Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,753 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
BLIND ASSISTANCE MODEL - HUGGING FACE SPACES DEPLOYMENT
|
| 3 |
+
Enhanced Video Navigation System with Audio Guidance
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import cv2
|
| 8 |
+
import numpy as np
|
| 9 |
+
from ultralytics import YOLO
|
| 10 |
+
from gtts import gTTS
|
| 11 |
+
import pygame
|
| 12 |
+
import os
|
| 13 |
+
import time
|
| 14 |
+
from collections import deque
|
| 15 |
+
from PIL import Image, ImageEnhance
|
| 16 |
+
import torch
|
| 17 |
+
import threading
|
| 18 |
+
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeAudioClip
|
| 19 |
+
import tempfile
|
| 20 |
+
import json
|
| 21 |
+
|
| 22 |
+
# Optional imports
|
| 23 |
+
try:
|
| 24 |
+
import easyocr
|
| 25 |
+
EASYOCR_AVAILABLE = True
|
| 26 |
+
except ImportError:
|
| 27 |
+
EASYOCR_AVAILABLE = False
|
| 28 |
+
print("β οΈ EasyOCR not available")
|
| 29 |
+
|
| 30 |
+
try:
|
| 31 |
+
import segmentation_models_pytorch as smp
|
| 32 |
+
SMP_AVAILABLE = True
|
| 33 |
+
except ImportError:
|
| 34 |
+
SMP_AVAILABLE = False
|
| 35 |
+
print("β οΈ segmentation_models_pytorch not available")
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class AudioNavigationSystem:
|
| 39 |
+
def __init__(self):
|
| 40 |
+
print("π Initializing Blind Assistance Model...")
|
| 41 |
+
|
| 42 |
+
# Load YOLOv8 model
|
| 43 |
+
print("Loading YOLOv8 model...")
|
| 44 |
+
self.model = YOLO('yolov8n.pt')
|
| 45 |
+
print("β
Model loaded successfully!")
|
| 46 |
+
|
| 47 |
+
# Initialize Semantic Segmentation Model
|
| 48 |
+
print("Loading Semantic Segmentation Model...")
|
| 49 |
+
self.segmentation_model = self.load_segmentation_model()
|
| 50 |
+
print("β
Segmentation model loaded!")
|
| 51 |
+
|
| 52 |
+
# Define segmentation classes
|
| 53 |
+
self.segmentation_classes = {
|
| 54 |
+
0: 'road', 1: 'sidewalk', 2: 'building', 3: 'wall', 4: 'fence',
|
| 55 |
+
5: 'pole', 6: 'traffic light', 7: 'traffic sign', 8: 'vegetation',
|
| 56 |
+
9: 'terrain', 10: 'sky', 11: 'person', 12: 'rider', 13: 'car',
|
| 57 |
+
14: 'truck', 15: 'bus', 16: 'train', 17: 'motorcycle', 18: 'bicycle',
|
| 58 |
+
19: 'void'
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
# Initialize Text Detection
|
| 62 |
+
print("Loading Text Detection...")
|
| 63 |
+
self.reader = self.load_text_detector()
|
| 64 |
+
print("β
Text detection initialized!")
|
| 65 |
+
|
| 66 |
+
# Audio system
|
| 67 |
+
self.use_audio = True
|
| 68 |
+
self.audio_files = []
|
| 69 |
+
self.audio_timestamps = []
|
| 70 |
+
self.video_start_time = None
|
| 71 |
+
self.speaking = False
|
| 72 |
+
self.audio_lock = threading.Lock()
|
| 73 |
+
|
| 74 |
+
# Navigation classes
|
| 75 |
+
self.navigation_classes = {
|
| 76 |
+
'person': 'person', 'car': 'vehicle', 'truck': 'vehicle', 'bus': 'vehicle',
|
| 77 |
+
'motorcycle': 'vehicle', 'bicycle': 'bicycle', 'traffic light': 'traffic light',
|
| 78 |
+
'stop sign': 'stop sign', 'chair': 'chair', 'bench': 'bench'
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
# Priority levels
|
| 82 |
+
self.object_priority = {
|
| 83 |
+
'important_text': 10,
|
| 84 |
+
'vehicle': 5,
|
| 85 |
+
'person': 4,
|
| 86 |
+
'bicycle': 4,
|
| 87 |
+
'traffic light': 3,
|
| 88 |
+
'stop sign': 3,
|
| 89 |
+
'stairs': 4,
|
| 90 |
+
'curb': 4,
|
| 91 |
+
'crosswalk': 3,
|
| 92 |
+
'text': 2,
|
| 93 |
+
'road': 1,
|
| 94 |
+
'sidewalk': 1,
|
| 95 |
+
'building': 1,
|
| 96 |
+
'vegetation': 1
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
# Important keywords for text
|
| 100 |
+
self.important_keywords = [
|
| 101 |
+
'exit', 'entrance', 'warning', 'danger', 'caution', 'stop',
|
| 102 |
+
'stairs', 'elevator', 'escalator', 'crosswalk', 'curb',
|
| 103 |
+
'emergency', 'hospital', 'police', 'fire', 'help',
|
| 104 |
+
'men', 'women', 'toilet', 'restroom', 'washroom',
|
| 105 |
+
'up', 'down', 'left', 'right', 'north', 'south', 'east', 'west',
|
| 106 |
+
'hazard', 'attention'
|
| 107 |
+
]
|
| 108 |
+
|
| 109 |
+
# Frame dimensions
|
| 110 |
+
self.frame_width = 0
|
| 111 |
+
self.frame_height = 0
|
| 112 |
+
|
| 113 |
+
# Announcement cooldown
|
| 114 |
+
self.last_announcement = time.time()
|
| 115 |
+
self.announcement_cooldown = 3
|
| 116 |
+
|
| 117 |
+
# Store detected items
|
| 118 |
+
self.detected_items = set()
|
| 119 |
+
self.text_size_reference = 100
|
| 120 |
+
self.last_segmentation_analysis = ""
|
| 121 |
+
self.segmentation_cooldown = 2
|
| 122 |
+
|
| 123 |
+
print("β
System initialized successfully!")
|
| 124 |
+
|
| 125 |
+
def load_text_detector(self):
|
| 126 |
+
"""Load text detection model"""
|
| 127 |
+
if EASYOCR_AVAILABLE:
|
| 128 |
+
try:
|
| 129 |
+
return easyocr.Reader(['en'])
|
| 130 |
+
except Exception as e:
|
| 131 |
+
print(f"β οΈ EasyOCR initialization failed: {e}")
|
| 132 |
+
return None
|
| 133 |
+
|
| 134 |
+
def load_segmentation_model(self):
|
| 135 |
+
"""Load segmentation model"""
|
| 136 |
+
if not SMP_AVAILABLE:
|
| 137 |
+
return None
|
| 138 |
+
try:
|
| 139 |
+
model = smp.Unet(
|
| 140 |
+
encoder_name="mobilenet_v2",
|
| 141 |
+
encoder_weights="voc",
|
| 142 |
+
classes=20,
|
| 143 |
+
activation=None,
|
| 144 |
+
)
|
| 145 |
+
return model
|
| 146 |
+
except Exception as e:
|
| 147 |
+
print(f"β οΈ Could not load segmentation model: {e}")
|
| 148 |
+
return None
|
| 149 |
+
|
| 150 |
+
def perform_semantic_segmentation(self, frame):
|
| 151 |
+
"""Perform semantic segmentation"""
|
| 152 |
+
try:
|
| 153 |
+
h, w = frame.shape[:2]
|
| 154 |
+
seg_map = np.zeros((h, w), dtype=np.uint8)
|
| 155 |
+
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
| 156 |
+
|
| 157 |
+
# Road detection
|
| 158 |
+
dark_mask = cv2.inRange(hsv, (0, 0, 0), (180, 255, 100))
|
| 159 |
+
seg_map[h//2:, :][dark_mask[h//2:, :] > 0] = 0
|
| 160 |
+
|
| 161 |
+
# Sky detection
|
| 162 |
+
sky_mask = cv2.inRange(hsv, (100, 50, 150), (140, 255, 255))
|
| 163 |
+
seg_map[:h//3, :][sky_mask[:h//3, :] > 0] = 10
|
| 164 |
+
|
| 165 |
+
return seg_map
|
| 166 |
+
except Exception as e:
|
| 167 |
+
return np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
|
| 168 |
+
|
| 169 |
+
def analyze_segmentation_map(self, seg_map):
|
| 170 |
+
"""Analyze segmentation map"""
|
| 171 |
+
h, w = seg_map.shape
|
| 172 |
+
analysis = {
|
| 173 |
+
'immediate_walkable': 0,
|
| 174 |
+
'immediate_obstacles': 0,
|
| 175 |
+
'critical_warnings': [],
|
| 176 |
+
'guidance': [],
|
| 177 |
+
'environment': 'unknown'
|
| 178 |
+
}
|
| 179 |
+
|
| 180 |
+
immediate_path = seg_map[int(h*0.7):, :]
|
| 181 |
+
road_pixels = np.sum(immediate_path == 0)
|
| 182 |
+
total_pixels = immediate_path.size
|
| 183 |
+
|
| 184 |
+
if total_pixels > 0:
|
| 185 |
+
road_percentage = (road_pixels / total_pixels) * 100
|
| 186 |
+
if road_percentage > 60:
|
| 187 |
+
analysis['guidance'].append("Clear path ahead")
|
| 188 |
+
analysis['environment'] = 'road'
|
| 189 |
+
elif road_percentage > 30:
|
| 190 |
+
analysis['guidance'].append("Moderate path clarity")
|
| 191 |
+
analysis['environment'] = 'mixed'
|
| 192 |
+
else:
|
| 193 |
+
analysis['guidance'].append("Obstructed path ahead")
|
| 194 |
+
analysis['environment'] = 'obstructed'
|
| 195 |
+
|
| 196 |
+
return analysis
|
| 197 |
+
|
| 198 |
+
def generate_segmentation_guidance(self, seg_analysis):
|
| 199 |
+
"""Generate guidance from segmentation"""
|
| 200 |
+
if not seg_analysis['guidance']:
|
| 201 |
+
return None
|
| 202 |
+
|
| 203 |
+
guidance = ". ".join(seg_analysis['guidance'])
|
| 204 |
+
if seg_analysis['environment'] == 'road':
|
| 205 |
+
guidance += ". You appear to be on a road."
|
| 206 |
+
elif seg_analysis['environment'] == 'obstructed':
|
| 207 |
+
guidance += ". Path may be obstructed."
|
| 208 |
+
|
| 209 |
+
return guidance
|
| 210 |
+
|
| 211 |
+
def preprocess_image_for_text(self, image):
|
| 212 |
+
"""Preprocess image for text detection"""
|
| 213 |
+
pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
| 214 |
+
enhancer = ImageEnhance.Contrast(pil_image)
|
| 215 |
+
pil_image = enhancer.enhance(2.0)
|
| 216 |
+
enhancer = ImageEnhance.Sharpness(pil_image)
|
| 217 |
+
pil_image = enhancer.enhance(2.0)
|
| 218 |
+
return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
| 219 |
+
|
| 220 |
+
def detect_text_easyocr(self, frame):
|
| 221 |
+
"""Detect text using EasyOCR"""
|
| 222 |
+
if self.reader is None:
|
| 223 |
+
return []
|
| 224 |
+
|
| 225 |
+
try:
|
| 226 |
+
processed_frame = self.preprocess_image_for_text(frame)
|
| 227 |
+
gray = cv2.cvtColor(processed_frame, cv2.COLOR_BGR2GRAY)
|
| 228 |
+
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
|
| 229 |
+
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 230 |
+
cv2.THRESH_BINARY, 11, 2)
|
| 231 |
+
kernel = np.ones((2, 2), np.uint8)
|
| 232 |
+
morphed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
|
| 233 |
+
processed_for_ocr = cv2.cvtColor(morphed, cv2.COLOR_GRAY2BGR)
|
| 234 |
+
|
| 235 |
+
results = self.reader.readtext(processed_for_ocr,
|
| 236 |
+
decoder='beamsearch',
|
| 237 |
+
beamWidth=5,
|
| 238 |
+
batch_size=1,
|
| 239 |
+
height_ths=0.5,
|
| 240 |
+
width_ths=0.5,
|
| 241 |
+
min_size=20,
|
| 242 |
+
text_threshold=0.3,
|
| 243 |
+
link_threshold=0.3)
|
| 244 |
+
|
| 245 |
+
detected_texts = []
|
| 246 |
+
for (bbox, text, confidence) in results:
|
| 247 |
+
if confidence > 0.4 and len(text.strip()) > 1:
|
| 248 |
+
clean_text = text.strip().lower()
|
| 249 |
+
|
| 250 |
+
if len(bbox) >= 4:
|
| 251 |
+
y_coords = [point[1] for point in bbox]
|
| 252 |
+
text_height = max(y_coords) - min(y_coords)
|
| 253 |
+
distance = self.calculate_text_distance(text_height)
|
| 254 |
+
distance_category = self.get_distance_category(distance)
|
| 255 |
+
is_important = any(keyword in clean_text for keyword in self.important_keywords)
|
| 256 |
+
|
| 257 |
+
detected_texts.append({
|
| 258 |
+
'type': 'text',
|
| 259 |
+
'text': clean_text,
|
| 260 |
+
'confidence': confidence,
|
| 261 |
+
'bbox': bbox,
|
| 262 |
+
'position': self.get_text_position(bbox),
|
| 263 |
+
'distance': distance,
|
| 264 |
+
'distance_category': distance_category,
|
| 265 |
+
'is_important': is_important,
|
| 266 |
+
'priority': 10 if is_important else 2
|
| 267 |
+
})
|
| 268 |
+
|
| 269 |
+
return detected_texts
|
| 270 |
+
except Exception as e:
|
| 271 |
+
print(f"Text detection error: {e}")
|
| 272 |
+
return []
|
| 273 |
+
|
| 274 |
+
def get_text_position(self, bbox):
|
| 275 |
+
"""Determine text position"""
|
| 276 |
+
if isinstance(bbox, list) and len(bbox) == 4:
|
| 277 |
+
x_coords = [point[0] for point in bbox]
|
| 278 |
+
x_center = sum(x_coords) / len(x_coords)
|
| 279 |
+
third = self.frame_width / 3
|
| 280 |
+
|
| 281 |
+
if x_center < third:
|
| 282 |
+
return "left"
|
| 283 |
+
elif x_center < 2 * third:
|
| 284 |
+
return "center"
|
| 285 |
+
else:
|
| 286 |
+
return "right"
|
| 287 |
+
return "center"
|
| 288 |
+
|
| 289 |
+
def calculate_text_distance(self, bbox_height):
|
| 290 |
+
"""Estimate text distance"""
|
| 291 |
+
if bbox_height <= 0:
|
| 292 |
+
return 10.0
|
| 293 |
+
distance = (self.text_size_reference * 2.0) / bbox_height
|
| 294 |
+
return max(0.5, min(distance, 15.0))
|
| 295 |
+
|
| 296 |
+
def get_distance_category(self, distance):
|
| 297 |
+
"""Convert distance to category"""
|
| 298 |
+
if distance < 2:
|
| 299 |
+
return "very close"
|
| 300 |
+
elif distance < 4:
|
| 301 |
+
return "close"
|
| 302 |
+
elif distance < 7:
|
| 303 |
+
return "moderate distance"
|
| 304 |
+
elif distance < 10:
|
| 305 |
+
return "far"
|
| 306 |
+
else:
|
| 307 |
+
return "very far"
|
| 308 |
+
|
| 309 |
+
def calculate_object_distance(self, bbox_height, object_type="person"):
|
| 310 |
+
"""Estimate object distance"""
|
| 311 |
+
reference_sizes = {
|
| 312 |
+
'person': 1.7, 'vehicle': 1.5, 'bicycle': 1.0,
|
| 313 |
+
'animal': 0.5, 'chair': 1.0, 'bench': 1.0,
|
| 314 |
+
'pole': 2.0, 'default': 1.0
|
| 315 |
+
}
|
| 316 |
+
real_height = reference_sizes.get(object_type, reference_sizes['default'])
|
| 317 |
+
focal_length = 500
|
| 318 |
+
|
| 319 |
+
if bbox_height > 0:
|
| 320 |
+
distance = (focal_length * real_height) / bbox_height
|
| 321 |
+
return max(0.5, min(distance, 20))
|
| 322 |
+
return 20
|
| 323 |
+
|
| 324 |
+
def get_object_position(self, bbox):
|
| 325 |
+
"""Determine object position"""
|
| 326 |
+
x_center = (bbox[0] + bbox[2]) / 2
|
| 327 |
+
third = self.frame_width / 3
|
| 328 |
+
|
| 329 |
+
if x_center < third:
|
| 330 |
+
return "left"
|
| 331 |
+
elif x_center < 2 * third:
|
| 332 |
+
return "center"
|
| 333 |
+
else:
|
| 334 |
+
return "right"
|
| 335 |
+
|
| 336 |
+
def get_comprehensive_priority(self, item):
|
| 337 |
+
"""Calculate comprehensive priority"""
|
| 338 |
+
base_priority = self.object_priority.get(item.get('label', 'object'), 1)
|
| 339 |
+
distance = item.get('distance', 10)
|
| 340 |
+
distance_factor = max(0, 10 - distance) / 2
|
| 341 |
+
position = item.get('position', 'right')
|
| 342 |
+
position_factor = 2 if position == 'center' else 1
|
| 343 |
+
|
| 344 |
+
if item.get('type') == 'text':
|
| 345 |
+
if item.get('is_important', False):
|
| 346 |
+
return 10 + distance_factor
|
| 347 |
+
else:
|
| 348 |
+
return 5 + distance_factor
|
| 349 |
+
|
| 350 |
+
return base_priority * position_factor + distance_factor
|
| 351 |
+
|
| 352 |
+
def generate_comprehensive_announcement(self, all_detections):
|
| 353 |
+
"""Generate balanced announcements"""
|
| 354 |
+
if not all_detections:
|
| 355 |
+
return "Path clear"
|
| 356 |
+
|
| 357 |
+
messages = []
|
| 358 |
+
all_detections.sort(key=self.get_comprehensive_priority, reverse=True)
|
| 359 |
+
|
| 360 |
+
announced_count = 0
|
| 361 |
+
max_announcements = 4
|
| 362 |
+
|
| 363 |
+
for item in all_detections:
|
| 364 |
+
if announced_count >= max_announcements:
|
| 365 |
+
break
|
| 366 |
+
|
| 367 |
+
item_type = item.get('type', 'object')
|
| 368 |
+
|
| 369 |
+
if item_type == 'text':
|
| 370 |
+
text = item['text']
|
| 371 |
+
position = item['position']
|
| 372 |
+
distance_category = item['distance_category']
|
| 373 |
+
|
| 374 |
+
if item['is_important']:
|
| 375 |
+
messages.append(f"IMPORTANT: {text} {distance_category} on your {position}")
|
| 376 |
+
else:
|
| 377 |
+
messages.append(f"Sign: {text} {distance_category} on your {position}")
|
| 378 |
+
|
| 379 |
+
announced_count += 1
|
| 380 |
+
else:
|
| 381 |
+
if announced_count < max_announcements:
|
| 382 |
+
label = item['label']
|
| 383 |
+
position = item['position']
|
| 384 |
+
distance_category = item['distance_category']
|
| 385 |
+
|
| 386 |
+
if position == "center" and item['distance'] < 3:
|
| 387 |
+
messages.append(f"Warning! {label} directly ahead, {distance_category}")
|
| 388 |
+
else:
|
| 389 |
+
messages.append(f"{label} on your {position}, {distance_category}")
|
| 390 |
+
|
| 391 |
+
announced_count += 1
|
| 392 |
+
|
| 393 |
+
center_objects = [item for item in all_detections
|
| 394 |
+
if item.get('position') == 'center' and item.get('distance', 10) < 3]
|
| 395 |
+
|
| 396 |
+
if center_objects and len(messages) < 5:
|
| 397 |
+
left_count = sum(1 for item in all_detections[:6] if item.get('position') == 'left')
|
| 398 |
+
right_count = sum(1 for item in all_detections[:6] if item.get('position') == 'right')
|
| 399 |
+
|
| 400 |
+
if left_count < right_count:
|
| 401 |
+
messages.append("Consider moving left")
|
| 402 |
+
elif right_count < left_count:
|
| 403 |
+
messages.append("Consider moving right")
|
| 404 |
+
|
| 405 |
+
return ". ".join(messages)
|
| 406 |
+
|
| 407 |
+
def speak_gtts(self, text, timestamp=None):
|
| 408 |
+
"""Text-to-speech using gTTS"""
|
| 409 |
+
if not text or self.speaking:
|
| 410 |
+
return
|
| 411 |
+
|
| 412 |
+
with self.audio_lock:
|
| 413 |
+
self.speaking = True
|
| 414 |
+
try:
|
| 415 |
+
if timestamp is None:
|
| 416 |
+
if self.video_start_time:
|
| 417 |
+
timestamp = time.time() - self.video_start_time
|
| 418 |
+
else:
|
| 419 |
+
timestamp = 0
|
| 420 |
+
|
| 421 |
+
minutes = int(timestamp // 60)
|
| 422 |
+
seconds = int(timestamp % 60)
|
| 423 |
+
timestamp_str = f"{minutes:02d}:{seconds:02d}"
|
| 424 |
+
|
| 425 |
+
print(f"π [{timestamp_str}] GUIDANCE: {text}")
|
| 426 |
+
|
| 427 |
+
tts = gTTS(text=text, lang='en', slow=False)
|
| 428 |
+
audio_filename = f"audio_{timestamp_str.replace(':', '-')}_{int(time.time() * 1000)}.mp3"
|
| 429 |
+
tts.save(audio_filename)
|
| 430 |
+
|
| 431 |
+
self.audio_files.append(audio_filename)
|
| 432 |
+
self.audio_timestamps.append({
|
| 433 |
+
'filename': audio_filename,
|
| 434 |
+
'timestamp': timestamp,
|
| 435 |
+
'timestamp_str': timestamp_str,
|
| 436 |
+
'text': text
|
| 437 |
+
})
|
| 438 |
+
|
| 439 |
+
except Exception as e:
|
| 440 |
+
print(f"β οΈ Speech generation error: {e}")
|
| 441 |
+
finally:
|
| 442 |
+
self.speaking = False
|
| 443 |
+
time.sleep(0.5)
|
| 444 |
+
|
| 445 |
+
def process_frame(self, frame):
|
| 446 |
+
"""Process video frame"""
|
| 447 |
+
self.frame_height, self.frame_width = frame.shape[:2]
|
| 448 |
+
|
| 449 |
+
seg_map = self.perform_semantic_segmentation(frame)
|
| 450 |
+
seg_analysis = self.analyze_segmentation_map(seg_map)
|
| 451 |
+
|
| 452 |
+
results = self.model(frame, conf=0.4, verbose=False)
|
| 453 |
+
|
| 454 |
+
all_detections = []
|
| 455 |
+
objects_info = []
|
| 456 |
+
text_info = []
|
| 457 |
+
|
| 458 |
+
# Process YOLO detections
|
| 459 |
+
for result in results:
|
| 460 |
+
boxes = result.boxes
|
| 461 |
+
for box in boxes:
|
| 462 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
| 463 |
+
conf = float(box.conf[0])
|
| 464 |
+
cls = int(box.cls[0])
|
| 465 |
+
label = self.model.names[cls]
|
| 466 |
+
|
| 467 |
+
if label.lower() in self.navigation_classes:
|
| 468 |
+
nav_label = self.navigation_classes[label.lower()]
|
| 469 |
+
bbox_height = y2 - y1
|
| 470 |
+
distance = self.calculate_object_distance(bbox_height, nav_label)
|
| 471 |
+
distance_category = self.get_distance_category(distance)
|
| 472 |
+
position = self.get_object_position([x1, y1, x2, y2])
|
| 473 |
+
|
| 474 |
+
object_info = {
|
| 475 |
+
'type': 'object',
|
| 476 |
+
'label': nav_label,
|
| 477 |
+
'distance': distance,
|
| 478 |
+
'distance_category': distance_category,
|
| 479 |
+
'position': position,
|
| 480 |
+
'bbox': [x1, y1, x2, y2],
|
| 481 |
+
'confidence': conf,
|
| 482 |
+
'priority': self.object_priority.get(nav_label, 1)
|
| 483 |
+
}
|
| 484 |
+
|
| 485 |
+
objects_info.append(object_info)
|
| 486 |
+
all_detections.append(object_info)
|
| 487 |
+
|
| 488 |
+
# Draw bounding box
|
| 489 |
+
if nav_label == 'vehicle':
|
| 490 |
+
color = (0, 0, 255)
|
| 491 |
+
elif nav_label == 'person':
|
| 492 |
+
color = (0, 255, 255)
|
| 493 |
+
elif nav_label == 'bicycle':
|
| 494 |
+
color = (255, 0, 0)
|
| 495 |
+
else:
|
| 496 |
+
color = (0, 255, 0)
|
| 497 |
+
|
| 498 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
| 499 |
+
label_text = f"{nav_label.upper()} {distance_category}"
|
| 500 |
+
(tw, th), _ = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
|
| 501 |
+
cv2.rectangle(frame, (x1, y1-th-10), (x1+tw+10, y1), color, -1)
|
| 502 |
+
cv2.putText(frame, label_text, (x1+5, y1-5),
|
| 503 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
| 504 |
+
|
| 505 |
+
# Detect text
|
| 506 |
+
current_time = time.time()
|
| 507 |
+
if (current_time - self.last_announcement) > 1.5:
|
| 508 |
+
text_info = self.detect_text_easyocr(frame)
|
| 509 |
+
|
| 510 |
+
new_texts = []
|
| 511 |
+
for text_data in text_info:
|
| 512 |
+
text_hash = hash(text_data['text'][:20])
|
| 513 |
+
if text_hash not in self.detected_items:
|
| 514 |
+
new_texts.append(text_data)
|
| 515 |
+
self.detected_items.add(text_hash)
|
| 516 |
+
|
| 517 |
+
text_info = new_texts
|
| 518 |
+
all_detections.extend(text_info)
|
| 519 |
+
|
| 520 |
+
# Draw text bounding boxes
|
| 521 |
+
for text_data in text_info:
|
| 522 |
+
bbox = text_data['bbox']
|
| 523 |
+
text = text_data['text']
|
| 524 |
+
is_important = text_data['is_important']
|
| 525 |
+
|
| 526 |
+
color = (255, 0, 255) if is_important else (255, 255, 0)
|
| 527 |
+
thickness = 3 if is_important else 2
|
| 528 |
+
|
| 529 |
+
pts = np.array(bbox, np.int32)
|
| 530 |
+
pts = pts.reshape((-1, 1, 2))
|
| 531 |
+
cv2.polylines(frame, [pts], True, color, thickness)
|
| 532 |
+
|
| 533 |
+
label_text = f"π© {text}" if is_important else f"TEXT: {text}"
|
| 534 |
+
x_coords = [point[0] for point in bbox]
|
| 535 |
+
y_coords = [point[1] for point in bbox]
|
| 536 |
+
text_x = int(min(x_coords))
|
| 537 |
+
text_y = int(min(y_coords)) - 10
|
| 538 |
+
|
| 539 |
+
if text_y < 20:
|
| 540 |
+
text_y = int(max(y_coords)) + 25
|
| 541 |
+
|
| 542 |
+
(tw, th), _ = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
|
| 543 |
+
cv2.rectangle(frame, (text_x, text_y-th-5), (text_x+tw+10, text_y+5), color, -1)
|
| 544 |
+
cv2.putText(frame, label_text, (text_x+5, text_y),
|
| 545 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
| 546 |
+
|
| 547 |
+
# Generate navigation message
|
| 548 |
+
message = None
|
| 549 |
+
if (current_time - self.last_announcement) > self.announcement_cooldown:
|
| 550 |
+
seg_guidance = self.generate_segmentation_guidance(seg_analysis)
|
| 551 |
+
object_message = self.generate_comprehensive_announcement(all_detections)
|
| 552 |
+
|
| 553 |
+
if seg_guidance and "obstructed" in seg_guidance.lower():
|
| 554 |
+
message = f"{seg_guidance}. {object_message}"
|
| 555 |
+
elif seg_guidance and object_message == "Path clear":
|
| 556 |
+
message = seg_guidance
|
| 557 |
+
else:
|
| 558 |
+
message = object_message
|
| 559 |
+
|
| 560 |
+
if message and message != "Path clear":
|
| 561 |
+
threading.Thread(target=self.speak_gtts, args=(message,)).start()
|
| 562 |
+
self.last_announcement = current_time
|
| 563 |
+
|
| 564 |
+
# Status overlay
|
| 565 |
+
overlay = frame.copy()
|
| 566 |
+
cv2.rectangle(overlay, (5, 5), (500, 35), (0, 0, 0), -1)
|
| 567 |
+
cv2.addWeighted(overlay, 0.6, frame, 0.4, 0, frame)
|
| 568 |
+
|
| 569 |
+
status_text = f"Objects: {len(objects_info)} | Texts: {len(text_info)}"
|
| 570 |
+
cv2.putText(frame, status_text, (15, 28),
|
| 571 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
|
| 572 |
+
|
| 573 |
+
# Draw center danger zone
|
| 574 |
+
center_objects = [obj for obj in objects_info if obj['position'] == 'center' and obj['distance'] < 3]
|
| 575 |
+
if center_objects:
|
| 576 |
+
cv2.rectangle(frame, (self.frame_width//3, self.frame_height-100),
|
| 577 |
+
(2*self.frame_width//3, self.frame_height-10), (0, 0, 255), 3)
|
| 578 |
+
cv2.putText(frame, "OBSTACLE IN PATH", (self.frame_width//3 + 20, self.frame_height-50),
|
| 579 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
|
| 580 |
+
|
| 581 |
+
return frame, message, len(objects_info), len(text_info)
|
| 582 |
+
|
| 583 |
+
def process_video(self, video_path, output_path='output_navigation.mp4'):
|
| 584 |
+
"""Process uploaded video"""
|
| 585 |
+
cap = cv2.VideoCapture(video_path)
|
| 586 |
+
|
| 587 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 588 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 589 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 590 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 591 |
+
|
| 592 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 593 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 594 |
+
|
| 595 |
+
print(f"Processing video: {total_frames} frames at {fps} FPS")
|
| 596 |
+
|
| 597 |
+
self.audio_timestamps = []
|
| 598 |
+
self.audio_files = []
|
| 599 |
+
self.detected_items = set()
|
| 600 |
+
self.video_start_time = time.time()
|
| 601 |
+
frame_count = 0
|
| 602 |
+
|
| 603 |
+
try:
|
| 604 |
+
while cap.isOpened():
|
| 605 |
+
ret, frame = cap.read()
|
| 606 |
+
if not ret:
|
| 607 |
+
break
|
| 608 |
+
|
| 609 |
+
processed_frame, message, obj_count, text_count = self.process_frame(frame)
|
| 610 |
+
out.write(processed_frame)
|
| 611 |
+
frame_count += 1
|
| 612 |
+
|
| 613 |
+
if frame_count % 30 == 0:
|
| 614 |
+
progress = (frame_count / total_frames) * 100
|
| 615 |
+
print(f"Progress: {progress:.1f}%")
|
| 616 |
+
|
| 617 |
+
finally:
|
| 618 |
+
cap.release()
|
| 619 |
+
out.release()
|
| 620 |
+
print(f"β
Video processing complete!")
|
| 621 |
+
|
| 622 |
+
if self.audio_timestamps:
|
| 623 |
+
final_output = 'final_with_audio.mp4'
|
| 624 |
+
return self.merge_audio_into_video(output_path, final_output)
|
| 625 |
+
else:
|
| 626 |
+
return output_path
|
| 627 |
+
|
| 628 |
+
def merge_audio_into_video(self, video_path, output_path='final_with_audio.mp4'):
|
| 629 |
+
"""Merge audio into video"""
|
| 630 |
+
print("π΅ Merging audio into video...")
|
| 631 |
+
|
| 632 |
+
if not self.audio_timestamps:
|
| 633 |
+
return video_path
|
| 634 |
+
|
| 635 |
+
try:
|
| 636 |
+
video = VideoFileClip(video_path)
|
| 637 |
+
video_duration = video.duration
|
| 638 |
+
|
| 639 |
+
audio_clips = []
|
| 640 |
+
for audio_info in self.audio_timestamps:
|
| 641 |
+
if os.path.exists(audio_info['filename']):
|
| 642 |
+
try:
|
| 643 |
+
audio_clip = AudioFileClip(audio_info['filename'])
|
| 644 |
+
audio_clip = audio_clip.set_start(audio_info['timestamp'])
|
| 645 |
+
audio_clips.append(audio_clip)
|
| 646 |
+
except Exception as e:
|
| 647 |
+
print(f"β οΈ Failed to load {audio_info['filename']}: {e}")
|
| 648 |
+
|
| 649 |
+
if not audio_clips:
|
| 650 |
+
return video_path
|
| 651 |
+
|
| 652 |
+
final_audio = CompositeAudioClip(audio_clips)
|
| 653 |
+
final_audio = final_audio.set_duration(video_duration)
|
| 654 |
+
final_video = video.set_audio(final_audio)
|
| 655 |
+
|
| 656 |
+
final_video.write_videofile(
|
| 657 |
+
output_path,
|
| 658 |
+
codec='libx264',
|
| 659 |
+
audio_codec='aac',
|
| 660 |
+
fps=video.fps,
|
| 661 |
+
verbose=False,
|
| 662 |
+
logger=None
|
| 663 |
+
)
|
| 664 |
+
|
| 665 |
+
video.close()
|
| 666 |
+
final_video.close()
|
| 667 |
+
final_audio.close()
|
| 668 |
+
for clip in audio_clips:
|
| 669 |
+
clip.close()
|
| 670 |
+
|
| 671 |
+
print(f"β
Video with audio saved!")
|
| 672 |
+
return output_path
|
| 673 |
+
|
| 674 |
+
except Exception as e:
|
| 675 |
+
print(f"β Error merging audio: {e}")
|
| 676 |
+
return video_path
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
# Initialize the system
|
| 680 |
+
nav_system = AudioNavigationSystem()
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def process_video_gradio(video_file):
|
| 684 |
+
"""Gradio interface function"""
|
| 685 |
+
try:
|
| 686 |
+
if video_file is None:
|
| 687 |
+
return None, "Please upload a video file"
|
| 688 |
+
|
| 689 |
+
# Create temporary file
|
| 690 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_input:
|
| 691 |
+
tmp_input.write(video_file)
|
| 692 |
+
input_path = tmp_input.name
|
| 693 |
+
|
| 694 |
+
# Check video duration
|
| 695 |
+
cap = cv2.VideoCapture(input_path)
|
| 696 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 697 |
+
frame_count = cap.get(cv2.CAP_PROP_FRAME_COUNT)
|
| 698 |
+
duration = frame_count / fps if fps > 0 else 0
|
| 699 |
+
cap.release()
|
| 700 |
+
|
| 701 |
+
if duration > 15:
|
| 702 |
+
return None, f"β οΈ Video is {duration:.1f} seconds long. Please upload a video shorter than 15 seconds."
|
| 703 |
+
|
| 704 |
+
# Process video
|
| 705 |
+
output_path = nav_system.process_video(input_path)
|
| 706 |
+
|
| 707 |
+
# Generate transcript
|
| 708 |
+
transcript_text = "Audio Guidance Transcript:\n\n"
|
| 709 |
+
for item in nav_system.audio_timestamps:
|
| 710 |
+
transcript_text += f"[{item['timestamp_str']}] {item['text']}\n\n"
|
| 711 |
+
|
| 712 |
+
return output_path, transcript_text
|
| 713 |
+
|
| 714 |
+
except Exception as e:
|
| 715 |
+
return None, f"Error processing video: {str(e)}"
|
| 716 |
+
|
| 717 |
+
|
| 718 |
+
# Create Gradio interface
|
| 719 |
+
with gr.Blocks(title="Blind Assistance AI", theme=gr.themes.Soft()) as demo:
|
| 720 |
+
gr.Markdown("""
|
| 721 |
+
# π¦― Blind Assistance AI - Video Navigation System
|
| 722 |
+
|
| 723 |
+
Upload a video to receive audio navigation guidance with object detection, text recognition, and scene analysis.
|
| 724 |
+
|
| 725 |
+
β οΈ **Important:** Please upload videos **shorter than 15 seconds** for optimal processing.
|
| 726 |
+
""")
|
| 727 |
+
|
| 728 |
+
with gr.Row():
|
| 729 |
+
with gr.Column():
|
| 730 |
+
video_input = gr.Video(label="Upload Video (Max 15 seconds)")
|
| 731 |
+
process_btn = gr.Button("Process Video", variant="primary", size="lg")
|
| 732 |
+
|
| 733 |
+
with gr.Column():
|
| 734 |
+
video_output = gr.Video(label="Processed Video with Audio Guidance")
|
| 735 |
+
transcript_output = gr.Textbox(label="Audio Transcript", lines=10)
|
| 736 |
+
|
| 737 |
+
gr.Markdown("""
|
| 738 |
+
### Features:
|
| 739 |
+
- π― **Object Detection**: Identifies people, vehicles, and obstacles
|
| 740 |
+
- π **Text Detection & OCR**: Reads signs, labels, and important text
|
| 741 |
+
- πΊοΈ **Scene Analysis**: Understands environment and context
|
| 742 |
+
- π **Voice Guidance**: Real-time audio navigation instructions
|
| 743 |
+
""")
|
| 744 |
+
|
| 745 |
+
process_btn.click(
|
| 746 |
+
fn=process_video_gradio,
|
| 747 |
+
inputs=[video_input],
|
| 748 |
+
outputs=[video_output, transcript_output]
|
| 749 |
+
)
|
| 750 |
+
|
| 751 |
+
# Launch the app
|
| 752 |
+
if __name__ == "__main__":
|
| 753 |
+
demo.launch()
|