File size: 12,107 Bytes
44c5827 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
from difflib import SequenceMatcher
from typing import Dict, List
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import logging
import json
import re
from pathlib import Path
from scripts.main import main
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(title="RAG API", version="1.0.0")
import os
current_dir = os.path.dirname(os.path.abspath(__file__))
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.post("/get_response")
async def get_response(query: str, top_k: int = 20, top_n: int = 10):
response, session_id = main(query, top_k=top_k, top_n=top_n)
return {
"response": response,
"session_id": session_id
}
@app.get("/api/session/{session_id}")
async def get_session_data(session_id: str):
import json
import os
import os
current_dir = os.path.dirname(os.path.abspath(__file__))
session_path = os.path.join(current_dir, "scripts", "sessions", f"{session_id}.json")
if not os.path.exists(session_path):
return {"error": "Session not found"}, 404
try:
with open(session_path, "r", encoding="utf-8") as f:
session_data = json.load(f)
return session_data
except Exception as e:
logger.error(f"Error reading session {session_id}: {e}")
return {"error": "Error reading session data"}, 500
@app.get("/api/document/{doc_id}")
async def get_document_content(doc_id: str):
import os
# For now, just return the content of the single markdown file we have
# In a real implementation, you'd map doc_id to the correct file
doc_path = "converted/11. QĐ về Học phí final (25-10-2021).md"
if not os.path.exists(doc_path):
return {"error": "Document not found"}, 404
try:
with open(doc_path, "r", encoding="utf-8") as f:
content = f.read()
return {"content": content, "doc_id": doc_id}
except Exception as e:
logger.error(f"Error reading document {doc_id}: {e}")
return {"error": "Error reading document"}, 500
# Helper functions from client.py
def find_all_positions(content: str, sub: str) -> list[int]:
"""Trả về list tất cả vị trí start của sub trong content"""
positions = []
start = 0
while True:
pos = content.find(sub, start)
if pos == -1:
break
positions.append(pos)
start = pos + 1 # tiếp tục tìm từ sau pos
return positions
def find_best_match(text_to_find, markdown_content, threshold=0.8, best_matches=[]):
"""Tìm đoạn text tương tự nhất trong markdown content"""
best_match = None
best_ratio = 0
# Tìm các đoạn text có chứa phần đầu của text cần tìm
start_markers = text_to_find[:50] # Lấy 50 ký tự đầu
if start_markers[0] == "|":
start_markers = start_markers[:20]
if start_markers in markdown_content:
start_pos_list = find_all_positions(markdown_content, start_markers)
candidates = [markdown_content[start_pos:start_pos + len(text_to_find)] for start_pos in start_pos_list]
ratios = [SequenceMatcher(None, text_to_find, candidate).ratio() for candidate in candidates]
best_ratio = max(ratios)
best_match = candidates[ratios.index(best_ratio)]
if best_matches:
for prev_best_match, _ in best_matches:
# Kiểm tra xem chunk hiện tại có bắt đầu bằng phần cuối của chunk trước không
# Tìm overlap từ 50-200 ký tự
for overlap_size in range(50, 201):
if len(prev_best_match) >= overlap_size and len(text_to_find) >= overlap_size:
prev_end = prev_best_match[-overlap_size:]
curr_start = text_to_find[:overlap_size]
if prev_end == curr_start:
print(f"Found overlap of {overlap_size} characters, slicing {overlap_size} chars from current chunk")
best_match = best_match[overlap_size:]
text_to_find = text_to_find[overlap_size:]
break
return best_match, text_to_find
@app.get("/api/highlighted-document/{doc_id}")
async def get_highlighted_document(doc_id: str, session_id: str):
import os
import json
import re
from pathlib import Path
# Get session data to extract texts
import os
current_dir = os.path.dirname(os.path.abspath(__file__))
session_path = os.path.join(current_dir, "scripts", "sessions", f"{session_id}.json")
if not os.path.exists(session_path):
return {"error": "Session not found"}, 404
try:
with open(session_path, "r", encoding="utf-8") as f:
session_data = json.load(f)
# Get texts for this specific doc_id
texts = [item["text"] for item in session_data if item["doc_id"] == doc_id]
if not texts:
return {"error": "No texts found for this document"}, 404
# Use the new highlighting logic from ui.py
highlighted_content, highlighting_stats = await highlight_doc_with_chunks_new(doc_id, texts)
return {
"content": highlighted_content,
"doc_id": doc_id,
"highlighted_count": highlighting_stats["highlighted_count"],
"total_texts": highlighting_stats["total_texts"],
"success_rate": highlighting_stats["success_rate"]
}
except Exception as e:
logger.error(f"Error processing highlighted document {doc_id}: {e}")
return {"error": "Error processing document"}, 500
def extract_sequence_from_id(chunk_id: str) -> int:
"""Trích xuất sequence number từ chunk ID"""
# Format: doc_id::CH7::A18::K4::P0::C63
match = re.search(r'::C(\d+)$', chunk_id)
if match:
return int(match.group(1))
return 0
def load_document_chunks(doc_id: str) -> list:
"""Load tất cả chunks của một document và sắp xếp theo thứ tự"""
import os
current_dir = os.path.dirname(os.path.abspath(__file__))
chunks_path = Path(current_dir) / "chunks"
manifest_path = chunks_path / "chunks_manifest.json"
if not manifest_path.exists():
return []
with open(manifest_path, "r", encoding="utf-8") as f:
manifest = json.load(f)
# Lọc chunks của document này
doc_chunks = []
for chunk_info in manifest["chunks"]:
if chunk_info["id"].startswith(doc_id):
chunk_file_path = chunk_info["path"]
if os.path.exists(chunk_file_path):
with open(chunk_file_path, "r", encoding="utf-8") as f:
chunk_data = json.load(f)
doc_chunks.append(chunk_data)
# Sắp xếp theo sequence number
doc_chunks.sort(key=lambda x: extract_sequence_from_id(x["id"]))
return doc_chunks
def reconstruct_document(chunks: list) -> str:
"""Tái tạo lại document từ các chunks"""
if not chunks:
return ""
document_parts = []
current_path = []
for chunk in chunks:
content_type = chunk.get("content_type", "text")
chunk_text = chunk.get("chunk_text", "")
path = chunk.get("path", [])
# Thêm headers từ path nếu có thay đổi
if path != current_path:
# Tìm phần tử mới trong path
for i, path_item in enumerate(path):
if i >= len(current_path) or path_item != current_path[i]:
# Thêm header mới
if path_item and path_item not in ["ROOT", "TABLE"]:
# Xác định level dựa trên vị trí trong path
level = i + 1
header_marker = "#" * min(level, 6) # Tối đa 6 dấu #
document_parts.append(f"\n{header_marker} {path_item}\n")
break
current_path = path
if content_type == "table":
# Thêm table với định dạng markdown
document_parts.append(f"\n{chunk_text}\n")
else:
# Thêm text thông thường
if chunk_text.strip():
document_parts.append(chunk_text)
return "\n".join(document_parts)
def find_text_positions_in_reconstructed_doc(text_to_find: str, reconstructed_doc: str) -> list:
"""Tìm tất cả vị trí của text trong document đã tái tạo"""
positions = []
start = 0
while True:
pos = reconstructed_doc.find(text_to_find, start)
if pos == -1:
break
positions.append((pos, pos + len(text_to_find)))
start = pos + 1
return positions
def highlight_text_in_reconstructed_doc(texts_to_highlight: list, reconstructed_doc: str, chunks: list = None) -> str:
"""Highlight text trong document đã tái tạo"""
if not texts_to_highlight:
return reconstructed_doc
# Tạo bản sao để highlight
highlighted_doc = reconstructed_doc
# Sắp xếp texts theo độ dài (dài trước) để tránh highlight overlap
sorted_texts = sorted(texts_to_highlight, key=len, reverse=True)
for i, text in enumerate(sorted_texts):
if not text.strip():
continue
# Tìm vị trí của text trong document đã tái tạo
positions = find_text_positions_in_reconstructed_doc(text, highlighted_doc)
# Nếu không tìm thấy trong document đã tái tạo và có chunks, tìm trong chunk_for_embedding
if not positions and chunks:
for chunk in chunks:
chunk_embedding = chunk.get('chunk_for_embedding', '')
if text in chunk_embedding:
# Thêm text vào document để highlight
highlighted_doc += f"\n\n{text}"
positions = [(len(highlighted_doc) - len(text), len(highlighted_doc))]
break
# Highlight từ cuối lên để không ảnh hưởng đến vị trí của các text khác
for start, end in reversed(positions):
highlighted_text = f'<span class="highlighted-text" data-index="{i}">{text}</span>'
highlighted_doc = highlighted_doc[:start] + highlighted_text + highlighted_doc[end:]
return highlighted_doc
async def highlight_doc_with_chunks_new(doc_id: str, texts: list) -> tuple:
"""Highlight document sử dụng chunks thay vì file markdown gốc"""
# Load tất cả chunks của document
chunks = load_document_chunks(doc_id)
if not chunks:
return f"⚠️ Không tìm thấy chunks cho document {doc_id}", {
"highlighted_count": 0,
"total_texts": len(texts),
"success_rate": 0.0
}
# Tái tạo lại document
reconstructed_doc = reconstruct_document(chunks)
if not reconstructed_doc.strip():
return f"⚠️ Document {doc_id} không có nội dung", {
"highlighted_count": 0,
"total_texts": len(texts),
"success_rate": 0.0
}
# Highlight text
highlighted_doc = highlight_text_in_reconstructed_doc(texts, reconstructed_doc, chunks)
# Thống kê
highlighted_count = 0
for text in texts:
if text.strip() and text in reconstructed_doc:
highlighted_count += 1
total = len([t for t in texts if t.strip()])
success_rate = (highlighted_count / total * 100) if total > 0 else 0.0
return highlighted_doc, {
"highlighted_count": highlighted_count,
"total_texts": total,
"success_rate": success_rate
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000, log_level="info") |