File size: 11,184 Bytes
133e847
0947398
 
133e847
0947398
 
 
 
133e847
0947398
 
 
 
133e847
0947398
 
133e847
0947398
 
 
 
 
133e847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0947398
133e847
0947398
 
133e847
 
 
0947398
133e847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0947398
133e847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0947398
133e847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0947398
 
 
 
133e847
 
 
0947398
 
133e847
 
 
 
 
0947398
133e847
 
 
 
 
0947398
133e847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0947398
133e847
 
0947398
133e847
 
 
 
 
 
 
0947398
133e847
0947398
 
133e847
 
 
0947398
133e847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0947398
133e847
0947398
133e847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0947398
133e847
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from __future__ import annotations
import math
import random
import spaces
import gradio as gr
import numpy as np
import torch
from PIL import Image
from diffusers import StableDiffusionXLImg2ImgPipeline, StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL, DPMSolverMultistepScheduler
from huggingface_hub import hf_hub_download, InferenceClient

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0", torch_dtype=torch.float16, vae=vae)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
pipe.to("cuda")

refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
refiner.to("cuda")

pipe_fast = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0_Lightning", torch_dtype=torch.float16, vae=vae, use_safetensors=True)
pipe_fast.to("cuda")

help_text = """
To optimize image results:
- Adjust the **Image CFG weight** if the image isn't changing enough or is changing too much. Lower it to allow bigger changes, or raise it to preserve original details.
- Modify the **Text CFG weight** to influence how closely the edit follows text instructions. Increase it to adhere more to the text, or decrease it for subtler changes.
- Experiment with different **random seeds** and **CFG values** for varied outcomes.
- **Rephrase your instructions** for potentially better results.
- **Increase the number of steps** for enhanced edits.
"""

def set_timesteps_patched(self, num_inference_steps: int, device = None):
    self.num_inference_steps = num_inference_steps
    
    ramp = np.linspace(0, 1, self.num_inference_steps)
    sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
    
    sigmas = (sigmas).to(dtype=torch.float32, device=device)
    self.timesteps = self.precondition_noise(sigmas)
    
    self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
    self._step_index = None
    self._begin_index = None
    self.sigmas = self.sigmas.to("cpu") 

# Image Editor
edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
EDMEulerScheduler.set_timesteps = set_timesteps_patched
pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file( edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16 )
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_edit.to("cuda")

client1 = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
system_instructions1 = "<|system|>\nAct as Image Prompt Generation expert, Your task is to modify prompt by USER to more better prompt for Image Generation in Stable Diffusion XL. \n Modify the user's prompt to generate a high-quality image by incorporating essential keywords and styles according to prompt if none style is mentioned than assume realistic. The optimized prompt may include keywords according to prompt for resolution (4K, HD, 16:9 aspect ratio, , etc.), image quality (cute, masterpiece, high-quality, vivid colors, intricate details, etc.), and desired art styles (realistic, anime, 3D, logo, futuristic, fantasy, etc.). Ensure the prompt is concise, yet comprehensive and choose keywords wisely, to generate an exceptional image that meets the user's expectations. \n Your task is to reply with final optimized prompt only. If you get big prompt make it concise. and Apply all keyword at last of prompt. Reply with optimized prompt only.\n<|user|>\n"

def promptifier(prompt):
    formatted_prompt = f"{system_instructions1}{prompt}\n<|assistant|>\n"
    stream = client1.text_generation(formatted_prompt, max_new_tokens=100)
    return stream

# Generator
@spaces.GPU(duration=60, queue=False)
def king(type ,
        input_image ,
        instruction: str ,
        negative_prompt: str ="",
        enhance_prompt: bool = True,
        steps: int = 25,
        randomize_seed: bool = True,
        seed: int = 2404,
        width: int = 1024,
        height: int = 1024,
        guidance_scale: float = 6,
        fast=True,
        progress=gr.Progress(track_tqdm=True)
    ):
    if type=="Image Editing" :
        input_image = Image.open(input_image).convert('RGB')
        if randomize_seed:
            seed = random.randint(0, 999999)
        generator = torch.manual_seed(seed)
        output_image = pipe_edit(
            instruction, negative_prompt=negative_prompt, image=input_image,
            guidance_scale=guidance_scale, image_guidance_scale=1.5,
            width = input_image.width, height = input_image.height,
            num_inference_steps=steps, generator=generator, output_type="latent",
        ).images
        refine = refiner(
            prompt=f"{instruction}, 4k, hd, high quality, masterpiece",
            negative_prompt = negative_prompt,
            guidance_scale=7.5,
            num_inference_steps=steps,
            image=output_image,
            generator=generator,
        ).images[0]  
        return seed, refine
    else :
        if randomize_seed:
            seed = random.randint(0, 999999)
        generator = torch.Generator().manual_seed(seed)
        if enhance_prompt:
            print(f"BEFORE: {instruction} ")
            instruction = promptifier(instruction)
            print(f"AFTER: {instruction} ")
        guidance_scale2=(guidance_scale/2)
        if fast:
            refine = pipe_fast(prompt = instruction,
            guidance_scale = guidance_scale2, 
            num_inference_steps = int(steps/2.5),
            width = width, height = height,
            generator = generator,
            ).images[0]
        else:            
            image = pipe_fast( prompt = instruction,
            negative_prompt=negative_prompt,
            guidance_scale = guidance_scale, 
            num_inference_steps = steps, 
            width = width, height = height,
            generator = generator, output_type="latent",
            ).images 

            refine = refiner( prompt=instruction,
                    negative_prompt = negative_prompt,
                    guidance_scale = 7.5,
                    num_inference_steps=  steps,
                    image=image, generator=generator,
            ).images[0]        
        return seed, refine

client = InferenceClient()
# Prompt classifier
def response(instruction, input_image=None ):
    if input_image is None:
        output="Image Generation"
    else:
        try:
            text = instruction
            labels = ["Image Editing", "Image Generation"]
            classification = client.zero_shot_classification(text, labels, multi_label=True)
            output = classification[0]
            output = str(output)
            if "Editing" in output:
                output = "Image Editing"
            else:
                output = "Image Generation"
        except:
            if input_image is None:
                output="Image Generation"
            else:
                output="Image Editing"
    return output

css = '''
.gradio-container{max-width: 700px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

examples=[
        [
            "Image Generation",
            None,
            "A luxurious supercar with a unique design. The car should have a pearl white finish, and gold accents. 4k, realistic.",

        ],
        [
            "Image Editing",
            "./supercar.png",
            "make it red",

        ],
        [
            "Image Editing",
            "./red_car.png",
            "add some snow",

        ],
        [
            "Image Generation",
            None,
            "An alien grasping a sign board contain word 'ALIEN' with Neon Glow, neon, futuristic, neonpunk, neon lights",
        ],
        [
            "Image Generation",
            None,
            "Beautiful Eiffel Tower at Night",
        ],
        [
            "Image Generation",
            None,
            "Beautiful Eiffel Tower at Night",
        ],
    ]

with gr.Blocks(css=css) as demo:
    gr.Markdown("# Image Generation , Image Editing \n ### Note: First image generation takes time")
    with gr.Row():
        instruction = gr.Textbox(lines=1, label="Instruction", interactive=True)
        generate_button = gr.Button("Run", scale=0)
    with gr.Row():
        type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True)
        enhance_prompt = gr.Checkbox(label="Enhance prompt", value=False, scale=0)
        fast = gr.Checkbox(label="FAST Generation", value=True, scale=0)
        
    with gr.Row():
        input_image = gr.Image(label="Image", type='filepath', interactive=True)

    with gr.Row():
        guidance_scale = gr.Number(value=6.0, step=0.1, label="Guidance Scale", interactive=True)
        steps = gr.Number(value=25, step=1, label="Steps", interactive=True)

    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=1,
                    value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, ugly, disgusting, blurry, amputation,(face asymmetry, eyes asymmetry, deformed eyes, open mouth)",
                    visible=True)
        with gr.Row():
            width =  gr.Slider( label="Width", minimum=256, maximum=2048, step=64, value=1024)
            height =  gr.Slider( label="Height", minimum=256, maximum=2048, step=64, value=1024)
        with gr.Row():
            randomize_seed = gr.Checkbox(label="Randomize Seed", value = True, interactive=True )
            seed = gr.Number(value=2404, step=1, label="Seed", interactive=True)

    gr.Examples(
        examples=examples,
        inputs=[type,input_image, instruction],
        fn=king,
        outputs=[input_image],
        cache_examples=False,
    )

    # gr.Markdown(help_text)

    instruction.change(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)

    input_image.upload(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
    
    gr.on(triggers=[
            generate_button.click,
            instruction.submit
        ],
            fn=king,
            inputs=[type,
                input_image,
                instruction,
                negative_prompt,
                enhance_prompt,
                steps,
                randomize_seed,
                seed,
                width,
                height,
                guidance_scale,
                fast,
            ],
            outputs=[seed, input_image],
          api_name = "image_gen_pro",
          queue=False
        )

demo.queue(max_size=500).launch()