File size: 15,909 Bytes
b53f252 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
from __future__ import print_function
from six.moves import range
from PIL import Image
import torch.backends.cudnn as cudnn
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import os
import time
import numpy as np
import torchfile
import pickle
import soundfile as sf
import re
import math
from wavefile import WaveWriter, Format
from miscc.config import cfg
from miscc.utils import mkdir_p
from miscc.utils import weights_init
from miscc.utils import save_RIR_results, save_model
from miscc.utils import KL_loss
from miscc.utils import compute_discriminator_loss, compute_generator_loss
# from torch.utils.tensorboard import summary
# from torch.utils.tensorboard import FileWriter
class GANTrainer(object):
def __init__(self, output_dir):
if cfg.TRAIN.FLAG:
self.model_dir = os.path.join(output_dir, 'Model')
self.model_dir_RT = os.path.join(output_dir, 'Model_RT')
self.RIR_dir = os.path.join(output_dir, 'RIR')
self.log_dir = os.path.join(output_dir, 'Log')
mkdir_p(self.model_dir)
mkdir_p(self.model_dir_RT)
mkdir_p(self.RIR_dir)
mkdir_p(self.log_dir)
# self.summary_writer = FileWriter(self.log_dir)
self.max_epoch = cfg.TRAIN.MAX_EPOCH
self.snapshot_interval = cfg.TRAIN.SNAPSHOT_INTERVAL
s_gpus = cfg.GPU_ID.split(',')
self.gpus = [int(ix) for ix in s_gpus]
self.num_gpus = len(self.gpus)
self.batch_size = cfg.TRAIN.BATCH_SIZE * self.num_gpus
torch.cuda.set_device(self.gpus[0])
cudnn.benchmark = True
# ############# For training stageI GAN #############
def load_network_stageI(self):
from model import STAGE1_G, STAGE1_D
netG = STAGE1_G()
netG.apply(weights_init)
print(netG)
netD = STAGE1_D()
netD.apply(weights_init)
print(netD)
if cfg.NET_G != '':
state_dict = \
torch.load(cfg.NET_G,
map_location=lambda storage, loc: storage)
netG.load_state_dict(state_dict)
print('Load from: ', cfg.NET_G)
if cfg.NET_D != '':
state_dict = \
torch.load(cfg.NET_D,
map_location=lambda storage, loc: storage)
netD.load_state_dict(state_dict)
print('Load from: ', cfg.NET_D)
if cfg.CUDA:
netG.cuda()
netD.cuda()
return netG, netD
# ############# For training stageII GAN #############
def load_network_stageII(self):
from model import STAGE1_G, STAGE2_G, STAGE2_D
Stage1_G = STAGE1_G()
netG = STAGE2_G(Stage1_G)
netG.apply(weights_init)
print(netG)
if cfg.NET_G != '':
state_dict = \
torch.load(cfg.NET_G,
map_location=lambda storage, loc: storage)
netG.load_state_dict(state_dict)
print('Load from: ', cfg.NET_G)
elif cfg.STAGE1_G != '':
state_dict = \
torch.load(cfg.STAGE1_G,
map_location=lambda storage, loc: storage)
netG.STAGE1_G.load_state_dict(state_dict)
print('Load from: ', cfg.STAGE1_G)
else:
print("Please give the Stage1_G path")
return
netD = STAGE2_D()
netD.apply(weights_init)
if cfg.NET_D != '':
state_dict = \
torch.load(cfg.NET_D,
map_location=lambda storage, loc: storage)
netD.load_state_dict(state_dict)
print('Load from: ', cfg.NET_D)
print(netD)
if cfg.CUDA:
netG.cuda()
netD.cuda()
return netG, netD
def train(self, data_loader, stage=1):
if stage == 1:
netG, netD = self.load_network_stageI()
else:
netG, netD = self.load_network_stageII()
# nz = cfg.Z_DIM
batch_size = self.batch_size
# noise = Variable(torch.FloatTensor(batch_size, nz))
# fixed_noise = \
# Variable(torch.FloatTensor(batch_size, nz).normal_(0, 1),
# volatile=True)
real_labels = Variable(torch.FloatTensor(batch_size).fill_(1))
fake_labels = Variable(torch.FloatTensor(batch_size).fill_(0))
if cfg.CUDA:
# noise, fixed_noise = noise.cuda(), fixed_noise.cuda()
real_labels, fake_labels = real_labels.cuda(), fake_labels.cuda()
generator_lr = cfg.TRAIN.GENERATOR_LR
discriminator_lr = cfg.TRAIN.DISCRIMINATOR_LR
lr_decay_step = cfg.TRAIN.LR_DECAY_EPOCH
# optimizerD = \
# optim.Adam(netD.parameters(),
# lr=cfg.TRAIN.DISCRIMINATOR_LR, betas=(0.5, 0.999))
optimizerD = \
optim.RMSprop(netD.parameters(),
lr=cfg.TRAIN.DISCRIMINATOR_LR)
netG_para = []
for p in netG.parameters():
if p.requires_grad:
netG_para.append(p)
# optimizerG = optim.Adam(netG_para,
# lr=cfg.TRAIN.GENERATOR_LR,
# betas=(0.5, 0.999))
optimizerG = optim.RMSprop(netG_para,
lr=cfg.TRAIN.GENERATOR_LR)
count = 0
least_RT=10
for epoch in range(self.max_epoch):
start_t = time.time()
if epoch % lr_decay_step == 0 and epoch > 0:
generator_lr *= 0.7#0.5
for param_group in optimizerG.param_groups:
param_group['lr'] = generator_lr
discriminator_lr *= 0.7#0.5
for param_group in optimizerD.param_groups:
param_group['lr'] = discriminator_lr
for i, data in enumerate(data_loader, 0):
######################################################
# (1) Prepare training data
######################################################
real_RIR_cpu, txt_embedding = data
real_RIRs = Variable(real_RIR_cpu)
txt_embedding = Variable(txt_embedding)
if cfg.CUDA:
real_RIRs = real_RIRs.cuda()
txt_embedding = txt_embedding.cuda()
#print("trianer RIRs ",real_RIRs.size())
#print("trianer embedding ",txt_embedding.size())
#######################################################
# (2) Generate fake images
######################################################
# noise.data.normal_(0, 1)
# inputs = (txt_embedding, noise)
inputs = (txt_embedding)
# _, fake_RIRs, mu, logvar = \
# nn.parallel.data_parallel(netG, inputs, self.gpus)
_, fake_RIRs,c_code = nn.parallel.data_parallel(netG, inputs, self.gpus)
############################
# (3) Update D network
###########################
netD.zero_grad()
errD, errD_real, errD_wrong, errD_fake = \
compute_discriminator_loss(netD, real_RIRs, fake_RIRs,
real_labels, fake_labels,
c_code, self.gpus)
errD_total = errD*5
errD_total.backward()
optimizerD.step()
############################
# (2) Update G network
###########################
# kl_loss = KL_loss(mu, logvar)
netG.zero_grad()
errG,MSE_error,RT_error= compute_generator_loss(epoch,netD,real_RIRs, fake_RIRs,
real_labels, c_code, self.gpus)
errG_total = errG *5#+ kl_loss * cfg.TRAIN.COEFF.KL
errG_total.backward()
optimizerG.step()
for p in range(2):
inputs = (txt_embedding)
# _, fake_RIRs, mu, logvar = \
# nn.parallel.data_parallel(netG, inputs, self.gpus)
_, fake_RIRs,c_code = nn.parallel.data_parallel(netG, inputs, self.gpus)
netG.zero_grad()
errG,MSE_error,RT_error = compute_generator_loss(epoch,netD,real_RIRs, fake_RIRs,
real_labels, c_code, self.gpus)
# kl_loss = KL_loss(mu, logvar)
errG_total = errG *5#+ kl_loss * cfg.TRAIN.COEFF.KL
errG_total.backward()
optimizerG.step()
count = count + 1
if i % 100 == 0:
# summary_D = summary.scalar('D_loss', errD.data[0])
# summary_D_r = summary.scalar('D_loss_real', errD_real)
# summary_D_w = summary.scalar('D_loss_wrong', errD_wrong)
# summary_D_f = summary.scalar('D_loss_fake', errD_fake)
# summary_G = summary.scalar('G_loss', errG.data[0])
# summary_KL = summary.scalar('KL_loss', kl_loss.data[0])
# summary_D = summary.scalar('D_loss', errD.data)
# summary_D_r = summary.scalar('D_loss_real', errD_real)
# summary_D_w = summary.scalar('D_loss_wrong', errD_wrong)
# summary_D_f = summary.scalar('D_loss_fake', errD_fake)
# summary_G = summary.scalar('G_loss', errG.data)
# summary_KL = summary.scalar('KL_loss', kl_loss.data)
# self.summary_writer.add_summary(summary_D, count)
# self.summary_writer.add_summary(summary_D_r, count)
# self.summary_writer.add_summary(summary_D_w, count)
# self.summary_writer.add_summary(summary_D_f, count)
# self.summary_writer.add_summary(summary_G, count)
# self.summary_writer.add_summary(summary_KL, count)
# save the image result for each epoch
inputs = (txt_embedding)
lr_fake, fake, _ = \
nn.parallel.data_parallel(netG, inputs, self.gpus)
if(epoch%self.snapshot_interval==0):
save_RIR_results(real_RIR_cpu, fake, epoch, self.RIR_dir)
if lr_fake is not None:
save_RIR_results(None, lr_fake, epoch, self.RIR_dir)
end_t = time.time()
# print('''[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f Loss_KL: %.4f
# Loss_real: %.4f Loss_wrong:%.4f Loss_fake %.4f
# Total Time: %.2fsec
# '''
# % (epoch, self.max_epoch, i, len(data_loader),
# errD.data[0], errG.data[0], kl_loss.data[0],
# errD_real, errD_wrong, errD_fake, (end_t - start_t)))
# print('''[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f Loss_KL: %.4f
# Loss_real: %.4f Loss_wrong:%.4f Loss_fake %.4f
# Total Time: %.2fsec
# '''
# % (epoch, self.max_epoch, i, len(data_loader),
# errD.data, errG.data, kl_loss.data,
# errD_real, errD_wrong, errD_fake, (end_t - start_t)))
print('''[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f
Loss_real: %.4f Loss_wrong:%.4f Loss_fake %.4f MSE_ERROR %.4f RT_error %.4f
Total Time: %.2fsec
'''
% (epoch, self.max_epoch, i, len(data_loader),
errD.data, errG.data,
errD_real, errD_wrong, errD_fake,MSE_error*4096, RT_error,(end_t - start_t)))
store_to_file ="[{}/{}][{}/{}] Loss_D: {:.4f} Loss_G: {:.4f} Loss_real: {:.4f} Loss_wrong:{:.4f} Loss_fake {:.4f} MSE Error:{:.4f} RT_error{:.4f} Total Time: {:.2f}sec".format(epoch, self.max_epoch, i, len(data_loader),
errD.data, errG.data, errD_real, errD_wrong, errD_fake,MSE_error*4096,RT_error, (end_t - start_t))
store_to_file =store_to_file+"\n"
with open("errors.txt", "a") as myfile:
myfile.write(store_to_file)
if (RT_error<least_RT):
least_RT = RT_error
save_model(netG, netD, epoch, self.model_dir_RT)
if epoch % self.snapshot_interval == 0:
save_model(netG, netD, epoch, self.model_dir)
#
save_model(netG, netD, self.max_epoch, self.model_dir)
#
# self.summary_writer.close()
def sample(self,file_path,stage=1):
if stage == 1:
netG, _ = self.load_network_stageI()
else:
netG, _ = self.load_network_stageII()
netG.eval()
time_list =[]
embedding_path = file_path
with open(embedding_path, 'rb') as f:
embeddings_pickle = pickle.load(f)
embeddings_list =[]
num_embeddings = len(embeddings_pickle)
for b in range (num_embeddings):
embeddings_list.append(embeddings_pickle[b])
embeddings = np.array(embeddings_list)
save_dir_GAN = "Generated_RIRs"
mkdir_p(save_dir_GAN)
normalize_embedding = []
batch_size = np.minimum(num_embeddings, self.batch_size)
count = 0
count_this = 0
while count < num_embeddings:
iend = count + batch_size
if iend > num_embeddings:
iend = num_embeddings
count = num_embeddings - batch_size
embeddings_batch = embeddings[count:iend]
txt_embedding = Variable(torch.FloatTensor(embeddings_batch))
if cfg.CUDA:
txt_embedding = txt_embedding.cuda()
#######################################################
# (2) Generate fake images
######################################################
start_t = time.time()
inputs = (txt_embedding)
_, fake_RIRs,c_code = \
nn.parallel.data_parallel(netG, inputs, self.gpus)
end_t = time.time()
diff_t = end_t - start_t
time_list.append(diff_t)
RIR_batch_size = batch_size #int(batch_size/2)
print("batch_size ", RIR_batch_size)
channel_size = 64
for i in range(channel_size):
fs =16000
wave_name = "RIR-"+str(count+i)+".wav"
save_name_GAN = '%s/%s' % (save_dir_GAN,wave_name)
print("wave : ",save_name_GAN)
res = {}
res_buffer = []
rate = 16000
res['rate'] = rate
wave_GAN = fake_RIRs[i].data.cpu().numpy()
wave_GAN = np.array(wave_GAN[0])
res_buffer.append(wave_GAN)
res['samples'] = np.zeros((len(res_buffer), np.max([len(ps) for ps in res_buffer])))
for i, c in enumerate(res_buffer):
res['samples'][i, :len(c)] = c
w = WaveWriter(save_name_GAN, channels=np.shape(res['samples'])[0], samplerate=int(res['rate']))
w.write(np.array(res['samples']))
print("counter = ",count)
count = count+64
count_this = count_this+1
|