Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import random
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from diffusers import (
|
| 8 |
+
StableDiffusionXLImg2ImgPipeline,
|
| 9 |
+
StableDiffusionXLPipeline,
|
| 10 |
+
EDMEulerScheduler,
|
| 11 |
+
AutoencoderKL,
|
| 12 |
+
DPMSolverMultistepScheduler
|
| 13 |
+
)
|
| 14 |
+
from huggingface_hub import hf_hub_download, InferenceClient
|
| 15 |
+
|
| 16 |
+
# Load models and pipelines
|
| 17 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 18 |
+
pipe = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0", torch_dtype=torch.float16, vae=vae)
|
| 19 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
| 20 |
+
pipe.to("cuda")
|
| 21 |
+
|
| 22 |
+
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True)
|
| 23 |
+
refiner.to("cuda")
|
| 24 |
+
|
| 25 |
+
pipe_fast = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0_Lightning", torch_dtype=torch.float16, vae=vae, use_safetensors=True)
|
| 26 |
+
pipe_fast.to("cuda")
|
| 27 |
+
|
| 28 |
+
# Inference Client for prompt optimization
|
| 29 |
+
client1 = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 30 |
+
system_instructions = "<|system|>\nOptimize the following prompt for better image generation. Make it concise, high-quality, and descriptive.\n<|user|>\n"
|
| 31 |
+
|
| 32 |
+
# Function to optimize prompts
|
| 33 |
+
def promptifier(prompt):
|
| 34 |
+
return client1.text_generation(f"{system_instructions}{prompt}\n<|assistant|>\n", max_new_tokens=100)
|
| 35 |
+
|
| 36 |
+
# Image generation/editing function
|
| 37 |
+
def king(task, input_image, instruction, negative_prompt="", enhance_prompt=True, steps=25, randomize_seed=True, seed=2404, width=1024, height=1024, guidance_scale=6, fast=True):
|
| 38 |
+
if randomize_seed:
|
| 39 |
+
seed = random.randint(0, 999999)
|
| 40 |
+
generator = torch.manual_seed(seed)
|
| 41 |
+
|
| 42 |
+
if enhance_prompt:
|
| 43 |
+
instruction = promptifier(instruction)
|
| 44 |
+
|
| 45 |
+
if task == "Image Editing" and input_image:
|
| 46 |
+
input_image = Image.open(input_image).convert('RGB')
|
| 47 |
+
output_image = pipe_edit(instruction, negative_prompt=negative_prompt, image=input_image, guidance_scale=guidance_scale, width=width, height=height, num_inference_steps=steps, generator=generator).images
|
| 48 |
+
refined_image = refiner(prompt=f"{instruction}, 4k, hd, high quality", negative_prompt=negative_prompt, guidance_scale=7.5, num_inference_steps=steps, image=output_image, generator=generator).images[0]
|
| 49 |
+
return seed, refined_image
|
| 50 |
+
else:
|
| 51 |
+
if fast:
|
| 52 |
+
output_image = pipe_fast(prompt=instruction, guidance_scale=guidance_scale/2, num_inference_steps=int(steps/2.5), width=width, height=height, generator=generator).images[0]
|
| 53 |
+
else:
|
| 54 |
+
latent_image = pipe_fast(prompt=instruction, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=steps, width=width, height=height, generator=generator, output_type="latent").images
|
| 55 |
+
refined_image = refiner(prompt=instruction, negative_prompt=negative_prompt, guidance_scale=7.5, num_inference_steps=steps, image=latent_image, generator=generator).images[0]
|
| 56 |
+
return seed, refined_image
|
| 57 |
+
|
| 58 |
+
# Define the interface layout
|
| 59 |
+
css = '''
|
| 60 |
+
.gradio-container{max-width: 700px !important}
|
| 61 |
+
h1{text-align:center}
|
| 62 |
+
footer { visibility: hidden }
|
| 63 |
+
'''
|
| 64 |
+
|
| 65 |
+
examples = [
|
| 66 |
+
["Image Generation", None, "A luxurious supercar with a unique design. The car should have a pearl white finish, and gold accents. 4k, realistic."],
|
| 67 |
+
["Image Editing", "./supercar.png", "make it red"],
|
| 68 |
+
["Image Editing", "./red_car.png", "add some snow"],
|
| 69 |
+
["Image Generation", None, "An alien grasping a sign board containing the word 'ALIEN' with Neon Glow, neon, futuristic, neonpunk."],
|
| 70 |
+
]
|
| 71 |
+
|
| 72 |
+
# Define Gradio interface
|
| 73 |
+
with gr.Blocks(css=css) as demo:
|
| 74 |
+
gr.Markdown("# Image Generation & Editing")
|
| 75 |
+
|
| 76 |
+
with gr.Row():
|
| 77 |
+
instruction = gr.Textbox(lines=1, label="Instruction")
|
| 78 |
+
generate_button = gr.Button("Run")
|
| 79 |
+
|
| 80 |
+
with gr.Row():
|
| 81 |
+
task = gr.Dropdown(["Image Generation", "Image Editing"], label="Task", value="Image Generation")
|
| 82 |
+
enhance_prompt = gr.Checkbox(label="Enhance prompt", value=False)
|
| 83 |
+
fast = gr.Checkbox(label="Fast Generation", value=True)
|
| 84 |
+
|
| 85 |
+
with gr.Row():
|
| 86 |
+
input_image = gr.Image(label="Image", type='filepath')
|
| 87 |
+
|
| 88 |
+
with gr.Row():
|
| 89 |
+
guidance_scale = gr.Slider(6.0, 1.0, 15.0, label="Guidance Scale")
|
| 90 |
+
steps = gr.Slider(25, 1, 100, label="Steps")
|
| 91 |
+
|
| 92 |
+
with gr.Accordion("Advanced options", open=False):
|
| 93 |
+
negative_prompt = gr.Text(value="deformed, distorted, blurry", label="Negative prompt")
|
| 94 |
+
width = gr.Slider(1024, 256, 2048, step=64, label="Width")
|
| 95 |
+
height = gr.Slider(1024, 256, 2048, step=64, label="Height")
|
| 96 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 97 |
+
seed = gr.Number(value=2404, label="Seed")
|
| 98 |
+
|
| 99 |
+
gr.Examples(examples=examples, inputs=[task, input_image, instruction], fn=king, outputs=[seed, input_image])
|
| 100 |
+
|
| 101 |
+
generate_button.click(king, [task, input_image, instruction, negative_prompt, enhance_prompt, steps, randomize_seed, seed, width, height, guidance_scale, fast], [seed, input_image])
|
| 102 |
+
|
| 103 |
+
demo.launch()
|