Commit
·
b53f252
1
Parent(s):
fd529ef
Upload 40 files
Browse files- .gitattributes +1 -0
- LICENSE +661 -0
- Poster.pdf +0 -0
- README.md +133 -3
- code_new/RT60.py +131 -0
- code_new/RTS.py +87 -0
- code_new/__init__py +2 -0
- code_new/__pycache__/RT60.cpython-36.pyc +0 -0
- code_new/__pycache__/RT60.cpython-38.pyc +0 -0
- code_new/__pycache__/RTS.cpython-38.pyc +0 -0
- code_new/__pycache__/model.cpython-36.pyc +0 -0
- code_new/__pycache__/model.cpython-38.pyc +0 -0
- code_new/__pycache__/trainer.cpython-36.pyc +0 -0
- code_new/__pycache__/trainer.cpython-38.pyc +0 -0
- code_new/cfg/RIR_eval.yml +25 -0
- code_new/cfg/RIR_s1.yml +32 -0
- code_new/cfg/RIR_s1_temp.yml +32 -0
- code_new/main.py +72 -0
- code_new/miscc/__init__.py +2 -0
- code_new/miscc/__init__.pyc +0 -0
- code_new/miscc/__pycache__/__init__.cpython-36.pyc +0 -0
- code_new/miscc/__pycache__/__init__.cpython-38.pyc +0 -0
- code_new/miscc/__pycache__/config.cpython-36.pyc +0 -0
- code_new/miscc/__pycache__/config.cpython-38.pyc +0 -0
- code_new/miscc/__pycache__/datasets.cpython-36.pyc +0 -0
- code_new/miscc/__pycache__/datasets.cpython-38.pyc +0 -0
- code_new/miscc/__pycache__/utils.cpython-36.pyc +0 -0
- code_new/miscc/__pycache__/utils.cpython-38.pyc +0 -0
- code_new/miscc/config.py +97 -0
- code_new/miscc/config.pyc +0 -0
- code_new/miscc/datasets.py +113 -0
- code_new/miscc/datasets.pyc +0 -0
- code_new/miscc/utils.py +239 -0
- code_new/miscc/utils.pyc +0 -0
- code_new/model.py +413 -0
- code_new/single_copy.py +46 -0
- code_new/trainer.py +392 -0
- download_data.sh +3 -0
- download_generate.sh +2 -0
- example1.py +20 -0
- slides.pptx +3 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
slides.pptx filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
|
@@ -0,0 +1,661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
GNU AFFERO GENERAL PUBLIC LICENSE
|
| 2 |
+
Version 3, 19 November 2007
|
| 3 |
+
|
| 4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
| 5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
| 6 |
+
of this license document, but changing it is not allowed.
|
| 7 |
+
|
| 8 |
+
Preamble
|
| 9 |
+
|
| 10 |
+
The GNU Affero General Public License is a free, copyleft license for
|
| 11 |
+
software and other kinds of works, specifically designed to ensure
|
| 12 |
+
cooperation with the community in the case of network server software.
|
| 13 |
+
|
| 14 |
+
The licenses for most software and other practical works are designed
|
| 15 |
+
to take away your freedom to share and change the works. By contrast,
|
| 16 |
+
our General Public Licenses are intended to guarantee your freedom to
|
| 17 |
+
share and change all versions of a program--to make sure it remains free
|
| 18 |
+
software for all its users.
|
| 19 |
+
|
| 20 |
+
When we speak of free software, we are referring to freedom, not
|
| 21 |
+
price. Our General Public Licenses are designed to make sure that you
|
| 22 |
+
have the freedom to distribute copies of free software (and charge for
|
| 23 |
+
them if you wish), that you receive source code or can get it if you
|
| 24 |
+
want it, that you can change the software or use pieces of it in new
|
| 25 |
+
free programs, and that you know you can do these things.
|
| 26 |
+
|
| 27 |
+
Developers that use our General Public Licenses protect your rights
|
| 28 |
+
with two steps: (1) assert copyright on the software, and (2) offer
|
| 29 |
+
you this License which gives you legal permission to copy, distribute
|
| 30 |
+
and/or modify the software.
|
| 31 |
+
|
| 32 |
+
A secondary benefit of defending all users' freedom is that
|
| 33 |
+
improvements made in alternate versions of the program, if they
|
| 34 |
+
receive widespread use, become available for other developers to
|
| 35 |
+
incorporate. Many developers of free software are heartened and
|
| 36 |
+
encouraged by the resulting cooperation. However, in the case of
|
| 37 |
+
software used on network servers, this result may fail to come about.
|
| 38 |
+
The GNU General Public License permits making a modified version and
|
| 39 |
+
letting the public access it on a server without ever releasing its
|
| 40 |
+
source code to the public.
|
| 41 |
+
|
| 42 |
+
The GNU Affero General Public License is designed specifically to
|
| 43 |
+
ensure that, in such cases, the modified source code becomes available
|
| 44 |
+
to the community. It requires the operator of a network server to
|
| 45 |
+
provide the source code of the modified version running there to the
|
| 46 |
+
users of that server. Therefore, public use of a modified version, on
|
| 47 |
+
a publicly accessible server, gives the public access to the source
|
| 48 |
+
code of the modified version.
|
| 49 |
+
|
| 50 |
+
An older license, called the Affero General Public License and
|
| 51 |
+
published by Affero, was designed to accomplish similar goals. This is
|
| 52 |
+
a different license, not a version of the Affero GPL, but Affero has
|
| 53 |
+
released a new version of the Affero GPL which permits relicensing under
|
| 54 |
+
this license.
|
| 55 |
+
|
| 56 |
+
The precise terms and conditions for copying, distribution and
|
| 57 |
+
modification follow.
|
| 58 |
+
|
| 59 |
+
TERMS AND CONDITIONS
|
| 60 |
+
|
| 61 |
+
0. Definitions.
|
| 62 |
+
|
| 63 |
+
"This License" refers to version 3 of the GNU Affero General Public License.
|
| 64 |
+
|
| 65 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
| 66 |
+
works, such as semiconductor masks.
|
| 67 |
+
|
| 68 |
+
"The Program" refers to any copyrightable work licensed under this
|
| 69 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
| 70 |
+
"recipients" may be individuals or organizations.
|
| 71 |
+
|
| 72 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
| 73 |
+
in a fashion requiring copyright permission, other than the making of an
|
| 74 |
+
exact copy. The resulting work is called a "modified version" of the
|
| 75 |
+
earlier work or a work "based on" the earlier work.
|
| 76 |
+
|
| 77 |
+
A "covered work" means either the unmodified Program or a work based
|
| 78 |
+
on the Program.
|
| 79 |
+
|
| 80 |
+
To "propagate" a work means to do anything with it that, without
|
| 81 |
+
permission, would make you directly or secondarily liable for
|
| 82 |
+
infringement under applicable copyright law, except executing it on a
|
| 83 |
+
computer or modifying a private copy. Propagation includes copying,
|
| 84 |
+
distribution (with or without modification), making available to the
|
| 85 |
+
public, and in some countries other activities as well.
|
| 86 |
+
|
| 87 |
+
To "convey" a work means any kind of propagation that enables other
|
| 88 |
+
parties to make or receive copies. Mere interaction with a user through
|
| 89 |
+
a computer network, with no transfer of a copy, is not conveying.
|
| 90 |
+
|
| 91 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
| 92 |
+
to the extent that it includes a convenient and prominently visible
|
| 93 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
| 94 |
+
tells the user that there is no warranty for the work (except to the
|
| 95 |
+
extent that warranties are provided), that licensees may convey the
|
| 96 |
+
work under this License, and how to view a copy of this License. If
|
| 97 |
+
the interface presents a list of user commands or options, such as a
|
| 98 |
+
menu, a prominent item in the list meets this criterion.
|
| 99 |
+
|
| 100 |
+
1. Source Code.
|
| 101 |
+
|
| 102 |
+
The "source code" for a work means the preferred form of the work
|
| 103 |
+
for making modifications to it. "Object code" means any non-source
|
| 104 |
+
form of a work.
|
| 105 |
+
|
| 106 |
+
A "Standard Interface" means an interface that either is an official
|
| 107 |
+
standard defined by a recognized standards body, or, in the case of
|
| 108 |
+
interfaces specified for a particular programming language, one that
|
| 109 |
+
is widely used among developers working in that language.
|
| 110 |
+
|
| 111 |
+
The "System Libraries" of an executable work include anything, other
|
| 112 |
+
than the work as a whole, that (a) is included in the normal form of
|
| 113 |
+
packaging a Major Component, but which is not part of that Major
|
| 114 |
+
Component, and (b) serves only to enable use of the work with that
|
| 115 |
+
Major Component, or to implement a Standard Interface for which an
|
| 116 |
+
implementation is available to the public in source code form. A
|
| 117 |
+
"Major Component", in this context, means a major essential component
|
| 118 |
+
(kernel, window system, and so on) of the specific operating system
|
| 119 |
+
(if any) on which the executable work runs, or a compiler used to
|
| 120 |
+
produce the work, or an object code interpreter used to run it.
|
| 121 |
+
|
| 122 |
+
The "Corresponding Source" for a work in object code form means all
|
| 123 |
+
the source code needed to generate, install, and (for an executable
|
| 124 |
+
work) run the object code and to modify the work, including scripts to
|
| 125 |
+
control those activities. However, it does not include the work's
|
| 126 |
+
System Libraries, or general-purpose tools or generally available free
|
| 127 |
+
programs which are used unmodified in performing those activities but
|
| 128 |
+
which are not part of the work. For example, Corresponding Source
|
| 129 |
+
includes interface definition files associated with source files for
|
| 130 |
+
the work, and the source code for shared libraries and dynamically
|
| 131 |
+
linked subprograms that the work is specifically designed to require,
|
| 132 |
+
such as by intimate data communication or control flow between those
|
| 133 |
+
subprograms and other parts of the work.
|
| 134 |
+
|
| 135 |
+
The Corresponding Source need not include anything that users
|
| 136 |
+
can regenerate automatically from other parts of the Corresponding
|
| 137 |
+
Source.
|
| 138 |
+
|
| 139 |
+
The Corresponding Source for a work in source code form is that
|
| 140 |
+
same work.
|
| 141 |
+
|
| 142 |
+
2. Basic Permissions.
|
| 143 |
+
|
| 144 |
+
All rights granted under this License are granted for the term of
|
| 145 |
+
copyright on the Program, and are irrevocable provided the stated
|
| 146 |
+
conditions are met. This License explicitly affirms your unlimited
|
| 147 |
+
permission to run the unmodified Program. The output from running a
|
| 148 |
+
covered work is covered by this License only if the output, given its
|
| 149 |
+
content, constitutes a covered work. This License acknowledges your
|
| 150 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
| 151 |
+
|
| 152 |
+
You may make, run and propagate covered works that you do not
|
| 153 |
+
convey, without conditions so long as your license otherwise remains
|
| 154 |
+
in force. You may convey covered works to others for the sole purpose
|
| 155 |
+
of having them make modifications exclusively for you, or provide you
|
| 156 |
+
with facilities for running those works, provided that you comply with
|
| 157 |
+
the terms of this License in conveying all material for which you do
|
| 158 |
+
not control copyright. Those thus making or running the covered works
|
| 159 |
+
for you must do so exclusively on your behalf, under your direction
|
| 160 |
+
and control, on terms that prohibit them from making any copies of
|
| 161 |
+
your copyrighted material outside their relationship with you.
|
| 162 |
+
|
| 163 |
+
Conveying under any other circumstances is permitted solely under
|
| 164 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
| 165 |
+
makes it unnecessary.
|
| 166 |
+
|
| 167 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
| 168 |
+
|
| 169 |
+
No covered work shall be deemed part of an effective technological
|
| 170 |
+
measure under any applicable law fulfilling obligations under article
|
| 171 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
| 172 |
+
similar laws prohibiting or restricting circumvention of such
|
| 173 |
+
measures.
|
| 174 |
+
|
| 175 |
+
When you convey a covered work, you waive any legal power to forbid
|
| 176 |
+
circumvention of technological measures to the extent such circumvention
|
| 177 |
+
is effected by exercising rights under this License with respect to
|
| 178 |
+
the covered work, and you disclaim any intention to limit operation or
|
| 179 |
+
modification of the work as a means of enforcing, against the work's
|
| 180 |
+
users, your or third parties' legal rights to forbid circumvention of
|
| 181 |
+
technological measures.
|
| 182 |
+
|
| 183 |
+
4. Conveying Verbatim Copies.
|
| 184 |
+
|
| 185 |
+
You may convey verbatim copies of the Program's source code as you
|
| 186 |
+
receive it, in any medium, provided that you conspicuously and
|
| 187 |
+
appropriately publish on each copy an appropriate copyright notice;
|
| 188 |
+
keep intact all notices stating that this License and any
|
| 189 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
| 190 |
+
keep intact all notices of the absence of any warranty; and give all
|
| 191 |
+
recipients a copy of this License along with the Program.
|
| 192 |
+
|
| 193 |
+
You may charge any price or no price for each copy that you convey,
|
| 194 |
+
and you may offer support or warranty protection for a fee.
|
| 195 |
+
|
| 196 |
+
5. Conveying Modified Source Versions.
|
| 197 |
+
|
| 198 |
+
You may convey a work based on the Program, or the modifications to
|
| 199 |
+
produce it from the Program, in the form of source code under the
|
| 200 |
+
terms of section 4, provided that you also meet all of these conditions:
|
| 201 |
+
|
| 202 |
+
a) The work must carry prominent notices stating that you modified
|
| 203 |
+
it, and giving a relevant date.
|
| 204 |
+
|
| 205 |
+
b) The work must carry prominent notices stating that it is
|
| 206 |
+
released under this License and any conditions added under section
|
| 207 |
+
7. This requirement modifies the requirement in section 4 to
|
| 208 |
+
"keep intact all notices".
|
| 209 |
+
|
| 210 |
+
c) You must license the entire work, as a whole, under this
|
| 211 |
+
License to anyone who comes into possession of a copy. This
|
| 212 |
+
License will therefore apply, along with any applicable section 7
|
| 213 |
+
additional terms, to the whole of the work, and all its parts,
|
| 214 |
+
regardless of how they are packaged. This License gives no
|
| 215 |
+
permission to license the work in any other way, but it does not
|
| 216 |
+
invalidate such permission if you have separately received it.
|
| 217 |
+
|
| 218 |
+
d) If the work has interactive user interfaces, each must display
|
| 219 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
| 220 |
+
interfaces that do not display Appropriate Legal Notices, your
|
| 221 |
+
work need not make them do so.
|
| 222 |
+
|
| 223 |
+
A compilation of a covered work with other separate and independent
|
| 224 |
+
works, which are not by their nature extensions of the covered work,
|
| 225 |
+
and which are not combined with it such as to form a larger program,
|
| 226 |
+
in or on a volume of a storage or distribution medium, is called an
|
| 227 |
+
"aggregate" if the compilation and its resulting copyright are not
|
| 228 |
+
used to limit the access or legal rights of the compilation's users
|
| 229 |
+
beyond what the individual works permit. Inclusion of a covered work
|
| 230 |
+
in an aggregate does not cause this License to apply to the other
|
| 231 |
+
parts of the aggregate.
|
| 232 |
+
|
| 233 |
+
6. Conveying Non-Source Forms.
|
| 234 |
+
|
| 235 |
+
You may convey a covered work in object code form under the terms
|
| 236 |
+
of sections 4 and 5, provided that you also convey the
|
| 237 |
+
machine-readable Corresponding Source under the terms of this License,
|
| 238 |
+
in one of these ways:
|
| 239 |
+
|
| 240 |
+
a) Convey the object code in, or embodied in, a physical product
|
| 241 |
+
(including a physical distribution medium), accompanied by the
|
| 242 |
+
Corresponding Source fixed on a durable physical medium
|
| 243 |
+
customarily used for software interchange.
|
| 244 |
+
|
| 245 |
+
b) Convey the object code in, or embodied in, a physical product
|
| 246 |
+
(including a physical distribution medium), accompanied by a
|
| 247 |
+
written offer, valid for at least three years and valid for as
|
| 248 |
+
long as you offer spare parts or customer support for that product
|
| 249 |
+
model, to give anyone who possesses the object code either (1) a
|
| 250 |
+
copy of the Corresponding Source for all the software in the
|
| 251 |
+
product that is covered by this License, on a durable physical
|
| 252 |
+
medium customarily used for software interchange, for a price no
|
| 253 |
+
more than your reasonable cost of physically performing this
|
| 254 |
+
conveying of source, or (2) access to copy the
|
| 255 |
+
Corresponding Source from a network server at no charge.
|
| 256 |
+
|
| 257 |
+
c) Convey individual copies of the object code with a copy of the
|
| 258 |
+
written offer to provide the Corresponding Source. This
|
| 259 |
+
alternative is allowed only occasionally and noncommercially, and
|
| 260 |
+
only if you received the object code with such an offer, in accord
|
| 261 |
+
with subsection 6b.
|
| 262 |
+
|
| 263 |
+
d) Convey the object code by offering access from a designated
|
| 264 |
+
place (gratis or for a charge), and offer equivalent access to the
|
| 265 |
+
Corresponding Source in the same way through the same place at no
|
| 266 |
+
further charge. You need not require recipients to copy the
|
| 267 |
+
Corresponding Source along with the object code. If the place to
|
| 268 |
+
copy the object code is a network server, the Corresponding Source
|
| 269 |
+
may be on a different server (operated by you or a third party)
|
| 270 |
+
that supports equivalent copying facilities, provided you maintain
|
| 271 |
+
clear directions next to the object code saying where to find the
|
| 272 |
+
Corresponding Source. Regardless of what server hosts the
|
| 273 |
+
Corresponding Source, you remain obligated to ensure that it is
|
| 274 |
+
available for as long as needed to satisfy these requirements.
|
| 275 |
+
|
| 276 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
| 277 |
+
you inform other peers where the object code and Corresponding
|
| 278 |
+
Source of the work are being offered to the general public at no
|
| 279 |
+
charge under subsection 6d.
|
| 280 |
+
|
| 281 |
+
A separable portion of the object code, whose source code is excluded
|
| 282 |
+
from the Corresponding Source as a System Library, need not be
|
| 283 |
+
included in conveying the object code work.
|
| 284 |
+
|
| 285 |
+
A "User Product" is either (1) a "consumer product", which means any
|
| 286 |
+
tangible personal property which is normally used for personal, family,
|
| 287 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
| 288 |
+
into a dwelling. In determining whether a product is a consumer product,
|
| 289 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
| 290 |
+
product received by a particular user, "normally used" refers to a
|
| 291 |
+
typical or common use of that class of product, regardless of the status
|
| 292 |
+
of the particular user or of the way in which the particular user
|
| 293 |
+
actually uses, or expects or is expected to use, the product. A product
|
| 294 |
+
is a consumer product regardless of whether the product has substantial
|
| 295 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
| 296 |
+
the only significant mode of use of the product.
|
| 297 |
+
|
| 298 |
+
"Installation Information" for a User Product means any methods,
|
| 299 |
+
procedures, authorization keys, or other information required to install
|
| 300 |
+
and execute modified versions of a covered work in that User Product from
|
| 301 |
+
a modified version of its Corresponding Source. The information must
|
| 302 |
+
suffice to ensure that the continued functioning of the modified object
|
| 303 |
+
code is in no case prevented or interfered with solely because
|
| 304 |
+
modification has been made.
|
| 305 |
+
|
| 306 |
+
If you convey an object code work under this section in, or with, or
|
| 307 |
+
specifically for use in, a User Product, and the conveying occurs as
|
| 308 |
+
part of a transaction in which the right of possession and use of the
|
| 309 |
+
User Product is transferred to the recipient in perpetuity or for a
|
| 310 |
+
fixed term (regardless of how the transaction is characterized), the
|
| 311 |
+
Corresponding Source conveyed under this section must be accompanied
|
| 312 |
+
by the Installation Information. But this requirement does not apply
|
| 313 |
+
if neither you nor any third party retains the ability to install
|
| 314 |
+
modified object code on the User Product (for example, the work has
|
| 315 |
+
been installed in ROM).
|
| 316 |
+
|
| 317 |
+
The requirement to provide Installation Information does not include a
|
| 318 |
+
requirement to continue to provide support service, warranty, or updates
|
| 319 |
+
for a work that has been modified or installed by the recipient, or for
|
| 320 |
+
the User Product in which it has been modified or installed. Access to a
|
| 321 |
+
network may be denied when the modification itself materially and
|
| 322 |
+
adversely affects the operation of the network or violates the rules and
|
| 323 |
+
protocols for communication across the network.
|
| 324 |
+
|
| 325 |
+
Corresponding Source conveyed, and Installation Information provided,
|
| 326 |
+
in accord with this section must be in a format that is publicly
|
| 327 |
+
documented (and with an implementation available to the public in
|
| 328 |
+
source code form), and must require no special password or key for
|
| 329 |
+
unpacking, reading or copying.
|
| 330 |
+
|
| 331 |
+
7. Additional Terms.
|
| 332 |
+
|
| 333 |
+
"Additional permissions" are terms that supplement the terms of this
|
| 334 |
+
License by making exceptions from one or more of its conditions.
|
| 335 |
+
Additional permissions that are applicable to the entire Program shall
|
| 336 |
+
be treated as though they were included in this License, to the extent
|
| 337 |
+
that they are valid under applicable law. If additional permissions
|
| 338 |
+
apply only to part of the Program, that part may be used separately
|
| 339 |
+
under those permissions, but the entire Program remains governed by
|
| 340 |
+
this License without regard to the additional permissions.
|
| 341 |
+
|
| 342 |
+
When you convey a copy of a covered work, you may at your option
|
| 343 |
+
remove any additional permissions from that copy, or from any part of
|
| 344 |
+
it. (Additional permissions may be written to require their own
|
| 345 |
+
removal in certain cases when you modify the work.) You may place
|
| 346 |
+
additional permissions on material, added by you to a covered work,
|
| 347 |
+
for which you have or can give appropriate copyright permission.
|
| 348 |
+
|
| 349 |
+
Notwithstanding any other provision of this License, for material you
|
| 350 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
| 351 |
+
that material) supplement the terms of this License with terms:
|
| 352 |
+
|
| 353 |
+
a) Disclaiming warranty or limiting liability differently from the
|
| 354 |
+
terms of sections 15 and 16 of this License; or
|
| 355 |
+
|
| 356 |
+
b) Requiring preservation of specified reasonable legal notices or
|
| 357 |
+
author attributions in that material or in the Appropriate Legal
|
| 358 |
+
Notices displayed by works containing it; or
|
| 359 |
+
|
| 360 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
| 361 |
+
requiring that modified versions of such material be marked in
|
| 362 |
+
reasonable ways as different from the original version; or
|
| 363 |
+
|
| 364 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
| 365 |
+
authors of the material; or
|
| 366 |
+
|
| 367 |
+
e) Declining to grant rights under trademark law for use of some
|
| 368 |
+
trade names, trademarks, or service marks; or
|
| 369 |
+
|
| 370 |
+
f) Requiring indemnification of licensors and authors of that
|
| 371 |
+
material by anyone who conveys the material (or modified versions of
|
| 372 |
+
it) with contractual assumptions of liability to the recipient, for
|
| 373 |
+
any liability that these contractual assumptions directly impose on
|
| 374 |
+
those licensors and authors.
|
| 375 |
+
|
| 376 |
+
All other non-permissive additional terms are considered "further
|
| 377 |
+
restrictions" within the meaning of section 10. If the Program as you
|
| 378 |
+
received it, or any part of it, contains a notice stating that it is
|
| 379 |
+
governed by this License along with a term that is a further
|
| 380 |
+
restriction, you may remove that term. If a license document contains
|
| 381 |
+
a further restriction but permits relicensing or conveying under this
|
| 382 |
+
License, you may add to a covered work material governed by the terms
|
| 383 |
+
of that license document, provided that the further restriction does
|
| 384 |
+
not survive such relicensing or conveying.
|
| 385 |
+
|
| 386 |
+
If you add terms to a covered work in accord with this section, you
|
| 387 |
+
must place, in the relevant source files, a statement of the
|
| 388 |
+
additional terms that apply to those files, or a notice indicating
|
| 389 |
+
where to find the applicable terms.
|
| 390 |
+
|
| 391 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
| 392 |
+
form of a separately written license, or stated as exceptions;
|
| 393 |
+
the above requirements apply either way.
|
| 394 |
+
|
| 395 |
+
8. Termination.
|
| 396 |
+
|
| 397 |
+
You may not propagate or modify a covered work except as expressly
|
| 398 |
+
provided under this License. Any attempt otherwise to propagate or
|
| 399 |
+
modify it is void, and will automatically terminate your rights under
|
| 400 |
+
this License (including any patent licenses granted under the third
|
| 401 |
+
paragraph of section 11).
|
| 402 |
+
|
| 403 |
+
However, if you cease all violation of this License, then your
|
| 404 |
+
license from a particular copyright holder is reinstated (a)
|
| 405 |
+
provisionally, unless and until the copyright holder explicitly and
|
| 406 |
+
finally terminates your license, and (b) permanently, if the copyright
|
| 407 |
+
holder fails to notify you of the violation by some reasonable means
|
| 408 |
+
prior to 60 days after the cessation.
|
| 409 |
+
|
| 410 |
+
Moreover, your license from a particular copyright holder is
|
| 411 |
+
reinstated permanently if the copyright holder notifies you of the
|
| 412 |
+
violation by some reasonable means, this is the first time you have
|
| 413 |
+
received notice of violation of this License (for any work) from that
|
| 414 |
+
copyright holder, and you cure the violation prior to 30 days after
|
| 415 |
+
your receipt of the notice.
|
| 416 |
+
|
| 417 |
+
Termination of your rights under this section does not terminate the
|
| 418 |
+
licenses of parties who have received copies or rights from you under
|
| 419 |
+
this License. If your rights have been terminated and not permanently
|
| 420 |
+
reinstated, you do not qualify to receive new licenses for the same
|
| 421 |
+
material under section 10.
|
| 422 |
+
|
| 423 |
+
9. Acceptance Not Required for Having Copies.
|
| 424 |
+
|
| 425 |
+
You are not required to accept this License in order to receive or
|
| 426 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
| 427 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
| 428 |
+
to receive a copy likewise does not require acceptance. However,
|
| 429 |
+
nothing other than this License grants you permission to propagate or
|
| 430 |
+
modify any covered work. These actions infringe copyright if you do
|
| 431 |
+
not accept this License. Therefore, by modifying or propagating a
|
| 432 |
+
covered work, you indicate your acceptance of this License to do so.
|
| 433 |
+
|
| 434 |
+
10. Automatic Licensing of Downstream Recipients.
|
| 435 |
+
|
| 436 |
+
Each time you convey a covered work, the recipient automatically
|
| 437 |
+
receives a license from the original licensors, to run, modify and
|
| 438 |
+
propagate that work, subject to this License. You are not responsible
|
| 439 |
+
for enforcing compliance by third parties with this License.
|
| 440 |
+
|
| 441 |
+
An "entity transaction" is a transaction transferring control of an
|
| 442 |
+
organization, or substantially all assets of one, or subdividing an
|
| 443 |
+
organization, or merging organizations. If propagation of a covered
|
| 444 |
+
work results from an entity transaction, each party to that
|
| 445 |
+
transaction who receives a copy of the work also receives whatever
|
| 446 |
+
licenses to the work the party's predecessor in interest had or could
|
| 447 |
+
give under the previous paragraph, plus a right to possession of the
|
| 448 |
+
Corresponding Source of the work from the predecessor in interest, if
|
| 449 |
+
the predecessor has it or can get it with reasonable efforts.
|
| 450 |
+
|
| 451 |
+
You may not impose any further restrictions on the exercise of the
|
| 452 |
+
rights granted or affirmed under this License. For example, you may
|
| 453 |
+
not impose a license fee, royalty, or other charge for exercise of
|
| 454 |
+
rights granted under this License, and you may not initiate litigation
|
| 455 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
| 456 |
+
any patent claim is infringed by making, using, selling, offering for
|
| 457 |
+
sale, or importing the Program or any portion of it.
|
| 458 |
+
|
| 459 |
+
11. Patents.
|
| 460 |
+
|
| 461 |
+
A "contributor" is a copyright holder who authorizes use under this
|
| 462 |
+
License of the Program or a work on which the Program is based. The
|
| 463 |
+
work thus licensed is called the contributor's "contributor version".
|
| 464 |
+
|
| 465 |
+
A contributor's "essential patent claims" are all patent claims
|
| 466 |
+
owned or controlled by the contributor, whether already acquired or
|
| 467 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
| 468 |
+
by this License, of making, using, or selling its contributor version,
|
| 469 |
+
but do not include claims that would be infringed only as a
|
| 470 |
+
consequence of further modification of the contributor version. For
|
| 471 |
+
purposes of this definition, "control" includes the right to grant
|
| 472 |
+
patent sublicenses in a manner consistent with the requirements of
|
| 473 |
+
this License.
|
| 474 |
+
|
| 475 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
| 476 |
+
patent license under the contributor's essential patent claims, to
|
| 477 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
| 478 |
+
propagate the contents of its contributor version.
|
| 479 |
+
|
| 480 |
+
In the following three paragraphs, a "patent license" is any express
|
| 481 |
+
agreement or commitment, however denominated, not to enforce a patent
|
| 482 |
+
(such as an express permission to practice a patent or covenant not to
|
| 483 |
+
sue for patent infringement). To "grant" such a patent license to a
|
| 484 |
+
party means to make such an agreement or commitment not to enforce a
|
| 485 |
+
patent against the party.
|
| 486 |
+
|
| 487 |
+
If you convey a covered work, knowingly relying on a patent license,
|
| 488 |
+
and the Corresponding Source of the work is not available for anyone
|
| 489 |
+
to copy, free of charge and under the terms of this License, through a
|
| 490 |
+
publicly available network server or other readily accessible means,
|
| 491 |
+
then you must either (1) cause the Corresponding Source to be so
|
| 492 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
| 493 |
+
patent license for this particular work, or (3) arrange, in a manner
|
| 494 |
+
consistent with the requirements of this License, to extend the patent
|
| 495 |
+
license to downstream recipients. "Knowingly relying" means you have
|
| 496 |
+
actual knowledge that, but for the patent license, your conveying the
|
| 497 |
+
covered work in a country, or your recipient's use of the covered work
|
| 498 |
+
in a country, would infringe one or more identifiable patents in that
|
| 499 |
+
country that you have reason to believe are valid.
|
| 500 |
+
|
| 501 |
+
If, pursuant to or in connection with a single transaction or
|
| 502 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
| 503 |
+
covered work, and grant a patent license to some of the parties
|
| 504 |
+
receiving the covered work authorizing them to use, propagate, modify
|
| 505 |
+
or convey a specific copy of the covered work, then the patent license
|
| 506 |
+
you grant is automatically extended to all recipients of the covered
|
| 507 |
+
work and works based on it.
|
| 508 |
+
|
| 509 |
+
A patent license is "discriminatory" if it does not include within
|
| 510 |
+
the scope of its coverage, prohibits the exercise of, or is
|
| 511 |
+
conditioned on the non-exercise of one or more of the rights that are
|
| 512 |
+
specifically granted under this License. You may not convey a covered
|
| 513 |
+
work if you are a party to an arrangement with a third party that is
|
| 514 |
+
in the business of distributing software, under which you make payment
|
| 515 |
+
to the third party based on the extent of your activity of conveying
|
| 516 |
+
the work, and under which the third party grants, to any of the
|
| 517 |
+
parties who would receive the covered work from you, a discriminatory
|
| 518 |
+
patent license (a) in connection with copies of the covered work
|
| 519 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
| 520 |
+
for and in connection with specific products or compilations that
|
| 521 |
+
contain the covered work, unless you entered into that arrangement,
|
| 522 |
+
or that patent license was granted, prior to 28 March 2007.
|
| 523 |
+
|
| 524 |
+
Nothing in this License shall be construed as excluding or limiting
|
| 525 |
+
any implied license or other defenses to infringement that may
|
| 526 |
+
otherwise be available to you under applicable patent law.
|
| 527 |
+
|
| 528 |
+
12. No Surrender of Others' Freedom.
|
| 529 |
+
|
| 530 |
+
If conditions are imposed on you (whether by court order, agreement or
|
| 531 |
+
otherwise) that contradict the conditions of this License, they do not
|
| 532 |
+
excuse you from the conditions of this License. If you cannot convey a
|
| 533 |
+
covered work so as to satisfy simultaneously your obligations under this
|
| 534 |
+
License and any other pertinent obligations, then as a consequence you may
|
| 535 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
| 536 |
+
to collect a royalty for further conveying from those to whom you convey
|
| 537 |
+
the Program, the only way you could satisfy both those terms and this
|
| 538 |
+
License would be to refrain entirely from conveying the Program.
|
| 539 |
+
|
| 540 |
+
13. Remote Network Interaction; Use with the GNU General Public License.
|
| 541 |
+
|
| 542 |
+
Notwithstanding any other provision of this License, if you modify the
|
| 543 |
+
Program, your modified version must prominently offer all users
|
| 544 |
+
interacting with it remotely through a computer network (if your version
|
| 545 |
+
supports such interaction) an opportunity to receive the Corresponding
|
| 546 |
+
Source of your version by providing access to the Corresponding Source
|
| 547 |
+
from a network server at no charge, through some standard or customary
|
| 548 |
+
means of facilitating copying of software. This Corresponding Source
|
| 549 |
+
shall include the Corresponding Source for any work covered by version 3
|
| 550 |
+
of the GNU General Public License that is incorporated pursuant to the
|
| 551 |
+
following paragraph.
|
| 552 |
+
|
| 553 |
+
Notwithstanding any other provision of this License, you have
|
| 554 |
+
permission to link or combine any covered work with a work licensed
|
| 555 |
+
under version 3 of the GNU General Public License into a single
|
| 556 |
+
combined work, and to convey the resulting work. The terms of this
|
| 557 |
+
License will continue to apply to the part which is the covered work,
|
| 558 |
+
but the work with which it is combined will remain governed by version
|
| 559 |
+
3 of the GNU General Public License.
|
| 560 |
+
|
| 561 |
+
14. Revised Versions of this License.
|
| 562 |
+
|
| 563 |
+
The Free Software Foundation may publish revised and/or new versions of
|
| 564 |
+
the GNU Affero General Public License from time to time. Such new versions
|
| 565 |
+
will be similar in spirit to the present version, but may differ in detail to
|
| 566 |
+
address new problems or concerns.
|
| 567 |
+
|
| 568 |
+
Each version is given a distinguishing version number. If the
|
| 569 |
+
Program specifies that a certain numbered version of the GNU Affero General
|
| 570 |
+
Public License "or any later version" applies to it, you have the
|
| 571 |
+
option of following the terms and conditions either of that numbered
|
| 572 |
+
version or of any later version published by the Free Software
|
| 573 |
+
Foundation. If the Program does not specify a version number of the
|
| 574 |
+
GNU Affero General Public License, you may choose any version ever published
|
| 575 |
+
by the Free Software Foundation.
|
| 576 |
+
|
| 577 |
+
If the Program specifies that a proxy can decide which future
|
| 578 |
+
versions of the GNU Affero General Public License can be used, that proxy's
|
| 579 |
+
public statement of acceptance of a version permanently authorizes you
|
| 580 |
+
to choose that version for the Program.
|
| 581 |
+
|
| 582 |
+
Later license versions may give you additional or different
|
| 583 |
+
permissions. However, no additional obligations are imposed on any
|
| 584 |
+
author or copyright holder as a result of your choosing to follow a
|
| 585 |
+
later version.
|
| 586 |
+
|
| 587 |
+
15. Disclaimer of Warranty.
|
| 588 |
+
|
| 589 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
| 590 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
| 591 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
| 592 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
| 593 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
| 594 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
| 595 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
| 596 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
| 597 |
+
|
| 598 |
+
16. Limitation of Liability.
|
| 599 |
+
|
| 600 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
| 601 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
| 602 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
| 603 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
| 604 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
| 605 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
| 606 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
| 607 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
| 608 |
+
SUCH DAMAGES.
|
| 609 |
+
|
| 610 |
+
17. Interpretation of Sections 15 and 16.
|
| 611 |
+
|
| 612 |
+
If the disclaimer of warranty and limitation of liability provided
|
| 613 |
+
above cannot be given local legal effect according to their terms,
|
| 614 |
+
reviewing courts shall apply local law that most closely approximates
|
| 615 |
+
an absolute waiver of all civil liability in connection with the
|
| 616 |
+
Program, unless a warranty or assumption of liability accompanies a
|
| 617 |
+
copy of the Program in return for a fee.
|
| 618 |
+
|
| 619 |
+
END OF TERMS AND CONDITIONS
|
| 620 |
+
|
| 621 |
+
How to Apply These Terms to Your New Programs
|
| 622 |
+
|
| 623 |
+
If you develop a new program, and you want it to be of the greatest
|
| 624 |
+
possible use to the public, the best way to achieve this is to make it
|
| 625 |
+
free software which everyone can redistribute and change under these terms.
|
| 626 |
+
|
| 627 |
+
To do so, attach the following notices to the program. It is safest
|
| 628 |
+
to attach them to the start of each source file to most effectively
|
| 629 |
+
state the exclusion of warranty; and each file should have at least
|
| 630 |
+
the "copyright" line and a pointer to where the full notice is found.
|
| 631 |
+
|
| 632 |
+
<one line to give the program's name and a brief idea of what it does.>
|
| 633 |
+
Copyright (C) <year> <name of author>
|
| 634 |
+
|
| 635 |
+
This program is free software: you can redistribute it and/or modify
|
| 636 |
+
it under the terms of the GNU Affero General Public License as published
|
| 637 |
+
by the Free Software Foundation, either version 3 of the License, or
|
| 638 |
+
(at your option) any later version.
|
| 639 |
+
|
| 640 |
+
This program is distributed in the hope that it will be useful,
|
| 641 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 642 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 643 |
+
GNU Affero General Public License for more details.
|
| 644 |
+
|
| 645 |
+
You should have received a copy of the GNU Affero General Public License
|
| 646 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
| 647 |
+
|
| 648 |
+
Also add information on how to contact you by electronic and paper mail.
|
| 649 |
+
|
| 650 |
+
If your software can interact with users remotely through a computer
|
| 651 |
+
network, you should also make sure that it provides a way for users to
|
| 652 |
+
get its source. For example, if your program is a web application, its
|
| 653 |
+
interface could display a "Source" link that leads users to an archive
|
| 654 |
+
of the code. There are many ways you could offer source, and different
|
| 655 |
+
solutions will be better for different programs; see section 13 for the
|
| 656 |
+
specific requirements.
|
| 657 |
+
|
| 658 |
+
You should also get your employer (if you work as a programmer) or school,
|
| 659 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
| 660 |
+
For more information on this, and how to apply and follow the GNU AGPL, see
|
| 661 |
+
<https://www.gnu.org/licenses/>.
|
Poster.pdf
ADDED
|
Binary file (740 kB). View file
|
|
|
README.md
CHANGED
|
@@ -1,3 +1,133 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR (ICASSP 2022)
|
| 2 |
+
This is the official implementation of our neural-network-based fast diffuse room impulse response generator ([**FAST-RIR**](https://arxiv.org/pdf/2110.04057.pdf)) for generating room impulse responses (RIRs) for a given rectangular acoustic environment. Our model is inspired by [**StackGAN**](https://github.com/hanzhanggit/StackGAN-Pytorch) architecture. The audio examples and spectrograms of the generated RIRs are available [here](https://anton-jeran.github.io/FRIR/).
|
| 3 |
+
|
| 4 |
+
**NEWS : We have genaralized our FAST-RIR to generate RIRs for any 3D indoor scenes represented using meshes. Official code of our network [**MESH2IR**](https://anton-jeran.github.io/M2IR/) is available.**
|
| 5 |
+
|
| 6 |
+
## Requirements
|
| 7 |
+
|
| 8 |
+
```
|
| 9 |
+
Python3.6
|
| 10 |
+
Pytorch
|
| 11 |
+
python-dateutil
|
| 12 |
+
easydict
|
| 13 |
+
pandas
|
| 14 |
+
torchfile
|
| 15 |
+
gdown
|
| 16 |
+
librosa
|
| 17 |
+
soundfile
|
| 18 |
+
acoustics
|
| 19 |
+
wavefile
|
| 20 |
+
wavfile
|
| 21 |
+
pyyaml==5.4.1
|
| 22 |
+
pickle
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
## Embedding
|
| 27 |
+
|
| 28 |
+
Each normalized embedding is created as follows: If you are using our trained model, you may need to use extra parameter Correction(CRR).
|
| 29 |
+
|
| 30 |
+
```
|
| 31 |
+
Listener Position = LP
|
| 32 |
+
Source Position = SP
|
| 33 |
+
Room Dimension = RD
|
| 34 |
+
Reverberation Time = T60
|
| 35 |
+
Correction = CRR
|
| 36 |
+
|
| 37 |
+
CRR = 0.1 if 0.5<T60<0.6
|
| 38 |
+
CRR = 0.2 if T60>0.6
|
| 39 |
+
CRR = 0 otherwise
|
| 40 |
+
|
| 41 |
+
Embedding = ([LP_X,LP_Y,LP_Z,SP_X,SP_Y,SP_Z,RD_X,RD_Y,RD_Z,(T60+CRR)] /5) - 1
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
## Generete RIRs using trained model
|
| 46 |
+
|
| 47 |
+
Download the trained model using this command
|
| 48 |
+
|
| 49 |
+
```
|
| 50 |
+
source download_generate.sh
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
Create normalized embeddings list in pickle format. You can run following command to generate an example embedding list
|
| 54 |
+
```
|
| 55 |
+
python3 example1.py
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
Run the following command inside **code_new** to generate RIRs corresponding to the normalized embeddings list. You can find generated RIRs inside **code_new/Generated_RIRs**
|
| 59 |
+
|
| 60 |
+
```
|
| 61 |
+
python3 main.py --cfg cfg/RIR_eval.yml --gpu 0
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
## Range
|
| 65 |
+
|
| 66 |
+
Our trained NN-DAS is capable of generating RIRs with the following range accurately.
|
| 67 |
+
```
|
| 68 |
+
Room Dimension X --> 8m to 11m
|
| 69 |
+
Room Dimesnion Y --> 6m to 8m
|
| 70 |
+
Room Dimension Z --> 2.5m to 3.5m
|
| 71 |
+
Listener Position --> Any position within the room
|
| 72 |
+
Speaker Position --> Any position within the room
|
| 73 |
+
Reverberation time --> 0.2s to 0.7s
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
## Training the Model
|
| 77 |
+
|
| 78 |
+
Run the following command to download the training dataset we created using a [**Diffuse Acoustic Simulator**](https://github.com/GAMMA-UMD/pygsound). You also can train the model using your dataset.
|
| 79 |
+
|
| 80 |
+
```
|
| 81 |
+
source download_data.sh
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
Run the following command to train the model. You can pass what GPUs to be used for training as an input argument. In this example, I am using 2 GPUs.
|
| 85 |
+
|
| 86 |
+
```
|
| 87 |
+
python3 main.py --cfg cfg/RIR_s1.yml --gpu 0,1
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
## Related Works
|
| 92 |
+
1) [**IR-GAN: Room Impulse Response Generator for Far-field Speech Recognition (INTERSPEECH2021)**](https://github.com/anton-jeran/IR-GAN)
|
| 93 |
+
2) [**TS-RIR: Translated synthetic room impulse responses for speech augmentation (IEEE ASRU 2021)**](https://github.com/GAMMA-UMD/TS-RIR)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
## Citations
|
| 97 |
+
If you use our **FAST-RIR** for your research, please consider citing
|
| 98 |
+
|
| 99 |
+
```
|
| 100 |
+
@INPROCEEDINGS{9747846,
|
| 101 |
+
author={Ratnarajah, Anton and Zhang, Shi-Xiong and Yu, Meng and Tang, Zhenyu and Manocha, Dinesh and Yu, Dong},
|
| 102 |
+
booktitle={ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
|
| 103 |
+
title={Fast-Rir: Fast Neural Diffuse Room Impulse Response Generator},
|
| 104 |
+
year={2022},
|
| 105 |
+
volume={},
|
| 106 |
+
number={},
|
| 107 |
+
pages={571-575},
|
| 108 |
+
doi={10.1109/ICASSP43922.2022.9747846}}
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
Our work is inspired by
|
| 112 |
+
```
|
| 113 |
+
@inproceedings{han2017stackgan,
|
| 114 |
+
Author = {Han Zhang and Tao Xu and Hongsheng Li and Shaoting Zhang and Xiaogang Wang and Xiaolei Huang and Dimitris Metaxas},
|
| 115 |
+
Title = {StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks},
|
| 116 |
+
Year = {2017},
|
| 117 |
+
booktitle = {{ICCV}},
|
| 118 |
+
}
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
If you use our training dataset generated using [**Diffuse Acoustic Simulator**](https://github.com/GAMMA-UMD/pygsound) in your research, please consider citing
|
| 122 |
+
```
|
| 123 |
+
@inproceedings{9052932,
|
| 124 |
+
author={Z. {Tang} and L. {Chen} and B. {Wu} and D. {Yu} and D. {Manocha}},
|
| 125 |
+
booktitle={ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
|
| 126 |
+
title={Improving Reverberant Speech Training Using Diffuse Acoustic Simulation},
|
| 127 |
+
year={2020},
|
| 128 |
+
volume={},
|
| 129 |
+
number={},
|
| 130 |
+
pages={6969-6973},
|
| 131 |
+
}
|
| 132 |
+
```
|
| 133 |
+
|
code_new/RT60.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import math
|
| 3 |
+
from scipy.io import wavfile
|
| 4 |
+
from scipy import stats
|
| 5 |
+
|
| 6 |
+
from acoustics.utils import _is_1d
|
| 7 |
+
from acoustics.signal import bandpass
|
| 8 |
+
from acoustics.bands import (_check_band_type, octave_low, octave_high, third_low, third_high)
|
| 9 |
+
|
| 10 |
+
import soundfile as sf
|
| 11 |
+
from multiprocessing import Pool
|
| 12 |
+
|
| 13 |
+
def t60_impulse(raw_signal,fs): # pylint: disable=too-many-locals
|
| 14 |
+
"""
|
| 15 |
+
Reverberation time from a WAV impulse response.
|
| 16 |
+
:param file_name: name of the WAV file containing the impulse response.
|
| 17 |
+
:param bands: Octave or third bands as NumPy array.
|
| 18 |
+
:param rt: Reverberation time estimator. It accepts `'t30'`, `'t20'`, `'t10'` and `'edt'`.
|
| 19 |
+
:returns: Reverberation time :math:`T_{60}`
|
| 20 |
+
"""
|
| 21 |
+
bands =np.array([62.5 ,125, 250, 500,1000, 2000])
|
| 22 |
+
|
| 23 |
+
if np.max(raw_signal)==0 and np.min(raw_signal)==0:
|
| 24 |
+
print('came 1')
|
| 25 |
+
return .5
|
| 26 |
+
|
| 27 |
+
# fs, raw_signal = wavfile.read(file_name)
|
| 28 |
+
band_type = _check_band_type(bands)
|
| 29 |
+
|
| 30 |
+
# if band_type == 'octave':
|
| 31 |
+
low = octave_low(bands[0], bands[-1])
|
| 32 |
+
high = octave_high(bands[0], bands[-1])
|
| 33 |
+
# elif band_type == 'third':
|
| 34 |
+
# low = third_low(bands[0], bands[-1])
|
| 35 |
+
# high = third_high(bands[0], bands[-1])
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
init = -0.0
|
| 39 |
+
end = -60.0
|
| 40 |
+
factor = 1.0
|
| 41 |
+
bands =bands[3:5]
|
| 42 |
+
low = low[3:5]
|
| 43 |
+
high = high[3:5]
|
| 44 |
+
|
| 45 |
+
t60 = np.zeros(bands.size)
|
| 46 |
+
|
| 47 |
+
for band in range(bands.size):
|
| 48 |
+
# Filtering signal
|
| 49 |
+
filtered_signal = bandpass(raw_signal, low[band], high[band], fs, order=8)
|
| 50 |
+
abs_signal = np.abs(filtered_signal) / np.max(np.abs(filtered_signal))
|
| 51 |
+
|
| 52 |
+
# Schroeder integration
|
| 53 |
+
sch = np.cumsum(abs_signal[::-1]**2)[::-1]
|
| 54 |
+
sch_db = 10.0 * np.log10(sch / np.max(sch))
|
| 55 |
+
if math.isnan(sch_db[1]):
|
| 56 |
+
print('came 2')
|
| 57 |
+
return .5
|
| 58 |
+
# print("leng sch_db ",sch_db.size)
|
| 59 |
+
# print("sch_db ",sch_db)
|
| 60 |
+
# Linear regression
|
| 61 |
+
sch_init = sch_db[np.abs(sch_db - init).argmin()]
|
| 62 |
+
sch_end = sch_db[np.abs(sch_db - end).argmin()]
|
| 63 |
+
init_sample = np.where(sch_db == sch_init)[0][0]
|
| 64 |
+
end_sample = np.where(sch_db == sch_end)[0][0]
|
| 65 |
+
x = np.arange(init_sample, end_sample + 1) / fs
|
| 66 |
+
y = sch_db[init_sample:end_sample + 1]
|
| 67 |
+
slope, intercept = stats.linregress(x, y)[0:2]
|
| 68 |
+
|
| 69 |
+
# Reverberation time (T30, T20, T10 or EDT)
|
| 70 |
+
db_regress_init = (init - intercept) / slope
|
| 71 |
+
db_regress_end = (end - intercept) / slope
|
| 72 |
+
t60[band] = factor * (db_regress_end - db_regress_init)
|
| 73 |
+
mean_t60 =(t60[1]+t60[0])/2
|
| 74 |
+
# print("meant60 is ", mean_t60)
|
| 75 |
+
if math.isnan(mean_t60):
|
| 76 |
+
print('came 3')
|
| 77 |
+
return .5
|
| 78 |
+
return mean_t60
|
| 79 |
+
|
| 80 |
+
def t60_error(filename1,filename2):
|
| 81 |
+
real_wave,fs = sf.read(filename1)
|
| 82 |
+
fake_wave,fs = sf.read(filename2)
|
| 83 |
+
|
| 84 |
+
channel = int(real_wave.size/len(real_wave))
|
| 85 |
+
pool = Pool(processes=8)
|
| 86 |
+
|
| 87 |
+
results =[]
|
| 88 |
+
for n in range(channel):
|
| 89 |
+
results.append(pool.apply_async(t60_parallel, args=(n,real_wave,fake_wave,fs,)))
|
| 90 |
+
|
| 91 |
+
T60_error =0
|
| 92 |
+
for result in results:
|
| 93 |
+
T60_error = T60_error + result.get()
|
| 94 |
+
|
| 95 |
+
T60_error = T60_error/channel
|
| 96 |
+
|
| 97 |
+
pool.close()
|
| 98 |
+
pool.join()
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
# T60_error = Parallel(n_jobs=64)(delayed(t60_parallel)(n, real_wave,fake_wave,fs) for n in range(channel))#np.random.randint(0,1023,size=channel))#
|
| 102 |
+
# T60_error = sum(results)/channel
|
| 103 |
+
|
| 104 |
+
# for n in range(channel):
|
| 105 |
+
# real_wave_single = real_wave[:,n]
|
| 106 |
+
# fake_wave_single = fake_wave[:,n]
|
| 107 |
+
# Real_T60_val = t60_impulse(real_wave_single,fs)
|
| 108 |
+
# Fake_T60_val = t60_impulse(fake_wave_single,fs)
|
| 109 |
+
# T60_diff = abs(Real_T60_val-Fake_T60_val)
|
| 110 |
+
# T60_error = T60_error + T60_diff
|
| 111 |
+
# T60_error = T60_error/channel
|
| 112 |
+
return str(T60_error)
|
| 113 |
+
|
| 114 |
+
def t60_parallel(n,real_wave,fake_wave,fs):
|
| 115 |
+
real_wave_single = real_wave[n,:]
|
| 116 |
+
fake_wave_single = fake_wave[n,:]
|
| 117 |
+
Real_T60_val = t60_impulse(real_wave_single,fs)
|
| 118 |
+
Fake_T60_val = t60_impulse(fake_wave_single,fs)
|
| 119 |
+
T60_diff = abs(Real_T60_val-Fake_T60_val)
|
| 120 |
+
|
| 121 |
+
return T60_diff
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
if __name__ == '__main__':
|
| 130 |
+
t60_impulse('/home/anton/Desktop/gamma101/data/evaluation_all/SF1/Hotel_SkalskyDvur_ConferenceRoom2-MicID01-SpkID01_20170906_S-09-RIR-IR_sweep_15s_45Hzto22kHz_FS16kHz.v00.wav')
|
| 131 |
+
|
code_new/RTS.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
# import librosa
|
| 3 |
+
|
| 4 |
+
from scipy.io import wavfile
|
| 5 |
+
from scipy import stats
|
| 6 |
+
import soundfile as sf
|
| 7 |
+
|
| 8 |
+
from acoustics.utils import _is_1d
|
| 9 |
+
from acoustics.signal import bandpass
|
| 10 |
+
from acoustics.bands import (_check_band_type, octave_low, octave_high, third_low, third_high)
|
| 11 |
+
|
| 12 |
+
def t60_impulse(file_name): # pylint: disable=too-many-locals
|
| 13 |
+
"""
|
| 14 |
+
Reverberation time from a WAV impulse response.
|
| 15 |
+
:param file_name: name of the WAV file containing the impulse response.
|
| 16 |
+
:param bands: Octave or third bands as NumPy array.
|
| 17 |
+
:param rt: Reverberation time estimator. It accepts `'t30'`, `'t20'`, `'t10'` and `'edt'`.
|
| 18 |
+
:returns: Reverberation time :math:`T_{60}`
|
| 19 |
+
"""
|
| 20 |
+
bands =np.array([62.5 ,125, 250, 500,1000, 2000])
|
| 21 |
+
|
| 22 |
+
fs =16000;
|
| 23 |
+
# raw_signal, _ = librosa.load(file_name, sr=fs, mono=True, duration=1)
|
| 24 |
+
|
| 25 |
+
# fs, raw_signal = wavfile.read(file_name)
|
| 26 |
+
raw_signal,fs = sf.read(file_name)
|
| 27 |
+
band_type = _check_band_type(bands)
|
| 28 |
+
|
| 29 |
+
# if band_type == 'octave':
|
| 30 |
+
low = octave_low(bands[0], bands[-1])
|
| 31 |
+
high = octave_high(bands[0], bands[-1])
|
| 32 |
+
# elif band_type == 'third':
|
| 33 |
+
# low = third_low(bands[0], bands[-1])
|
| 34 |
+
# high = third_high(bands[0], bands[-1])
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
init = -0.0
|
| 38 |
+
end = -60.0
|
| 39 |
+
factor = 1.0
|
| 40 |
+
bands =bands[3:5]
|
| 41 |
+
low = low[3:5]
|
| 42 |
+
high = high[3:5]
|
| 43 |
+
|
| 44 |
+
t60 = np.zeros(bands.size)
|
| 45 |
+
|
| 46 |
+
for band in range(bands.size):
|
| 47 |
+
# Filtering signal
|
| 48 |
+
filtered_signal = bandpass(raw_signal, low[band], high[band], fs, order=8)
|
| 49 |
+
abs_signal = np.abs(filtered_signal) / np.max(np.abs(filtered_signal))
|
| 50 |
+
|
| 51 |
+
# Schroeder integration
|
| 52 |
+
sch = np.cumsum(abs_signal[::-1]**2)[::-1]
|
| 53 |
+
sch_db = 10.0 * np.log10(sch / np.max(sch))
|
| 54 |
+
|
| 55 |
+
# Linear regression
|
| 56 |
+
sch_init = sch_db[np.abs(sch_db - init).argmin()]
|
| 57 |
+
sch_end = sch_db[np.abs(sch_db - end).argmin()]
|
| 58 |
+
init_sample = np.where(sch_db == sch_init)[0][0]
|
| 59 |
+
end_sample = np.where(sch_db == sch_end)[0][0]
|
| 60 |
+
x = np.arange(init_sample, end_sample + 1) / fs
|
| 61 |
+
y = sch_db[init_sample:end_sample + 1]
|
| 62 |
+
slope, intercept = stats.linregress(x, y)[0:2]
|
| 63 |
+
|
| 64 |
+
# Reverberation time (T30, T20, T10 or EDT)
|
| 65 |
+
db_regress_init = (init - intercept) / slope
|
| 66 |
+
db_regress_end = (end - intercept) / slope
|
| 67 |
+
t60[band] = factor * (db_regress_end - db_regress_init)
|
| 68 |
+
mean_t60 =(t60[1]+t60[0])/2
|
| 69 |
+
return mean_t60
|
| 70 |
+
|
| 71 |
+
def t60_error(file_name1,file_name2):
|
| 72 |
+
RT_real = t60_impulse(file_name1)
|
| 73 |
+
RT_fake = t60_impulse(file_name2)
|
| 74 |
+
RT_diff = abs(RT_real-RT_fake)
|
| 75 |
+
return str(RT_diff)
|
| 76 |
+
|
| 77 |
+
if __name__ == '__main__':
|
| 78 |
+
t60_impulse('/home/anton/Anton/data/vcc2016_training/SF1/VUT_FIT_D105-MicID01-SpkID04_20170901_S-12-RIR-IR_sweep_15s_45Hzto22kHz_FS16kHz.v00.wav')
|
| 79 |
+
# t60_impulse('/home/anton/Desktop/data/vcc2016_training/SF1/2.wav')
|
| 80 |
+
# t60_impulse('/home/anton/Desktop/data/vcc2016_training/SF1/3.wav')
|
| 81 |
+
# t60_impulse('/home/anton/Desktop/data/vcc2016_training/SF1/4.wav')
|
| 82 |
+
# t60_impulse('/home/anton/Desktop/data/vcc2016_training/SF1/5.wav')
|
| 83 |
+
# t60_impulse('/home/anton/Desktop/data/vcc2016_training/SF1/6.wav')
|
| 84 |
+
# t60_impulse('/home/anton/Desktop/data/vcc2016_training/SF1/7.wav')
|
| 85 |
+
# t60_impulse('/home/anton/Desktop/data/vcc2016_training/SF1/8.wav')
|
| 86 |
+
# t60_impulse('/home/anton/Desktop/data/vcc2016_training/SF1/9.wav')
|
| 87 |
+
# t60_impulse('/home/anton/Desktop/data/vcc2016_training/SF1/10.wav')
|
code_new/__init__py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import division
|
| 2 |
+
from __future__ import print_function
|
code_new/__pycache__/RT60.cpython-36.pyc
ADDED
|
Binary file (3.13 kB). View file
|
|
|
code_new/__pycache__/RT60.cpython-38.pyc
ADDED
|
Binary file (3.12 kB). View file
|
|
|
code_new/__pycache__/RTS.cpython-38.pyc
ADDED
|
Binary file (2.34 kB). View file
|
|
|
code_new/__pycache__/model.cpython-36.pyc
ADDED
|
Binary file (9.16 kB). View file
|
|
|
code_new/__pycache__/model.cpython-38.pyc
ADDED
|
Binary file (9.05 kB). View file
|
|
|
code_new/__pycache__/trainer.cpython-36.pyc
ADDED
|
Binary file (7.79 kB). View file
|
|
|
code_new/__pycache__/trainer.cpython-38.pyc
ADDED
|
Binary file (7.31 kB). View file
|
|
|
code_new/cfg/RIR_eval.yml
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
CONFIG_NAME: 'eval'
|
| 2 |
+
|
| 3 |
+
DATASET_NAME: 'RIR'
|
| 4 |
+
EMBEDDING_TYPE: 'cnn-rnn'
|
| 5 |
+
GPU_ID: '0,1'
|
| 6 |
+
# Z_DIM: 100
|
| 7 |
+
|
| 8 |
+
NET_G: '../generate/netG_epoch_242.pth'
|
| 9 |
+
|
| 10 |
+
DATA_DIR: '../data/Medium_Room'
|
| 11 |
+
EVAL_DIR: '../example1.pickle'
|
| 12 |
+
WORKERS: 4
|
| 13 |
+
RIRSIZE: 4096
|
| 14 |
+
STAGE: 1
|
| 15 |
+
TRAIN:
|
| 16 |
+
FLAG: False
|
| 17 |
+
BATCH_SIZE: 64
|
| 18 |
+
|
| 19 |
+
GAN:
|
| 20 |
+
CONDITION_DIM: 10
|
| 21 |
+
DF_DIM: 96
|
| 22 |
+
GF_DIM: 256
|
| 23 |
+
|
| 24 |
+
TEXT:
|
| 25 |
+
DIMENSION: 10
|
code_new/cfg/RIR_s1.yml
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
CONFIG_NAME: 'stageI'
|
| 2 |
+
|
| 3 |
+
DATASET_NAME: 'RIR'
|
| 4 |
+
EMBEDDING_TYPE: 'cnn-rnn'
|
| 5 |
+
GPU_ID: '0,1'
|
| 6 |
+
|
| 7 |
+
DATA_DIR: '../data/Medium_Room'
|
| 8 |
+
|
| 9 |
+
EVAL_DIR: '../generate/embeddings/'
|
| 10 |
+
RIRSIZE: 4096
|
| 11 |
+
WORKERS: 4
|
| 12 |
+
STAGE: 1
|
| 13 |
+
TRAIN:
|
| 14 |
+
FLAG: True
|
| 15 |
+
BATCH_SIZE: 128
|
| 16 |
+
MAX_EPOCH: 2000
|
| 17 |
+
LR_DECAY_EPOCH: 40
|
| 18 |
+
SNAPSHOT_INTERVAL: 50
|
| 19 |
+
# DISCRIMINATOR_LR: 0.0002
|
| 20 |
+
# GENERATOR_LR: 0.0002
|
| 21 |
+
DISCRIMINATOR_LR: 0.00008
|
| 22 |
+
GENERATOR_LR: 0.00008
|
| 23 |
+
COEFF:
|
| 24 |
+
KL: 2.0
|
| 25 |
+
|
| 26 |
+
GAN:
|
| 27 |
+
CONDITION_DIM: 10
|
| 28 |
+
DF_DIM: 96
|
| 29 |
+
GF_DIM: 256
|
| 30 |
+
|
| 31 |
+
TEXT:
|
| 32 |
+
DIMENSION: 10
|
code_new/cfg/RIR_s1_temp.yml
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
CONFIG_NAME: 'stageI'
|
| 2 |
+
|
| 3 |
+
DATASET_NAME: 'RIR'
|
| 4 |
+
EMBEDDING_TYPE: 'cnn-rnn'
|
| 5 |
+
GPU_ID: '0,1'
|
| 6 |
+
|
| 7 |
+
DATA_DIR: '../data/Medium_Room'
|
| 8 |
+
|
| 9 |
+
EVAL_DIR: '../generate/embeddings/'
|
| 10 |
+
RIRSIZE: 4096
|
| 11 |
+
WORKERS: 4
|
| 12 |
+
STAGE: 1
|
| 13 |
+
TRAIN:
|
| 14 |
+
FLAG: True
|
| 15 |
+
BATCH_SIZE: 128
|
| 16 |
+
MAX_EPOCH: 2000
|
| 17 |
+
LR_DECAY_EPOCH: 40
|
| 18 |
+
SNAPSHOT_INTERVAL: 50
|
| 19 |
+
# DISCRIMINATOR_LR: 0.0002
|
| 20 |
+
# GENERATOR_LR: 0.0002
|
| 21 |
+
DISCRIMINATOR_LR: 0.00008
|
| 22 |
+
GENERATOR_LR: 0.00008
|
| 23 |
+
COEFF:
|
| 24 |
+
KL: 2.0
|
| 25 |
+
|
| 26 |
+
GAN:
|
| 27 |
+
CONDITION_DIM: 10
|
| 28 |
+
DF_DIM: 96
|
| 29 |
+
GF_DIM: 256
|
| 30 |
+
|
| 31 |
+
TEXT:
|
| 32 |
+
DIMENSION: 10
|
code_new/main.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import print_function
|
| 2 |
+
import torch.backends.cudnn as cudnn
|
| 3 |
+
import torch
|
| 4 |
+
import torchvision.transforms as transforms
|
| 5 |
+
|
| 6 |
+
import argparse
|
| 7 |
+
import os
|
| 8 |
+
import random
|
| 9 |
+
import sys
|
| 10 |
+
import pprint
|
| 11 |
+
import datetime
|
| 12 |
+
import dateutil
|
| 13 |
+
import dateutil.tz
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
dir_path = (os.path.abspath(os.path.join(os.path.realpath(__file__), './.')))
|
| 17 |
+
sys.path.append(dir_path)
|
| 18 |
+
|
| 19 |
+
from miscc.datasets import TextDataset
|
| 20 |
+
from miscc.config import cfg, cfg_from_file
|
| 21 |
+
from miscc.utils import mkdir_p
|
| 22 |
+
from trainer import GANTrainer
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def parse_args():
|
| 26 |
+
parser = argparse.ArgumentParser(description='Train a GAN network')
|
| 27 |
+
parser.add_argument('--cfg', dest='cfg_file',
|
| 28 |
+
help='optional config file',
|
| 29 |
+
default='birds_stage1.yml', type=str)
|
| 30 |
+
parser.add_argument('--gpu', dest='gpu_id', type=str, default='0')
|
| 31 |
+
parser.add_argument('--data_dir', dest='data_dir', type=str, default='')
|
| 32 |
+
parser.add_argument('--manualSeed', type=int, help='manual seed')
|
| 33 |
+
args = parser.parse_args()
|
| 34 |
+
return args
|
| 35 |
+
|
| 36 |
+
if __name__ == "__main__":
|
| 37 |
+
args = parse_args()
|
| 38 |
+
if args.cfg_file is not None:
|
| 39 |
+
cfg_from_file(args.cfg_file)
|
| 40 |
+
if args.gpu_id != -1:
|
| 41 |
+
cfg.GPU_ID = args.gpu_id
|
| 42 |
+
if args.data_dir != '':
|
| 43 |
+
cfg.DATA_DIR = args.data_dir
|
| 44 |
+
print('Using config:')
|
| 45 |
+
pprint.pprint(cfg)
|
| 46 |
+
if args.manualSeed is None:
|
| 47 |
+
args.manualSeed = random.randint(1, 10000)
|
| 48 |
+
random.seed(args.manualSeed)
|
| 49 |
+
torch.manual_seed(args.manualSeed)
|
| 50 |
+
if cfg.CUDA:
|
| 51 |
+
torch.cuda.manual_seed_all(args.manualSeed)
|
| 52 |
+
now = datetime.datetime.now(dateutil.tz.tzlocal())
|
| 53 |
+
timestamp = now.strftime('%Y_%m_%d_%H_%M_%S')
|
| 54 |
+
output_dir = '../output/%s_%s_%s' % \
|
| 55 |
+
(cfg.DATASET_NAME, cfg.CONFIG_NAME, timestamp)
|
| 56 |
+
|
| 57 |
+
num_gpu = len(cfg.GPU_ID.split(','))
|
| 58 |
+
if cfg.TRAIN.FLAG:
|
| 59 |
+
dataset = TextDataset(cfg.DATA_DIR, 'train',
|
| 60 |
+
rirsize=cfg.RIRSIZE)
|
| 61 |
+
assert dataset
|
| 62 |
+
#commented for temporary
|
| 63 |
+
dataloader = torch.utils.data.DataLoader(
|
| 64 |
+
dataset, batch_size=cfg.TRAIN.BATCH_SIZE * num_gpu,
|
| 65 |
+
drop_last=True, shuffle=True, num_workers=int(cfg.WORKERS))
|
| 66 |
+
|
| 67 |
+
algo = GANTrainer(output_dir)
|
| 68 |
+
algo.train(dataloader, cfg.STAGE)
|
| 69 |
+
else:
|
| 70 |
+
file_path = cfg.EVAL_DIR
|
| 71 |
+
algo = GANTrainer(output_dir)
|
| 72 |
+
algo.sample(file_path, cfg.STAGE)
|
code_new/miscc/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import division
|
| 2 |
+
from __future__ import print_function
|
code_new/miscc/__init__.pyc
ADDED
|
Binary file (241 Bytes). View file
|
|
|
code_new/miscc/__pycache__/__init__.cpython-36.pyc
ADDED
|
Binary file (218 Bytes). View file
|
|
|
code_new/miscc/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (243 Bytes). View file
|
|
|
code_new/miscc/__pycache__/config.cpython-36.pyc
ADDED
|
Binary file (2.11 kB). View file
|
|
|
code_new/miscc/__pycache__/config.cpython-38.pyc
ADDED
|
Binary file (2.13 kB). View file
|
|
|
code_new/miscc/__pycache__/datasets.cpython-36.pyc
ADDED
|
Binary file (2.49 kB). View file
|
|
|
code_new/miscc/__pycache__/datasets.cpython-38.pyc
ADDED
|
Binary file (2.55 kB). View file
|
|
|
code_new/miscc/__pycache__/utils.cpython-36.pyc
ADDED
|
Binary file (4.37 kB). View file
|
|
|
code_new/miscc/__pycache__/utils.cpython-38.pyc
ADDED
|
Binary file (4.4 kB). View file
|
|
|
code_new/miscc/config.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import division
|
| 2 |
+
from __future__ import print_function
|
| 3 |
+
|
| 4 |
+
import os.path as osp
|
| 5 |
+
import numpy as np
|
| 6 |
+
from easydict import EasyDict as edict
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
__C = edict()
|
| 10 |
+
cfg = __C
|
| 11 |
+
|
| 12 |
+
# Dataset name: flowers, birds
|
| 13 |
+
__C.DATASET_NAME = 'birds'
|
| 14 |
+
__C.EMBEDDING_TYPE = 'cnn-rnn'
|
| 15 |
+
__C.CONFIG_NAME = ''
|
| 16 |
+
__C.GPU_ID = '0'
|
| 17 |
+
__C.CUDA = True
|
| 18 |
+
__C.WORKERS = 6
|
| 19 |
+
|
| 20 |
+
__C.NET_G = ''
|
| 21 |
+
__C.NET_D = ''
|
| 22 |
+
__C.STAGE1_G = ''
|
| 23 |
+
__C.DATA_DIR = ''
|
| 24 |
+
__C.EVAL_DIR = ''
|
| 25 |
+
__C.VIS_COUNT = 64
|
| 26 |
+
|
| 27 |
+
__C.Z_DIM = 100
|
| 28 |
+
__C.RIRSIZE = 4096
|
| 29 |
+
__C.STAGE = 1
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# Training options
|
| 33 |
+
__C.TRAIN = edict()
|
| 34 |
+
__C.TRAIN.FLAG = True
|
| 35 |
+
__C.TRAIN.BATCH_SIZE = 64
|
| 36 |
+
__C.TRAIN.MAX_EPOCH = 600
|
| 37 |
+
__C.TRAIN.SNAPSHOT_INTERVAL = 50
|
| 38 |
+
__C.TRAIN.PRETRAINED_MODEL = ''
|
| 39 |
+
__C.TRAIN.PRETRAINED_EPOCH = 600
|
| 40 |
+
__C.TRAIN.LR_DECAY_EPOCH = 600
|
| 41 |
+
__C.TRAIN.DISCRIMINATOR_LR = 2e-4
|
| 42 |
+
__C.TRAIN.GENERATOR_LR = 2e-4
|
| 43 |
+
|
| 44 |
+
__C.TRAIN.COEFF = edict()
|
| 45 |
+
__C.TRAIN.COEFF.KL = 2.0
|
| 46 |
+
|
| 47 |
+
# Modal options
|
| 48 |
+
__C.GAN = edict()
|
| 49 |
+
__C.GAN.CONDITION_DIM = 128
|
| 50 |
+
__C.GAN.DF_DIM = 64
|
| 51 |
+
__C.GAN.GF_DIM = 128
|
| 52 |
+
__C.GAN.R_NUM = 4
|
| 53 |
+
|
| 54 |
+
__C.TEXT = edict()
|
| 55 |
+
__C.TEXT.DIMENSION = 1024
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def _merge_a_into_b(a, b):
|
| 59 |
+
"""Merge config dictionary a into config dictionary b, clobbering the
|
| 60 |
+
options in b whenever they are also specified in a.
|
| 61 |
+
"""
|
| 62 |
+
if type(a) is not edict:
|
| 63 |
+
return
|
| 64 |
+
|
| 65 |
+
for k, v in a.items():
|
| 66 |
+
# a must specify keys that are in b
|
| 67 |
+
if k not in b:
|
| 68 |
+
raise KeyError('{} is not a valid config key'.format(k))
|
| 69 |
+
|
| 70 |
+
# the types must match, too
|
| 71 |
+
old_type = type(b[k])
|
| 72 |
+
if old_type is not type(v):
|
| 73 |
+
if isinstance(b[k], np.ndarray):
|
| 74 |
+
v = np.array(v, dtype=b[k].dtype)
|
| 75 |
+
else:
|
| 76 |
+
raise ValueError(('Type mismatch ({} vs. {}) '
|
| 77 |
+
'for config key: {}').format(type(b[k]),
|
| 78 |
+
type(v), k))
|
| 79 |
+
|
| 80 |
+
# recursively merge dicts
|
| 81 |
+
if type(v) is edict:
|
| 82 |
+
try:
|
| 83 |
+
_merge_a_into_b(a[k], b[k])
|
| 84 |
+
except:
|
| 85 |
+
print('Error under config key: {}'.format(k))
|
| 86 |
+
raise
|
| 87 |
+
else:
|
| 88 |
+
b[k] = v
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def cfg_from_file(filename):
|
| 92 |
+
"""Load a config file and merge it into the default options."""
|
| 93 |
+
import yaml
|
| 94 |
+
with open(filename, 'r') as f:
|
| 95 |
+
yaml_cfg = edict(yaml.load(f))
|
| 96 |
+
|
| 97 |
+
_merge_a_into_b(yaml_cfg, __C)
|
code_new/miscc/config.pyc
ADDED
|
Binary file (2.71 kB). View file
|
|
|
code_new/miscc/datasets.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import absolute_import
|
| 2 |
+
from __future__ import division
|
| 3 |
+
from __future__ import print_function
|
| 4 |
+
from __future__ import unicode_literals
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import torch.utils.data as data
|
| 8 |
+
# from PIL import Image
|
| 9 |
+
import soundfile as sf
|
| 10 |
+
import PIL
|
| 11 |
+
import os
|
| 12 |
+
import os.path
|
| 13 |
+
import pickle
|
| 14 |
+
import random
|
| 15 |
+
import numpy as np
|
| 16 |
+
import pandas as pd
|
| 17 |
+
from scipy import signal
|
| 18 |
+
|
| 19 |
+
from miscc.config import cfg
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class TextDataset(data.Dataset):
|
| 23 |
+
def __init__(self, data_dir, split='train',rirsize=4096): #, transform=None, target_transform=None):
|
| 24 |
+
|
| 25 |
+
# self.transform = transform
|
| 26 |
+
# self.target_transform = target_transform
|
| 27 |
+
self.rirsize = rirsize
|
| 28 |
+
self.data = []
|
| 29 |
+
self.data_dir = data_dir
|
| 30 |
+
self.bbox = None
|
| 31 |
+
|
| 32 |
+
split_dir = os.path.join(data_dir, split)
|
| 33 |
+
|
| 34 |
+
self.filenames = self.load_filenames(split_dir)
|
| 35 |
+
self.embeddings = self.load_embedding(split_dir)
|
| 36 |
+
|
| 37 |
+
def get_RIR(self, RIR_path):
|
| 38 |
+
wav,fs = sf.read(RIR_path) #Image.open(RIR_path).convert('RGB')
|
| 39 |
+
length = wav.size
|
| 40 |
+
# crop_length = int((16384*(80))/(64))
|
| 41 |
+
crop_length = 4096 #int(16384)
|
| 42 |
+
if(length<crop_length):
|
| 43 |
+
zeros = np.zeros(crop_length-length)
|
| 44 |
+
RIR_original = np.concatenate([wav,zeros])
|
| 45 |
+
else:
|
| 46 |
+
RIR_original = wav[0:crop_length]
|
| 47 |
+
|
| 48 |
+
# resample_length = int((self.rirsize*(80))/(64))
|
| 49 |
+
resample_length = int(self.rirsize)
|
| 50 |
+
if(resample_length==16384):
|
| 51 |
+
RIR = RIR_original
|
| 52 |
+
else:
|
| 53 |
+
RIR = RIR_original#signal.resample(RIR_original,resample_length)
|
| 54 |
+
RIR = np.array([RIR]).astype('float32')
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# if bbox is not None:
|
| 59 |
+
# R = int(np.maximum(bbox[2], bbox[3]) * 0.75)
|
| 60 |
+
# center_x = int((2 * bbox[0] + bbox[2]) / 2)
|
| 61 |
+
# center_y = int((2 * bbox[1] + bbox[3]) / 2)
|
| 62 |
+
# y1 = np.maximum(0, center_y - R)
|
| 63 |
+
# y2 = np.minimum(height, center_y + R)
|
| 64 |
+
# x1 = np.maximum(0, center_x - R)
|
| 65 |
+
# x2 = np.minimum(width, center_x + R)
|
| 66 |
+
# RIR = RIR.crop([x1, y1, x2, y2])
|
| 67 |
+
# load_size = int(self.rirsize * 76 / 64)
|
| 68 |
+
# RIR = RIR.resize((load_size, load_size), PIL.Image.BILINEAR)
|
| 69 |
+
# if self.transform is not None:
|
| 70 |
+
# RIR = self.transform(RIR)
|
| 71 |
+
return RIR
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def load_embedding(self, data_dir):
|
| 75 |
+
embedding_filename = '/embeddings.pickle'
|
| 76 |
+
with open(data_dir + embedding_filename, 'rb') as f:
|
| 77 |
+
embeddings = pickle.load(f)
|
| 78 |
+
# embeddings = np.array(embeddings)
|
| 79 |
+
# # embedding_shape = [embeddings.shape[-1]]
|
| 80 |
+
# print('embeddings: ', embeddings.shape)
|
| 81 |
+
return embeddings
|
| 82 |
+
|
| 83 |
+
# def load_class_id(self, data_dir, total_num):
|
| 84 |
+
# if os.path.isfile(data_dir + '/class_info.pickle'):
|
| 85 |
+
# with open(data_dir + '/class_info.pickle', 'rb') as f:
|
| 86 |
+
# class_id = pickle.load(f)
|
| 87 |
+
# else:
|
| 88 |
+
# class_id = np.arange(total_num)
|
| 89 |
+
# return class_id
|
| 90 |
+
|
| 91 |
+
def load_filenames(self, data_dir):
|
| 92 |
+
filepath = os.path.join(data_dir, 'filenames.pickle')
|
| 93 |
+
with open(filepath, 'rb') as f:
|
| 94 |
+
filenames = pickle.load(f)
|
| 95 |
+
print('Load filenames from: %s (%d)' % (filepath, len(filenames)))
|
| 96 |
+
return filenames
|
| 97 |
+
|
| 98 |
+
def __getitem__(self, index):
|
| 99 |
+
key = self.filenames[index]
|
| 100 |
+
|
| 101 |
+
data_dir = self.data_dir
|
| 102 |
+
|
| 103 |
+
# captions = self.captions[key]
|
| 104 |
+
embeddings = self.embeddings[key]
|
| 105 |
+
RIR_name = '%s/RIR/%s.wav' % (data_dir, key)
|
| 106 |
+
RIR = self.get_RIR(RIR_name)
|
| 107 |
+
embedding = np.array(embeddings).astype('float32')
|
| 108 |
+
# if self.target_transform is not None:
|
| 109 |
+
# embedding = self.target_transform(embedding)
|
| 110 |
+
return RIR, embedding
|
| 111 |
+
|
| 112 |
+
def __len__(self):
|
| 113 |
+
return len(self.filenames)
|
code_new/miscc/datasets.pyc
ADDED
|
Binary file (3.16 kB). View file
|
|
|
code_new/miscc/utils.py
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import errno
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
from copy import deepcopy
|
| 6 |
+
from miscc.config import cfg
|
| 7 |
+
from scipy.io.wavfile import write
|
| 8 |
+
from torch.nn import init
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torchvision.utils as vutils
|
| 12 |
+
from wavefile import WaveWriter, Format
|
| 13 |
+
import RT60
|
| 14 |
+
from multiprocessing import Pool
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
#############################
|
| 18 |
+
def KL_loss(mu, logvar):
|
| 19 |
+
# -0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
|
| 20 |
+
KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
|
| 21 |
+
KLD = torch.mean(KLD_element).mul_(-0.5)
|
| 22 |
+
return KLD
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def compute_discriminator_loss(netD, real_RIRs, fake_RIRs,
|
| 26 |
+
real_labels, fake_labels,
|
| 27 |
+
conditions, gpus):
|
| 28 |
+
criterion = nn.BCELoss()
|
| 29 |
+
batch_size = real_RIRs.size(0)
|
| 30 |
+
cond = conditions.detach()
|
| 31 |
+
fake = fake_RIRs.detach()
|
| 32 |
+
real_features = nn.parallel.data_parallel(netD, (real_RIRs), gpus)
|
| 33 |
+
fake_features = nn.parallel.data_parallel(netD, (fake), gpus)
|
| 34 |
+
# real pairs
|
| 35 |
+
#print("util conditions ",cond.size())
|
| 36 |
+
inputs = (real_features, cond)
|
| 37 |
+
real_logits = nn.parallel.data_parallel(netD.get_cond_logits, inputs, gpus)
|
| 38 |
+
errD_real = criterion(real_logits, real_labels)
|
| 39 |
+
# wrong pairs
|
| 40 |
+
inputs = (real_features[:(batch_size-1)], cond[1:])
|
| 41 |
+
wrong_logits = \
|
| 42 |
+
nn.parallel.data_parallel(netD.get_cond_logits, inputs, gpus)
|
| 43 |
+
errD_wrong = criterion(wrong_logits, fake_labels[1:])
|
| 44 |
+
# fake pairs
|
| 45 |
+
inputs = (fake_features, cond)
|
| 46 |
+
fake_logits = nn.parallel.data_parallel(netD.get_cond_logits, inputs, gpus)
|
| 47 |
+
errD_fake = criterion(fake_logits, fake_labels)
|
| 48 |
+
|
| 49 |
+
if netD.get_uncond_logits is not None:
|
| 50 |
+
real_logits = \
|
| 51 |
+
nn.parallel.data_parallel(netD.get_uncond_logits,
|
| 52 |
+
(real_features), gpus)
|
| 53 |
+
fake_logits = \
|
| 54 |
+
nn.parallel.data_parallel(netD.get_uncond_logits,
|
| 55 |
+
(fake_features), gpus)
|
| 56 |
+
uncond_errD_real = criterion(real_logits, real_labels)
|
| 57 |
+
uncond_errD_fake = criterion(fake_logits, fake_labels)
|
| 58 |
+
#
|
| 59 |
+
errD = ((errD_real + uncond_errD_real) / 2. +
|
| 60 |
+
(errD_fake + errD_wrong + uncond_errD_fake) / 3.)
|
| 61 |
+
errD_real = (errD_real + uncond_errD_real) / 2.
|
| 62 |
+
errD_fake = (errD_fake + uncond_errD_fake) / 2.
|
| 63 |
+
else:
|
| 64 |
+
errD = errD_real + (errD_fake + errD_wrong) * 0.5
|
| 65 |
+
return errD, errD_real.data, errD_wrong.data, errD_fake.data
|
| 66 |
+
# return errD, errD_real.data[0], errD_wrong.data[0], errD_fake.data[0]
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def compute_generator_loss(epoch,netD,real_RIRs, fake_RIRs, real_labels, conditions, gpus):
|
| 71 |
+
criterion = nn.BCELoss()
|
| 72 |
+
loss = nn.L1Loss() #nn.MSELoss()
|
| 73 |
+
loss1 = nn.MSELoss()
|
| 74 |
+
RT_error = 0
|
| 75 |
+
# print("num", real_RIRs.size(),real_RIRs.size()[0])
|
| 76 |
+
# input("kk")
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
cond = conditions.detach()
|
| 80 |
+
fake_features = nn.parallel.data_parallel(netD, (fake_RIRs), gpus)
|
| 81 |
+
# fake pairs
|
| 82 |
+
inputs = (fake_features, cond)
|
| 83 |
+
fake_logits = nn.parallel.data_parallel(netD.get_cond_logits, inputs, gpus)
|
| 84 |
+
MSE_error = loss(real_RIRs,fake_RIRs)
|
| 85 |
+
MSE_error1 = loss1(real_RIRs,fake_RIRs)
|
| 86 |
+
sample_size = real_RIRs.size()[0]
|
| 87 |
+
channel = 12
|
| 88 |
+
fs = 16000
|
| 89 |
+
rn = np.random.randint(sample_size-(channel*2))
|
| 90 |
+
real_wave = np.array(real_RIRs[rn:rn+channel].to("cpu").detach())
|
| 91 |
+
real_wave = real_wave.reshape(channel,4096)
|
| 92 |
+
fake_wave = np.array(fake_RIRs[rn:rn+channel].to("cpu").detach())
|
| 93 |
+
fake_wave = fake_wave.reshape(channel,4096)
|
| 94 |
+
|
| 95 |
+
pool = Pool(processes=12)
|
| 96 |
+
|
| 97 |
+
results =[]
|
| 98 |
+
for n in range(channel):
|
| 99 |
+
results.append(pool.apply_async(RT60.t60_parallel, args=(n,real_wave,fake_wave,fs,)))
|
| 100 |
+
|
| 101 |
+
T60_error =0
|
| 102 |
+
for result in results:
|
| 103 |
+
T60_error = T60_error + result.get()
|
| 104 |
+
|
| 105 |
+
RT_error = T60_error/channel
|
| 106 |
+
|
| 107 |
+
pool.close()
|
| 108 |
+
pool.join()
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# T60_error =0
|
| 114 |
+
# for m in range(channel):
|
| 115 |
+
# real_wave_single = real_wave[:,(rn+m)]
|
| 116 |
+
# fake_wave_single = fake_wave[:,(rn+m)]
|
| 117 |
+
# Real_T60_val = RT60.t60_impulse(real_wave_single,fs)
|
| 118 |
+
# Fake_T60_val = RT60.t60_impulse(fake_wave_single,fs)
|
| 119 |
+
# T60_diff = abs(Real_T60_val-Fake_T60_val)
|
| 120 |
+
# T60_error = T60_error + T60_diff
|
| 121 |
+
|
| 122 |
+
# RT_error = T60_error/channel
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
# r = WaveWriter("real.wav", channels=portion, samplerate=fs)
|
| 126 |
+
# r.write(np.array(real_IR))
|
| 127 |
+
# f = WaveWriter("fake.wav", channels=portion, samplerate=fs)
|
| 128 |
+
# f.write(np.array(fake_IR))
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
# result = call_python_version("3.8", "RT60", "t60_error",
|
| 132 |
+
# ["real.wav","fake.wav"])
|
| 133 |
+
# # print("RT_error ",result)
|
| 134 |
+
# RT_error = float(result)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
# print("RT_error ",RT_error)
|
| 138 |
+
|
| 139 |
+
# if(epoch<100):
|
| 140 |
+
# errD_fake = criterion(fake_logits, real_labels)# + 2* 4096 * MSE_error
|
| 141 |
+
# else:
|
| 142 |
+
# errD_fake = criterion(fake_logits, real_labels) + 2* 4096 * MSE_error
|
| 143 |
+
errD_fake = criterion(fake_logits, real_labels) + 5* 4096 * MSE_error1 + 40 * RT_error
|
| 144 |
+
if netD.get_uncond_logits is not None:
|
| 145 |
+
fake_logits = \
|
| 146 |
+
nn.parallel.data_parallel(netD.get_uncond_logits,
|
| 147 |
+
(fake_features), gpus)
|
| 148 |
+
uncond_errD_fake = criterion(fake_logits, real_labels)
|
| 149 |
+
errD_fake += uncond_errD_fake
|
| 150 |
+
return errD_fake, MSE_error,RT_error
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
#############################
|
| 154 |
+
def weights_init(m):
|
| 155 |
+
classname = m.__class__.__name__
|
| 156 |
+
if classname.find('Conv') != -1:
|
| 157 |
+
m.weight.data.normal_(0.0, 0.02)
|
| 158 |
+
elif classname.find('BatchNorm') != -1:
|
| 159 |
+
m.weight.data.normal_(1.0, 0.02)
|
| 160 |
+
m.bias.data.fill_(0)
|
| 161 |
+
elif classname.find('Linear') != -1:
|
| 162 |
+
m.weight.data.normal_(0.0, 0.02)
|
| 163 |
+
if m.bias is not None:
|
| 164 |
+
m.bias.data.fill_(0.0)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
#############################
|
| 168 |
+
def save_RIR_results(data_RIR, fake, epoch, RIR_dir):
|
| 169 |
+
num = cfg.VIS_COUNT
|
| 170 |
+
fake = fake[0:num]
|
| 171 |
+
# data_RIR is changed to [0,1]
|
| 172 |
+
if data_RIR is not None:
|
| 173 |
+
data_RIR = data_RIR[0:num]
|
| 174 |
+
for i in range(num):
|
| 175 |
+
# #print("came 1")
|
| 176 |
+
real_RIR_path = RIR_dir+"/real_sample"+str(i)+".wav"
|
| 177 |
+
fake_RIR_path = RIR_dir+"/fake_sample"+str(i)+"_epoch_"+str(epoch)+".wav"
|
| 178 |
+
fs =16000
|
| 179 |
+
|
| 180 |
+
real_IR = np.array(data_RIR[i].to("cpu").detach())
|
| 181 |
+
fake_IR = np.array(fake[i].to("cpu").detach())
|
| 182 |
+
# #print("fake_IR ", fake_IR.size)
|
| 183 |
+
# #print("real_IR ", real_IR.size)
|
| 184 |
+
# #print("max real_IR ", max(real_IR[0]))
|
| 185 |
+
# #print("min real_IR ", min(real_IR[0]))
|
| 186 |
+
r = WaveWriter(real_RIR_path, channels=1, samplerate=fs)
|
| 187 |
+
r.write(np.array(real_IR))
|
| 188 |
+
f = WaveWriter(fake_RIR_path, channels=1, samplerate=fs)
|
| 189 |
+
f.write(np.array(fake_IR))
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
# write(real_RIR_path,fs,real_IR)
|
| 193 |
+
# write(fake_RIR_path,fs,fake_IR)
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
# write(real_RIR_path,fs,real_IR)
|
| 197 |
+
# write(fake_RIR_path,fs,fake_IR)
|
| 198 |
+
|
| 199 |
+
# vutils.save_image(
|
| 200 |
+
# data_RIR, '%s/real_samples.png' % RIR_dir,
|
| 201 |
+
# normalize=True)
|
| 202 |
+
# # fake.data is still [-1, 1]
|
| 203 |
+
# vutils.save_image(
|
| 204 |
+
# fake.data, '%s/fake_samples_epoch_%03d.png' %
|
| 205 |
+
# (RIR_dir, epoch), normalize=True)
|
| 206 |
+
else:
|
| 207 |
+
for i in range(num):
|
| 208 |
+
# #print("came 2")
|
| 209 |
+
fake_RIR_path = RIR_dir+"/small_fake_sample"+str(i)+"_epoch_"+str(epoch)+".wav"
|
| 210 |
+
fs =16000
|
| 211 |
+
fake_IR = np.array(fake[i].to("cpu").detach())
|
| 212 |
+
f = WaveWriter(fake_RIR_path, channels=1, samplerate=fs)
|
| 213 |
+
f.write(np.array(fake_IR))
|
| 214 |
+
|
| 215 |
+
# write(fake_RIR_path,fs,fake[i].astype(np.float32))
|
| 216 |
+
|
| 217 |
+
# vutils.save_image(
|
| 218 |
+
# fake.data, '%s/lr_fake_samples_epoch_%03d.png' %
|
| 219 |
+
# (RIR_dir, epoch), normalize=True)
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
def save_model(netG, netD, epoch, model_dir):
|
| 223 |
+
torch.save(
|
| 224 |
+
netG.state_dict(),
|
| 225 |
+
'%s/netG_epoch_%d.pth' % (model_dir, epoch))
|
| 226 |
+
torch.save(
|
| 227 |
+
netD.state_dict(),
|
| 228 |
+
'%s/netD_epoch_last.pth' % (model_dir))
|
| 229 |
+
#print('Save G/D models')
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def mkdir_p(path):
|
| 233 |
+
try:
|
| 234 |
+
os.makedirs(path)
|
| 235 |
+
except OSError as exc: # Python >2.5
|
| 236 |
+
if exc.errno == errno.EEXIST and os.path.isdir(path):
|
| 237 |
+
pass
|
| 238 |
+
else:
|
| 239 |
+
raise
|
code_new/miscc/utils.pyc
ADDED
|
Binary file (5.71 kB). View file
|
|
|
code_new/model.py
ADDED
|
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.parallel
|
| 4 |
+
from miscc.config import cfg
|
| 5 |
+
from torch.autograd import Variable
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def conv3x1(in_planes, out_planes, stride=1):
|
| 9 |
+
"3x1 convolution with padding"
|
| 10 |
+
kernel_length = 41
|
| 11 |
+
return nn.Conv1d(in_planes, out_planes, kernel_size=kernel_length, stride=stride,
|
| 12 |
+
padding=20, bias=False)
|
| 13 |
+
|
| 14 |
+
def old_conv3x1(in_planes, out_planes, stride=1):
|
| 15 |
+
"3x1 convolution with padding"
|
| 16 |
+
kernel_length = 3
|
| 17 |
+
return nn.Conv1d(in_planes, out_planes, kernel_size=kernel_length, stride=stride,
|
| 18 |
+
padding=1, bias=False)
|
| 19 |
+
# def convn3x1(in_planes, out_planes, stride=1):
|
| 20 |
+
# "3x1 convolution with padding"
|
| 21 |
+
# return nn.Conv1d(in_planes, out_planes, kernel_size=9, stride=stride,
|
| 22 |
+
# padding=4, bias=False)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
# Upsale the spatial size by a factor of 2
|
| 26 |
+
def upBlock4(in_planes, out_planes):
|
| 27 |
+
kernel_length = 41
|
| 28 |
+
stride = 4
|
| 29 |
+
block = nn.Sequential(
|
| 30 |
+
# nn.Upsample(scale_factor=4, mode='nearest'),
|
| 31 |
+
# conv3x1(in_planes, out_planes),
|
| 32 |
+
nn.ConvTranspose1d(in_planes,out_planes,kernel_size=kernel_length,stride=stride, padding=19,output_padding=1),
|
| 33 |
+
nn.BatchNorm1d(out_planes),
|
| 34 |
+
# nn.ReLU(True)
|
| 35 |
+
nn.PReLU())
|
| 36 |
+
return block
|
| 37 |
+
def upBlock2(in_planes, out_planes):
|
| 38 |
+
kernel_length = 41
|
| 39 |
+
stride = 2
|
| 40 |
+
block = nn.Sequential(
|
| 41 |
+
# nn.Upsample(scale_factor=4, mode='nearest'),
|
| 42 |
+
# conv3x1(in_planes, out_planes),
|
| 43 |
+
nn.ConvTranspose1d(in_planes,out_planes,kernel_size=kernel_length,stride=stride, padding=20,output_padding=1),
|
| 44 |
+
nn.BatchNorm1d(out_planes),
|
| 45 |
+
# nn.ReLU(True)
|
| 46 |
+
nn.PReLU())
|
| 47 |
+
return block
|
| 48 |
+
|
| 49 |
+
def sameBlock(in_planes, out_planes):
|
| 50 |
+
block = nn.Sequential(
|
| 51 |
+
# nn.Upsample(scale_factor=4, mode='nearest'),
|
| 52 |
+
conv3x1(in_planes, out_planes),
|
| 53 |
+
nn.BatchNorm1d(out_planes),
|
| 54 |
+
# nn.ReLU(True)
|
| 55 |
+
nn.PReLU())
|
| 56 |
+
return block
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class ResBlock(nn.Module):
|
| 60 |
+
def __init__(self, channel_num):
|
| 61 |
+
super(ResBlock, self).__init__()
|
| 62 |
+
self.block = nn.Sequential(
|
| 63 |
+
conv3x1(channel_num, channel_num),
|
| 64 |
+
nn.BatchNorm1d(channel_num),
|
| 65 |
+
# nn.ReLU(True),
|
| 66 |
+
nn.PReLU(),
|
| 67 |
+
conv3x1(channel_num, channel_num),
|
| 68 |
+
nn.BatchNorm1d(channel_num))
|
| 69 |
+
self.relu = nn.PReLU()#nn.ReLU(inplace=True)
|
| 70 |
+
|
| 71 |
+
def forward(self, x):
|
| 72 |
+
residual = x
|
| 73 |
+
out = self.block(x)
|
| 74 |
+
out += residual
|
| 75 |
+
out = self.relu(out)
|
| 76 |
+
return out
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
# class CA_NET(nn.Module): #not chnaged yet
|
| 80 |
+
# # some code is modified from vae examples
|
| 81 |
+
# # (https://github.com/pytorch/examples/blob/master/vae/main.py)
|
| 82 |
+
# def __init__(self):
|
| 83 |
+
# super(CA_NET, self).__init__()
|
| 84 |
+
# self.t_dim = cfg.TEXT.DIMENSION
|
| 85 |
+
# self.c_dim = cfg.GAN.CONDITION_DIM
|
| 86 |
+
# self.fc = nn.Linear(self.t_dim, self.c_dim * 2, bias=True)
|
| 87 |
+
# self.relu = nn.ReLU()
|
| 88 |
+
|
| 89 |
+
# def encode(self, text_embedding):
|
| 90 |
+
# x = self.relu(self.fc(text_embedding))
|
| 91 |
+
# mu = x[:, :self.c_dim]
|
| 92 |
+
# logvar = x[:, self.c_dim:]
|
| 93 |
+
# return mu, logvar
|
| 94 |
+
|
| 95 |
+
# def reparametrize(self, mu, logvar):
|
| 96 |
+
# std = logvar.mul(0.5).exp_()
|
| 97 |
+
# if cfg.CUDA:
|
| 98 |
+
# eps = torch.cuda.FloatTensor(std.size()).normal_()
|
| 99 |
+
# else:
|
| 100 |
+
# eps = torch.FloatTensor(std.size()).normal_()
|
| 101 |
+
# eps = Variable(eps)
|
| 102 |
+
# return eps.mul(std).add_(mu)
|
| 103 |
+
|
| 104 |
+
# def forward(self, text_embedding):
|
| 105 |
+
# mu, logvar = self.encode(text_embedding)
|
| 106 |
+
# c_code = self.reparametrize(mu, logvar)
|
| 107 |
+
# return c_code, mu, logvar
|
| 108 |
+
|
| 109 |
+
class COND_NET(nn.Module): #not chnaged yet
|
| 110 |
+
# some code is modified from vae examples
|
| 111 |
+
# (https://github.com/pytorch/examples/blob/master/vae/main.py)
|
| 112 |
+
def __init__(self):
|
| 113 |
+
super(COND_NET, self).__init__()
|
| 114 |
+
self.t_dim = cfg.TEXT.DIMENSION
|
| 115 |
+
self.c_dim = cfg.GAN.CONDITION_DIM
|
| 116 |
+
self.fc = nn.Linear(self.t_dim, self.c_dim, bias=True)
|
| 117 |
+
self.relu = nn.PReLU()#nn.ReLU()
|
| 118 |
+
|
| 119 |
+
def encode(self, text_embedding):
|
| 120 |
+
x = self.relu(self.fc(text_embedding))
|
| 121 |
+
# mu = x[:, :self.c_dim]
|
| 122 |
+
# logvar = x[:, self.c_dim:]
|
| 123 |
+
return x
|
| 124 |
+
|
| 125 |
+
# def reparametrize(self, mu, logvar):
|
| 126 |
+
# std = logvar.mul(0.5).exp_()
|
| 127 |
+
# if cfg.CUDA:
|
| 128 |
+
# eps = torch.cuda.FloatTensor(std.size()).normal_()
|
| 129 |
+
# else:
|
| 130 |
+
# eps = torch.FloatTensor(std.size()).normal_()
|
| 131 |
+
# eps = Variable(eps)
|
| 132 |
+
# return eps.mul(std).add_(mu)
|
| 133 |
+
|
| 134 |
+
def forward(self, text_embedding):
|
| 135 |
+
c_code = self.encode(text_embedding)
|
| 136 |
+
# c_code = self.reparametrize(mu, logvar)
|
| 137 |
+
return c_code #, mu, logvar
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
class D_GET_LOGITS(nn.Module): #not chnaged yet
|
| 141 |
+
def __init__(self, ndf, nef, bcondition=True):
|
| 142 |
+
super(D_GET_LOGITS, self).__init__()
|
| 143 |
+
self.df_dim = ndf
|
| 144 |
+
self.ef_dim = nef
|
| 145 |
+
self.bcondition = bcondition
|
| 146 |
+
kernel_length =41
|
| 147 |
+
if bcondition:
|
| 148 |
+
self.convd1d = nn.ConvTranspose1d(ndf*8,ndf //2,kernel_size=kernel_length,stride=1, padding=20)
|
| 149 |
+
# self.outlogits = nn.Sequential(
|
| 150 |
+
# old_conv3x1(ndf * 8 + nef, ndf * 8),
|
| 151 |
+
# nn.BatchNorm1d(ndf * 8),
|
| 152 |
+
# nn.LeakyReLU(0.2, inplace=True),
|
| 153 |
+
# nn.Conv1d(ndf * 8, 1, kernel_size=16, stride=4),
|
| 154 |
+
# # nn.Conv1d(1, 1, kernel_size=16, stride=4),
|
| 155 |
+
# nn.Sigmoid()
|
| 156 |
+
# )
|
| 157 |
+
self.outlogits = nn.Sequential(
|
| 158 |
+
old_conv3x1(ndf //2 + nef, ndf //2 ),
|
| 159 |
+
nn.BatchNorm1d(ndf //2 ),
|
| 160 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 161 |
+
nn.Conv1d(ndf //2 , 1, kernel_size=16, stride=4),
|
| 162 |
+
# nn.Conv1d(1, 1, kernel_size=16, stride=4),
|
| 163 |
+
nn.Sigmoid()
|
| 164 |
+
)
|
| 165 |
+
else:
|
| 166 |
+
# self.outlogits = nn.Sequential(
|
| 167 |
+
# nn.Conv1d(ndf * 8, 1, kernel_size=16, stride=4),
|
| 168 |
+
# # nn.Conv1d(1, 1, kernel_size=16, stride=4),
|
| 169 |
+
# nn.Sigmoid())
|
| 170 |
+
self.convd1d = nn.ConvTranspose1d(ndf*8,ndf //2,kernel_size=kernel_length,stride=1, padding=20)
|
| 171 |
+
self.outlogits = nn.Sequential(
|
| 172 |
+
nn.Conv1d(ndf // 2 , 1, kernel_size=16, stride=4),
|
| 173 |
+
# nn.Conv1d(1, 1, kernel_size=16, stride=4),
|
| 174 |
+
nn.Sigmoid())
|
| 175 |
+
|
| 176 |
+
def forward(self, h_code, c_code=None):
|
| 177 |
+
# conditioning output
|
| 178 |
+
h_code = self.convd1d(h_code)
|
| 179 |
+
if self.bcondition and c_code is not None:
|
| 180 |
+
#print("mode c_code1 ",c_code.size())
|
| 181 |
+
c_code = c_code.view(-1, self.ef_dim, 1)
|
| 182 |
+
#print("mode c_code2 ",c_code.size())
|
| 183 |
+
|
| 184 |
+
c_code = c_code.repeat(1, 1, 16)
|
| 185 |
+
# state size (ngf+egf) x 16
|
| 186 |
+
#print("mode c_code ",c_code.size())
|
| 187 |
+
#print("mode h_code ",h_code.size())
|
| 188 |
+
|
| 189 |
+
h_c_code = torch.cat((h_code, c_code), 1)
|
| 190 |
+
else:
|
| 191 |
+
h_c_code = h_code
|
| 192 |
+
|
| 193 |
+
output = self.outlogits(h_c_code)
|
| 194 |
+
|
| 195 |
+
return output.view(-1)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
# ############# Networks for stageI GAN #############
|
| 199 |
+
class STAGE1_G(nn.Module):
|
| 200 |
+
def __init__(self):
|
| 201 |
+
super(STAGE1_G, self).__init__()
|
| 202 |
+
self.gf_dim = cfg.GAN.GF_DIM * 8
|
| 203 |
+
self.ef_dim = cfg.GAN.CONDITION_DIM
|
| 204 |
+
# self.z_dim = cfg.Z_DIM
|
| 205 |
+
self.define_module()
|
| 206 |
+
|
| 207 |
+
def define_module(self):
|
| 208 |
+
kernel_length = 41
|
| 209 |
+
ninput = self.ef_dim #self.z_dim + self.ef_dim
|
| 210 |
+
ngf = self.gf_dim
|
| 211 |
+
# TEXT.DIMENSION -> GAN.CONDITION_DIM
|
| 212 |
+
# self.ca_net = CA_NET()
|
| 213 |
+
self.cond_net = COND_NET()
|
| 214 |
+
# -> ngf x 16
|
| 215 |
+
self.fc = nn.Sequential(
|
| 216 |
+
nn.Linear(ninput, ngf * 16, bias=False),
|
| 217 |
+
nn.BatchNorm1d(ngf * 16),
|
| 218 |
+
# nn.ReLU(True)
|
| 219 |
+
nn.PReLU())
|
| 220 |
+
|
| 221 |
+
# ngf x 16 -> ngf/2 x 64
|
| 222 |
+
self.upsample1 = upBlock4(ngf, ngf // 2)
|
| 223 |
+
# -> ngf/4 x 256
|
| 224 |
+
self.upsample2 = upBlock4(ngf // 2, ngf // 4)
|
| 225 |
+
# -> ngf/8 x 1024
|
| 226 |
+
self.upsample3 = upBlock4(ngf // 4, ngf // 8)
|
| 227 |
+
# -> ngf/16 x 4096
|
| 228 |
+
self.upsample4 = upBlock2(ngf // 8, ngf // 16)
|
| 229 |
+
self.upsample5 = upBlock2(ngf // 16, ngf // 16)
|
| 230 |
+
# -> 1 x 4096
|
| 231 |
+
self.RIR = nn.Sequential(
|
| 232 |
+
nn.ConvTranspose1d(ngf // 16,1,kernel_size=kernel_length,stride=1, padding=20),
|
| 233 |
+
# old_conv3x1(ngf // 16, 1), # conv3x3(ngf // 16, 3),
|
| 234 |
+
nn.Tanh())
|
| 235 |
+
|
| 236 |
+
def forward(self, text_embedding):
|
| 237 |
+
# c_code, mu, logvar = self.ca_net(text_embedding)
|
| 238 |
+
c_code = self.cond_net(text_embedding)
|
| 239 |
+
# z_c_code = torch.cat((noise, c_code), 1)
|
| 240 |
+
h_code = self.fc(c_code)
|
| 241 |
+
|
| 242 |
+
h_code = h_code.view(-1, self.gf_dim, 16)
|
| 243 |
+
# #print("h_code 1 ",h_code.size())
|
| 244 |
+
h_code = self.upsample1(h_code)
|
| 245 |
+
# #print("h_code 2 ",h_code.size())
|
| 246 |
+
h_code = self.upsample2(h_code)
|
| 247 |
+
# #print("h_code 3 ",h_code.size())
|
| 248 |
+
h_code = self.upsample3(h_code)
|
| 249 |
+
# #print("h_code 4 ",h_code.size())
|
| 250 |
+
h_code = self.upsample4(h_code)
|
| 251 |
+
h_code = self.upsample5(h_code)
|
| 252 |
+
# #print("h_code 5 ",h_code.size())
|
| 253 |
+
# state size 3 x 64 x 64
|
| 254 |
+
fake_RIR = self.RIR(h_code)
|
| 255 |
+
# return None, fake_RIR, mu, logvar
|
| 256 |
+
#print("generator ", text_embedding.size())
|
| 257 |
+
return None, fake_RIR, text_embedding #c_code
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
class STAGE1_D(nn.Module):
|
| 261 |
+
def __init__(self):
|
| 262 |
+
super(STAGE1_D, self).__init__()
|
| 263 |
+
self.df_dim = cfg.GAN.DF_DIM
|
| 264 |
+
self.ef_dim = cfg.GAN.CONDITION_DIM
|
| 265 |
+
self.define_module()
|
| 266 |
+
|
| 267 |
+
def define_module(self):
|
| 268 |
+
ndf, nef = self.df_dim, self.ef_dim
|
| 269 |
+
kernel_length =41
|
| 270 |
+
self.encode_RIR = nn.Sequential(
|
| 271 |
+
nn.Conv1d(1, ndf, kernel_length, 4, 20, bias=False),
|
| 272 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 273 |
+
# state size. (ndf) x 1024
|
| 274 |
+
nn.Conv1d(ndf, ndf * 2, kernel_length, 4, 20, bias=False),
|
| 275 |
+
nn.BatchNorm1d(ndf * 2),
|
| 276 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 277 |
+
# state size (ndf*2) x 256
|
| 278 |
+
nn.Conv1d(ndf*2, ndf * 4, kernel_length, 4, 20, bias=False),
|
| 279 |
+
nn.BatchNorm1d(ndf * 4),
|
| 280 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 281 |
+
# # state size (ndf*4) x 64
|
| 282 |
+
nn.Conv1d(ndf*4, ndf * 8, kernel_length, 4, 20, bias=False),
|
| 283 |
+
nn.BatchNorm1d(ndf * 8),
|
| 284 |
+
# state size (ndf * 8) x 16)
|
| 285 |
+
nn.LeakyReLU(0.2, inplace=True)
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
self.get_cond_logits = D_GET_LOGITS(ndf, nef)
|
| 289 |
+
self.get_uncond_logits = None
|
| 290 |
+
|
| 291 |
+
def forward(self, RIRs):
|
| 292 |
+
#print("model RIRs ",RIRs.size())
|
| 293 |
+
RIR_embedding = self.encode_RIR(RIRs)
|
| 294 |
+
#print("models RIR_embedding ",RIR_embedding.size())
|
| 295 |
+
|
| 296 |
+
return RIR_embedding
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
# ############# Networks for stageII GAN #############
|
| 300 |
+
class STAGE2_G(nn.Module):
|
| 301 |
+
def __init__(self, STAGE1_G):
|
| 302 |
+
super(STAGE2_G, self).__init__()
|
| 303 |
+
self.gf_dim = cfg.GAN.GF_DIM
|
| 304 |
+
self.ef_dim = cfg.GAN.CONDITION_DIM
|
| 305 |
+
# self.z_dim = cfg.Z_DIM
|
| 306 |
+
self.STAGE1_G = STAGE1_G
|
| 307 |
+
# fix parameters of stageI GAN
|
| 308 |
+
for param in self.STAGE1_G.parameters():
|
| 309 |
+
param.requires_grad = False
|
| 310 |
+
self.define_module()
|
| 311 |
+
|
| 312 |
+
def _make_layer(self, block, channel_num):
|
| 313 |
+
layers = []
|
| 314 |
+
for i in range(cfg.GAN.R_NUM):
|
| 315 |
+
layers.append(block(channel_num))
|
| 316 |
+
return nn.Sequential(*layers)
|
| 317 |
+
|
| 318 |
+
def define_module(self):
|
| 319 |
+
ngf = self.gf_dim
|
| 320 |
+
# TEXT.DIMENSION -> GAN.CONDITION_DIM
|
| 321 |
+
# self.ca_net = CA_NET()
|
| 322 |
+
self.cond_net = COND_NET()
|
| 323 |
+
# --> 4ngf x 16 x 16
|
| 324 |
+
self.encoder = nn.Sequential(
|
| 325 |
+
conv3x1(1, ngf),
|
| 326 |
+
nn.ReLU(True),
|
| 327 |
+
nn.Conv1d(ngf, ngf * 2, 16, 4, 6, bias=False),
|
| 328 |
+
nn.BatchNorm1d(ngf * 2),
|
| 329 |
+
nn.ReLU(True),
|
| 330 |
+
nn.Conv1d(ngf * 2, ngf * 4, 16, 4, 6, bias=False),
|
| 331 |
+
nn.BatchNorm1d(ngf * 4),
|
| 332 |
+
nn.ReLU(True))
|
| 333 |
+
self.hr_joint = nn.Sequential(
|
| 334 |
+
conv3x1(self.ef_dim + ngf * 4, ngf * 4),
|
| 335 |
+
nn.BatchNorm1d(ngf * 4),
|
| 336 |
+
nn.ReLU(True))
|
| 337 |
+
self.residual = self._make_layer(ResBlock, ngf * 4)
|
| 338 |
+
# --> 2ngf x 1024
|
| 339 |
+
self.upsample1 = upBlock4(ngf * 4, ngf * 2)
|
| 340 |
+
# --> ngf x 4096
|
| 341 |
+
self.upsample2 = upBlock4(ngf * 2, ngf)
|
| 342 |
+
# --> ngf // 2 x 16384
|
| 343 |
+
self.upsample3 = upBlock4(ngf, ngf // 2)
|
| 344 |
+
# --> ngf // 4 x 16384
|
| 345 |
+
self.upsample4 = sameBlock(ngf // 2, ngf // 4)
|
| 346 |
+
# --> 1 x 16384
|
| 347 |
+
self.RIR = nn.Sequential(
|
| 348 |
+
conv3x1(ngf // 4, 1),
|
| 349 |
+
nn.Tanh())
|
| 350 |
+
|
| 351 |
+
def forward(self, text_embedding):
|
| 352 |
+
_, stage1_RIR, _= self.STAGE1_G(text_embedding)
|
| 353 |
+
stage1_RIR = stage1_RIR.detach()
|
| 354 |
+
encoded_RIR = self.encoder(stage1_RIR)
|
| 355 |
+
|
| 356 |
+
# c_code, mu, logvar = self.ca_net(text_embedding)
|
| 357 |
+
c_code1 = self.cond_net(text_embedding)
|
| 358 |
+
c_code = c_code1.view(-1, self.ef_dim, 1)
|
| 359 |
+
c_code = c_code.repeat(1, 1, 256) # c_code.repeat(1, 1, 16, 16)
|
| 360 |
+
i_c_code = torch.cat([encoded_RIR, c_code], 1)
|
| 361 |
+
h_code = self.hr_joint(i_c_code)
|
| 362 |
+
h_code = self.residual(h_code)
|
| 363 |
+
|
| 364 |
+
h_code = self.upsample1(h_code)
|
| 365 |
+
h_code = self.upsample2(h_code)
|
| 366 |
+
h_code = self.upsample3(h_code)
|
| 367 |
+
h_code = self.upsample4(h_code)
|
| 368 |
+
|
| 369 |
+
fake_RIR = self.RIR(h_code)
|
| 370 |
+
return stage1_RIR, fake_RIR, c_code1 #mu, logvar
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
class STAGE2_D(nn.Module):
|
| 374 |
+
def __init__(self):
|
| 375 |
+
super(STAGE2_D, self).__init__()
|
| 376 |
+
self.df_dim = cfg.GAN.DF_DIM
|
| 377 |
+
self.ef_dim = cfg.GAN.CONDITION_DIM
|
| 378 |
+
self.define_module()
|
| 379 |
+
|
| 380 |
+
def define_module(self):
|
| 381 |
+
ndf, nef = self.df_dim, self.ef_dim
|
| 382 |
+
self.encode_RIR = nn.Sequential(
|
| 383 |
+
nn.Conv1d(1, ndf, 3, 1, 1, bias=False), # 16384 * ndf
|
| 384 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 385 |
+
nn.Conv1d(ndf, ndf * 2, 16, 4, 6, bias=False),
|
| 386 |
+
nn.BatchNorm1d(ndf * 2),
|
| 387 |
+
nn.LeakyReLU(0.2, inplace=True), # 4096 * ndf * 2
|
| 388 |
+
nn.Conv1d(ndf * 2, ndf * 4, 16, 4, 6, bias=False),
|
| 389 |
+
nn.BatchNorm1d(ndf * 4),
|
| 390 |
+
nn.LeakyReLU(0.2, inplace=True), # 1024 * ndf * 4
|
| 391 |
+
nn.Conv1d(ndf * 4, ndf * 8, 16, 4, 6, bias=False),
|
| 392 |
+
nn.BatchNorm1d(ndf * 8),
|
| 393 |
+
nn.LeakyReLU(0.2, inplace=True), # 256 * ndf * 8
|
| 394 |
+
nn.Conv1d(ndf * 8, ndf * 16, 16, 4, 6, bias=False),
|
| 395 |
+
nn.BatchNorm1d(ndf * 16),
|
| 396 |
+
nn.LeakyReLU(0.2, inplace=True), # 64 * ndf * 16
|
| 397 |
+
nn.Conv1d(ndf * 16, ndf * 32, 16, 4, 6, bias=False),
|
| 398 |
+
nn.BatchNorm1d(ndf * 32),
|
| 399 |
+
nn.LeakyReLU(0.2, inplace=True), # 16 * ndf * 32
|
| 400 |
+
conv3x1(ndf * 32, ndf * 16),
|
| 401 |
+
nn.BatchNorm1d(ndf * 16),
|
| 402 |
+
nn.LeakyReLU(0.2, inplace=True), # 16 * ndf * 16
|
| 403 |
+
conv3x1(ndf * 16, ndf * 8),
|
| 404 |
+
nn.BatchNorm1d(ndf * 8),
|
| 405 |
+
nn.LeakyReLU(0.2, inplace=True) # 16 * ndf * 8
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
self.get_cond_logits = D_GET_LOGITS(ndf, nef, bcondition=True)
|
| 409 |
+
self.get_uncond_logits = D_GET_LOGITS(ndf, nef, bcondition=False)
|
| 410 |
+
|
| 411 |
+
def forward(self, RIRs):
|
| 412 |
+
RIR_embedding = self.encode_RIR(RIRs)
|
| 413 |
+
return RIR_embedding
|
code_new/single_copy.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, fnmatch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
import soundfile as sf
|
| 5 |
+
from scipy.io.wavfile import write
|
| 6 |
+
# import librosa
|
| 7 |
+
import RT60
|
| 8 |
+
|
| 9 |
+
folder_path = "/cephfs/anton/room-impulse-responses/AIR/RWCP_REVERB_AACHEN/real_rirs_isotropic_noises/"
|
| 10 |
+
final_path = "/cephfs/anton/room-impulse-responses/AIR/RWCP_REVERB_AACHEN/AACHEN/"
|
| 11 |
+
tfs =16000
|
| 12 |
+
file_label = open("RT60.txt","w")
|
| 13 |
+
|
| 14 |
+
for root, dirnames, filenames in os.walk(folder_path):
|
| 15 |
+
for filename in filenames:
|
| 16 |
+
if filename.endswith(".wav"):
|
| 17 |
+
ACE_Path = os.path.join(root, filename)
|
| 18 |
+
wave,fs = sf.read(ACE_Path)
|
| 19 |
+
channel = int(wave.size/len(wave))
|
| 20 |
+
|
| 21 |
+
if(channel == 1):
|
| 22 |
+
wave_single = wave #librosa.resample(wave, fs, tfs)
|
| 23 |
+
max_loc = np.where(wave_single == np.amax(wave_single))
|
| 24 |
+
min_loc = np.where(wave_single == np.amin(wave_single))
|
| 25 |
+
start = min(max_loc[0][0],min_loc[0][0])
|
| 26 |
+
wave_single =wave_single[start:len(wave_single)]
|
| 27 |
+
T60_val = RT60.t60_impulse(wave_single,tfs)
|
| 28 |
+
|
| 29 |
+
if(T60_val<1):
|
| 30 |
+
file_label.write(str(T60_val)+"\n")
|
| 31 |
+
save_path = final_path+ filename
|
| 32 |
+
write(save_path,tfs,wave_single.astype(np.float32))
|
| 33 |
+
else:
|
| 34 |
+
for n in range(channel):
|
| 35 |
+
wave_single = wave[:,n]#librosa.resample(wave[:,n], fs, tfs)
|
| 36 |
+
max_loc = np.where(wave_single == np.amax(wave_single))
|
| 37 |
+
min_loc = np.where(wave_single == np.amin(wave_single))
|
| 38 |
+
start = min(max_loc[0][0],min_loc[0][0])
|
| 39 |
+
wave_single =wave_single[start:len(wave_single)]
|
| 40 |
+
T60_val = RT60.t60_impulse(wave_single,tfs)
|
| 41 |
+
|
| 42 |
+
if(T60_val<1):
|
| 43 |
+
file_label.write(str(T60_val)+"\n")
|
| 44 |
+
save_path = final_path+filename+str(n)+".wav"
|
| 45 |
+
write(save_path,tfs,wave_single.astype(np.float32))
|
| 46 |
+
|
code_new/trainer.py
ADDED
|
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import print_function
|
| 2 |
+
from six.moves import range
|
| 3 |
+
from PIL import Image
|
| 4 |
+
|
| 5 |
+
import torch.backends.cudnn as cudnn
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from torch.autograd import Variable
|
| 9 |
+
import torch.optim as optim
|
| 10 |
+
import os
|
| 11 |
+
import time
|
| 12 |
+
|
| 13 |
+
import numpy as np
|
| 14 |
+
import torchfile
|
| 15 |
+
import pickle
|
| 16 |
+
|
| 17 |
+
import soundfile as sf
|
| 18 |
+
import re
|
| 19 |
+
import math
|
| 20 |
+
from wavefile import WaveWriter, Format
|
| 21 |
+
|
| 22 |
+
from miscc.config import cfg
|
| 23 |
+
from miscc.utils import mkdir_p
|
| 24 |
+
from miscc.utils import weights_init
|
| 25 |
+
from miscc.utils import save_RIR_results, save_model
|
| 26 |
+
from miscc.utils import KL_loss
|
| 27 |
+
from miscc.utils import compute_discriminator_loss, compute_generator_loss
|
| 28 |
+
|
| 29 |
+
# from torch.utils.tensorboard import summary
|
| 30 |
+
# from torch.utils.tensorboard import FileWriter
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class GANTrainer(object):
|
| 34 |
+
def __init__(self, output_dir):
|
| 35 |
+
if cfg.TRAIN.FLAG:
|
| 36 |
+
self.model_dir = os.path.join(output_dir, 'Model')
|
| 37 |
+
self.model_dir_RT = os.path.join(output_dir, 'Model_RT')
|
| 38 |
+
self.RIR_dir = os.path.join(output_dir, 'RIR')
|
| 39 |
+
self.log_dir = os.path.join(output_dir, 'Log')
|
| 40 |
+
mkdir_p(self.model_dir)
|
| 41 |
+
mkdir_p(self.model_dir_RT)
|
| 42 |
+
mkdir_p(self.RIR_dir)
|
| 43 |
+
mkdir_p(self.log_dir)
|
| 44 |
+
# self.summary_writer = FileWriter(self.log_dir)
|
| 45 |
+
|
| 46 |
+
self.max_epoch = cfg.TRAIN.MAX_EPOCH
|
| 47 |
+
self.snapshot_interval = cfg.TRAIN.SNAPSHOT_INTERVAL
|
| 48 |
+
|
| 49 |
+
s_gpus = cfg.GPU_ID.split(',')
|
| 50 |
+
self.gpus = [int(ix) for ix in s_gpus]
|
| 51 |
+
self.num_gpus = len(self.gpus)
|
| 52 |
+
self.batch_size = cfg.TRAIN.BATCH_SIZE * self.num_gpus
|
| 53 |
+
torch.cuda.set_device(self.gpus[0])
|
| 54 |
+
cudnn.benchmark = True
|
| 55 |
+
|
| 56 |
+
# ############# For training stageI GAN #############
|
| 57 |
+
def load_network_stageI(self):
|
| 58 |
+
from model import STAGE1_G, STAGE1_D
|
| 59 |
+
netG = STAGE1_G()
|
| 60 |
+
netG.apply(weights_init)
|
| 61 |
+
print(netG)
|
| 62 |
+
netD = STAGE1_D()
|
| 63 |
+
netD.apply(weights_init)
|
| 64 |
+
print(netD)
|
| 65 |
+
|
| 66 |
+
if cfg.NET_G != '':
|
| 67 |
+
state_dict = \
|
| 68 |
+
torch.load(cfg.NET_G,
|
| 69 |
+
map_location=lambda storage, loc: storage)
|
| 70 |
+
netG.load_state_dict(state_dict)
|
| 71 |
+
print('Load from: ', cfg.NET_G)
|
| 72 |
+
if cfg.NET_D != '':
|
| 73 |
+
state_dict = \
|
| 74 |
+
torch.load(cfg.NET_D,
|
| 75 |
+
map_location=lambda storage, loc: storage)
|
| 76 |
+
netD.load_state_dict(state_dict)
|
| 77 |
+
print('Load from: ', cfg.NET_D)
|
| 78 |
+
if cfg.CUDA:
|
| 79 |
+
netG.cuda()
|
| 80 |
+
netD.cuda()
|
| 81 |
+
return netG, netD
|
| 82 |
+
|
| 83 |
+
# ############# For training stageII GAN #############
|
| 84 |
+
def load_network_stageII(self):
|
| 85 |
+
from model import STAGE1_G, STAGE2_G, STAGE2_D
|
| 86 |
+
|
| 87 |
+
Stage1_G = STAGE1_G()
|
| 88 |
+
netG = STAGE2_G(Stage1_G)
|
| 89 |
+
netG.apply(weights_init)
|
| 90 |
+
print(netG)
|
| 91 |
+
if cfg.NET_G != '':
|
| 92 |
+
state_dict = \
|
| 93 |
+
torch.load(cfg.NET_G,
|
| 94 |
+
map_location=lambda storage, loc: storage)
|
| 95 |
+
netG.load_state_dict(state_dict)
|
| 96 |
+
print('Load from: ', cfg.NET_G)
|
| 97 |
+
elif cfg.STAGE1_G != '':
|
| 98 |
+
state_dict = \
|
| 99 |
+
torch.load(cfg.STAGE1_G,
|
| 100 |
+
map_location=lambda storage, loc: storage)
|
| 101 |
+
netG.STAGE1_G.load_state_dict(state_dict)
|
| 102 |
+
print('Load from: ', cfg.STAGE1_G)
|
| 103 |
+
else:
|
| 104 |
+
print("Please give the Stage1_G path")
|
| 105 |
+
return
|
| 106 |
+
|
| 107 |
+
netD = STAGE2_D()
|
| 108 |
+
netD.apply(weights_init)
|
| 109 |
+
if cfg.NET_D != '':
|
| 110 |
+
state_dict = \
|
| 111 |
+
torch.load(cfg.NET_D,
|
| 112 |
+
map_location=lambda storage, loc: storage)
|
| 113 |
+
netD.load_state_dict(state_dict)
|
| 114 |
+
print('Load from: ', cfg.NET_D)
|
| 115 |
+
print(netD)
|
| 116 |
+
|
| 117 |
+
if cfg.CUDA:
|
| 118 |
+
netG.cuda()
|
| 119 |
+
netD.cuda()
|
| 120 |
+
return netG, netD
|
| 121 |
+
|
| 122 |
+
def train(self, data_loader, stage=1):
|
| 123 |
+
if stage == 1:
|
| 124 |
+
netG, netD = self.load_network_stageI()
|
| 125 |
+
else:
|
| 126 |
+
netG, netD = self.load_network_stageII()
|
| 127 |
+
|
| 128 |
+
# nz = cfg.Z_DIM
|
| 129 |
+
batch_size = self.batch_size
|
| 130 |
+
# noise = Variable(torch.FloatTensor(batch_size, nz))
|
| 131 |
+
# fixed_noise = \
|
| 132 |
+
# Variable(torch.FloatTensor(batch_size, nz).normal_(0, 1),
|
| 133 |
+
# volatile=True)
|
| 134 |
+
real_labels = Variable(torch.FloatTensor(batch_size).fill_(1))
|
| 135 |
+
fake_labels = Variable(torch.FloatTensor(batch_size).fill_(0))
|
| 136 |
+
if cfg.CUDA:
|
| 137 |
+
# noise, fixed_noise = noise.cuda(), fixed_noise.cuda()
|
| 138 |
+
real_labels, fake_labels = real_labels.cuda(), fake_labels.cuda()
|
| 139 |
+
|
| 140 |
+
generator_lr = cfg.TRAIN.GENERATOR_LR
|
| 141 |
+
discriminator_lr = cfg.TRAIN.DISCRIMINATOR_LR
|
| 142 |
+
lr_decay_step = cfg.TRAIN.LR_DECAY_EPOCH
|
| 143 |
+
# optimizerD = \
|
| 144 |
+
# optim.Adam(netD.parameters(),
|
| 145 |
+
# lr=cfg.TRAIN.DISCRIMINATOR_LR, betas=(0.5, 0.999))
|
| 146 |
+
optimizerD = \
|
| 147 |
+
optim.RMSprop(netD.parameters(),
|
| 148 |
+
lr=cfg.TRAIN.DISCRIMINATOR_LR)
|
| 149 |
+
netG_para = []
|
| 150 |
+
for p in netG.parameters():
|
| 151 |
+
if p.requires_grad:
|
| 152 |
+
netG_para.append(p)
|
| 153 |
+
# optimizerG = optim.Adam(netG_para,
|
| 154 |
+
# lr=cfg.TRAIN.GENERATOR_LR,
|
| 155 |
+
# betas=(0.5, 0.999))
|
| 156 |
+
optimizerG = optim.RMSprop(netG_para,
|
| 157 |
+
lr=cfg.TRAIN.GENERATOR_LR)
|
| 158 |
+
count = 0
|
| 159 |
+
least_RT=10
|
| 160 |
+
for epoch in range(self.max_epoch):
|
| 161 |
+
start_t = time.time()
|
| 162 |
+
if epoch % lr_decay_step == 0 and epoch > 0:
|
| 163 |
+
generator_lr *= 0.7#0.5
|
| 164 |
+
for param_group in optimizerG.param_groups:
|
| 165 |
+
param_group['lr'] = generator_lr
|
| 166 |
+
discriminator_lr *= 0.7#0.5
|
| 167 |
+
for param_group in optimizerD.param_groups:
|
| 168 |
+
param_group['lr'] = discriminator_lr
|
| 169 |
+
|
| 170 |
+
for i, data in enumerate(data_loader, 0):
|
| 171 |
+
######################################################
|
| 172 |
+
# (1) Prepare training data
|
| 173 |
+
######################################################
|
| 174 |
+
real_RIR_cpu, txt_embedding = data
|
| 175 |
+
real_RIRs = Variable(real_RIR_cpu)
|
| 176 |
+
txt_embedding = Variable(txt_embedding)
|
| 177 |
+
if cfg.CUDA:
|
| 178 |
+
real_RIRs = real_RIRs.cuda()
|
| 179 |
+
txt_embedding = txt_embedding.cuda()
|
| 180 |
+
#print("trianer RIRs ",real_RIRs.size())
|
| 181 |
+
#print("trianer embedding ",txt_embedding.size())
|
| 182 |
+
|
| 183 |
+
#######################################################
|
| 184 |
+
# (2) Generate fake images
|
| 185 |
+
######################################################
|
| 186 |
+
# noise.data.normal_(0, 1)
|
| 187 |
+
# inputs = (txt_embedding, noise)
|
| 188 |
+
inputs = (txt_embedding)
|
| 189 |
+
# _, fake_RIRs, mu, logvar = \
|
| 190 |
+
# nn.parallel.data_parallel(netG, inputs, self.gpus)
|
| 191 |
+
_, fake_RIRs,c_code = nn.parallel.data_parallel(netG, inputs, self.gpus)
|
| 192 |
+
|
| 193 |
+
############################
|
| 194 |
+
# (3) Update D network
|
| 195 |
+
###########################
|
| 196 |
+
netD.zero_grad()
|
| 197 |
+
errD, errD_real, errD_wrong, errD_fake = \
|
| 198 |
+
compute_discriminator_loss(netD, real_RIRs, fake_RIRs,
|
| 199 |
+
real_labels, fake_labels,
|
| 200 |
+
c_code, self.gpus)
|
| 201 |
+
|
| 202 |
+
errD_total = errD*5
|
| 203 |
+
errD_total.backward()
|
| 204 |
+
optimizerD.step()
|
| 205 |
+
############################
|
| 206 |
+
# (2) Update G network
|
| 207 |
+
###########################
|
| 208 |
+
# kl_loss = KL_loss(mu, logvar)
|
| 209 |
+
netG.zero_grad()
|
| 210 |
+
errG,MSE_error,RT_error= compute_generator_loss(epoch,netD,real_RIRs, fake_RIRs,
|
| 211 |
+
real_labels, c_code, self.gpus)
|
| 212 |
+
errG_total = errG *5#+ kl_loss * cfg.TRAIN.COEFF.KL
|
| 213 |
+
errG_total.backward()
|
| 214 |
+
optimizerG.step()
|
| 215 |
+
for p in range(2):
|
| 216 |
+
inputs = (txt_embedding)
|
| 217 |
+
# _, fake_RIRs, mu, logvar = \
|
| 218 |
+
# nn.parallel.data_parallel(netG, inputs, self.gpus)
|
| 219 |
+
_, fake_RIRs,c_code = nn.parallel.data_parallel(netG, inputs, self.gpus)
|
| 220 |
+
netG.zero_grad()
|
| 221 |
+
errG,MSE_error,RT_error = compute_generator_loss(epoch,netD,real_RIRs, fake_RIRs,
|
| 222 |
+
real_labels, c_code, self.gpus)
|
| 223 |
+
# kl_loss = KL_loss(mu, logvar)
|
| 224 |
+
errG_total = errG *5#+ kl_loss * cfg.TRAIN.COEFF.KL
|
| 225 |
+
errG_total.backward()
|
| 226 |
+
optimizerG.step()
|
| 227 |
+
|
| 228 |
+
count = count + 1
|
| 229 |
+
if i % 100 == 0:
|
| 230 |
+
# summary_D = summary.scalar('D_loss', errD.data[0])
|
| 231 |
+
# summary_D_r = summary.scalar('D_loss_real', errD_real)
|
| 232 |
+
# summary_D_w = summary.scalar('D_loss_wrong', errD_wrong)
|
| 233 |
+
# summary_D_f = summary.scalar('D_loss_fake', errD_fake)
|
| 234 |
+
# summary_G = summary.scalar('G_loss', errG.data[0])
|
| 235 |
+
# summary_KL = summary.scalar('KL_loss', kl_loss.data[0])
|
| 236 |
+
# summary_D = summary.scalar('D_loss', errD.data)
|
| 237 |
+
# summary_D_r = summary.scalar('D_loss_real', errD_real)
|
| 238 |
+
# summary_D_w = summary.scalar('D_loss_wrong', errD_wrong)
|
| 239 |
+
# summary_D_f = summary.scalar('D_loss_fake', errD_fake)
|
| 240 |
+
# summary_G = summary.scalar('G_loss', errG.data)
|
| 241 |
+
# summary_KL = summary.scalar('KL_loss', kl_loss.data)
|
| 242 |
+
|
| 243 |
+
# self.summary_writer.add_summary(summary_D, count)
|
| 244 |
+
# self.summary_writer.add_summary(summary_D_r, count)
|
| 245 |
+
# self.summary_writer.add_summary(summary_D_w, count)
|
| 246 |
+
# self.summary_writer.add_summary(summary_D_f, count)
|
| 247 |
+
# self.summary_writer.add_summary(summary_G, count)
|
| 248 |
+
# self.summary_writer.add_summary(summary_KL, count)
|
| 249 |
+
|
| 250 |
+
# save the image result for each epoch
|
| 251 |
+
inputs = (txt_embedding)
|
| 252 |
+
lr_fake, fake, _ = \
|
| 253 |
+
nn.parallel.data_parallel(netG, inputs, self.gpus)
|
| 254 |
+
if(epoch%self.snapshot_interval==0):
|
| 255 |
+
save_RIR_results(real_RIR_cpu, fake, epoch, self.RIR_dir)
|
| 256 |
+
if lr_fake is not None:
|
| 257 |
+
save_RIR_results(None, lr_fake, epoch, self.RIR_dir)
|
| 258 |
+
end_t = time.time()
|
| 259 |
+
# print('''[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f Loss_KL: %.4f
|
| 260 |
+
# Loss_real: %.4f Loss_wrong:%.4f Loss_fake %.4f
|
| 261 |
+
# Total Time: %.2fsec
|
| 262 |
+
# '''
|
| 263 |
+
# % (epoch, self.max_epoch, i, len(data_loader),
|
| 264 |
+
# errD.data[0], errG.data[0], kl_loss.data[0],
|
| 265 |
+
# errD_real, errD_wrong, errD_fake, (end_t - start_t)))
|
| 266 |
+
# print('''[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f Loss_KL: %.4f
|
| 267 |
+
# Loss_real: %.4f Loss_wrong:%.4f Loss_fake %.4f
|
| 268 |
+
# Total Time: %.2fsec
|
| 269 |
+
# '''
|
| 270 |
+
# % (epoch, self.max_epoch, i, len(data_loader),
|
| 271 |
+
# errD.data, errG.data, kl_loss.data,
|
| 272 |
+
# errD_real, errD_wrong, errD_fake, (end_t - start_t)))
|
| 273 |
+
print('''[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f
|
| 274 |
+
Loss_real: %.4f Loss_wrong:%.4f Loss_fake %.4f MSE_ERROR %.4f RT_error %.4f
|
| 275 |
+
Total Time: %.2fsec
|
| 276 |
+
'''
|
| 277 |
+
% (epoch, self.max_epoch, i, len(data_loader),
|
| 278 |
+
errD.data, errG.data,
|
| 279 |
+
errD_real, errD_wrong, errD_fake,MSE_error*4096, RT_error,(end_t - start_t)))
|
| 280 |
+
|
| 281 |
+
store_to_file ="[{}/{}][{}/{}] Loss_D: {:.4f} Loss_G: {:.4f} Loss_real: {:.4f} Loss_wrong:{:.4f} Loss_fake {:.4f} MSE Error:{:.4f} RT_error{:.4f} Total Time: {:.2f}sec".format(epoch, self.max_epoch, i, len(data_loader),
|
| 282 |
+
errD.data, errG.data, errD_real, errD_wrong, errD_fake,MSE_error*4096,RT_error, (end_t - start_t))
|
| 283 |
+
store_to_file =store_to_file+"\n"
|
| 284 |
+
with open("errors.txt", "a") as myfile:
|
| 285 |
+
myfile.write(store_to_file)
|
| 286 |
+
|
| 287 |
+
if (RT_error<least_RT):
|
| 288 |
+
least_RT = RT_error
|
| 289 |
+
save_model(netG, netD, epoch, self.model_dir_RT)
|
| 290 |
+
if epoch % self.snapshot_interval == 0:
|
| 291 |
+
save_model(netG, netD, epoch, self.model_dir)
|
| 292 |
+
#
|
| 293 |
+
save_model(netG, netD, self.max_epoch, self.model_dir)
|
| 294 |
+
#
|
| 295 |
+
# self.summary_writer.close()
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def sample(self,file_path,stage=1):
|
| 299 |
+
if stage == 1:
|
| 300 |
+
netG, _ = self.load_network_stageI()
|
| 301 |
+
else:
|
| 302 |
+
netG, _ = self.load_network_stageII()
|
| 303 |
+
netG.eval()
|
| 304 |
+
|
| 305 |
+
time_list =[]
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
embedding_path = file_path
|
| 311 |
+
with open(embedding_path, 'rb') as f:
|
| 312 |
+
embeddings_pickle = pickle.load(f)
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
embeddings_list =[]
|
| 317 |
+
num_embeddings = len(embeddings_pickle)
|
| 318 |
+
for b in range (num_embeddings):
|
| 319 |
+
embeddings_list.append(embeddings_pickle[b])
|
| 320 |
+
|
| 321 |
+
embeddings = np.array(embeddings_list)
|
| 322 |
+
|
| 323 |
+
save_dir_GAN = "Generated_RIRs"
|
| 324 |
+
mkdir_p(save_dir_GAN)
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
normalize_embedding = []
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
batch_size = np.minimum(num_embeddings, self.batch_size)
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
count = 0
|
| 335 |
+
count_this = 0
|
| 336 |
+
while count < num_embeddings:
|
| 337 |
+
|
| 338 |
+
iend = count + batch_size
|
| 339 |
+
if iend > num_embeddings:
|
| 340 |
+
iend = num_embeddings
|
| 341 |
+
count = num_embeddings - batch_size
|
| 342 |
+
embeddings_batch = embeddings[count:iend]
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
txt_embedding = Variable(torch.FloatTensor(embeddings_batch))
|
| 347 |
+
if cfg.CUDA:
|
| 348 |
+
txt_embedding = txt_embedding.cuda()
|
| 349 |
+
|
| 350 |
+
#######################################################
|
| 351 |
+
# (2) Generate fake images
|
| 352 |
+
######################################################
|
| 353 |
+
start_t = time.time()
|
| 354 |
+
inputs = (txt_embedding)
|
| 355 |
+
_, fake_RIRs,c_code = \
|
| 356 |
+
nn.parallel.data_parallel(netG, inputs, self.gpus)
|
| 357 |
+
end_t = time.time()
|
| 358 |
+
diff_t = end_t - start_t
|
| 359 |
+
time_list.append(diff_t)
|
| 360 |
+
|
| 361 |
+
RIR_batch_size = batch_size #int(batch_size/2)
|
| 362 |
+
print("batch_size ", RIR_batch_size)
|
| 363 |
+
channel_size = 64
|
| 364 |
+
|
| 365 |
+
for i in range(channel_size):
|
| 366 |
+
fs =16000
|
| 367 |
+
wave_name = "RIR-"+str(count+i)+".wav"
|
| 368 |
+
save_name_GAN = '%s/%s' % (save_dir_GAN,wave_name)
|
| 369 |
+
print("wave : ",save_name_GAN)
|
| 370 |
+
res = {}
|
| 371 |
+
res_buffer = []
|
| 372 |
+
rate = 16000
|
| 373 |
+
res['rate'] = rate
|
| 374 |
+
|
| 375 |
+
wave_GAN = fake_RIRs[i].data.cpu().numpy()
|
| 376 |
+
wave_GAN = np.array(wave_GAN[0])
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
res_buffer.append(wave_GAN)
|
| 380 |
+
res['samples'] = np.zeros((len(res_buffer), np.max([len(ps) for ps in res_buffer])))
|
| 381 |
+
for i, c in enumerate(res_buffer):
|
| 382 |
+
res['samples'][i, :len(c)] = c
|
| 383 |
+
|
| 384 |
+
w = WaveWriter(save_name_GAN, channels=np.shape(res['samples'])[0], samplerate=int(res['rate']))
|
| 385 |
+
w.write(np.array(res['samples']))
|
| 386 |
+
|
| 387 |
+
print("counter = ",count)
|
| 388 |
+
count = count+64
|
| 389 |
+
count_this = count_this+1
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
|
download_data.sh
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gdown https://drive.google.com/uc?id=17NF1MVtXaWe9zhqWJqmG5tFUZb_9X0M5
|
| 2 |
+
unzip data.zip
|
| 3 |
+
mkdir output
|
download_generate.sh
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gdown https://drive.google.com/uc?id=1XOyzsZD3s_pkZBlWcH3KtCR9YpjRVbHG
|
| 2 |
+
unzip generate.zip
|
example1.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
import argparse
|
| 5 |
+
import pickle
|
| 6 |
+
|
| 7 |
+
normalize_geometry_embeddings_list =[]
|
| 8 |
+
|
| 9 |
+
for n in range(960):
|
| 10 |
+
|
| 11 |
+
lx = (8/960)*n + 0.5
|
| 12 |
+
geometry_embeddings= [lx,3.5,1.5,8.8,3.5,1.5,9,7,3,0.35]
|
| 13 |
+
max_dimension = 5
|
| 14 |
+
normalize_geometry_embeddings =np.divide(geometry_embeddings,max_dimension)-1
|
| 15 |
+
normalize_geometry_embeddings_list.append(normalize_geometry_embeddings)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
embeddings_pickle ="example1.pickle"
|
| 19 |
+
with open(embeddings_pickle, 'wb') as f:
|
| 20 |
+
pickle.dump(normalize_geometry_embeddings_list, f, protocol=2)
|
slides.pptx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f928a9b1f7bc05d972e51988104bb547e9cce25bb03f7841023807050af65875
|
| 3 |
+
size 4718146
|