensor, kv_cache: Optional[List[dict]] = None,
|
| 15 |
+
crossattn_cache: Optional[List[dict]] = None,
|
| 16 |
+
current_start: Optional[int] = None,
|
| 17 |
+
current_end: Optional[int] = None
|
| 18 |
+
) -> torch.Tensor:
|
| 19 |
+
"""
|
| 20 |
+
A method to run diffusion model.
|
| 21 |
+
Input:
|
| 22 |
+
- noisy_image_or_video: a tensor with shape [B, F, C, H, W] where the number of frame is 1 for images.
|
| 23 |
+
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
|
| 24 |
+
- timestep: a tensor with shape [B, F] where the number of frame is 1 for images.
|
| 25 |
+
all data should be on the same device as the model.
|
| 26 |
+
- kv_cache: a list of dictionaries containing the key and value tensors for each attention layer.
|
| 27 |
+
- current_start: the start index of the current frame in the sequence.
|
| 28 |
+
- current_end: the end index of the current frame in the sequence.
|
| 29 |
+
Output: a tensor with shape [B, F, C, H, W] where the number of frame is 1 for images.
|
| 30 |
+
We always expect a X0 prediction form for the output.
|
| 31 |
+
"""
|
| 32 |
+
pass
|
| 33 |
+
|
| 34 |
+
def get_scheduler(self) -> SchedulerInterface:
|
| 35 |
+
"""
|
| 36 |
+
Update the current scheduler with the interface's static method
|
| 37 |
+
"""
|
| 38 |
+
scheduler = self.scheduler
|
| 39 |
+
scheduler.convert_x0_to_noise = types.MethodType(
|
| 40 |
+
SchedulerInterface.convert_x0_to_noise, scheduler)
|
| 41 |
+
scheduler.convert_noise_to_x0 = types.MethodType(
|
| 42 |
+
SchedulerInterface.convert_noise_to_x0, scheduler)
|
| 43 |
+
scheduler.convert_velocity_to_x0 = types.MethodType(
|
| 44 |
+
SchedulerInterface.convert_velocity_to_x0, scheduler)
|
| 45 |
+
self.scheduler = scheduler
|
| 46 |
+
return scheduler
|
| 47 |
+
|
| 48 |
+
def post_init(self):
|
| 49 |
+
"""
|
| 50 |
+
A few custom initialization steps that should be called after the object is created.
|
| 51 |
+
Currently, the only one we have is to bind a few methods to scheduler.
|
| 52 |
+
We can gradually add more methods here if needed.
|
| 53 |
+
"""
|
| 54 |
+
self.get_scheduler()
|
| 55 |
+
|
| 56 |
+
def set_module_grad(self, module_grad: dict) -> None:
|
| 57 |
+
"""
|
| 58 |
+
Adjusts the state of each module in the object.
|
| 59 |
+
|
| 60 |
+
Parameters:
|
| 61 |
+
- module_grad (dict): A dictionary where each key is the name of a module (as an attribute of the object),
|
| 62 |
+
and each value is a bool indicating whether the module's parameters require gradients.
|
| 63 |
+
|
| 64 |
+
Functionality:
|
| 65 |
+
For each module name in the dictionary:
|
| 66 |
+
- Updates whether its parameters require gradients based on 'is_trainable'.
|
| 67 |
+
"""
|
| 68 |
+
for k, is_trainable in module_grad.items():
|
| 69 |
+
getattr(self, k).requires_grad_(is_trainable)
|
| 70 |
+
|
| 71 |
+
@abstractmethod
|
| 72 |
+
def enable_gradient_checkpointing(self) -> None:
|
| 73 |
+
"""
|
| 74 |
+
Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
|
| 75 |
+
*checkpoint activations* in other frameworks).
|
| 76 |
+
"""
|
| 77 |
+
pass
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class VAEInterface(ABC, torch.nn.Module):
|
| 81 |
+
@abstractmethod
|
| 82 |
+
def decode_to_pixel(self, latent: torch.Tensor) -> torch.Tensor:
|
| 83 |
+
"""
|
| 84 |
+
A method to decode a latent representation to an image or video.
|
| 85 |
+
Input: a tensor with shape [B, F // T, C, H // S, W // S] where T and S are temporal and spatial compression factors.
|
| 86 |
+
Output: a tensor with shape [B, F, C, H, W] where the number of frame is 1 for images.
|
| 87 |
+
"""
|
| 88 |
+
pass
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class TextEncoderInterface(ABC, torch.nn.Module):
|
| 92 |
+
@abstractmethod
|
| 93 |
+
def forward(self, text_prompts: List[str]) -> dict:
|
| 94 |
+
"""
|
| 95 |
+
A method to tokenize text prompts with a tokenizer and encode them into a latent representation.
|
| 96 |
+
Input: a list of strings.
|
| 97 |
+
Output: a dictionary containing the encoded representation of the text prompts.
|
| 98 |
+
"""
|
| 99 |
+
pass
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
class InferencePipelineInterface(ABC):
|
| 103 |
+
@abstractmethod
|
| 104 |
+
def inference_with_trajectory(self, noise: torch.Tensor, conditional_dict: dict) -> torch.Tensor:
|
| 105 |
+
"""
|
| 106 |
+
Run inference with the given diffusion / distilled generators.
|
| 107 |
+
Input:
|
| 108 |
+
- noise: a tensor sampled from N(0, 1) with shape [B, F, C, H, W] where the number of frame is 1 for images.
|
| 109 |
+
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
|
| 110 |
+
Output:
|
| 111 |
+
- output: a tensor with shape [B, T, F, C, H, W].
|
| 112 |
+
T is the total number of timesteps. output[0] is a pure noise and output[i] and i>0
|
| 113 |
+
represents the x0 prediction at each timestep.
|
| 114 |
+
"""
|
exp_code/1_benchmark/CausVid/causvid/models/sdxl/__pycache__/sdxl_wrapper.cpython-312.pyc
ADDED
|
Binary file (9.04 kB). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/models/sdxl/sdxl_wrapper.py
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from causvid.models.model_interface import (
|
| 2 |
+
DiffusionModelInterface,
|
| 3 |
+
TextEncoderInterface,
|
| 4 |
+
VAEInterface
|
| 5 |
+
)
|
| 6 |
+
from diffusers import UNet2DConditionModel, AutoencoderKL, DDIMScheduler
|
| 7 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection
|
| 8 |
+
from transformers import AutoTokenizer
|
| 9 |
+
from typing import List
|
| 10 |
+
import torch
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class SDXLTextEncoder(TextEncoderInterface):
|
| 14 |
+
def __init__(self) -> None:
|
| 15 |
+
super().__init__()
|
| 16 |
+
|
| 17 |
+
self.text_encoder_one = CLIPTextModel.from_pretrained(
|
| 18 |
+
"stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder", revision=None
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
self.text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
| 22 |
+
"stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder_2", revision=None
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
self.tokenizer_one = AutoTokenizer.from_pretrained(
|
| 26 |
+
"stabilityai/stable-diffusion-xl-base-1.0", subfolder="tokenizer", revision=None, use_fast=False
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
self.tokenizer_two = AutoTokenizer.from_pretrained(
|
| 30 |
+
"stabilityai/stable-diffusion-xl-base-1.0", subfolder="tokenizer_2", revision=None, use_fast=False
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
@property
|
| 34 |
+
def device(self):
|
| 35 |
+
return next(self.parameters()).device
|
| 36 |
+
|
| 37 |
+
def _model_forward(self, batch: dict) -> dict:
|
| 38 |
+
"""
|
| 39 |
+
Processes two sets of input token IDs using two separate text encoders, and returns both
|
| 40 |
+
concatenated token-level embeddings and pooled sentence-level embeddings.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
batch (dict):
|
| 44 |
+
A dictionary containing:
|
| 45 |
+
- text_input_ids_one (torch.Tensor): The token IDs for the first tokenizer,
|
| 46 |
+
of shape [batch_size, num_tokens].
|
| 47 |
+
- text_input_ids_two (torch.Tensor): The token IDs for the second tokenizer,
|
| 48 |
+
of shape [batch_size, num_tokens].
|
| 49 |
+
|
| 50 |
+
Returns:
|
| 51 |
+
dict: A dictionary with two keys:
|
| 52 |
+
- "prompt_embeds" (torch.Tensor): Concatenated embeddings from the second-to-last
|
| 53 |
+
hidden states of both text encoders, of shape [batch_size, num_tokens, hidden_dim * 2].
|
| 54 |
+
- "pooled_prompt_embeds" (torch.Tensor): Pooled embeddings (final layer output)
|
| 55 |
+
from the second text encoder, of shape [batch_size, hidden_dim].
|
| 56 |
+
"""
|
| 57 |
+
text_input_ids_one = batch['text_input_ids_one']
|
| 58 |
+
text_input_ids_two = batch['text_input_ids_two']
|
| 59 |
+
prompt_embeds_list = []
|
| 60 |
+
|
| 61 |
+
for text_input_ids, text_encoder in zip([text_input_ids_one, text_input_ids_two], [self.text_encoder_one, self.text_encoder_two]):
|
| 62 |
+
prompt_embeds = text_encoder(
|
| 63 |
+
text_input_ids.to(self.device),
|
| 64 |
+
output_hidden_states=True,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
# We are only interested in the pooled output of the final text encoder
|
| 68 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
| 69 |
+
|
| 70 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
| 71 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 72 |
+
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
| 73 |
+
prompt_embeds_list.append(prompt_embeds)
|
| 74 |
+
|
| 75 |
+
prompt_embeds = torch.cat(prompt_embeds_list, dim=-1)
|
| 76 |
+
# use the second text encoder's pooled prompt embeds (overwrite in for loop)
|
| 77 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(
|
| 78 |
+
len(text_input_ids_one), -1)
|
| 79 |
+
|
| 80 |
+
output_dict = {
|
| 81 |
+
"prompt_embeds": prompt_embeds,
|
| 82 |
+
"pooled_prompt_embeds": pooled_prompt_embeds,
|
| 83 |
+
}
|
| 84 |
+
return output_dict
|
| 85 |
+
|
| 86 |
+
def _encode_prompt(self, prompt_list):
|
| 87 |
+
"""
|
| 88 |
+
Encodes a list of prompts with two tokenizers and returns a dictionary
|
| 89 |
+
of the resulting tensors.
|
| 90 |
+
"""
|
| 91 |
+
text_input_ids_one = self.tokenizer_one(
|
| 92 |
+
prompt_list,
|
| 93 |
+
padding="max_length",
|
| 94 |
+
max_length=self.tokenizer_one.model_max_length,
|
| 95 |
+
truncation=True,
|
| 96 |
+
return_tensors="pt"
|
| 97 |
+
).input_ids
|
| 98 |
+
|
| 99 |
+
text_input_ids_two = self.tokenizer_two(
|
| 100 |
+
prompt_list,
|
| 101 |
+
padding="max_length",
|
| 102 |
+
max_length=self.tokenizer_two.model_max_length,
|
| 103 |
+
truncation=True,
|
| 104 |
+
return_tensors="pt"
|
| 105 |
+
).input_ids
|
| 106 |
+
|
| 107 |
+
prompt_dict = {
|
| 108 |
+
'text_input_ids_one': text_input_ids_one,
|
| 109 |
+
'text_input_ids_two': text_input_ids_two
|
| 110 |
+
}
|
| 111 |
+
return prompt_dict
|
| 112 |
+
|
| 113 |
+
def forward(self, text_prompts: List[str]) -> dict:
|
| 114 |
+
tokenized_prompts = self._encode_prompt(text_prompts)
|
| 115 |
+
return self._model_forward(tokenized_prompts)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class SDXLVAE(VAEInterface):
|
| 119 |
+
def __init__(self):
|
| 120 |
+
super().__init__()
|
| 121 |
+
|
| 122 |
+
self.vae = AutoencoderKL.from_pretrained(
|
| 123 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 124 |
+
subfolder="vae"
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
def decode_to_pixel(self, latent: torch.Tensor) -> torch.Tensor:
|
| 128 |
+
latent = latent.squeeze(1)
|
| 129 |
+
latent = latent / self.vae.config.scaling_factor
|
| 130 |
+
# ensure the output is float
|
| 131 |
+
image = self.vae.decode(latent).sample.float()
|
| 132 |
+
image = image.unsqueeze(1)
|
| 133 |
+
return image
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class SDXLWrapper(DiffusionModelInterface):
|
| 137 |
+
def __init__(self):
|
| 138 |
+
super().__init__()
|
| 139 |
+
|
| 140 |
+
self.model = UNet2DConditionModel.from_pretrained(
|
| 141 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 142 |
+
subfolder="unet"
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
self.add_time_ids = self._build_condition_input(resolution=1024)
|
| 146 |
+
|
| 147 |
+
self.scheduler = DDIMScheduler.from_pretrained(
|
| 148 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 149 |
+
subfolder="scheduler"
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
super().post_init()
|
| 153 |
+
|
| 154 |
+
def enable_gradient_checkpointing(self) -> None:
|
| 155 |
+
self.model.enable_gradient_checkpointing()
|
| 156 |
+
|
| 157 |
+
def forward(
|
| 158 |
+
self, noisy_image_or_video: torch.Tensor, conditional_dict: dict,
|
| 159 |
+
timestep: torch.Tensor, kv_cache: List[dict] = None, current_start: int = None,
|
| 160 |
+
current_end: int = None
|
| 161 |
+
) -> torch.Tensor:
|
| 162 |
+
# TODO: Check how to apply gradient checkpointing
|
| 163 |
+
# [B, 1, C, H, W] -> [B, C, H, W]
|
| 164 |
+
noisy_image_or_video = noisy_image_or_video.squeeze(1)
|
| 165 |
+
|
| 166 |
+
# [B, 1] -> [B]
|
| 167 |
+
timestep = timestep.squeeze(1)
|
| 168 |
+
|
| 169 |
+
added_conditions = {
|
| 170 |
+
"time_ids": self.add_time_ids.repeat(noisy_image_or_video.shape[0], 1).to(noisy_image_or_video.device),
|
| 171 |
+
"text_embeds": conditional_dict["pooled_prompt_embeds"]
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
pred_noise = self.model(
|
| 175 |
+
sample=noisy_image_or_video,
|
| 176 |
+
timestep=timestep,
|
| 177 |
+
encoder_hidden_states=conditional_dict['prompt_embeds'],
|
| 178 |
+
added_cond_kwargs=added_conditions
|
| 179 |
+
).sample
|
| 180 |
+
|
| 181 |
+
pred_x0 = self.scheduler.convert_noise_to_x0(
|
| 182 |
+
noise=pred_noise,
|
| 183 |
+
xt=noisy_image_or_video,
|
| 184 |
+
timestep=timestep
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
# [B, C, H, W] -> [B, 1, C, H, W]
|
| 188 |
+
pred_x0 = pred_x0.unsqueeze(1)
|
| 189 |
+
|
| 190 |
+
return pred_x0
|
| 191 |
+
|
| 192 |
+
@staticmethod
|
| 193 |
+
def _build_condition_input(resolution):
|
| 194 |
+
original_size = (resolution, resolution)
|
| 195 |
+
target_size = (resolution, resolution)
|
| 196 |
+
crop_top_left = (0, 0)
|
| 197 |
+
|
| 198 |
+
add_time_ids = list(original_size + crop_top_left + target_size)
|
| 199 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=torch.float32)
|
| 200 |
+
return add_time_ids
|
exp_code/1_benchmark/CausVid/causvid/models/wan/__init__.py
ADDED
|
File without changes
|
exp_code/1_benchmark/CausVid/causvid/models/wan/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (187 Bytes). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/models/wan/__pycache__/causal_inference.cpython-312.pyc
ADDED
|
Binary file (9.29 kB). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/models/wan/__pycache__/causal_model.cpython-312.pyc
ADDED
|
Binary file (35 kB). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/models/wan/__pycache__/flow_match.cpython-312.pyc
ADDED
|
Binary file (5.73 kB). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/models/wan/__pycache__/wan_wrapper.cpython-312.pyc
ADDED
|
Binary file (12.3 kB). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/models/wan/bidirectional_inference.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from causvid.models import (
|
| 2 |
+
get_diffusion_wrapper,
|
| 3 |
+
get_text_encoder_wrapper,
|
| 4 |
+
get_vae_wrapper
|
| 5 |
+
)
|
| 6 |
+
from typing import List
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class BidirectionalInferencePipeline(torch.nn.Module):
|
| 11 |
+
def __init__(self, args, device):
|
| 12 |
+
super().__init__()
|
| 13 |
+
# Step 1: Initialize all models
|
| 14 |
+
self.generator_model_name = getattr(
|
| 15 |
+
args, "generator_name", args.model_name)
|
| 16 |
+
self.generator = get_diffusion_wrapper(
|
| 17 |
+
model_name=self.generator_model_name)()
|
| 18 |
+
self.text_encoder = get_text_encoder_wrapper(
|
| 19 |
+
model_name=args.model_name)()
|
| 20 |
+
self.vae = get_vae_wrapper(model_name=args.model_name)()
|
| 21 |
+
|
| 22 |
+
# Step 2: Initialize all bidirectional wan hyperparmeters
|
| 23 |
+
self.denoising_step_list = torch.tensor(
|
| 24 |
+
args.denoising_step_list, dtype=torch.long, device=device)
|
| 25 |
+
|
| 26 |
+
self.scheduler = self.generator.get_scheduler()
|
| 27 |
+
if args.warp_denoising_step: # Warp the denoising step according to the scheduler time shift
|
| 28 |
+
timesteps = torch.cat((self.scheduler.timesteps.cpu(), torch.tensor([0], dtype=torch.float32))).cuda()
|
| 29 |
+
self.denoising_step_list = timesteps[1000 - self.denoising_step_list]
|
| 30 |
+
|
| 31 |
+
def inference(self, noise: torch.Tensor, text_prompts: List[str]) -> torch.Tensor:
|
| 32 |
+
"""
|
| 33 |
+
Perform inference on the given noise and text prompts.
|
| 34 |
+
Inputs:
|
| 35 |
+
noise (torch.Tensor): The input noise tensor of shape
|
| 36 |
+
(batch_size, num_frames, num_channels, height, width).
|
| 37 |
+
text_prompts (List[str]): The list of text prompts.
|
| 38 |
+
Outputs:
|
| 39 |
+
video (torch.Tensor): The generated video tensor of shape
|
| 40 |
+
(batch_size, num_frames, num_channels, height, width). It is normalized to be in the range [0, 1].
|
| 41 |
+
"""
|
| 42 |
+
conditional_dict = self.text_encoder(
|
| 43 |
+
text_prompts=text_prompts
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# initial point
|
| 47 |
+
noisy_image_or_video = noise
|
| 48 |
+
|
| 49 |
+
for index, current_timestep in enumerate(self.denoising_step_list):
|
| 50 |
+
pred_image_or_video = self.generator(
|
| 51 |
+
noisy_image_or_video=noisy_image_or_video,
|
| 52 |
+
conditional_dict=conditional_dict,
|
| 53 |
+
timestep=torch.ones(
|
| 54 |
+
noise.shape[:2], dtype=torch.long, device=noise.device) * current_timestep
|
| 55 |
+
) # [B, F, C, H, W]
|
| 56 |
+
|
| 57 |
+
if index < len(self.denoising_step_list) - 1:
|
| 58 |
+
next_timestep = self.denoising_step_list[index + 1] * torch.ones(
|
| 59 |
+
noise.shape[:2], dtype=torch.long, device=noise.device)
|
| 60 |
+
|
| 61 |
+
noisy_image_or_video = self.scheduler.add_noise(
|
| 62 |
+
pred_image_or_video.flatten(0, 1),
|
| 63 |
+
torch.randn_like(pred_image_or_video.flatten(0, 1)),
|
| 64 |
+
next_timestep.flatten(0, 1)
|
| 65 |
+
).unflatten(0, noise.shape[:2])
|
| 66 |
+
|
| 67 |
+
video = self.vae.decode_to_pixel(pred_image_or_video)
|
| 68 |
+
video = (video * 0.5 + 0.5).clamp(0, 1)
|
| 69 |
+
return video
|
exp_code/1_benchmark/CausVid/causvid/models/wan/causal_inference.py
ADDED
|
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from causvid.models import (
|
| 2 |
+
get_diffusion_wrapper,
|
| 3 |
+
get_text_encoder_wrapper,
|
| 4 |
+
get_vae_wrapper
|
| 5 |
+
)
|
| 6 |
+
from typing import List, Optional
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class InferencePipeline(torch.nn.Module):
|
| 11 |
+
def __init__(self, args, device):
|
| 12 |
+
super().__init__()
|
| 13 |
+
# Step 1: Initialize all models
|
| 14 |
+
self.generator_model_name = getattr(
|
| 15 |
+
args, "generator_name", args.model_name)
|
| 16 |
+
self.generator = get_diffusion_wrapper(
|
| 17 |
+
model_name=self.generator_model_name)()
|
| 18 |
+
self.text_encoder = get_text_encoder_wrapper(
|
| 19 |
+
model_name=args.model_name)()
|
| 20 |
+
self.vae = get_vae_wrapper(model_name=args.model_name)()
|
| 21 |
+
|
| 22 |
+
# Step 2: Initialize all causal hyperparmeters
|
| 23 |
+
self.denoising_step_list = torch.tensor(
|
| 24 |
+
args.denoising_step_list, dtype=torch.long, device=device)
|
| 25 |
+
assert self.denoising_step_list[-1] == 0
|
| 26 |
+
# remove the last timestep (which equals zero)
|
| 27 |
+
self.denoising_step_list = self.denoising_step_list[:-1]
|
| 28 |
+
|
| 29 |
+
self.scheduler = self.generator.get_scheduler()
|
| 30 |
+
if args.warp_denoising_step: # Warp the denoising step according to the scheduler time shift
|
| 31 |
+
timesteps = torch.cat((self.scheduler.timesteps.cpu(), torch.tensor([0], dtype=torch.float32))).cuda()
|
| 32 |
+
self.denoising_step_list = timesteps[1000 - self.denoising_step_list]
|
| 33 |
+
|
| 34 |
+
self.num_transformer_blocks = 30
|
| 35 |
+
self.frame_seq_length = 1560
|
| 36 |
+
|
| 37 |
+
self.kv_cache1 = None
|
| 38 |
+
self.kv_cache2 = None
|
| 39 |
+
self.args = args
|
| 40 |
+
self.num_frame_per_block = getattr(
|
| 41 |
+
args, "num_frame_per_block", 1)
|
| 42 |
+
|
| 43 |
+
print(f"KV inference with {self.num_frame_per_block} frames per block")
|
| 44 |
+
|
| 45 |
+
if self.num_frame_per_block > 1:
|
| 46 |
+
self.generator.model.num_frame_per_block = self.num_frame_per_block
|
| 47 |
+
|
| 48 |
+
def _initialize_kv_cache(self, batch_size, dtype, device):
|
| 49 |
+
"""
|
| 50 |
+
Initialize a Per-GPU KV cache for the Wan model.
|
| 51 |
+
"""
|
| 52 |
+
kv_cache1 = []
|
| 53 |
+
|
| 54 |
+
for _ in range(self.num_transformer_blocks):
|
| 55 |
+
kv_cache1.append({
|
| 56 |
+
"k": torch.zeros([batch_size, 32760, 12, 128], dtype=dtype, device=device),
|
| 57 |
+
"v": torch.zeros([batch_size, 32760, 12, 128], dtype=dtype, device=device)
|
| 58 |
+
})
|
| 59 |
+
|
| 60 |
+
self.kv_cache1 = kv_cache1 # always store the clean cache
|
| 61 |
+
|
| 62 |
+
def _initialize_crossattn_cache(self, batch_size, dtype, device):
|
| 63 |
+
"""
|
| 64 |
+
Initialize a Per-GPU cross-attention cache for the Wan model.
|
| 65 |
+
"""
|
| 66 |
+
crossattn_cache = []
|
| 67 |
+
|
| 68 |
+
for _ in range(self.num_transformer_blocks):
|
| 69 |
+
crossattn_cache.append({
|
| 70 |
+
"k": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device),
|
| 71 |
+
"v": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device),
|
| 72 |
+
"is_init": False
|
| 73 |
+
})
|
| 74 |
+
|
| 75 |
+
self.crossattn_cache = crossattn_cache # always store the clean cache
|
| 76 |
+
|
| 77 |
+
def inference(self, noise: torch.Tensor, text_prompts: List[str], start_latents: Optional[torch.Tensor] = None, return_latents: bool = False) -> torch.Tensor:
|
| 78 |
+
"""
|
| 79 |
+
Perform inference on the given noise and text prompts.
|
| 80 |
+
Inputs:
|
| 81 |
+
noise (torch.Tensor): The input noise tensor of shape
|
| 82 |
+
(batch_size, num_frames, num_channels, height, width).
|
| 83 |
+
text_prompts (List[str]): The list of text prompts.
|
| 84 |
+
Outputs:
|
| 85 |
+
video (torch.Tensor): The generated video tensor of shape
|
| 86 |
+
(batch_size, num_frames, num_channels, height, width). It is normalized to be in the range [0, 1].
|
| 87 |
+
"""
|
| 88 |
+
batch_size, num_frames, num_channels, height, width = noise.shape
|
| 89 |
+
conditional_dict = self.text_encoder(
|
| 90 |
+
text_prompts=text_prompts
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
output = torch.zeros(
|
| 94 |
+
[batch_size, num_frames, num_channels, height, width],
|
| 95 |
+
device=noise.device,
|
| 96 |
+
dtype=noise.dtype
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
# Step 1: Initialize KV cache
|
| 100 |
+
if self.kv_cache1 is None:
|
| 101 |
+
self._initialize_kv_cache(
|
| 102 |
+
batch_size=batch_size,
|
| 103 |
+
dtype=noise.dtype,
|
| 104 |
+
device=noise.device
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
self._initialize_crossattn_cache(
|
| 108 |
+
batch_size=batch_size,
|
| 109 |
+
dtype=noise.dtype,
|
| 110 |
+
device=noise.device
|
| 111 |
+
)
|
| 112 |
+
else:
|
| 113 |
+
# reset cross attn cache
|
| 114 |
+
for block_index in range(self.num_transformer_blocks):
|
| 115 |
+
self.crossattn_cache[block_index]["is_init"] = False
|
| 116 |
+
|
| 117 |
+
num_input_blocks = start_latents.shape[1] // self.num_frame_per_block if start_latents is not None else 0
|
| 118 |
+
|
| 119 |
+
# Step 2: Temporal denoising loop
|
| 120 |
+
num_blocks = num_frames // self.num_frame_per_block
|
| 121 |
+
for block_index in range(num_blocks):
|
| 122 |
+
noisy_input = noise[:, block_index * self.num_frame_per_block:(block_index + 1) * self.num_frame_per_block]
|
| 123 |
+
|
| 124 |
+
if start_latents is not None and block_index < num_input_blocks:
|
| 125 |
+
timestep = torch.ones(
|
| 126 |
+
[batch_size, self.num_frame_per_block], device=noise.device, dtype=torch.int64) * 0
|
| 127 |
+
|
| 128 |
+
current_ref_latents = start_latents[:, block_index * self.num_frame_per_block:(
|
| 129 |
+
block_index + 1) * self.num_frame_per_block]
|
| 130 |
+
output[:, block_index * self.num_frame_per_block:(
|
| 131 |
+
block_index + 1) * self.num_frame_per_block] = current_ref_latents
|
| 132 |
+
|
| 133 |
+
self.generator(
|
| 134 |
+
noisy_image_or_video=current_ref_latents,
|
| 135 |
+
conditional_dict=conditional_dict,
|
| 136 |
+
timestep=timestep * 0,
|
| 137 |
+
kv_cache=self.kv_cache1,
|
| 138 |
+
crossattn_cache=self.crossattn_cache,
|
| 139 |
+
current_start=block_index * self.num_frame_per_block * self.frame_seq_length,
|
| 140 |
+
current_end=(block_index + 1) *
|
| 141 |
+
self.num_frame_per_block * self.frame_seq_length
|
| 142 |
+
)
|
| 143 |
+
continue
|
| 144 |
+
|
| 145 |
+
# Step 2.1: Spatial denoising loop
|
| 146 |
+
for index, current_timestep in enumerate(self.denoising_step_list):
|
| 147 |
+
# set current timestep
|
| 148 |
+
timestep = torch.ones([batch_size, self.num_frame_per_block], device=noise.device, dtype=torch.int64) * current_timestep
|
| 149 |
+
|
| 150 |
+
if index < len(self.denoising_step_list) - 1:
|
| 151 |
+
denoised_pred = self.generator(
|
| 152 |
+
noisy_image_or_video=noisy_input,
|
| 153 |
+
conditional_dict=conditional_dict,
|
| 154 |
+
timestep=timestep,
|
| 155 |
+
kv_cache=self.kv_cache1,
|
| 156 |
+
crossattn_cache=self.crossattn_cache,
|
| 157 |
+
current_start=block_index * self.num_frame_per_block * self.frame_seq_length,
|
| 158 |
+
current_end=(
|
| 159 |
+
block_index + 1) * self.num_frame_per_block * self.frame_seq_length
|
| 160 |
+
)
|
| 161 |
+
next_timestep = self.denoising_step_list[index + 1]
|
| 162 |
+
noisy_input = self.scheduler.add_noise(
|
| 163 |
+
denoised_pred.flatten(0, 1),
|
| 164 |
+
torch.randn_like(denoised_pred.flatten(0, 1)),
|
| 165 |
+
next_timestep *
|
| 166 |
+
torch.ones([batch_size], device="cuda",
|
| 167 |
+
dtype=torch.long)
|
| 168 |
+
).unflatten(0, denoised_pred.shape[:2])
|
| 169 |
+
else:
|
| 170 |
+
# for getting real output
|
| 171 |
+
denoised_pred = self.generator(
|
| 172 |
+
noisy_image_or_video=noisy_input,
|
| 173 |
+
conditional_dict=conditional_dict,
|
| 174 |
+
timestep=timestep,
|
| 175 |
+
kv_cache=self.kv_cache1,
|
| 176 |
+
crossattn_cache=self.crossattn_cache,
|
| 177 |
+
current_start=block_index * self.num_frame_per_block * self.frame_seq_length,
|
| 178 |
+
current_end=(
|
| 179 |
+
block_index + 1) * self.num_frame_per_block * self.frame_seq_length
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
# Step 2.2: rerun with timestep zero to update the cache
|
| 183 |
+
output[:, block_index * self.num_frame_per_block:(
|
| 184 |
+
block_index + 1) * self.num_frame_per_block] = denoised_pred
|
| 185 |
+
|
| 186 |
+
self.generator(
|
| 187 |
+
noisy_image_or_video=denoised_pred,
|
| 188 |
+
conditional_dict=conditional_dict,
|
| 189 |
+
timestep=timestep * 0,
|
| 190 |
+
kv_cache=self.kv_cache1,
|
| 191 |
+
crossattn_cache=self.crossattn_cache,
|
| 192 |
+
current_start=block_index * self.num_frame_per_block * self.frame_seq_length,
|
| 193 |
+
current_end=(block_index + 1) *
|
| 194 |
+
self.num_frame_per_block * self.frame_seq_length
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
# Step 3: Decode the output
|
| 198 |
+
video = self.vae.decode_to_pixel(output)
|
| 199 |
+
video = (video * 0.5 + 0.5).clamp(0, 1)
|
| 200 |
+
|
| 201 |
+
if return_latents:
|
| 202 |
+
return video, output
|
| 203 |
+
else:
|
| 204 |
+
return video
|
exp_code/1_benchmark/CausVid/causvid/models/wan/causal_model.py
ADDED
|
@@ -0,0 +1,749 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from causvid.models.wan.wan_base.modules.attention import attention
|
| 2 |
+
from causvid.models.wan.wan_base.modules.model import (
|
| 3 |
+
WanRMSNorm,
|
| 4 |
+
rope_apply,
|
| 5 |
+
WanLayerNorm,
|
| 6 |
+
WAN_CROSSATTENTION_CLASSES,
|
| 7 |
+
Head,
|
| 8 |
+
rope_params,
|
| 9 |
+
MLPProj,
|
| 10 |
+
sinusoidal_embedding_1d
|
| 11 |
+
)
|
| 12 |
+
from torch.nn.attention.flex_attention import create_block_mask, flex_attention
|
| 13 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 14 |
+
from torch.nn.attention.flex_attention import BlockMask
|
| 15 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 16 |
+
import torch.nn as nn
|
| 17 |
+
import torch
|
| 18 |
+
import math
|
| 19 |
+
|
| 20 |
+
# wan 1.3B model has a weird channel / head configurations and require max-autotune to work with flexattention
|
| 21 |
+
# see https://github.com/pytorch/pytorch/issues/133254
|
| 22 |
+
# change to default for other models
|
| 23 |
+
flex_attention = torch.compile(
|
| 24 |
+
flex_attention, dynamic=False, mode="max-autotune")
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def causal_rope_apply(x, grid_sizes, freqs, start_frame=0):
|
| 28 |
+
n, c = x.size(2), x.size(3) // 2
|
| 29 |
+
|
| 30 |
+
# split freqs
|
| 31 |
+
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
|
| 32 |
+
|
| 33 |
+
# loop over samples
|
| 34 |
+
output = []
|
| 35 |
+
|
| 36 |
+
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
|
| 37 |
+
seq_len = f * h * w
|
| 38 |
+
|
| 39 |
+
# precompute multipliers
|
| 40 |
+
x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(
|
| 41 |
+
seq_len, n, -1, 2))
|
| 42 |
+
freqs_i = torch.cat([
|
| 43 |
+
freqs[0][start_frame:start_frame + f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
| 44 |
+
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
| 45 |
+
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
|
| 46 |
+
],
|
| 47 |
+
dim=-1).reshape(seq_len, 1, -1)
|
| 48 |
+
|
| 49 |
+
# apply rotary embedding
|
| 50 |
+
x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
|
| 51 |
+
x_i = torch.cat([x_i, x[i, seq_len:]])
|
| 52 |
+
|
| 53 |
+
# append to collection
|
| 54 |
+
output.append(x_i)
|
| 55 |
+
return torch.stack(output).type_as(x)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class CausalWanSelfAttention(nn.Module):
|
| 59 |
+
|
| 60 |
+
def __init__(self,
|
| 61 |
+
dim,
|
| 62 |
+
num_heads,
|
| 63 |
+
window_size=(-1, -1),
|
| 64 |
+
qk_norm=True,
|
| 65 |
+
eps=1e-6):
|
| 66 |
+
assert dim % num_heads == 0
|
| 67 |
+
super().__init__()
|
| 68 |
+
self.dim = dim
|
| 69 |
+
self.num_heads = num_heads
|
| 70 |
+
self.head_dim = dim // num_heads
|
| 71 |
+
self.window_size = window_size
|
| 72 |
+
self.qk_norm = qk_norm
|
| 73 |
+
self.eps = eps
|
| 74 |
+
|
| 75 |
+
# layers
|
| 76 |
+
self.q = nn.Linear(dim, dim)
|
| 77 |
+
self.k = nn.Linear(dim, dim)
|
| 78 |
+
self.v = nn.Linear(dim, dim)
|
| 79 |
+
self.o = nn.Linear(dim, dim)
|
| 80 |
+
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
| 81 |
+
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
| 82 |
+
|
| 83 |
+
def forward(self, x, seq_lens, grid_sizes, freqs, block_mask, kv_cache=None, current_start=0, current_end=0):
|
| 84 |
+
r"""
|
| 85 |
+
Args:
|
| 86 |
+
x(Tensor): Shape [B, L, num_heads, C / num_heads]
|
| 87 |
+
seq_lens(Tensor): Shape [B]
|
| 88 |
+
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
| 89 |
+
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
| 90 |
+
block_mask (BlockMask)
|
| 91 |
+
"""
|
| 92 |
+
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
| 93 |
+
|
| 94 |
+
# query, key, value function
|
| 95 |
+
def qkv_fn(x):
|
| 96 |
+
q = self.norm_q(self.q(x)).view(b, s, n, d)
|
| 97 |
+
k = self.norm_k(self.k(x)).view(b, s, n, d)
|
| 98 |
+
v = self.v(x).view(b, s, n, d)
|
| 99 |
+
return q, k, v
|
| 100 |
+
|
| 101 |
+
q, k, v = qkv_fn(x)
|
| 102 |
+
|
| 103 |
+
if kv_cache is None:
|
| 104 |
+
roped_query = rope_apply(q, grid_sizes, freqs).type_as(v)
|
| 105 |
+
roped_key = rope_apply(k, grid_sizes, freqs).type_as(v)
|
| 106 |
+
|
| 107 |
+
padded_length = math.ceil(q.shape[1] / 128) * 128 - q.shape[1]
|
| 108 |
+
padded_roped_query = torch.cat(
|
| 109 |
+
[roped_query,
|
| 110 |
+
torch.zeros([q.shape[0], padded_length, q.shape[2], q.shape[3]],
|
| 111 |
+
device=q.device, dtype=v.dtype)],
|
| 112 |
+
dim=1
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
padded_roped_key = torch.cat(
|
| 116 |
+
[roped_key, torch.zeros([k.shape[0], padded_length, k.shape[2], k.shape[3]],
|
| 117 |
+
device=k.device, dtype=v.dtype)],
|
| 118 |
+
dim=1
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
padded_v = torch.cat(
|
| 122 |
+
[v, torch.zeros([v.shape[0], padded_length, v.shape[2], v.shape[3]],
|
| 123 |
+
device=v.device, dtype=v.dtype)],
|
| 124 |
+
dim=1
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# print(q.shape, k.shape, v.shape, padded_roped_query.shape, padded_roped_key.shape, padded_v.shape)
|
| 128 |
+
x = flex_attention(
|
| 129 |
+
query=padded_roped_query.transpose(2, 1),
|
| 130 |
+
key=padded_roped_key.transpose(2, 1),
|
| 131 |
+
value=padded_v.transpose(2, 1),
|
| 132 |
+
block_mask=block_mask
|
| 133 |
+
)[:, :, :-padded_length].transpose(2, 1)
|
| 134 |
+
else:
|
| 135 |
+
roped_query = causal_rope_apply(
|
| 136 |
+
q, grid_sizes, freqs, start_frame=current_start // math.prod(grid_sizes[0][1:]).item()).type_as(v)
|
| 137 |
+
roped_key = causal_rope_apply(
|
| 138 |
+
k, grid_sizes, freqs, start_frame=current_start // math.prod(grid_sizes[0][1:]).item()).type_as(v)
|
| 139 |
+
|
| 140 |
+
kv_cache["k"][:, current_start:current_end] = roped_key
|
| 141 |
+
kv_cache["v"][:, current_start:current_end] = v
|
| 142 |
+
|
| 143 |
+
x = attention(roped_query, kv_cache["k"][:, :current_end], kv_cache["v"][:, :current_end])
|
| 144 |
+
|
| 145 |
+
# print(x.shape, q.shape, k.shape, v.shape, roped_query.shape, roped_key.shape, kv_cache["k"][:, :current_end].shape, kv_cache["v"][:, :current_end].shape)
|
| 146 |
+
|
| 147 |
+
# output
|
| 148 |
+
x = x.flatten(2)
|
| 149 |
+
x = self.o(x)
|
| 150 |
+
return x
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
class CausalWanAttentionBlock(nn.Module):
|
| 154 |
+
|
| 155 |
+
def __init__(self,
|
| 156 |
+
cross_attn_type,
|
| 157 |
+
dim,
|
| 158 |
+
ffn_dim,
|
| 159 |
+
num_heads,
|
| 160 |
+
window_size=(-1, -1),
|
| 161 |
+
qk_norm=True,
|
| 162 |
+
cross_attn_norm=False,
|
| 163 |
+
eps=1e-6):
|
| 164 |
+
super().__init__()
|
| 165 |
+
self.dim = dim
|
| 166 |
+
self.ffn_dim = ffn_dim
|
| 167 |
+
self.num_heads = num_heads
|
| 168 |
+
self.window_size = window_size
|
| 169 |
+
self.qk_norm = qk_norm
|
| 170 |
+
self.cross_attn_norm = cross_attn_norm
|
| 171 |
+
self.eps = eps
|
| 172 |
+
|
| 173 |
+
# layers
|
| 174 |
+
self.norm1 = WanLayerNorm(dim, eps)
|
| 175 |
+
self.self_attn = CausalWanSelfAttention(dim, num_heads, window_size, qk_norm,
|
| 176 |
+
eps)
|
| 177 |
+
self.norm3 = WanLayerNorm(
|
| 178 |
+
dim, eps,
|
| 179 |
+
elementwise_affine=True) if cross_attn_norm else nn.Identity()
|
| 180 |
+
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim,
|
| 181 |
+
num_heads,
|
| 182 |
+
(-1, -1),
|
| 183 |
+
qk_norm,
|
| 184 |
+
eps)
|
| 185 |
+
self.norm2 = WanLayerNorm(dim, eps)
|
| 186 |
+
self.ffn = nn.Sequential(
|
| 187 |
+
nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'),
|
| 188 |
+
nn.Linear(ffn_dim, dim))
|
| 189 |
+
|
| 190 |
+
# modulation
|
| 191 |
+
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
|
| 192 |
+
|
| 193 |
+
def forward(
|
| 194 |
+
self,
|
| 195 |
+
x,
|
| 196 |
+
e,
|
| 197 |
+
seq_lens,
|
| 198 |
+
grid_sizes,
|
| 199 |
+
freqs,
|
| 200 |
+
context,
|
| 201 |
+
context_lens,
|
| 202 |
+
block_mask,
|
| 203 |
+
kv_cache=None,
|
| 204 |
+
crossattn_cache=None,
|
| 205 |
+
current_start=0,
|
| 206 |
+
current_end=0
|
| 207 |
+
):
|
| 208 |
+
r"""
|
| 209 |
+
Args:
|
| 210 |
+
x(Tensor): Shape [B, L, C] # torch.Size([1, 32760, 1536])
|
| 211 |
+
e(Tensor): Shape [B, F, 6, C] # torch.Size([1, 21, 6, 1536])
|
| 212 |
+
seq_lens(Tensor): Shape [B], length of each sequence in batch
|
| 213 |
+
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
| 214 |
+
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
| 215 |
+
"""
|
| 216 |
+
num_frames, frame_seqlen = e.shape[1], x.shape[1] // e.shape[1] # 21, 32760 / 21 = 1560
|
| 217 |
+
# assert e.dtype == torch.float32
|
| 218 |
+
# with amp.autocast(dtype=torch.float32):
|
| 219 |
+
e = (self.modulation.unsqueeze(1) + e).chunk(6, dim=2) # [torch.Size([1, 21, 1, 1536]) x 6]
|
| 220 |
+
# assert e[0].dtype == torch.float32
|
| 221 |
+
|
| 222 |
+
# self-attention
|
| 223 |
+
y = self.self_attn(
|
| 224 |
+
(self.norm1(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen)) # torch.Size([1, 32760, 1536]) -> torch.Size([1, 21, 1560, 1536]) -> torch.Size([1, 32760, 1536])
|
| 225 |
+
* (1 + e[1]) + e[0]).flatten(1, 2),
|
| 226 |
+
seq_lens, # tensor([32760])
|
| 227 |
+
grid_sizes, # tensor([[21, 30, 52]])
|
| 228 |
+
freqs, # torch.Size([1024, 64])
|
| 229 |
+
block_mask, # (1, 1, 32768, 32768)
|
| 230 |
+
kv_cache,
|
| 231 |
+
current_start,
|
| 232 |
+
current_end
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
# with amp.autocast(dtype=torch.float32):
|
| 236 |
+
x = x + (y.unflatten(dim=1, sizes=(num_frames, frame_seqlen))* e[2]).flatten(1, 2) # torch.Size([1, 32760, 1536]) -> torch.Size([1, 21, 1560, 1536]) -> torch.Size([1, 32760, 1536])
|
| 237 |
+
|
| 238 |
+
# cross-attention & ffn function
|
| 239 |
+
def cross_attn_ffn(x, context, context_lens, e, crossattn_cache=None):
|
| 240 |
+
x = x + self.cross_attn(self.norm3(x), context,
|
| 241 |
+
context_lens, crossattn_cache=crossattn_cache)
|
| 242 |
+
y = self.ffn(
|
| 243 |
+
(self.norm2(x).unflatten(dim=1, sizes=(num_frames,
|
| 244 |
+
frame_seqlen)) * (1 + e[4]) + e[3]).flatten(1, 2) # torch.Size([1, 32760, 1536]) -> torch.Size([1, 21, 1560, 1536]) -> torch.Size([1, 32760, 1536])
|
| 245 |
+
)
|
| 246 |
+
# with amp.autocast(dtype=torch.float32):
|
| 247 |
+
x = x + (y.unflatten(dim=1, sizes=(num_frames,
|
| 248 |
+
frame_seqlen)) * e[5]).flatten(1, 2) # torch.Size([1, 32760, 1536]) -> torch.Size([1, 21, 1560, 1536]) -> torch.Size([1, 32760, 1536])
|
| 249 |
+
return x
|
| 250 |
+
|
| 251 |
+
x = cross_attn_ffn(x, context, context_lens, e, crossattn_cache)
|
| 252 |
+
return x
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
class CausalHead(nn.Module):
|
| 256 |
+
|
| 257 |
+
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
|
| 258 |
+
super().__init__()
|
| 259 |
+
self.dim = dim
|
| 260 |
+
self.out_dim = out_dim
|
| 261 |
+
self.patch_size = patch_size
|
| 262 |
+
self.eps = eps
|
| 263 |
+
|
| 264 |
+
# layers
|
| 265 |
+
out_dim = math.prod(patch_size) * out_dim
|
| 266 |
+
self.norm = WanLayerNorm(dim, eps)
|
| 267 |
+
self.head = nn.Linear(dim, out_dim)
|
| 268 |
+
|
| 269 |
+
# modulation
|
| 270 |
+
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
|
| 271 |
+
|
| 272 |
+
def forward(self, x, e):
|
| 273 |
+
r"""
|
| 274 |
+
Args:
|
| 275 |
+
x(Tensor): Shape [B, L1, C]
|
| 276 |
+
e(Tensor): Shape [B, F, 1, C]
|
| 277 |
+
"""
|
| 278 |
+
# assert e.dtype == torch.float32
|
| 279 |
+
# with amp.autocast(dtype=torch.float32):
|
| 280 |
+
num_frames, frame_seqlen = e.shape[1], x.shape[1] // e.shape[1]
|
| 281 |
+
e = (self.modulation.unsqueeze(1) + e).chunk(2, dim=2)
|
| 282 |
+
x = (self.head(
|
| 283 |
+
self.norm(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen)) *
|
| 284 |
+
(1 + e[1]) + e[0]))
|
| 285 |
+
return x
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
class CausalWanModel(ModelMixin, ConfigMixin):
|
| 289 |
+
r"""
|
| 290 |
+
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
| 291 |
+
"""
|
| 292 |
+
|
| 293 |
+
ignore_for_config = [
|
| 294 |
+
'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size'
|
| 295 |
+
]
|
| 296 |
+
_no_split_modules = ['WanAttentionBlock']
|
| 297 |
+
_supports_gradient_checkpointing = True
|
| 298 |
+
|
| 299 |
+
@register_to_config
|
| 300 |
+
def __init__(self,
|
| 301 |
+
model_type='t2v',
|
| 302 |
+
patch_size=(1, 2, 2),
|
| 303 |
+
text_len=512,
|
| 304 |
+
in_dim=16,
|
| 305 |
+
dim=2048,
|
| 306 |
+
ffn_dim=8192,
|
| 307 |
+
freq_dim=256,
|
| 308 |
+
text_dim=4096,
|
| 309 |
+
out_dim=16,
|
| 310 |
+
num_heads=16,
|
| 311 |
+
num_layers=32,
|
| 312 |
+
window_size=(-1, -1),
|
| 313 |
+
qk_norm=True,
|
| 314 |
+
cross_attn_norm=True,
|
| 315 |
+
eps=1e-6):
|
| 316 |
+
r"""
|
| 317 |
+
Initialize the diffusion model backbone.
|
| 318 |
+
|
| 319 |
+
Args:
|
| 320 |
+
model_type (`str`, *optional*, defaults to 't2v'):
|
| 321 |
+
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
|
| 322 |
+
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
|
| 323 |
+
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
|
| 324 |
+
text_len (`int`, *optional*, defaults to 512):
|
| 325 |
+
Fixed length for text embeddings
|
| 326 |
+
in_dim (`int`, *optional*, defaults to 16):
|
| 327 |
+
Input video channels (C_in)
|
| 328 |
+
dim (`int`, *optional*, defaults to 2048):
|
| 329 |
+
Hidden dimension of the transformer
|
| 330 |
+
ffn_dim (`int`, *optional*, defaults to 8192):
|
| 331 |
+
Intermediate dimension in feed-forward network
|
| 332 |
+
freq_dim (`int`, *optional*, defaults to 256):
|
| 333 |
+
Dimension for sinusoidal time embeddings
|
| 334 |
+
text_dim (`int`, *optional*, defaults to 4096):
|
| 335 |
+
Input dimension for text embeddings
|
| 336 |
+
out_dim (`int`, *optional*, defaults to 16):
|
| 337 |
+
Output video channels (C_out)
|
| 338 |
+
num_heads (`int`, *optional*, defaults to 16):
|
| 339 |
+
Number of attention heads
|
| 340 |
+
num_layers (`int`, *optional*, defaults to 32):
|
| 341 |
+
Number of transformer blocks
|
| 342 |
+
window_size (`tuple`, *optional*, defaults to (-1, -1)):
|
| 343 |
+
Window size for local attention (-1 indicates global attention)
|
| 344 |
+
qk_norm (`bool`, *optional*, defaults to True):
|
| 345 |
+
Enable query/key normalization
|
| 346 |
+
cross_attn_norm (`bool`, *optional*, defaults to False):
|
| 347 |
+
Enable cross-attention normalization
|
| 348 |
+
eps (`float`, *optional*, defaults to 1e-6):
|
| 349 |
+
Epsilon value for normalization layers
|
| 350 |
+
"""
|
| 351 |
+
|
| 352 |
+
super().__init__()
|
| 353 |
+
|
| 354 |
+
assert model_type in ['t2v', 'i2v']
|
| 355 |
+
self.model_type = model_type
|
| 356 |
+
|
| 357 |
+
self.patch_size = patch_size
|
| 358 |
+
self.text_len = text_len
|
| 359 |
+
self.in_dim = in_dim
|
| 360 |
+
self.dim = dim
|
| 361 |
+
self.ffn_dim = ffn_dim
|
| 362 |
+
self.freq_dim = freq_dim
|
| 363 |
+
self.text_dim = text_dim
|
| 364 |
+
self.out_dim = out_dim
|
| 365 |
+
self.num_heads = num_heads
|
| 366 |
+
self.num_layers = num_layers
|
| 367 |
+
self.window_size = window_size
|
| 368 |
+
self.qk_norm = qk_norm
|
| 369 |
+
self.cross_attn_norm = cross_attn_norm
|
| 370 |
+
self.eps = eps
|
| 371 |
+
|
| 372 |
+
# embeddings
|
| 373 |
+
self.patch_embedding = nn.Conv3d(
|
| 374 |
+
in_dim, dim, kernel_size=patch_size, stride=patch_size)
|
| 375 |
+
self.text_embedding = nn.Sequential(
|
| 376 |
+
nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'),
|
| 377 |
+
nn.Linear(dim, dim))
|
| 378 |
+
|
| 379 |
+
self.time_embedding = nn.Sequential(
|
| 380 |
+
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
|
| 381 |
+
self.time_projection = nn.Sequential(
|
| 382 |
+
nn.SiLU(), nn.Linear(dim, dim * 6))
|
| 383 |
+
|
| 384 |
+
# blocks
|
| 385 |
+
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
|
| 386 |
+
self.blocks = nn.ModuleList([
|
| 387 |
+
CausalWanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
|
| 388 |
+
window_size, qk_norm, cross_attn_norm, eps)
|
| 389 |
+
for _ in range(num_layers)
|
| 390 |
+
])
|
| 391 |
+
|
| 392 |
+
# head
|
| 393 |
+
self.head = CausalHead(dim, out_dim, patch_size, eps)
|
| 394 |
+
|
| 395 |
+
# buffers (don't use register_buffer otherwise dtype will be changed in to())
|
| 396 |
+
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
|
| 397 |
+
d = dim // num_heads
|
| 398 |
+
self.freqs = torch.cat([
|
| 399 |
+
rope_params(1024, d - 4 * (d // 6)),
|
| 400 |
+
rope_params(1024, 2 * (d // 6)),
|
| 401 |
+
rope_params(1024, 2 * (d // 6))
|
| 402 |
+
],
|
| 403 |
+
dim=1)
|
| 404 |
+
|
| 405 |
+
if model_type == 'i2v':
|
| 406 |
+
self.img_emb = MLPProj(1280, dim)
|
| 407 |
+
|
| 408 |
+
# initialize weights
|
| 409 |
+
self.init_weights()
|
| 410 |
+
|
| 411 |
+
self.gradient_checkpointing = False
|
| 412 |
+
|
| 413 |
+
self.block_mask = None
|
| 414 |
+
|
| 415 |
+
self.num_frame_per_block = 1
|
| 416 |
+
|
| 417 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 418 |
+
self.gradient_checkpointing = value
|
| 419 |
+
|
| 420 |
+
@staticmethod
|
| 421 |
+
def _prepare_blockwise_causal_attn_mask(
|
| 422 |
+
device: torch.device | str, num_frames: int = 21,
|
| 423 |
+
frame_seqlen: int = 1560, num_frame_per_block=1
|
| 424 |
+
) -> BlockMask:
|
| 425 |
+
"""
|
| 426 |
+
we will divide the token sequence into the following format
|
| 427 |
+
[1 latent frame] [1 latent frame] ... [1 latent frame]
|
| 428 |
+
We use flexattention to construct the attention mask
|
| 429 |
+
"""
|
| 430 |
+
total_length = num_frames * frame_seqlen
|
| 431 |
+
|
| 432 |
+
# we do right padding to get to a multiple of 128
|
| 433 |
+
padded_length = math.ceil(total_length / 128) * 128 - total_length
|
| 434 |
+
|
| 435 |
+
ends = torch.zeros(total_length + padded_length,
|
| 436 |
+
device=device, dtype=torch.long)
|
| 437 |
+
|
| 438 |
+
# Block-wise causal mask will attend to all elements that are before the end of the current chunk
|
| 439 |
+
frame_indices = torch.arange(
|
| 440 |
+
start=0,
|
| 441 |
+
end=total_length,
|
| 442 |
+
step=frame_seqlen * num_frame_per_block,
|
| 443 |
+
device=device
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
for tmp in frame_indices:
|
| 447 |
+
ends[tmp:tmp + frame_seqlen * num_frame_per_block] = tmp + \
|
| 448 |
+
frame_seqlen * num_frame_per_block
|
| 449 |
+
|
| 450 |
+
def attention_mask(b, h, q_idx, kv_idx):
|
| 451 |
+
return (kv_idx < ends[q_idx]) | (q_idx == kv_idx)
|
| 452 |
+
# return ((kv_idx < total_length) & (q_idx < total_length)) | (q_idx == kv_idx) # bidirectional mask
|
| 453 |
+
|
| 454 |
+
block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length,
|
| 455 |
+
KV_LEN=total_length + padded_length, _compile=False, device=device)
|
| 456 |
+
|
| 457 |
+
import torch.distributed as dist
|
| 458 |
+
if not dist.is_initialized() or dist.get_rank() == 0:
|
| 459 |
+
print(
|
| 460 |
+
f" cache a block wise causal mask with block size of {num_frame_per_block} frames")
|
| 461 |
+
print(block_mask)
|
| 462 |
+
|
| 463 |
+
return block_mask
|
| 464 |
+
|
| 465 |
+
def _forward_inference(
|
| 466 |
+
self,
|
| 467 |
+
x,
|
| 468 |
+
t,
|
| 469 |
+
context,
|
| 470 |
+
seq_len,
|
| 471 |
+
clip_fea=None,
|
| 472 |
+
y=None,
|
| 473 |
+
kv_cache: dict = None,
|
| 474 |
+
crossattn_cache: dict = None,
|
| 475 |
+
current_start: int = 0,
|
| 476 |
+
current_end: int = 0
|
| 477 |
+
):
|
| 478 |
+
r"""
|
| 479 |
+
Run the diffusion model with kv caching.
|
| 480 |
+
See Algorithm 2 of CausVid paper https://arxiv.org/abs/2412.07772 for details.
|
| 481 |
+
This function will be run for num_frame times.
|
| 482 |
+
Process the latent frames one by one (1560 tokens each)
|
| 483 |
+
|
| 484 |
+
Args:
|
| 485 |
+
x (List[Tensor]):
|
| 486 |
+
List of input video tensors, each with shape [C_in, F, H, W]
|
| 487 |
+
t (Tensor):
|
| 488 |
+
Diffusion timesteps tensor of shape [B]
|
| 489 |
+
context (List[Tensor]):
|
| 490 |
+
List of text embeddings each with shape [L, C]
|
| 491 |
+
seq_len (`int`):
|
| 492 |
+
Maximum sequence length for positional encoding
|
| 493 |
+
clip_fea (Tensor, *optional*):
|
| 494 |
+
CLIP image features for image-to-video mode
|
| 495 |
+
y (List[Tensor], *optional*):
|
| 496 |
+
Conditional video inputs for image-to-video mode, same shape as x
|
| 497 |
+
|
| 498 |
+
Returns:
|
| 499 |
+
List[Tensor]:
|
| 500 |
+
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
|
| 501 |
+
"""
|
| 502 |
+
if self.model_type == 'i2v':
|
| 503 |
+
assert clip_fea is not None and y is not None
|
| 504 |
+
# params
|
| 505 |
+
device = self.patch_embedding.weight.device
|
| 506 |
+
if self.freqs.device != device:
|
| 507 |
+
self.freqs = self.freqs.to(device)
|
| 508 |
+
|
| 509 |
+
if y is not None:
|
| 510 |
+
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
| 511 |
+
|
| 512 |
+
# embeddings
|
| 513 |
+
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
| 514 |
+
grid_sizes = torch.stack(
|
| 515 |
+
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
|
| 516 |
+
x = [u.flatten(2).transpose(1, 2) for u in x]
|
| 517 |
+
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
| 518 |
+
assert seq_lens.max() <= seq_len
|
| 519 |
+
x = torch.cat(x)
|
| 520 |
+
"""
|
| 521 |
+
torch.cat([
|
| 522 |
+
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
|
| 523 |
+
dim=1) for u in x
|
| 524 |
+
])
|
| 525 |
+
"""
|
| 526 |
+
|
| 527 |
+
# time embeddings
|
| 528 |
+
# with amp.autocast(dtype=torch.float32):
|
| 529 |
+
e = self.time_embedding(sinusoidal_embedding_1d(self.freq_dim, t.flatten()).type_as(x))
|
| 530 |
+
e0 = self.time_projection(e).unflatten(1, (6, self.dim)).unflatten(dim=0, sizes=t.shape)
|
| 531 |
+
# assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
| 532 |
+
|
| 533 |
+
# context
|
| 534 |
+
context_lens = None
|
| 535 |
+
context = self.text_embedding(
|
| 536 |
+
torch.stack([
|
| 537 |
+
torch.cat(
|
| 538 |
+
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
| 539 |
+
for u in context
|
| 540 |
+
]))
|
| 541 |
+
|
| 542 |
+
if clip_fea is not None:
|
| 543 |
+
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
| 544 |
+
context = torch.concat([context_clip, context], dim=1)
|
| 545 |
+
|
| 546 |
+
# arguments
|
| 547 |
+
kwargs = dict(
|
| 548 |
+
e=e0,
|
| 549 |
+
seq_lens=seq_lens,
|
| 550 |
+
grid_sizes=grid_sizes,
|
| 551 |
+
freqs=self.freqs,
|
| 552 |
+
context=context,
|
| 553 |
+
context_lens=context_lens,
|
| 554 |
+
block_mask=self.block_mask
|
| 555 |
+
)
|
| 556 |
+
|
| 557 |
+
def create_custom_forward(module):
|
| 558 |
+
def custom_forward(*inputs, **kwargs):
|
| 559 |
+
return module(*inputs, **kwargs)
|
| 560 |
+
return custom_forward
|
| 561 |
+
|
| 562 |
+
for block_index, block in enumerate(self.blocks):
|
| 563 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 564 |
+
assert False
|
| 565 |
+
else:
|
| 566 |
+
kwargs.update(
|
| 567 |
+
{
|
| 568 |
+
"kv_cache": kv_cache[block_index],
|
| 569 |
+
"crossattn_cache": crossattn_cache[block_index],
|
| 570 |
+
"current_start": current_start,
|
| 571 |
+
"current_end": current_end
|
| 572 |
+
}
|
| 573 |
+
)
|
| 574 |
+
x = block(x, **kwargs)
|
| 575 |
+
|
| 576 |
+
# head
|
| 577 |
+
x = self.head(x, e.unflatten(dim=0, sizes=t.shape).unsqueeze(2))
|
| 578 |
+
|
| 579 |
+
# unpatchify
|
| 580 |
+
x = self.unpatchify(x, grid_sizes)
|
| 581 |
+
return torch.stack(x)
|
| 582 |
+
|
| 583 |
+
def _forward_train(
|
| 584 |
+
self,
|
| 585 |
+
x,
|
| 586 |
+
t,
|
| 587 |
+
context,
|
| 588 |
+
seq_len,
|
| 589 |
+
clip_fea=None,
|
| 590 |
+
y=None,
|
| 591 |
+
):
|
| 592 |
+
r"""
|
| 593 |
+
Forward pass through the diffusion model
|
| 594 |
+
|
| 595 |
+
Args:
|
| 596 |
+
x (List[Tensor]):
|
| 597 |
+
List of input video tensors, each with shape [C_in, F, H, W]
|
| 598 |
+
t (Tensor):
|
| 599 |
+
Diffusion timesteps tensor of shape [B]
|
| 600 |
+
context (List[Tensor]):
|
| 601 |
+
List of text embeddings each with shape [L, C]
|
| 602 |
+
seq_len (`int`):
|
| 603 |
+
Maximum sequence length for positional encoding
|
| 604 |
+
clip_fea (Tensor, *optional*):
|
| 605 |
+
CLIP image features for image-to-video mode
|
| 606 |
+
y (List[Tensor], *optional*):
|
| 607 |
+
Conditional video inputs for image-to-video mode, same shape as x
|
| 608 |
+
|
| 609 |
+
Returns:
|
| 610 |
+
List[Tensor]:
|
| 611 |
+
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
|
| 612 |
+
"""
|
| 613 |
+
if self.model_type == 'i2v':
|
| 614 |
+
assert clip_fea is not None and y is not None
|
| 615 |
+
# params
|
| 616 |
+
device = self.patch_embedding.weight.device
|
| 617 |
+
if self.freqs.device != device:
|
| 618 |
+
self.freqs = self.freqs.to(device)
|
| 619 |
+
|
| 620 |
+
# Construct blockwise causal attn mask
|
| 621 |
+
if self.block_mask is None:
|
| 622 |
+
self.block_mask = self._prepare_blockwise_causal_attn_mask(
|
| 623 |
+
device, num_frames=x.shape[2],
|
| 624 |
+
frame_seqlen=x.shape[-2] *
|
| 625 |
+
x.shape[-1] // (self.patch_size[1] * self.patch_size[2]),
|
| 626 |
+
num_frame_per_block=self.num_frame_per_block
|
| 627 |
+
)
|
| 628 |
+
|
| 629 |
+
if y is not None:
|
| 630 |
+
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
| 631 |
+
|
| 632 |
+
# embeddings
|
| 633 |
+
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
| 634 |
+
grid_sizes = torch.stack(
|
| 635 |
+
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
|
| 636 |
+
x = [u.flatten(2).transpose(1, 2) for u in x]
|
| 637 |
+
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
| 638 |
+
assert seq_lens.max() <= seq_len
|
| 639 |
+
x = torch.cat([torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) for u in x])
|
| 640 |
+
|
| 641 |
+
# time embeddings
|
| 642 |
+
# with amp.autocast(dtype=torch.float32):
|
| 643 |
+
e = self.time_embedding(sinusoidal_embedding_1d(self.freq_dim, t.flatten()).type_as(x)) # [1, 21] -> [21, 1536]
|
| 644 |
+
e0 = self.time_projection(e).unflatten(1, (6, self.dim)).unflatten(dim=0, sizes=t.shape) # [1, 21, 6, 1536]
|
| 645 |
+
# assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
| 646 |
+
|
| 647 |
+
# context
|
| 648 |
+
context_lens = None
|
| 649 |
+
context = self.text_embedding(
|
| 650 |
+
torch.stack([
|
| 651 |
+
torch.cat(
|
| 652 |
+
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
| 653 |
+
for u in context
|
| 654 |
+
]))
|
| 655 |
+
|
| 656 |
+
if clip_fea is not None:
|
| 657 |
+
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
| 658 |
+
context = torch.concat([context_clip, context], dim=1)
|
| 659 |
+
|
| 660 |
+
# arguments
|
| 661 |
+
kwargs = dict(
|
| 662 |
+
e=e0,
|
| 663 |
+
seq_lens=seq_lens,
|
| 664 |
+
grid_sizes=grid_sizes,
|
| 665 |
+
freqs=self.freqs,
|
| 666 |
+
context=context,
|
| 667 |
+
context_lens=context_lens,
|
| 668 |
+
block_mask=self.block_mask)
|
| 669 |
+
|
| 670 |
+
def create_custom_forward(module):
|
| 671 |
+
def custom_forward(*inputs, **kwargs):
|
| 672 |
+
return module(*inputs, **kwargs)
|
| 673 |
+
return custom_forward
|
| 674 |
+
|
| 675 |
+
for block in self.blocks:
|
| 676 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 677 |
+
x = torch.utils.checkpoint.checkpoint(
|
| 678 |
+
create_custom_forward(block),
|
| 679 |
+
x, **kwargs,
|
| 680 |
+
use_reentrant=False,
|
| 681 |
+
)
|
| 682 |
+
else:
|
| 683 |
+
x = block(x, **kwargs)
|
| 684 |
+
|
| 685 |
+
# head
|
| 686 |
+
x = self.head(x, e.unflatten(dim=0, sizes=t.shape).unsqueeze(2))
|
| 687 |
+
|
| 688 |
+
# unpatchify
|
| 689 |
+
x = self.unpatchify(x, grid_sizes)
|
| 690 |
+
return torch.stack(x)
|
| 691 |
+
|
| 692 |
+
def forward(
|
| 693 |
+
self,
|
| 694 |
+
*args,
|
| 695 |
+
**kwargs
|
| 696 |
+
):
|
| 697 |
+
if kwargs.get('kv_cache', None) is not None:
|
| 698 |
+
return self._forward_inference(*args, **kwargs)
|
| 699 |
+
else:
|
| 700 |
+
return self._forward_train(*args, **kwargs)
|
| 701 |
+
|
| 702 |
+
def unpatchify(self, x, grid_sizes):
|
| 703 |
+
r"""
|
| 704 |
+
Reconstruct video tensors from patch embeddings.
|
| 705 |
+
|
| 706 |
+
Args:
|
| 707 |
+
x (List[Tensor]):
|
| 708 |
+
List of patchified features, each with shape [L, C_out * prod(patch_size)]
|
| 709 |
+
grid_sizes (Tensor):
|
| 710 |
+
Original spatial-temporal grid dimensions before patching,
|
| 711 |
+
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
|
| 712 |
+
|
| 713 |
+
Returns:
|
| 714 |
+
List[Tensor]:
|
| 715 |
+
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
|
| 716 |
+
"""
|
| 717 |
+
|
| 718 |
+
c = self.out_dim
|
| 719 |
+
out = []
|
| 720 |
+
for u, v in zip(x, grid_sizes.tolist()):
|
| 721 |
+
u = u[:math.prod(v)].view(*v, *self.patch_size, c)
|
| 722 |
+
u = torch.einsum('fhwpqrc->cfphqwr', u)
|
| 723 |
+
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
|
| 724 |
+
out.append(u)
|
| 725 |
+
return out
|
| 726 |
+
|
| 727 |
+
def init_weights(self):
|
| 728 |
+
r"""
|
| 729 |
+
Initialize model parameters using Xavier initialization.
|
| 730 |
+
"""
|
| 731 |
+
|
| 732 |
+
# basic init
|
| 733 |
+
for m in self.modules():
|
| 734 |
+
if isinstance(m, nn.Linear):
|
| 735 |
+
nn.init.xavier_uniform_(m.weight)
|
| 736 |
+
if m.bias is not None:
|
| 737 |
+
nn.init.zeros_(m.bias)
|
| 738 |
+
|
| 739 |
+
# init embeddings
|
| 740 |
+
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
|
| 741 |
+
for m in self.text_embedding.modules():
|
| 742 |
+
if isinstance(m, nn.Linear):
|
| 743 |
+
nn.init.normal_(m.weight, std=.02)
|
| 744 |
+
for m in self.time_embedding.modules():
|
| 745 |
+
if isinstance(m, nn.Linear):
|
| 746 |
+
nn.init.normal_(m.weight, std=.02)
|
| 747 |
+
|
| 748 |
+
# init output layer
|
| 749 |
+
nn.init.zeros_(self.head.head.weight)
|
exp_code/1_benchmark/CausVid/causvid/models/wan/flow_match.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
The following code is copied from https://github.com/modelscope/DiffSynth-Studio/blob/main/diffsynth/schedulers/flow_match.py
|
| 3 |
+
"""
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class FlowMatchScheduler():
|
| 8 |
+
|
| 9 |
+
def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003 / 1.002, inverse_timesteps=False, extra_one_step=False, reverse_sigmas=False):
|
| 10 |
+
self.num_train_timesteps = num_train_timesteps
|
| 11 |
+
self.shift = shift
|
| 12 |
+
self.sigma_max = sigma_max
|
| 13 |
+
self.sigma_min = sigma_min
|
| 14 |
+
self.inverse_timesteps = inverse_timesteps
|
| 15 |
+
self.extra_one_step = extra_one_step
|
| 16 |
+
self.reverse_sigmas = reverse_sigmas
|
| 17 |
+
self.set_timesteps(num_inference_steps)
|
| 18 |
+
|
| 19 |
+
def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False):
|
| 20 |
+
sigma_start = self.sigma_min + \
|
| 21 |
+
(self.sigma_max - self.sigma_min) * denoising_strength
|
| 22 |
+
if self.extra_one_step:
|
| 23 |
+
self.sigmas = torch.linspace(
|
| 24 |
+
sigma_start, self.sigma_min, num_inference_steps + 1)[:-1]
|
| 25 |
+
else:
|
| 26 |
+
self.sigmas = torch.linspace(
|
| 27 |
+
sigma_start, self.sigma_min, num_inference_steps)
|
| 28 |
+
if self.inverse_timesteps:
|
| 29 |
+
self.sigmas = torch.flip(self.sigmas, dims=[0])
|
| 30 |
+
self.sigmas = self.shift * self.sigmas / \
|
| 31 |
+
(1 + (self.shift - 1) * self.sigmas)
|
| 32 |
+
if self.reverse_sigmas:
|
| 33 |
+
self.sigmas = 1 - self.sigmas
|
| 34 |
+
self.timesteps = self.sigmas * self.num_train_timesteps
|
| 35 |
+
if training:
|
| 36 |
+
x = self.timesteps
|
| 37 |
+
y = torch.exp(-2 * ((x - num_inference_steps / 2) /
|
| 38 |
+
num_inference_steps) ** 2)
|
| 39 |
+
y_shifted = y - y.min()
|
| 40 |
+
bsmntw_weighing = y_shifted * \
|
| 41 |
+
(num_inference_steps / y_shifted.sum())
|
| 42 |
+
self.linear_timesteps_weights = bsmntw_weighing
|
| 43 |
+
|
| 44 |
+
def step(self, model_output, timestep, sample, to_final=False):
|
| 45 |
+
self.sigmas = self.sigmas.to(model_output.device)
|
| 46 |
+
self.timesteps = self.timesteps.to(model_output.device)
|
| 47 |
+
timestep_id = torch.argmin(
|
| 48 |
+
(self.timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1)
|
| 49 |
+
sigma = self.sigmas[timestep_id].reshape(-1, 1, 1, 1)
|
| 50 |
+
if to_final or (timestep_id + 1 >= len(self.timesteps)).any():
|
| 51 |
+
sigma_ = 1 if (
|
| 52 |
+
self.inverse_timesteps or self.reverse_sigmas) else 0
|
| 53 |
+
else:
|
| 54 |
+
sigma_ = self.sigmas[timestep_id + 1].reshape(-1, 1, 1, 1)
|
| 55 |
+
prev_sample = sample + model_output * (sigma_ - sigma)
|
| 56 |
+
return prev_sample
|
| 57 |
+
|
| 58 |
+
def add_noise(self, original_samples, noise, timestep):
|
| 59 |
+
"""
|
| 60 |
+
Diffusion forward corruption process.
|
| 61 |
+
Input:
|
| 62 |
+
- clean_latent: the clean latent with shape [B, C, H, W]
|
| 63 |
+
- noise: the noise with shape [B, C, H, W]
|
| 64 |
+
- timestep: the timestep with shape [B]
|
| 65 |
+
Output: the corrupted latent with shape [B, C, H, W]
|
| 66 |
+
"""
|
| 67 |
+
self.sigmas = self.sigmas.to(noise.device)
|
| 68 |
+
self.timesteps = self.timesteps.to(noise.device)
|
| 69 |
+
timestep_id = torch.argmin(
|
| 70 |
+
(self.timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1)
|
| 71 |
+
sigma = self.sigmas[timestep_id].reshape(-1, 1, 1, 1)
|
| 72 |
+
sample = (1 - sigma) * original_samples + sigma * noise
|
| 73 |
+
return sample.type_as(noise)
|
| 74 |
+
|
| 75 |
+
def training_target(self, sample, noise, timestep):
|
| 76 |
+
target = noise - sample
|
| 77 |
+
return target
|
| 78 |
+
|
| 79 |
+
def training_weight(self, timestep):
|
| 80 |
+
timestep_id = torch.argmin(
|
| 81 |
+
(self.timesteps - timestep.to(self.timesteps.device)).abs())
|
| 82 |
+
weights = self.linear_timesteps_weights[timestep_id]
|
| 83 |
+
return weights
|
exp_code/1_benchmark/CausVid/causvid/models/wan/generate_ode_pairs.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from causvid.models.wan.wan_wrapper import WanDiffusionWrapper, WanTextEncoder, WanVAEWrapper
|
| 2 |
+
from causvid.models.wan.flow_match import FlowMatchScheduler
|
| 3 |
+
from causvid.util import launch_distributed_job
|
| 4 |
+
from causvid.data import TextDataset
|
| 5 |
+
import torch.distributed as dist
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
import argparse
|
| 8 |
+
import torch
|
| 9 |
+
import math
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def init_model(device):
|
| 14 |
+
model = WanDiffusionWrapper().to(device).to(torch.float32)
|
| 15 |
+
encoder = WanTextEncoder().to(device).to(torch.float32)
|
| 16 |
+
model.set_module_grad(
|
| 17 |
+
{
|
| 18 |
+
"model": False
|
| 19 |
+
}
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
scheduler = FlowMatchScheduler(
|
| 23 |
+
shift=8.0, sigma_min=0.0, extra_one_step=True)
|
| 24 |
+
scheduler.set_timesteps(num_inference_steps=50, denoising_strength=1.0)
|
| 25 |
+
scheduler.sigmas = scheduler.sigmas.to(device)
|
| 26 |
+
|
| 27 |
+
sample_neg_prompt = '色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走'
|
| 28 |
+
|
| 29 |
+
unconditional_dict = encoder(
|
| 30 |
+
text_prompts=[sample_neg_prompt]
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
return model, encoder, scheduler, unconditional_dict
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def main():
|
| 37 |
+
parser = argparse.ArgumentParser()
|
| 38 |
+
parser.add_argument("--local_rank", type=int, default=-1)
|
| 39 |
+
parser.add_argument("--output_folder", type=str)
|
| 40 |
+
parser.add_argument("--caption_path", type=str)
|
| 41 |
+
parser.add_argument("--guidance_scale", type=float, default=6.0)
|
| 42 |
+
|
| 43 |
+
args = parser.parse_args()
|
| 44 |
+
|
| 45 |
+
launch_distributed_job()
|
| 46 |
+
global_rank = dist.get_rank()
|
| 47 |
+
|
| 48 |
+
device = torch.cuda.current_device()
|
| 49 |
+
|
| 50 |
+
torch.set_grad_enabled(False)
|
| 51 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 52 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 53 |
+
|
| 54 |
+
model, encoder, scheduler, unconditional_dict = init_model(device=device)
|
| 55 |
+
|
| 56 |
+
dataset = TextDataset(args.caption_path)
|
| 57 |
+
|
| 58 |
+
if global_rank == 0:
|
| 59 |
+
os.makedirs(args.output_folder, exist_ok=True)
|
| 60 |
+
|
| 61 |
+
for index in tqdm(range(int(math.ceil(len(dataset) / dist.get_world_size()))), disable=dist.get_rank() != 0):
|
| 62 |
+
prompt_index = index * dist.get_world_size() + dist.get_rank()
|
| 63 |
+
if prompt_index >= len(dataset):
|
| 64 |
+
continue
|
| 65 |
+
prompt = dataset[prompt_index]
|
| 66 |
+
|
| 67 |
+
conditional_dict = encoder(
|
| 68 |
+
text_prompts=prompt
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
latents = torch.randn(
|
| 72 |
+
[1, 21, 16, 60, 104], dtype=torch.float32, device=device
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
noisy_input = []
|
| 76 |
+
|
| 77 |
+
for progress_id, t in enumerate(tqdm(scheduler.timesteps)):
|
| 78 |
+
timestep = t * torch.ones([1, 21], device=device, dtype=torch.float32)
|
| 79 |
+
|
| 80 |
+
noisy_input.append(latents)
|
| 81 |
+
|
| 82 |
+
x0_pred_cond = model(
|
| 83 |
+
latents, conditional_dict, timestep
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
x0_pred_uncond = model(
|
| 87 |
+
latents, unconditional_dict, timestep
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
x0_pred = x0_pred_uncond + args.guidance_scale * (
|
| 91 |
+
x0_pred_cond - x0_pred_uncond
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
flow_pred = model._convert_x0_to_flow_pred(
|
| 95 |
+
scheduler=scheduler,
|
| 96 |
+
x0_pred=x0_pred.flatten(0, 1),
|
| 97 |
+
xt=latents.flatten(0, 1),
|
| 98 |
+
timestep=timestep.flatten(0, 1)
|
| 99 |
+
).unflatten(0, x0_pred.shape[:2])
|
| 100 |
+
|
| 101 |
+
latents = scheduler.step(
|
| 102 |
+
flow_pred.flatten(0, 1),
|
| 103 |
+
scheduler.timesteps[progress_id] * torch.ones(
|
| 104 |
+
[1, 21], device=device, dtype=torch.long).flatten(0, 1),
|
| 105 |
+
latents.flatten(0, 1)
|
| 106 |
+
).unflatten(dim=0, sizes=flow_pred.shape[:2])
|
| 107 |
+
|
| 108 |
+
noisy_input.append(latents)
|
| 109 |
+
|
| 110 |
+
noisy_inputs = torch.stack(noisy_input, dim=1)
|
| 111 |
+
|
| 112 |
+
noisy_inputs = noisy_inputs[:, [0, 36, 44, -1]]
|
| 113 |
+
|
| 114 |
+
stored_data = noisy_inputs
|
| 115 |
+
|
| 116 |
+
torch.save(
|
| 117 |
+
{prompt: stored_data.cpu().detach()},
|
| 118 |
+
os.path.join(args.output_folder, f"{prompt_index:05d}.pt")
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
dist.barrier()
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
if __name__ == "__main__":
|
| 125 |
+
main()
|
exp_code/1_benchmark/CausVid/causvid/models/wan/wan_base/README.md
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Code in this folder is modified from https://github.com/Wan-Video/Wan2.1
|
| 2 |
+
Apache-2.0 License
|
exp_code/1_benchmark/CausVid/causvid/models/wan/wan_base/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from . import configs, distributed, modules
|
| 2 |
+
from .image2video import WanI2V
|
| 3 |
+
from .text2video import WanT2V
|
exp_code/1_benchmark/CausVid/causvid/models/wan/wan_base/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (359 Bytes). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/models/wan/wan_base/__pycache__/image2video.cpython-312.pyc
ADDED
|
Binary file (16.7 kB). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/models/wan/wan_base/__pycache__/text2video.cpython-312.pyc
ADDED
|
Binary file (12.3 kB). View file
|
|
|
exp_code/1_benchmark/CausVid/causvid/models/wan/wan_base/configs/__init__.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
| 2 |
+
from .wan_t2v_14B import t2v_14B
|
| 3 |
+
from .wan_t2v_1_3B import t2v_1_3B
|
| 4 |
+
from .wan_i2v_14B import i2v_14B
|
| 5 |
+
import copy
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# the config of t2i_14B is the same as t2v_14B
|
| 12 |
+
t2i_14B = copy.deepcopy(t2v_14B)
|
| 13 |
+
t2i_14B.__name__ = 'Config: Wan T2I 14B'
|
| 14 |
+
|
| 15 |
+
WAN_CONFIGS = {
|
| 16 |
+
't2v-14B': t2v_14B,
|
| 17 |
+
't2v-1.3B': t2v_1_3B,
|
| 18 |
+
'i2v-14B': i2v_14B,
|
| 19 |
+
't2i-14B': t2i_14B,
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
SIZE_CONFIGS = {
|
| 23 |
+
'720*1280': (720, 1280),
|
| 24 |
+
'1280*720': (1280, 720),
|
| 25 |
+
'480*832': (480, 832),
|
| 26 |
+
'832*480': (832, 480),
|
| 27 |
+
'1024*1024': (1024, 1024),
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
MAX_AREA_CONFIGS = {
|
| 31 |
+
'720*1280': 720 * 1280,
|
| 32 |
+
'1280*720': 1280 * 720,
|
| 33 |
+
'480*832': 480 * 832,
|
| 34 |
+
'832*480': 832 * 480,
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
SUPPORTED_SIZES = {
|
| 38 |
+
't2v-14B': ('720*1280', '1280*720', '480*832', '832*480'),
|
| 39 |
+
't2v-1.3B': ('480*832', '832*480'),
|
| 40 |
+
'i2v-14B': ('720*1280', '1280*720', '480*832', '832*480'),
|
| 41 |
+
't2i-14B': tuple(SIZE_CONFIGS.keys()),
|
| 42 |
+
}
|