FAST-RIR / code_new /trainer.py
antonjeran's picture
Upload 40 files
b53f252
from __future__ import print_function
from six.moves import range
from PIL import Image
import torch.backends.cudnn as cudnn
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import os
import time
import numpy as np
import torchfile
import pickle
import soundfile as sf
import re
import math
from wavefile import WaveWriter, Format
from miscc.config import cfg
from miscc.utils import mkdir_p
from miscc.utils import weights_init
from miscc.utils import save_RIR_results, save_model
from miscc.utils import KL_loss
from miscc.utils import compute_discriminator_loss, compute_generator_loss
# from torch.utils.tensorboard import summary
# from torch.utils.tensorboard import FileWriter
class GANTrainer(object):
def __init__(self, output_dir):
if cfg.TRAIN.FLAG:
self.model_dir = os.path.join(output_dir, 'Model')
self.model_dir_RT = os.path.join(output_dir, 'Model_RT')
self.RIR_dir = os.path.join(output_dir, 'RIR')
self.log_dir = os.path.join(output_dir, 'Log')
mkdir_p(self.model_dir)
mkdir_p(self.model_dir_RT)
mkdir_p(self.RIR_dir)
mkdir_p(self.log_dir)
# self.summary_writer = FileWriter(self.log_dir)
self.max_epoch = cfg.TRAIN.MAX_EPOCH
self.snapshot_interval = cfg.TRAIN.SNAPSHOT_INTERVAL
s_gpus = cfg.GPU_ID.split(',')
self.gpus = [int(ix) for ix in s_gpus]
self.num_gpus = len(self.gpus)
self.batch_size = cfg.TRAIN.BATCH_SIZE * self.num_gpus
torch.cuda.set_device(self.gpus[0])
cudnn.benchmark = True
# ############# For training stageI GAN #############
def load_network_stageI(self):
from model import STAGE1_G, STAGE1_D
netG = STAGE1_G()
netG.apply(weights_init)
print(netG)
netD = STAGE1_D()
netD.apply(weights_init)
print(netD)
if cfg.NET_G != '':
state_dict = \
torch.load(cfg.NET_G,
map_location=lambda storage, loc: storage)
netG.load_state_dict(state_dict)
print('Load from: ', cfg.NET_G)
if cfg.NET_D != '':
state_dict = \
torch.load(cfg.NET_D,
map_location=lambda storage, loc: storage)
netD.load_state_dict(state_dict)
print('Load from: ', cfg.NET_D)
if cfg.CUDA:
netG.cuda()
netD.cuda()
return netG, netD
# ############# For training stageII GAN #############
def load_network_stageII(self):
from model import STAGE1_G, STAGE2_G, STAGE2_D
Stage1_G = STAGE1_G()
netG = STAGE2_G(Stage1_G)
netG.apply(weights_init)
print(netG)
if cfg.NET_G != '':
state_dict = \
torch.load(cfg.NET_G,
map_location=lambda storage, loc: storage)
netG.load_state_dict(state_dict)
print('Load from: ', cfg.NET_G)
elif cfg.STAGE1_G != '':
state_dict = \
torch.load(cfg.STAGE1_G,
map_location=lambda storage, loc: storage)
netG.STAGE1_G.load_state_dict(state_dict)
print('Load from: ', cfg.STAGE1_G)
else:
print("Please give the Stage1_G path")
return
netD = STAGE2_D()
netD.apply(weights_init)
if cfg.NET_D != '':
state_dict = \
torch.load(cfg.NET_D,
map_location=lambda storage, loc: storage)
netD.load_state_dict(state_dict)
print('Load from: ', cfg.NET_D)
print(netD)
if cfg.CUDA:
netG.cuda()
netD.cuda()
return netG, netD
def train(self, data_loader, stage=1):
if stage == 1:
netG, netD = self.load_network_stageI()
else:
netG, netD = self.load_network_stageII()
# nz = cfg.Z_DIM
batch_size = self.batch_size
# noise = Variable(torch.FloatTensor(batch_size, nz))
# fixed_noise = \
# Variable(torch.FloatTensor(batch_size, nz).normal_(0, 1),
# volatile=True)
real_labels = Variable(torch.FloatTensor(batch_size).fill_(1))
fake_labels = Variable(torch.FloatTensor(batch_size).fill_(0))
if cfg.CUDA:
# noise, fixed_noise = noise.cuda(), fixed_noise.cuda()
real_labels, fake_labels = real_labels.cuda(), fake_labels.cuda()
generator_lr = cfg.TRAIN.GENERATOR_LR
discriminator_lr = cfg.TRAIN.DISCRIMINATOR_LR
lr_decay_step = cfg.TRAIN.LR_DECAY_EPOCH
# optimizerD = \
# optim.Adam(netD.parameters(),
# lr=cfg.TRAIN.DISCRIMINATOR_LR, betas=(0.5, 0.999))
optimizerD = \
optim.RMSprop(netD.parameters(),
lr=cfg.TRAIN.DISCRIMINATOR_LR)
netG_para = []
for p in netG.parameters():
if p.requires_grad:
netG_para.append(p)
# optimizerG = optim.Adam(netG_para,
# lr=cfg.TRAIN.GENERATOR_LR,
# betas=(0.5, 0.999))
optimizerG = optim.RMSprop(netG_para,
lr=cfg.TRAIN.GENERATOR_LR)
count = 0
least_RT=10
for epoch in range(self.max_epoch):
start_t = time.time()
if epoch % lr_decay_step == 0 and epoch > 0:
generator_lr *= 0.7#0.5
for param_group in optimizerG.param_groups:
param_group['lr'] = generator_lr
discriminator_lr *= 0.7#0.5
for param_group in optimizerD.param_groups:
param_group['lr'] = discriminator_lr
for i, data in enumerate(data_loader, 0):
######################################################
# (1) Prepare training data
######################################################
real_RIR_cpu, txt_embedding = data
real_RIRs = Variable(real_RIR_cpu)
txt_embedding = Variable(txt_embedding)
if cfg.CUDA:
real_RIRs = real_RIRs.cuda()
txt_embedding = txt_embedding.cuda()
#print("trianer RIRs ",real_RIRs.size())
#print("trianer embedding ",txt_embedding.size())
#######################################################
# (2) Generate fake images
######################################################
# noise.data.normal_(0, 1)
# inputs = (txt_embedding, noise)
inputs = (txt_embedding)
# _, fake_RIRs, mu, logvar = \
# nn.parallel.data_parallel(netG, inputs, self.gpus)
_, fake_RIRs,c_code = nn.parallel.data_parallel(netG, inputs, self.gpus)
############################
# (3) Update D network
###########################
netD.zero_grad()
errD, errD_real, errD_wrong, errD_fake = \
compute_discriminator_loss(netD, real_RIRs, fake_RIRs,
real_labels, fake_labels,
c_code, self.gpus)
errD_total = errD*5
errD_total.backward()
optimizerD.step()
############################
# (2) Update G network
###########################
# kl_loss = KL_loss(mu, logvar)
netG.zero_grad()
errG,MSE_error,RT_error= compute_generator_loss(epoch,netD,real_RIRs, fake_RIRs,
real_labels, c_code, self.gpus)
errG_total = errG *5#+ kl_loss * cfg.TRAIN.COEFF.KL
errG_total.backward()
optimizerG.step()
for p in range(2):
inputs = (txt_embedding)
# _, fake_RIRs, mu, logvar = \
# nn.parallel.data_parallel(netG, inputs, self.gpus)
_, fake_RIRs,c_code = nn.parallel.data_parallel(netG, inputs, self.gpus)
netG.zero_grad()
errG,MSE_error,RT_error = compute_generator_loss(epoch,netD,real_RIRs, fake_RIRs,
real_labels, c_code, self.gpus)
# kl_loss = KL_loss(mu, logvar)
errG_total = errG *5#+ kl_loss * cfg.TRAIN.COEFF.KL
errG_total.backward()
optimizerG.step()
count = count + 1
if i % 100 == 0:
# summary_D = summary.scalar('D_loss', errD.data[0])
# summary_D_r = summary.scalar('D_loss_real', errD_real)
# summary_D_w = summary.scalar('D_loss_wrong', errD_wrong)
# summary_D_f = summary.scalar('D_loss_fake', errD_fake)
# summary_G = summary.scalar('G_loss', errG.data[0])
# summary_KL = summary.scalar('KL_loss', kl_loss.data[0])
# summary_D = summary.scalar('D_loss', errD.data)
# summary_D_r = summary.scalar('D_loss_real', errD_real)
# summary_D_w = summary.scalar('D_loss_wrong', errD_wrong)
# summary_D_f = summary.scalar('D_loss_fake', errD_fake)
# summary_G = summary.scalar('G_loss', errG.data)
# summary_KL = summary.scalar('KL_loss', kl_loss.data)
# self.summary_writer.add_summary(summary_D, count)
# self.summary_writer.add_summary(summary_D_r, count)
# self.summary_writer.add_summary(summary_D_w, count)
# self.summary_writer.add_summary(summary_D_f, count)
# self.summary_writer.add_summary(summary_G, count)
# self.summary_writer.add_summary(summary_KL, count)
# save the image result for each epoch
inputs = (txt_embedding)
lr_fake, fake, _ = \
nn.parallel.data_parallel(netG, inputs, self.gpus)
if(epoch%self.snapshot_interval==0):
save_RIR_results(real_RIR_cpu, fake, epoch, self.RIR_dir)
if lr_fake is not None:
save_RIR_results(None, lr_fake, epoch, self.RIR_dir)
end_t = time.time()
# print('''[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f Loss_KL: %.4f
# Loss_real: %.4f Loss_wrong:%.4f Loss_fake %.4f
# Total Time: %.2fsec
# '''
# % (epoch, self.max_epoch, i, len(data_loader),
# errD.data[0], errG.data[0], kl_loss.data[0],
# errD_real, errD_wrong, errD_fake, (end_t - start_t)))
# print('''[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f Loss_KL: %.4f
# Loss_real: %.4f Loss_wrong:%.4f Loss_fake %.4f
# Total Time: %.2fsec
# '''
# % (epoch, self.max_epoch, i, len(data_loader),
# errD.data, errG.data, kl_loss.data,
# errD_real, errD_wrong, errD_fake, (end_t - start_t)))
print('''[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f
Loss_real: %.4f Loss_wrong:%.4f Loss_fake %.4f MSE_ERROR %.4f RT_error %.4f
Total Time: %.2fsec
'''
% (epoch, self.max_epoch, i, len(data_loader),
errD.data, errG.data,
errD_real, errD_wrong, errD_fake,MSE_error*4096, RT_error,(end_t - start_t)))
store_to_file ="[{}/{}][{}/{}] Loss_D: {:.4f} Loss_G: {:.4f} Loss_real: {:.4f} Loss_wrong:{:.4f} Loss_fake {:.4f} MSE Error:{:.4f} RT_error{:.4f} Total Time: {:.2f}sec".format(epoch, self.max_epoch, i, len(data_loader),
errD.data, errG.data, errD_real, errD_wrong, errD_fake,MSE_error*4096,RT_error, (end_t - start_t))
store_to_file =store_to_file+"\n"
with open("errors.txt", "a") as myfile:
myfile.write(store_to_file)
if (RT_error<least_RT):
least_RT = RT_error
save_model(netG, netD, epoch, self.model_dir_RT)
if epoch % self.snapshot_interval == 0:
save_model(netG, netD, epoch, self.model_dir)
#
save_model(netG, netD, self.max_epoch, self.model_dir)
#
# self.summary_writer.close()
def sample(self,file_path,stage=1):
if stage == 1:
netG, _ = self.load_network_stageI()
else:
netG, _ = self.load_network_stageII()
netG.eval()
time_list =[]
embedding_path = file_path
with open(embedding_path, 'rb') as f:
embeddings_pickle = pickle.load(f)
embeddings_list =[]
num_embeddings = len(embeddings_pickle)
for b in range (num_embeddings):
embeddings_list.append(embeddings_pickle[b])
embeddings = np.array(embeddings_list)
save_dir_GAN = "Generated_RIRs"
mkdir_p(save_dir_GAN)
normalize_embedding = []
batch_size = np.minimum(num_embeddings, self.batch_size)
count = 0
count_this = 0
while count < num_embeddings:
iend = count + batch_size
if iend > num_embeddings:
iend = num_embeddings
count = num_embeddings - batch_size
embeddings_batch = embeddings[count:iend]
txt_embedding = Variable(torch.FloatTensor(embeddings_batch))
if cfg.CUDA:
txt_embedding = txt_embedding.cuda()
#######################################################
# (2) Generate fake images
######################################################
start_t = time.time()
inputs = (txt_embedding)
_, fake_RIRs,c_code = \
nn.parallel.data_parallel(netG, inputs, self.gpus)
end_t = time.time()
diff_t = end_t - start_t
time_list.append(diff_t)
RIR_batch_size = batch_size #int(batch_size/2)
print("batch_size ", RIR_batch_size)
channel_size = 64
for i in range(channel_size):
fs =16000
wave_name = "RIR-"+str(count+i)+".wav"
save_name_GAN = '%s/%s' % (save_dir_GAN,wave_name)
print("wave : ",save_name_GAN)
res = {}
res_buffer = []
rate = 16000
res['rate'] = rate
wave_GAN = fake_RIRs[i].data.cpu().numpy()
wave_GAN = np.array(wave_GAN[0])
res_buffer.append(wave_GAN)
res['samples'] = np.zeros((len(res_buffer), np.max([len(ps) for ps in res_buffer])))
for i, c in enumerate(res_buffer):
res['samples'][i, :len(c)] = c
w = WaveWriter(save_name_GAN, channels=np.shape(res['samples'])[0], samplerate=int(res['rate']))
w.write(np.array(res['samples']))
print("counter = ",count)
count = count+64
count_this = count_this+1