Spaces:
Runtime error
Runtime error
File size: 28,938 Bytes
fe5ba63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 |
"""
BLIND ASSISTANCE MODEL - HUGGING FACE SPACES DEPLOYMENT
Enhanced Video Navigation System with Audio Guidance
"""
import gradio as gr
import cv2
import numpy as np
from ultralytics import YOLO
from gtts import gTTS
import pygame
import os
import time
from collections import deque
from PIL import Image, ImageEnhance
import torch
import threading
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeAudioClip
import tempfile
import json
# Optional imports
try:
import easyocr
EASYOCR_AVAILABLE = True
except ImportError:
EASYOCR_AVAILABLE = False
print("β οΈ EasyOCR not available")
try:
import segmentation_models_pytorch as smp
SMP_AVAILABLE = True
except ImportError:
SMP_AVAILABLE = False
print("β οΈ segmentation_models_pytorch not available")
class AudioNavigationSystem:
def __init__(self):
print("π Initializing Blind Assistance Model...")
# Load YOLOv8 model
print("Loading YOLOv8 model...")
self.model = YOLO('yolov8n.pt')
print("β
Model loaded successfully!")
# Initialize Semantic Segmentation Model
print("Loading Semantic Segmentation Model...")
self.segmentation_model = self.load_segmentation_model()
print("β
Segmentation model loaded!")
# Define segmentation classes
self.segmentation_classes = {
0: 'road', 1: 'sidewalk', 2: 'building', 3: 'wall', 4: 'fence',
5: 'pole', 6: 'traffic light', 7: 'traffic sign', 8: 'vegetation',
9: 'terrain', 10: 'sky', 11: 'person', 12: 'rider', 13: 'car',
14: 'truck', 15: 'bus', 16: 'train', 17: 'motorcycle', 18: 'bicycle',
19: 'void'
}
# Initialize Text Detection
print("Loading Text Detection...")
self.reader = self.load_text_detector()
print("β
Text detection initialized!")
# Audio system
self.use_audio = True
self.audio_files = []
self.audio_timestamps = []
self.video_start_time = None
self.speaking = False
self.audio_lock = threading.Lock()
# Navigation classes
self.navigation_classes = {
'person': 'person', 'car': 'vehicle', 'truck': 'vehicle', 'bus': 'vehicle',
'motorcycle': 'vehicle', 'bicycle': 'bicycle', 'traffic light': 'traffic light',
'stop sign': 'stop sign', 'chair': 'chair', 'bench': 'bench'
}
# Priority levels
self.object_priority = {
'important_text': 10,
'vehicle': 5,
'person': 4,
'bicycle': 4,
'traffic light': 3,
'stop sign': 3,
'stairs': 4,
'curb': 4,
'crosswalk': 3,
'text': 2,
'road': 1,
'sidewalk': 1,
'building': 1,
'vegetation': 1
}
# Important keywords for text
self.important_keywords = [
'exit', 'entrance', 'warning', 'danger', 'caution', 'stop',
'stairs', 'elevator', 'escalator', 'crosswalk', 'curb',
'emergency', 'hospital', 'police', 'fire', 'help',
'men', 'women', 'toilet', 'restroom', 'washroom',
'up', 'down', 'left', 'right', 'north', 'south', 'east', 'west',
'hazard', 'attention'
]
# Frame dimensions
self.frame_width = 0
self.frame_height = 0
# Announcement cooldown
self.last_announcement = time.time()
self.announcement_cooldown = 3
# Store detected items
self.detected_items = set()
self.text_size_reference = 100
self.last_segmentation_analysis = ""
self.segmentation_cooldown = 2
print("β
System initialized successfully!")
def load_text_detector(self):
"""Load text detection model"""
if EASYOCR_AVAILABLE:
try:
return easyocr.Reader(['en'])
except Exception as e:
print(f"β οΈ EasyOCR initialization failed: {e}")
return None
def load_segmentation_model(self):
"""Load segmentation model"""
if not SMP_AVAILABLE:
return None
try:
model = smp.Unet(
encoder_name="mobilenet_v2",
encoder_weights="voc",
classes=20,
activation=None,
)
return model
except Exception as e:
print(f"β οΈ Could not load segmentation model: {e}")
return None
def perform_semantic_segmentation(self, frame):
"""Perform semantic segmentation"""
try:
h, w = frame.shape[:2]
seg_map = np.zeros((h, w), dtype=np.uint8)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# Road detection
dark_mask = cv2.inRange(hsv, (0, 0, 0), (180, 255, 100))
seg_map[h//2:, :][dark_mask[h//2:, :] > 0] = 0
# Sky detection
sky_mask = cv2.inRange(hsv, (100, 50, 150), (140, 255, 255))
seg_map[:h//3, :][sky_mask[:h//3, :] > 0] = 10
return seg_map
except Exception as e:
return np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
def analyze_segmentation_map(self, seg_map):
"""Analyze segmentation map"""
h, w = seg_map.shape
analysis = {
'immediate_walkable': 0,
'immediate_obstacles': 0,
'critical_warnings': [],
'guidance': [],
'environment': 'unknown'
}
immediate_path = seg_map[int(h*0.7):, :]
road_pixels = np.sum(immediate_path == 0)
total_pixels = immediate_path.size
if total_pixels > 0:
road_percentage = (road_pixels / total_pixels) * 100
if road_percentage > 60:
analysis['guidance'].append("Clear path ahead")
analysis['environment'] = 'road'
elif road_percentage > 30:
analysis['guidance'].append("Moderate path clarity")
analysis['environment'] = 'mixed'
else:
analysis['guidance'].append("Obstructed path ahead")
analysis['environment'] = 'obstructed'
return analysis
def generate_segmentation_guidance(self, seg_analysis):
"""Generate guidance from segmentation"""
if not seg_analysis['guidance']:
return None
guidance = ". ".join(seg_analysis['guidance'])
if seg_analysis['environment'] == 'road':
guidance += ". You appear to be on a road."
elif seg_analysis['environment'] == 'obstructed':
guidance += ". Path may be obstructed."
return guidance
def preprocess_image_for_text(self, image):
"""Preprocess image for text detection"""
pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
enhancer = ImageEnhance.Contrast(pil_image)
pil_image = enhancer.enhance(2.0)
enhancer = ImageEnhance.Sharpness(pil_image)
pil_image = enhancer.enhance(2.0)
return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
def detect_text_easyocr(self, frame):
"""Detect text using EasyOCR"""
if self.reader is None:
return []
try:
processed_frame = self.preprocess_image_for_text(frame)
gray = cv2.cvtColor(processed_frame, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)
kernel = np.ones((2, 2), np.uint8)
morphed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
processed_for_ocr = cv2.cvtColor(morphed, cv2.COLOR_GRAY2BGR)
results = self.reader.readtext(processed_for_ocr,
decoder='beamsearch',
beamWidth=5,
batch_size=1,
height_ths=0.5,
width_ths=0.5,
min_size=20,
text_threshold=0.3,
link_threshold=0.3)
detected_texts = []
for (bbox, text, confidence) in results:
if confidence > 0.4 and len(text.strip()) > 1:
clean_text = text.strip().lower()
if len(bbox) >= 4:
y_coords = [point[1] for point in bbox]
text_height = max(y_coords) - min(y_coords)
distance = self.calculate_text_distance(text_height)
distance_category = self.get_distance_category(distance)
is_important = any(keyword in clean_text for keyword in self.important_keywords)
detected_texts.append({
'type': 'text',
'text': clean_text,
'confidence': confidence,
'bbox': bbox,
'position': self.get_text_position(bbox),
'distance': distance,
'distance_category': distance_category,
'is_important': is_important,
'priority': 10 if is_important else 2
})
return detected_texts
except Exception as e:
print(f"Text detection error: {e}")
return []
def get_text_position(self, bbox):
"""Determine text position"""
if isinstance(bbox, list) and len(bbox) == 4:
x_coords = [point[0] for point in bbox]
x_center = sum(x_coords) / len(x_coords)
third = self.frame_width / 3
if x_center < third:
return "left"
elif x_center < 2 * third:
return "center"
else:
return "right"
return "center"
def calculate_text_distance(self, bbox_height):
"""Estimate text distance"""
if bbox_height <= 0:
return 10.0
distance = (self.text_size_reference * 2.0) / bbox_height
return max(0.5, min(distance, 15.0))
def get_distance_category(self, distance):
"""Convert distance to category"""
if distance < 2:
return "very close"
elif distance < 4:
return "close"
elif distance < 7:
return "moderate distance"
elif distance < 10:
return "far"
else:
return "very far"
def calculate_object_distance(self, bbox_height, object_type="person"):
"""Estimate object distance"""
reference_sizes = {
'person': 1.7, 'vehicle': 1.5, 'bicycle': 1.0,
'animal': 0.5, 'chair': 1.0, 'bench': 1.0,
'pole': 2.0, 'default': 1.0
}
real_height = reference_sizes.get(object_type, reference_sizes['default'])
focal_length = 500
if bbox_height > 0:
distance = (focal_length * real_height) / bbox_height
return max(0.5, min(distance, 20))
return 20
def get_object_position(self, bbox):
"""Determine object position"""
x_center = (bbox[0] + bbox[2]) / 2
third = self.frame_width / 3
if x_center < third:
return "left"
elif x_center < 2 * third:
return "center"
else:
return "right"
def get_comprehensive_priority(self, item):
"""Calculate comprehensive priority"""
base_priority = self.object_priority.get(item.get('label', 'object'), 1)
distance = item.get('distance', 10)
distance_factor = max(0, 10 - distance) / 2
position = item.get('position', 'right')
position_factor = 2 if position == 'center' else 1
if item.get('type') == 'text':
if item.get('is_important', False):
return 10 + distance_factor
else:
return 5 + distance_factor
return base_priority * position_factor + distance_factor
def generate_comprehensive_announcement(self, all_detections):
"""Generate balanced announcements"""
if not all_detections:
return "Path clear"
messages = []
all_detections.sort(key=self.get_comprehensive_priority, reverse=True)
announced_count = 0
max_announcements = 4
for item in all_detections:
if announced_count >= max_announcements:
break
item_type = item.get('type', 'object')
if item_type == 'text':
text = item['text']
position = item['position']
distance_category = item['distance_category']
if item['is_important']:
messages.append(f"IMPORTANT: {text} {distance_category} on your {position}")
else:
messages.append(f"Sign: {text} {distance_category} on your {position}")
announced_count += 1
else:
if announced_count < max_announcements:
label = item['label']
position = item['position']
distance_category = item['distance_category']
if position == "center" and item['distance'] < 3:
messages.append(f"Warning! {label} directly ahead, {distance_category}")
else:
messages.append(f"{label} on your {position}, {distance_category}")
announced_count += 1
center_objects = [item for item in all_detections
if item.get('position') == 'center' and item.get('distance', 10) < 3]
if center_objects and len(messages) < 5:
left_count = sum(1 for item in all_detections[:6] if item.get('position') == 'left')
right_count = sum(1 for item in all_detections[:6] if item.get('position') == 'right')
if left_count < right_count:
messages.append("Consider moving left")
elif right_count < left_count:
messages.append("Consider moving right")
return ". ".join(messages)
def speak_gtts(self, text, timestamp=None):
"""Text-to-speech using gTTS"""
if not text or self.speaking:
return
with self.audio_lock:
self.speaking = True
try:
if timestamp is None:
if self.video_start_time:
timestamp = time.time() - self.video_start_time
else:
timestamp = 0
minutes = int(timestamp // 60)
seconds = int(timestamp % 60)
timestamp_str = f"{minutes:02d}:{seconds:02d}"
print(f"π [{timestamp_str}] GUIDANCE: {text}")
tts = gTTS(text=text, lang='en', slow=False)
audio_filename = f"audio_{timestamp_str.replace(':', '-')}_{int(time.time() * 1000)}.mp3"
tts.save(audio_filename)
self.audio_files.append(audio_filename)
self.audio_timestamps.append({
'filename': audio_filename,
'timestamp': timestamp,
'timestamp_str': timestamp_str,
'text': text
})
except Exception as e:
print(f"β οΈ Speech generation error: {e}")
finally:
self.speaking = False
time.sleep(0.5)
def process_frame(self, frame):
"""Process video frame"""
self.frame_height, self.frame_width = frame.shape[:2]
seg_map = self.perform_semantic_segmentation(frame)
seg_analysis = self.analyze_segmentation_map(seg_map)
results = self.model(frame, conf=0.4, verbose=False)
all_detections = []
objects_info = []
text_info = []
# Process YOLO detections
for result in results:
boxes = result.boxes
for box in boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
conf = float(box.conf[0])
cls = int(box.cls[0])
label = self.model.names[cls]
if label.lower() in self.navigation_classes:
nav_label = self.navigation_classes[label.lower()]
bbox_height = y2 - y1
distance = self.calculate_object_distance(bbox_height, nav_label)
distance_category = self.get_distance_category(distance)
position = self.get_object_position([x1, y1, x2, y2])
object_info = {
'type': 'object',
'label': nav_label,
'distance': distance,
'distance_category': distance_category,
'position': position,
'bbox': [x1, y1, x2, y2],
'confidence': conf,
'priority': self.object_priority.get(nav_label, 1)
}
objects_info.append(object_info)
all_detections.append(object_info)
# Draw bounding box
if nav_label == 'vehicle':
color = (0, 0, 255)
elif nav_label == 'person':
color = (0, 255, 255)
elif nav_label == 'bicycle':
color = (255, 0, 0)
else:
color = (0, 255, 0)
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
label_text = f"{nav_label.upper()} {distance_category}"
(tw, th), _ = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
cv2.rectangle(frame, (x1, y1-th-10), (x1+tw+10, y1), color, -1)
cv2.putText(frame, label_text, (x1+5, y1-5),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
# Detect text
current_time = time.time()
if (current_time - self.last_announcement) > 1.5:
text_info = self.detect_text_easyocr(frame)
new_texts = []
for text_data in text_info:
text_hash = hash(text_data['text'][:20])
if text_hash not in self.detected_items:
new_texts.append(text_data)
self.detected_items.add(text_hash)
text_info = new_texts
all_detections.extend(text_info)
# Draw text bounding boxes
for text_data in text_info:
bbox = text_data['bbox']
text = text_data['text']
is_important = text_data['is_important']
color = (255, 0, 255) if is_important else (255, 255, 0)
thickness = 3 if is_important else 2
pts = np.array(bbox, np.int32)
pts = pts.reshape((-1, 1, 2))
cv2.polylines(frame, [pts], True, color, thickness)
label_text = f"π© {text}" if is_important else f"TEXT: {text}"
x_coords = [point[0] for point in bbox]
y_coords = [point[1] for point in bbox]
text_x = int(min(x_coords))
text_y = int(min(y_coords)) - 10
if text_y < 20:
text_y = int(max(y_coords)) + 25
(tw, th), _ = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
cv2.rectangle(frame, (text_x, text_y-th-5), (text_x+tw+10, text_y+5), color, -1)
cv2.putText(frame, label_text, (text_x+5, text_y),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
# Generate navigation message
message = None
if (current_time - self.last_announcement) > self.announcement_cooldown:
seg_guidance = self.generate_segmentation_guidance(seg_analysis)
object_message = self.generate_comprehensive_announcement(all_detections)
if seg_guidance and "obstructed" in seg_guidance.lower():
message = f"{seg_guidance}. {object_message}"
elif seg_guidance and object_message == "Path clear":
message = seg_guidance
else:
message = object_message
if message and message != "Path clear":
threading.Thread(target=self.speak_gtts, args=(message,)).start()
self.last_announcement = current_time
# Status overlay
overlay = frame.copy()
cv2.rectangle(overlay, (5, 5), (500, 35), (0, 0, 0), -1)
cv2.addWeighted(overlay, 0.6, frame, 0.4, 0, frame)
status_text = f"Objects: {len(objects_info)} | Texts: {len(text_info)}"
cv2.putText(frame, status_text, (15, 28),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
# Draw center danger zone
center_objects = [obj for obj in objects_info if obj['position'] == 'center' and obj['distance'] < 3]
if center_objects:
cv2.rectangle(frame, (self.frame_width//3, self.frame_height-100),
(2*self.frame_width//3, self.frame_height-10), (0, 0, 255), 3)
cv2.putText(frame, "OBSTACLE IN PATH", (self.frame_width//3 + 20, self.frame_height-50),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
return frame, message, len(objects_info), len(text_info)
def process_video(self, video_path, output_path='output_navigation.mp4'):
"""Process uploaded video"""
cap = cv2.VideoCapture(video_path)
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
print(f"Processing video: {total_frames} frames at {fps} FPS")
self.audio_timestamps = []
self.audio_files = []
self.detected_items = set()
self.video_start_time = time.time()
frame_count = 0
try:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
processed_frame, message, obj_count, text_count = self.process_frame(frame)
out.write(processed_frame)
frame_count += 1
if frame_count % 30 == 0:
progress = (frame_count / total_frames) * 100
print(f"Progress: {progress:.1f}%")
finally:
cap.release()
out.release()
print(f"β
Video processing complete!")
if self.audio_timestamps:
final_output = 'final_with_audio.mp4'
return self.merge_audio_into_video(output_path, final_output)
else:
return output_path
def merge_audio_into_video(self, video_path, output_path='final_with_audio.mp4'):
"""Merge audio into video"""
print("π΅ Merging audio into video...")
if not self.audio_timestamps:
return video_path
try:
video = VideoFileClip(video_path)
video_duration = video.duration
audio_clips = []
for audio_info in self.audio_timestamps:
if os.path.exists(audio_info['filename']):
try:
audio_clip = AudioFileClip(audio_info['filename'])
audio_clip = audio_clip.set_start(audio_info['timestamp'])
audio_clips.append(audio_clip)
except Exception as e:
print(f"β οΈ Failed to load {audio_info['filename']}: {e}")
if not audio_clips:
return video_path
final_audio = CompositeAudioClip(audio_clips)
final_audio = final_audio.set_duration(video_duration)
final_video = video.set_audio(final_audio)
final_video.write_videofile(
output_path,
codec='libx264',
audio_codec='aac',
fps=video.fps,
verbose=False,
logger=None
)
video.close()
final_video.close()
final_audio.close()
for clip in audio_clips:
clip.close()
print(f"β
Video with audio saved!")
return output_path
except Exception as e:
print(f"β Error merging audio: {e}")
return video_path
# Initialize the system
nav_system = AudioNavigationSystem()
def process_video_gradio(video_file):
"""Gradio interface function"""
try:
if video_file is None:
return None, "Please upload a video file"
# Create temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_input:
tmp_input.write(video_file)
input_path = tmp_input.name
# Check video duration
cap = cv2.VideoCapture(input_path)
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = cap.get(cv2.CAP_PROP_FRAME_COUNT)
duration = frame_count / fps if fps > 0 else 0
cap.release()
if duration > 15:
return None, f"β οΈ Video is {duration:.1f} seconds long. Please upload a video shorter than 15 seconds."
# Process video
output_path = nav_system.process_video(input_path)
# Generate transcript
transcript_text = "Audio Guidance Transcript:\n\n"
for item in nav_system.audio_timestamps:
transcript_text += f"[{item['timestamp_str']}] {item['text']}\n\n"
return output_path, transcript_text
except Exception as e:
return None, f"Error processing video: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="Blind Assistance AI", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π¦― Blind Assistance AI - Video Navigation System
Upload a video to receive audio navigation guidance with object detection, text recognition, and scene analysis.
β οΈ **Important:** Please upload videos **shorter than 15 seconds** for optimal processing.
""")
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Upload Video (Max 15 seconds)")
process_btn = gr.Button("Process Video", variant="primary", size="lg")
with gr.Column():
video_output = gr.Video(label="Processed Video with Audio Guidance")
transcript_output = gr.Textbox(label="Audio Transcript", lines=10)
gr.Markdown("""
### Features:
- π― **Object Detection**: Identifies people, vehicles, and obstacles
- π **Text Detection & OCR**: Reads signs, labels, and important text
- πΊοΈ **Scene Analysis**: Understands environment and context
- π **Voice Guidance**: Real-time audio navigation instructions
""")
process_btn.click(
fn=process_video_gradio,
inputs=[video_input],
outputs=[video_output, transcript_output]
)
# Launch the app
if __name__ == "__main__":
demo.launch() |