ruth-anthropic's picture
add_2025_09_release (#12)
20d4fc3 verified
"""
Preprocess O*NET and SOC data for economic analysis.
This script downloads and processes occupational data from:
1. O*NET Resource Center for task statements
2. O*NET Resource Center for SOC structure
Output files:
- onet_task_statements.csv: O*NET task statements with SOC major groups
- soc_structure.csv: SOC occupational classification structure
"""
import io
import os
import tempfile
from pathlib import Path
import httpx
import pandas as pd
# Global configuration
DATA_INPUT_DIR = Path("../data/input")
DATA_INTERMEDIATE_DIR = Path("../data/intermediate")
def check_existing_files():
"""Check if processed O*NET/SOC files already exist."""
onet_task_statements_path = DATA_INTERMEDIATE_DIR / "onet_task_statements.csv"
soc_structure_path = DATA_INTERMEDIATE_DIR / "soc_structure.csv"
if onet_task_statements_path.exists() and soc_structure_path.exists():
print("✅ SOC/O*NET files already exist:")
print(f" - {onet_task_statements_path}")
print(f" - {soc_structure_path}")
print("Skipping SOC preprocessing. Delete these files if you want to re-run.")
return True
return False
def load_task_data():
"""
Load O*NET Task Statements from cache or O*NET Resource Center.
Returns:
pd.DataFrame: O*NET task statements data
"""
# Check if raw data already exists
raw_onet_path = DATA_INPUT_DIR / "onet_task_statements_raw.xlsx"
if raw_onet_path.exists():
df_onet = pd.read_excel(raw_onet_path)
return df_onet
# Download if not cached
# O*NET Database version 20.1
onet_url = "https://www.onetcenter.org/dl_files/database/db_20_1_excel/Task%20Statements.xlsx"
print("Downloading O*NET task statements...")
try:
with httpx.Client(follow_redirects=True) as client:
response = client.get(onet_url, timeout=60)
response.raise_for_status()
excel_content = response.content
# Save raw data for future use
with open(raw_onet_path, "wb") as f:
f.write(excel_content)
# Save to temporary file for pandas to read
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp_file:
tmp_file.write(excel_content)
tmp_path = tmp_file.name
try:
df_onet = pd.read_excel(tmp_path)
return df_onet
finally:
os.unlink(tmp_path)
except Exception as e:
raise ConnectionError(f"Failed to download O*NET data: {e}") from e
def process_task_data(df_tasks):
"""
Process task statements data.
Args:
df_tasks: Raw task data
Returns:
pd.DataFrame: Processed O*NET data with SOC major groups
"""
# Extract SOC major group from O*NET-SOC Code (first 2 digits)
df_tasks["soc_major_group"] = df_tasks["O*NET-SOC Code"].str[:2]
# Save processed task data
processed_tasks_path = DATA_INTERMEDIATE_DIR / "onet_task_statements.csv"
df_tasks.to_csv(processed_tasks_path, index=False)
print(
f"✓ Processed {len(df_tasks):,} task statements from {df_tasks['O*NET-SOC Code'].nunique()} occupations"
)
return df_tasks
def load_soc_data():
"""
Load SOC Structure from cache or O*NET Resource Center.
Returns:
pd.DataFrame: SOC structure data
"""
# Check if raw data already exists
raw_soc_path = DATA_INPUT_DIR / "soc_structure_raw.csv"
if raw_soc_path.exists():
return pd.read_csv(raw_soc_path)
# Download if not cached
soc_url = "https://www.onetcenter.org/taxonomy/2019/structure/?fmt=csv"
print("Downloading SOC structure...")
try:
with httpx.Client(follow_redirects=True) as client:
response = client.get(soc_url, timeout=30)
response.raise_for_status()
soc_content = response.text
# Save raw data for future use
with open(raw_soc_path, "w") as f:
f.write(soc_content)
# Parse the CSV
df_soc = pd.read_csv(io.StringIO(soc_content))
return df_soc
except Exception as e:
raise ConnectionError(f"Failed to download SOC structure: {e}") from e
def process_soc_data(df_soc):
"""
Process SOC structure data.
Args:
df_soc: Raw SOC structure data
Returns:
pd.DataFrame: Processed SOC structure
"""
# Extract the 2-digit code from Major Group (e.g., "11-0000" -> "11")
df_soc["soc_major_group"] = df_soc["Major Group"].str[:2]
# Save processed SOC structure
processed_soc_path = DATA_INTERMEDIATE_DIR / "soc_structure.csv"
df_soc.to_csv(processed_soc_path, index=False)
print(f"✓ Processed {len(df_soc):,} SOC entries")
return df_soc
def main():
"""Main function to run O*NET/SOC preprocessing."""
# Check if files already exist
if check_existing_files():
return
# Process Task Statements
df_tasks_raw = load_task_data()
process_task_data(df_tasks_raw)
# Process SOC Structure
df_soc_raw = load_soc_data()
process_soc_data(df_soc_raw)
print("\n✅ O*NET/SOC data preprocessing complete!")
if __name__ == "__main__":
main()