snote / api.py
xuanbao01's picture
Upload folder using huggingface_hub
44c5827 verified
from difflib import SequenceMatcher
from typing import Dict, List
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import logging
import json
import re
from pathlib import Path
from scripts.main import main
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(title="RAG API", version="1.0.0")
import os
current_dir = os.path.dirname(os.path.abspath(__file__))
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.post("/get_response")
async def get_response(query: str, top_k: int = 20, top_n: int = 10):
response, session_id = main(query, top_k=top_k, top_n=top_n)
return {
"response": response,
"session_id": session_id
}
@app.get("/api/session/{session_id}")
async def get_session_data(session_id: str):
import json
import os
import os
current_dir = os.path.dirname(os.path.abspath(__file__))
session_path = os.path.join(current_dir, "scripts", "sessions", f"{session_id}.json")
if not os.path.exists(session_path):
return {"error": "Session not found"}, 404
try:
with open(session_path, "r", encoding="utf-8") as f:
session_data = json.load(f)
return session_data
except Exception as e:
logger.error(f"Error reading session {session_id}: {e}")
return {"error": "Error reading session data"}, 500
@app.get("/api/document/{doc_id}")
async def get_document_content(doc_id: str):
import os
# For now, just return the content of the single markdown file we have
# In a real implementation, you'd map doc_id to the correct file
doc_path = "converted/11. QĐ về Học phí final (25-10-2021).md"
if not os.path.exists(doc_path):
return {"error": "Document not found"}, 404
try:
with open(doc_path, "r", encoding="utf-8") as f:
content = f.read()
return {"content": content, "doc_id": doc_id}
except Exception as e:
logger.error(f"Error reading document {doc_id}: {e}")
return {"error": "Error reading document"}, 500
# Helper functions from client.py
def find_all_positions(content: str, sub: str) -> list[int]:
"""Trả về list tất cả vị trí start của sub trong content"""
positions = []
start = 0
while True:
pos = content.find(sub, start)
if pos == -1:
break
positions.append(pos)
start = pos + 1 # tiếp tục tìm từ sau pos
return positions
def find_best_match(text_to_find, markdown_content, threshold=0.8, best_matches=[]):
"""Tìm đoạn text tương tự nhất trong markdown content"""
best_match = None
best_ratio = 0
# Tìm các đoạn text có chứa phần đầu của text cần tìm
start_markers = text_to_find[:50] # Lấy 50 ký tự đầu
if start_markers[0] == "|":
start_markers = start_markers[:20]
if start_markers in markdown_content:
start_pos_list = find_all_positions(markdown_content, start_markers)
candidates = [markdown_content[start_pos:start_pos + len(text_to_find)] for start_pos in start_pos_list]
ratios = [SequenceMatcher(None, text_to_find, candidate).ratio() for candidate in candidates]
best_ratio = max(ratios)
best_match = candidates[ratios.index(best_ratio)]
if best_matches:
for prev_best_match, _ in best_matches:
# Kiểm tra xem chunk hiện tại có bắt đầu bằng phần cuối của chunk trước không
# Tìm overlap từ 50-200 ký tự
for overlap_size in range(50, 201):
if len(prev_best_match) >= overlap_size and len(text_to_find) >= overlap_size:
prev_end = prev_best_match[-overlap_size:]
curr_start = text_to_find[:overlap_size]
if prev_end == curr_start:
print(f"Found overlap of {overlap_size} characters, slicing {overlap_size} chars from current chunk")
best_match = best_match[overlap_size:]
text_to_find = text_to_find[overlap_size:]
break
return best_match, text_to_find
@app.get("/api/highlighted-document/{doc_id}")
async def get_highlighted_document(doc_id: str, session_id: str):
import os
import json
import re
from pathlib import Path
# Get session data to extract texts
import os
current_dir = os.path.dirname(os.path.abspath(__file__))
session_path = os.path.join(current_dir, "scripts", "sessions", f"{session_id}.json")
if not os.path.exists(session_path):
return {"error": "Session not found"}, 404
try:
with open(session_path, "r", encoding="utf-8") as f:
session_data = json.load(f)
# Get texts for this specific doc_id
texts = [item["text"] for item in session_data if item["doc_id"] == doc_id]
if not texts:
return {"error": "No texts found for this document"}, 404
# Use the new highlighting logic from ui.py
highlighted_content, highlighting_stats = await highlight_doc_with_chunks_new(doc_id, texts)
return {
"content": highlighted_content,
"doc_id": doc_id,
"highlighted_count": highlighting_stats["highlighted_count"],
"total_texts": highlighting_stats["total_texts"],
"success_rate": highlighting_stats["success_rate"]
}
except Exception as e:
logger.error(f"Error processing highlighted document {doc_id}: {e}")
return {"error": "Error processing document"}, 500
def extract_sequence_from_id(chunk_id: str) -> int:
"""Trích xuất sequence number từ chunk ID"""
# Format: doc_id::CH7::A18::K4::P0::C63
match = re.search(r'::C(\d+)$', chunk_id)
if match:
return int(match.group(1))
return 0
def load_document_chunks(doc_id: str) -> list:
"""Load tất cả chunks của một document và sắp xếp theo thứ tự"""
import os
current_dir = os.path.dirname(os.path.abspath(__file__))
chunks_path = Path(current_dir) / "chunks"
manifest_path = chunks_path / "chunks_manifest.json"
if not manifest_path.exists():
return []
with open(manifest_path, "r", encoding="utf-8") as f:
manifest = json.load(f)
# Lọc chunks của document này
doc_chunks = []
for chunk_info in manifest["chunks"]:
if chunk_info["id"].startswith(doc_id):
chunk_file_path = chunk_info["path"]
if os.path.exists(chunk_file_path):
with open(chunk_file_path, "r", encoding="utf-8") as f:
chunk_data = json.load(f)
doc_chunks.append(chunk_data)
# Sắp xếp theo sequence number
doc_chunks.sort(key=lambda x: extract_sequence_from_id(x["id"]))
return doc_chunks
def reconstruct_document(chunks: list) -> str:
"""Tái tạo lại document từ các chunks"""
if not chunks:
return ""
document_parts = []
current_path = []
for chunk in chunks:
content_type = chunk.get("content_type", "text")
chunk_text = chunk.get("chunk_text", "")
path = chunk.get("path", [])
# Thêm headers từ path nếu có thay đổi
if path != current_path:
# Tìm phần tử mới trong path
for i, path_item in enumerate(path):
if i >= len(current_path) or path_item != current_path[i]:
# Thêm header mới
if path_item and path_item not in ["ROOT", "TABLE"]:
# Xác định level dựa trên vị trí trong path
level = i + 1
header_marker = "#" * min(level, 6) # Tối đa 6 dấu #
document_parts.append(f"\n{header_marker} {path_item}\n")
break
current_path = path
if content_type == "table":
# Thêm table với định dạng markdown
document_parts.append(f"\n{chunk_text}\n")
else:
# Thêm text thông thường
if chunk_text.strip():
document_parts.append(chunk_text)
return "\n".join(document_parts)
def find_text_positions_in_reconstructed_doc(text_to_find: str, reconstructed_doc: str) -> list:
"""Tìm tất cả vị trí của text trong document đã tái tạo"""
positions = []
start = 0
while True:
pos = reconstructed_doc.find(text_to_find, start)
if pos == -1:
break
positions.append((pos, pos + len(text_to_find)))
start = pos + 1
return positions
def highlight_text_in_reconstructed_doc(texts_to_highlight: list, reconstructed_doc: str, chunks: list = None) -> str:
"""Highlight text trong document đã tái tạo"""
if not texts_to_highlight:
return reconstructed_doc
# Tạo bản sao để highlight
highlighted_doc = reconstructed_doc
# Sắp xếp texts theo độ dài (dài trước) để tránh highlight overlap
sorted_texts = sorted(texts_to_highlight, key=len, reverse=True)
for i, text in enumerate(sorted_texts):
if not text.strip():
continue
# Tìm vị trí của text trong document đã tái tạo
positions = find_text_positions_in_reconstructed_doc(text, highlighted_doc)
# Nếu không tìm thấy trong document đã tái tạo và có chunks, tìm trong chunk_for_embedding
if not positions and chunks:
for chunk in chunks:
chunk_embedding = chunk.get('chunk_for_embedding', '')
if text in chunk_embedding:
# Thêm text vào document để highlight
highlighted_doc += f"\n\n{text}"
positions = [(len(highlighted_doc) - len(text), len(highlighted_doc))]
break
# Highlight từ cuối lên để không ảnh hưởng đến vị trí của các text khác
for start, end in reversed(positions):
highlighted_text = f'<span class="highlighted-text" data-index="{i}">{text}</span>'
highlighted_doc = highlighted_doc[:start] + highlighted_text + highlighted_doc[end:]
return highlighted_doc
async def highlight_doc_with_chunks_new(doc_id: str, texts: list) -> tuple:
"""Highlight document sử dụng chunks thay vì file markdown gốc"""
# Load tất cả chunks của document
chunks = load_document_chunks(doc_id)
if not chunks:
return f"⚠️ Không tìm thấy chunks cho document {doc_id}", {
"highlighted_count": 0,
"total_texts": len(texts),
"success_rate": 0.0
}
# Tái tạo lại document
reconstructed_doc = reconstruct_document(chunks)
if not reconstructed_doc.strip():
return f"⚠️ Document {doc_id} không có nội dung", {
"highlighted_count": 0,
"total_texts": len(texts),
"success_rate": 0.0
}
# Highlight text
highlighted_doc = highlight_text_in_reconstructed_doc(texts, reconstructed_doc, chunks)
# Thống kê
highlighted_count = 0
for text in texts:
if text.strip() and text in reconstructed_doc:
highlighted_count += 1
total = len([t for t in texts if t.strip()])
success_rate = (highlighted_count / total * 100) if total > 0 else 0.0
return highlighted_doc, {
"highlighted_count": highlighted_count,
"total_texts": total,
"success_rate": success_rate
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000, log_level="info")