""" Preprocess O*NET and SOC data for economic analysis. This script downloads and processes occupational data from: 1. O*NET Resource Center for task statements 2. O*NET Resource Center for SOC structure Output files: - onet_task_statements.csv: O*NET task statements with SOC major groups - soc_structure.csv: SOC occupational classification structure """ import io import os import tempfile from pathlib import Path import httpx import pandas as pd # Global configuration DATA_INPUT_DIR = Path("../data/input") DATA_INTERMEDIATE_DIR = Path("../data/intermediate") def check_existing_files(): """Check if processed O*NET/SOC files already exist.""" onet_task_statements_path = DATA_INTERMEDIATE_DIR / "onet_task_statements.csv" soc_structure_path = DATA_INTERMEDIATE_DIR / "soc_structure.csv" if onet_task_statements_path.exists() and soc_structure_path.exists(): print("āœ… SOC/O*NET files already exist:") print(f" - {onet_task_statements_path}") print(f" - {soc_structure_path}") print("Skipping SOC preprocessing. Delete these files if you want to re-run.") return True return False def load_task_data(): """ Load O*NET Task Statements from cache or O*NET Resource Center. Returns: pd.DataFrame: O*NET task statements data """ # Check if raw data already exists raw_onet_path = DATA_INPUT_DIR / "onet_task_statements_raw.xlsx" if raw_onet_path.exists(): df_onet = pd.read_excel(raw_onet_path) return df_onet # Download if not cached # O*NET Database version 20.1 onet_url = "https://www.onetcenter.org/dl_files/database/db_20_1_excel/Task%20Statements.xlsx" print("Downloading O*NET task statements...") try: with httpx.Client(follow_redirects=True) as client: response = client.get(onet_url, timeout=60) response.raise_for_status() excel_content = response.content # Save raw data for future use with open(raw_onet_path, "wb") as f: f.write(excel_content) # Save to temporary file for pandas to read with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp_file: tmp_file.write(excel_content) tmp_path = tmp_file.name try: df_onet = pd.read_excel(tmp_path) return df_onet finally: os.unlink(tmp_path) except Exception as e: raise ConnectionError(f"Failed to download O*NET data: {e}") from e def process_task_data(df_tasks): """ Process task statements data. Args: df_tasks: Raw task data Returns: pd.DataFrame: Processed O*NET data with SOC major groups """ # Extract SOC major group from O*NET-SOC Code (first 2 digits) df_tasks["soc_major_group"] = df_tasks["O*NET-SOC Code"].str[:2] # Save processed task data processed_tasks_path = DATA_INTERMEDIATE_DIR / "onet_task_statements.csv" df_tasks.to_csv(processed_tasks_path, index=False) print( f"āœ“ Processed {len(df_tasks):,} task statements from {df_tasks['O*NET-SOC Code'].nunique()} occupations" ) return df_tasks def load_soc_data(): """ Load SOC Structure from cache or O*NET Resource Center. Returns: pd.DataFrame: SOC structure data """ # Check if raw data already exists raw_soc_path = DATA_INPUT_DIR / "soc_structure_raw.csv" if raw_soc_path.exists(): return pd.read_csv(raw_soc_path) # Download if not cached soc_url = "https://www.onetcenter.org/taxonomy/2019/structure/?fmt=csv" print("Downloading SOC structure...") try: with httpx.Client(follow_redirects=True) as client: response = client.get(soc_url, timeout=30) response.raise_for_status() soc_content = response.text # Save raw data for future use with open(raw_soc_path, "w") as f: f.write(soc_content) # Parse the CSV df_soc = pd.read_csv(io.StringIO(soc_content)) return df_soc except Exception as e: raise ConnectionError(f"Failed to download SOC structure: {e}") from e def process_soc_data(df_soc): """ Process SOC structure data. Args: df_soc: Raw SOC structure data Returns: pd.DataFrame: Processed SOC structure """ # Extract the 2-digit code from Major Group (e.g., "11-0000" -> "11") df_soc["soc_major_group"] = df_soc["Major Group"].str[:2] # Save processed SOC structure processed_soc_path = DATA_INTERMEDIATE_DIR / "soc_structure.csv" df_soc.to_csv(processed_soc_path, index=False) print(f"āœ“ Processed {len(df_soc):,} SOC entries") return df_soc def main(): """Main function to run O*NET/SOC preprocessing.""" # Check if files already exist if check_existing_files(): return # Process Task Statements df_tasks_raw = load_task_data() process_task_data(df_tasks_raw) # Process SOC Structure df_soc_raw = load_soc_data() process_soc_data(df_soc_raw) print("\nāœ… O*NET/SOC data preprocessing complete!") if __name__ == "__main__": main()