File size: 5,279 Bytes
20d4fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""
Preprocess O*NET and SOC data for economic analysis.

This script downloads and processes occupational data from:
1. O*NET Resource Center for task statements
2. O*NET Resource Center for SOC structure

Output files:
- onet_task_statements.csv: O*NET task statements with SOC major groups
- soc_structure.csv: SOC occupational classification structure
"""

import io
import os
import tempfile
from pathlib import Path

import httpx
import pandas as pd

# Global configuration
DATA_INPUT_DIR = Path("../data/input")
DATA_INTERMEDIATE_DIR = Path("../data/intermediate")


def check_existing_files():
    """Check if processed O*NET/SOC files already exist."""
    onet_task_statements_path = DATA_INTERMEDIATE_DIR / "onet_task_statements.csv"
    soc_structure_path = DATA_INTERMEDIATE_DIR / "soc_structure.csv"

    if onet_task_statements_path.exists() and soc_structure_path.exists():
        print("✅ SOC/O*NET files already exist:")
        print(f"  - {onet_task_statements_path}")
        print(f"  - {soc_structure_path}")
        print("Skipping SOC preprocessing. Delete these files if you want to re-run.")
        return True
    return False


def load_task_data():
    """
    Load O*NET Task Statements from cache or O*NET Resource Center.

    Returns:
        pd.DataFrame: O*NET task statements data
    """
    # Check if raw data already exists
    raw_onet_path = DATA_INPUT_DIR / "onet_task_statements_raw.xlsx"
    if raw_onet_path.exists():
        df_onet = pd.read_excel(raw_onet_path)
        return df_onet

    # Download if not cached
    # O*NET Database version 20.1
    onet_url = "https://www.onetcenter.org/dl_files/database/db_20_1_excel/Task%20Statements.xlsx"

    print("Downloading O*NET task statements...")
    try:
        with httpx.Client(follow_redirects=True) as client:
            response = client.get(onet_url, timeout=60)
            response.raise_for_status()
            excel_content = response.content
            # Save raw data for future use
            with open(raw_onet_path, "wb") as f:
                f.write(excel_content)

            # Save to temporary file for pandas to read
            with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp_file:
                tmp_file.write(excel_content)
                tmp_path = tmp_file.name

            try:
                df_onet = pd.read_excel(tmp_path)
                return df_onet
            finally:
                os.unlink(tmp_path)

    except Exception as e:
        raise ConnectionError(f"Failed to download O*NET data: {e}") from e


def process_task_data(df_tasks):
    """
    Process task statements data.

    Args:
        df_tasks: Raw task data

    Returns:
        pd.DataFrame: Processed O*NET data with SOC major groups
    """
    # Extract SOC major group from O*NET-SOC Code (first 2 digits)
    df_tasks["soc_major_group"] = df_tasks["O*NET-SOC Code"].str[:2]

    # Save processed task data
    processed_tasks_path = DATA_INTERMEDIATE_DIR / "onet_task_statements.csv"
    df_tasks.to_csv(processed_tasks_path, index=False)

    print(
        f"✓ Processed {len(df_tasks):,} task statements from {df_tasks['O*NET-SOC Code'].nunique()} occupations"
    )

    return df_tasks


def load_soc_data():
    """
    Load SOC Structure from cache or O*NET Resource Center.

    Returns:
        pd.DataFrame: SOC structure data
    """
    # Check if raw data already exists
    raw_soc_path = DATA_INPUT_DIR / "soc_structure_raw.csv"
    if raw_soc_path.exists():
        return pd.read_csv(raw_soc_path)

    # Download if not cached
    soc_url = "https://www.onetcenter.org/taxonomy/2019/structure/?fmt=csv"

    print("Downloading SOC structure...")
    try:
        with httpx.Client(follow_redirects=True) as client:
            response = client.get(soc_url, timeout=30)
            response.raise_for_status()
            soc_content = response.text
            # Save raw data for future use
            with open(raw_soc_path, "w") as f:
                f.write(soc_content)

            # Parse the CSV
            df_soc = pd.read_csv(io.StringIO(soc_content))
            return df_soc

    except Exception as e:
        raise ConnectionError(f"Failed to download SOC structure: {e}") from e


def process_soc_data(df_soc):
    """
    Process SOC structure data.

    Args:
        df_soc: Raw SOC structure data

    Returns:
        pd.DataFrame: Processed SOC structure
    """
    # Extract the 2-digit code from Major Group (e.g., "11-0000" -> "11")
    df_soc["soc_major_group"] = df_soc["Major Group"].str[:2]

    # Save processed SOC structure
    processed_soc_path = DATA_INTERMEDIATE_DIR / "soc_structure.csv"
    df_soc.to_csv(processed_soc_path, index=False)

    print(f"✓ Processed {len(df_soc):,} SOC entries")

    return df_soc


def main():
    """Main function to run O*NET/SOC preprocessing."""
    # Check if files already exist
    if check_existing_files():
        return

    # Process Task Statements
    df_tasks_raw = load_task_data()
    process_task_data(df_tasks_raw)

    # Process SOC Structure
    df_soc_raw = load_soc_data()
    process_soc_data(df_soc_raw)

    print("\n✅ O*NET/SOC data preprocessing complete!")


if __name__ == "__main__":
    main()