sphobert-hsd-span / README.md
AnnyNguyen's picture
Update README.md
0a9c6e2 verified
---
license: apache-2.0
base_model: sphobert
tags:
- vietnamese
- hate-speech
- span-detection
- token-classification
- nlp
datasets:
- visolex/ViHOS
model-index:
- name: sphobert-hsd-span
results:
- task:
type: token-classification
name: Hate Speech Span Detection
dataset:
name: visolex/ViHOS
type: visolex/ViHOS
metrics:
- type: f1
value: 0.5800
- type: precision
value: 0.6934
- type: recall
value: 0.5990
- type: exact_match
value: 0.0995
---
# sphobert-hsd-span: Hate Speech Span Detection (Vietnamese)
This model is a fine-tuned version of [sphobert](https://huggingface.co/sphobert) for Vietnamese **Hate Speech Span Detection**.
## Model Details
- Base Model: `sphobert`
- Description: Vietnamese Hate Speech Span Detection
- Framework: HuggingFace Transformers
- Task: Hate Speech Span Detection (token/char-level spans)
### Hyperparameters
- Max sequence length: `64`
- Learning rate: `5e-6`
- Batch size: `32`
- Epochs: `100`
- Early stopping patience: `5`
## Results
- F1: `0.5800`
- Precision: `0.6934`
- Recall: `0.5990`
- Exact Match: `0.0995`
## Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
import torch
model_name = "visolex/sphobert-hsd-span"
tok = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
text = "Ví dụ câu tiếng Việt có nội dung thù ghét ..."
enc = tok(text, return_tensors="pt", truncation=True, max_length=256, is_split_into_words=False)
with torch.no_grad():
logits = model(**enc).logits
pred_ids = logits.argmax(-1)[0].tolist()
# TODO: chuyển pred_ids -> spans theo scheme nhãn của bạn (BIO/BILOU/char-offset)
```
## License
Apache-2.0
## Acknowledgments
- Base model: [sphobert](https://huggingface.co/sphobert)