nci-scorer-nci-only

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0198

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
No log 0.3145 100 0.0936
No log 0.6289 200 0.0437
No log 0.9434 300 0.0314
No log 1.2579 400 0.0271
0.0683 1.5723 500 0.0268
0.0683 1.8868 600 0.0257
0.0683 2.2013 700 0.0232
0.0683 2.5157 800 0.0228
0.0683 2.8302 900 0.0218
0.0252 3.1447 1000 0.0226
0.0252 3.4591 1100 0.0221
0.0252 3.7736 1200 0.0217
0.0252 4.0881 1300 0.0220
0.0252 4.4025 1400 0.0207
0.0197 4.7170 1500 0.0215
0.0197 5.0314 1600 0.0207
0.0197 5.3459 1700 0.0202
0.0197 5.6604 1800 0.0208
0.0197 5.9748 1900 0.0200
0.0175 6.2893 2000 0.0199
0.0175 6.6038 2100 0.0200
0.0175 6.9182 2200 0.0197
0.0175 7.2327 2300 0.0199
0.0175 7.5472 2400 0.0197
0.0156 7.8616 2500 0.0197
0.0156 8.1761 2600 0.0198
0.0156 8.4906 2700 0.0196
0.0156 8.8050 2800 0.0196
0.0156 9.1195 2900 0.0195
0.0144 9.4340 3000 0.0194
0.0144 9.7484 3100 0.0195

Framework versions

  • Transformers 4.57.3
  • Pytorch 2.9.1+cu128
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
89
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results