File size: 15,909 Bytes
b53f252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
from __future__ import print_function
from six.moves import range
from PIL import Image

import torch.backends.cudnn as cudnn
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import os
import time

import numpy as np
import torchfile
import pickle

import soundfile as sf
import re
import math
from wavefile import WaveWriter, Format

from miscc.config import cfg
from miscc.utils import mkdir_p
from miscc.utils import weights_init
from miscc.utils import save_RIR_results, save_model
from miscc.utils import KL_loss
from miscc.utils import compute_discriminator_loss, compute_generator_loss

# from torch.utils.tensorboard import summary
# from torch.utils.tensorboard import FileWriter


class GANTrainer(object):
    def __init__(self, output_dir):
        if cfg.TRAIN.FLAG:
            self.model_dir = os.path.join(output_dir, 'Model')
            self.model_dir_RT = os.path.join(output_dir, 'Model_RT')
            self.RIR_dir = os.path.join(output_dir, 'RIR')
            self.log_dir = os.path.join(output_dir, 'Log')
            mkdir_p(self.model_dir)
            mkdir_p(self.model_dir_RT)
            mkdir_p(self.RIR_dir)
            mkdir_p(self.log_dir)
            # self.summary_writer = FileWriter(self.log_dir)

        self.max_epoch = cfg.TRAIN.MAX_EPOCH
        self.snapshot_interval = cfg.TRAIN.SNAPSHOT_INTERVAL

        s_gpus = cfg.GPU_ID.split(',')
        self.gpus = [int(ix) for ix in s_gpus]
        self.num_gpus = len(self.gpus)
        self.batch_size = cfg.TRAIN.BATCH_SIZE * self.num_gpus
        torch.cuda.set_device(self.gpus[0])
        cudnn.benchmark = True

    # ############# For training stageI GAN #############
    def load_network_stageI(self):
        from model import STAGE1_G, STAGE1_D
        netG = STAGE1_G()
        netG.apply(weights_init)
        print(netG)
        netD = STAGE1_D()
        netD.apply(weights_init)
        print(netD)

        if cfg.NET_G != '':
            state_dict = \
                torch.load(cfg.NET_G,
                           map_location=lambda storage, loc: storage)
            netG.load_state_dict(state_dict)
            print('Load from: ', cfg.NET_G)
        if cfg.NET_D != '':
            state_dict = \
                torch.load(cfg.NET_D,
                           map_location=lambda storage, loc: storage)
            netD.load_state_dict(state_dict)
            print('Load from: ', cfg.NET_D)
        if cfg.CUDA:
            netG.cuda()
            netD.cuda()
        return netG, netD

    # ############# For training stageII GAN  #############
    def load_network_stageII(self):
        from model import STAGE1_G, STAGE2_G, STAGE2_D

        Stage1_G = STAGE1_G()
        netG = STAGE2_G(Stage1_G)
        netG.apply(weights_init)
        print(netG)
        if cfg.NET_G != '':
            state_dict = \
                torch.load(cfg.NET_G,
                           map_location=lambda storage, loc: storage)
            netG.load_state_dict(state_dict)
            print('Load from: ', cfg.NET_G)
        elif cfg.STAGE1_G != '':
            state_dict = \
                torch.load(cfg.STAGE1_G,
                           map_location=lambda storage, loc: storage)
            netG.STAGE1_G.load_state_dict(state_dict)
            print('Load from: ', cfg.STAGE1_G)
        else:
            print("Please give the Stage1_G path")
            return

        netD = STAGE2_D()
        netD.apply(weights_init)
        if cfg.NET_D != '':
            state_dict = \
                torch.load(cfg.NET_D,
                           map_location=lambda storage, loc: storage)
            netD.load_state_dict(state_dict)
            print('Load from: ', cfg.NET_D)
        print(netD)

        if cfg.CUDA:
            netG.cuda()
            netD.cuda()
        return netG, netD

    def train(self, data_loader, stage=1):
        if stage == 1:
            netG, netD = self.load_network_stageI()
        else:
            netG, netD = self.load_network_stageII()

        # nz = cfg.Z_DIM
        batch_size = self.batch_size
        # noise = Variable(torch.FloatTensor(batch_size, nz))
        # fixed_noise = \
        #     Variable(torch.FloatTensor(batch_size, nz).normal_(0, 1),
        #              volatile=True)
        real_labels = Variable(torch.FloatTensor(batch_size).fill_(1))
        fake_labels = Variable(torch.FloatTensor(batch_size).fill_(0))
        if cfg.CUDA:
            # noise, fixed_noise = noise.cuda(), fixed_noise.cuda()
            real_labels, fake_labels = real_labels.cuda(), fake_labels.cuda()

        generator_lr = cfg.TRAIN.GENERATOR_LR
        discriminator_lr = cfg.TRAIN.DISCRIMINATOR_LR
        lr_decay_step = cfg.TRAIN.LR_DECAY_EPOCH
        # optimizerD = \
        #     optim.Adam(netD.parameters(),
        #                lr=cfg.TRAIN.DISCRIMINATOR_LR, betas=(0.5, 0.999))
        optimizerD = \
            optim.RMSprop(netD.parameters(),
                       lr=cfg.TRAIN.DISCRIMINATOR_LR)
        netG_para = []
        for p in netG.parameters():
            if p.requires_grad:
                netG_para.append(p)
        # optimizerG = optim.Adam(netG_para,
        #                         lr=cfg.TRAIN.GENERATOR_LR,
        #                         betas=(0.5, 0.999))
        optimizerG = optim.RMSprop(netG_para,
                                lr=cfg.TRAIN.GENERATOR_LR)
        count = 0
        least_RT=10
        for epoch in range(self.max_epoch):
            start_t = time.time()
            if epoch % lr_decay_step == 0 and epoch > 0:
                generator_lr *= 0.7#0.5
                for param_group in optimizerG.param_groups:
                    param_group['lr'] = generator_lr
                discriminator_lr *= 0.7#0.5
                for param_group in optimizerD.param_groups:
                    param_group['lr'] = discriminator_lr

            for i, data in enumerate(data_loader, 0):
                ######################################################
                # (1) Prepare training data
                ######################################################
                real_RIR_cpu, txt_embedding = data
                real_RIRs = Variable(real_RIR_cpu)
                txt_embedding = Variable(txt_embedding)
                if cfg.CUDA:
                    real_RIRs = real_RIRs.cuda()
                    txt_embedding = txt_embedding.cuda()
                #print("trianer RIRs ",real_RIRs.size())
                #print("trianer embedding ",txt_embedding.size())

                #######################################################
                # (2) Generate fake images
                ######################################################
                # noise.data.normal_(0, 1)
                # inputs = (txt_embedding, noise)
                inputs = (txt_embedding)
                # _, fake_RIRs, mu, logvar = \
                #     nn.parallel.data_parallel(netG, inputs, self.gpus)
                _, fake_RIRs,c_code = nn.parallel.data_parallel(netG, inputs, self.gpus)

                ############################
                # (3) Update D network
                ###########################
                netD.zero_grad()
                errD, errD_real, errD_wrong, errD_fake = \
                    compute_discriminator_loss(netD, real_RIRs, fake_RIRs,
                                               real_labels, fake_labels,
                                               c_code, self.gpus)

                errD_total = errD*5
                errD_total.backward()
                optimizerD.step()
                ############################
                # (2) Update G network
                ###########################
                # kl_loss = KL_loss(mu, logvar)
                netG.zero_grad()
                errG,MSE_error,RT_error= compute_generator_loss(epoch,netD,real_RIRs, fake_RIRs,
                                              real_labels, c_code, self.gpus)
                errG_total = errG *5#+ kl_loss * cfg.TRAIN.COEFF.KL
                errG_total.backward()
                optimizerG.step()
                for p in range(2):
                    inputs = (txt_embedding)
                    # _, fake_RIRs, mu, logvar = \
                    #     nn.parallel.data_parallel(netG, inputs, self.gpus)
                    _, fake_RIRs,c_code = nn.parallel.data_parallel(netG, inputs, self.gpus)
                    netG.zero_grad()
                    errG,MSE_error,RT_error  = compute_generator_loss(epoch,netD,real_RIRs, fake_RIRs,
                                              real_labels, c_code, self.gpus)
                    # kl_loss = KL_loss(mu, logvar)
                    errG_total = errG *5#+ kl_loss * cfg.TRAIN.COEFF.KL
                    errG_total.backward()
                    optimizerG.step()

                count = count + 1
                if i % 100 == 0:
                    # summary_D = summary.scalar('D_loss', errD.data[0])
                    # summary_D_r = summary.scalar('D_loss_real', errD_real)
                    # summary_D_w = summary.scalar('D_loss_wrong', errD_wrong)
                    # summary_D_f = summary.scalar('D_loss_fake', errD_fake)
                    # summary_G = summary.scalar('G_loss', errG.data[0])
                    # summary_KL = summary.scalar('KL_loss', kl_loss.data[0])
                    # summary_D = summary.scalar('D_loss', errD.data)
                    # summary_D_r = summary.scalar('D_loss_real', errD_real)
                    # summary_D_w = summary.scalar('D_loss_wrong', errD_wrong)
                    # summary_D_f = summary.scalar('D_loss_fake', errD_fake)
                    # summary_G = summary.scalar('G_loss', errG.data)
                    # summary_KL = summary.scalar('KL_loss', kl_loss.data)

                    # self.summary_writer.add_summary(summary_D, count)
                    # self.summary_writer.add_summary(summary_D_r, count)
                    # self.summary_writer.add_summary(summary_D_w, count)
                    # self.summary_writer.add_summary(summary_D_f, count)
                    # self.summary_writer.add_summary(summary_G, count)
                    # self.summary_writer.add_summary(summary_KL, count)

                    # save the image result for each epoch
                    inputs = (txt_embedding)
                    lr_fake, fake, _ = \
                        nn.parallel.data_parallel(netG, inputs, self.gpus)
                    if(epoch%self.snapshot_interval==0):
                        save_RIR_results(real_RIR_cpu, fake, epoch, self.RIR_dir)
                        if lr_fake is not None:
                            save_RIR_results(None, lr_fake, epoch, self.RIR_dir)
            end_t = time.time()
            # print('''[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f Loss_KL: %.4f
            #          Loss_real: %.4f Loss_wrong:%.4f Loss_fake %.4f
            #          Total Time: %.2fsec
            #       '''
            #       % (epoch, self.max_epoch, i, len(data_loader),
            #          errD.data[0], errG.data[0], kl_loss.data[0],
            #          errD_real, errD_wrong, errD_fake, (end_t - start_t)))
            # print('''[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f Loss_KL: %.4f
            #          Loss_real: %.4f Loss_wrong:%.4f Loss_fake %.4f
            #          Total Time: %.2fsec
            #       '''
            #       % (epoch, self.max_epoch, i, len(data_loader),
            #          errD.data, errG.data, kl_loss.data,
            #          errD_real, errD_wrong, errD_fake, (end_t - start_t)))
            print('''[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f
                     Loss_real: %.4f Loss_wrong:%.4f Loss_fake %.4f   MSE_ERROR  %.4f RT_error %.4f
                     Total Time: %.2fsec
                  '''
                  % (epoch, self.max_epoch, i, len(data_loader),
                     errD.data, errG.data, 
                     errD_real, errD_wrong, errD_fake,MSE_error*4096, RT_error,(end_t - start_t)))

            store_to_file ="[{}/{}][{}/{}] Loss_D: {:.4f} Loss_G: {:.4f} Loss_real: {:.4f} Loss_wrong:{:.4f} Loss_fake {:.4f}  MSE Error:{:.4f} RT_error{:.4f} Total Time: {:.2f}sec".format(epoch, self.max_epoch, i, len(data_loader),
                     errD.data, errG.data, errD_real, errD_wrong, errD_fake,MSE_error*4096,RT_error, (end_t - start_t))
            store_to_file =store_to_file+"\n" 
            with open("errors.txt", "a") as myfile:
                myfile.write(store_to_file)
            
            if (RT_error<least_RT):
                least_RT = RT_error
                save_model(netG, netD, epoch, self.model_dir_RT)
            if epoch % self.snapshot_interval == 0:
                save_model(netG, netD, epoch, self.model_dir)
        #
        save_model(netG, netD, self.max_epoch, self.model_dir)
        #
        # self.summary_writer.close()


    def sample(self,file_path,stage=1):
        if stage == 1:
            netG, _ = self.load_network_stageI()
        else:
            netG, _ = self.load_network_stageII()
        netG.eval()

        time_list =[]


       

        embedding_path = file_path
        with open(embedding_path, 'rb') as f:
            embeddings_pickle = pickle.load(f)
    
    
    
        embeddings_list =[]
        num_embeddings = len(embeddings_pickle)
        for b in range (num_embeddings):
            embeddings_list.append(embeddings_pickle[b])
    
        embeddings = np.array(embeddings_list)
    
        save_dir_GAN = "Generated_RIRs"
        mkdir_p(save_dir_GAN)    
    
             
        
        normalize_embedding = []
          
    
        batch_size = np.minimum(num_embeddings, self.batch_size)
    
       
        count = 0
        count_this = 0
        while count < num_embeddings:

            iend = count + batch_size
            if iend > num_embeddings:
                iend = num_embeddings
                count = num_embeddings - batch_size
            embeddings_batch = embeddings[count:iend]



            txt_embedding = Variable(torch.FloatTensor(embeddings_batch))
            if cfg.CUDA:
                txt_embedding = txt_embedding.cuda()
    
            #######################################################
             # (2) Generate fake images
            ######################################################
            start_t = time.time()
            inputs = (txt_embedding)
            _, fake_RIRs,c_code = \
                nn.parallel.data_parallel(netG, inputs, self.gpus)
            end_t = time.time()
            diff_t = end_t - start_t
            time_list.append(diff_t)
    
            RIR_batch_size = batch_size #int(batch_size/2)
            print("batch_size ", RIR_batch_size)
            channel_size = 64
            
            for i in range(channel_size):
                fs =16000
                wave_name = "RIR-"+str(count+i)+".wav"
                save_name_GAN = '%s/%s' % (save_dir_GAN,wave_name)
                print("wave : ",save_name_GAN)
                res = {}
                res_buffer = []
                rate = 16000
                res['rate'] = rate
    
                wave_GAN = fake_RIRs[i].data.cpu().numpy()
                wave_GAN = np.array(wave_GAN[0])
    
            
                res_buffer.append(wave_GAN)
                res['samples'] = np.zeros((len(res_buffer), np.max([len(ps) for ps in res_buffer])))
                for i, c in enumerate(res_buffer):
                    res['samples'][i, :len(c)] = c

                w = WaveWriter(save_name_GAN, channels=np.shape(res['samples'])[0], samplerate=int(res['rate']))
                w.write(np.array(res['samples'])) 

            print("counter = ",count)
            count = count+64
            count_this = count_this+1