Spaces:
Running
Running
File size: 8,587 Bytes
8bd45de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Dataloader for preprocessed project-aria dataset
# --------------------------------------------------------
import os.path as osp
import os
import cv2
import numpy as np
import math
SLAM3R_DIR = osp.dirname(osp.dirname(osp.dirname(osp.abspath(__file__))))
import sys # noqa: E402
sys.path.insert(0, SLAM3R_DIR) # noqa: E402
from slam3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset
from slam3r.utils.image import imread_cv2
class Aria_Seq(BaseStereoViewDataset):
def __init__(self,
ROOT='data/projectaria/ase_processed',
num_views=2,
scene_name=None, # specify scene name(s) to load
sample_freq=1, # stride of the frmaes inside the sliding window
start_freq=1, # start frequency for the sliding window
filter=False, # filter out the windows with abnormally large stride
rand_sel=False, # randomly select views from a window
winsize=0, # window size to randomly select views
sel_num=0, # number of combinations to randomly select from a window
*args,**kwargs):
super().__init__(*args, **kwargs)
self.ROOT = ROOT
self.sample_freq = sample_freq
self.start_freq = start_freq
self.num_views = num_views
self.rand_sel = rand_sel
if rand_sel:
assert winsize > 0 and sel_num > 0
comb_num = math.comb(winsize-1, num_views-2)
assert comb_num >= sel_num
self.winsize = winsize
self.sel_num = sel_num
else:
self.winsize = sample_freq*(num_views-1)
self.scene_names = os.listdir(self.ROOT)
self.scene_names = [int(scene_name) for scene_name in self.scene_names if scene_name.isdigit()]
self.scene_names = sorted(self.scene_names)
self.scene_names = [str(scene_name) for scene_name in self.scene_names]
total_scene_num = len(self.scene_names)
if self.split == 'train':
# choose 90% of the data as training set
self.scene_names = self.scene_names[:int(total_scene_num*0.9)]
elif self.split=='test':
self.scene_names = self.scene_names[int(total_scene_num*0.9):]
if scene_name is not None:
assert self.split is None
if isinstance(scene_name, list):
self.scene_names = scene_name
else:
if isinstance(scene_name, int):
scene_name = str(scene_name)
assert isinstance(scene_name, str)
self.scene_names = [scene_name]
self._load_data(filter=filter)
print(self)
def filter_windows(self, sid, eid, image_names):
return False
def _load_data(self, filter=False):
self.sceneids = []
self.images = []
self.intrinsics = [] #scene_num*(3,3)
self.win_bid = []
num_count = 0
for id, scene_name in enumerate(self.scene_names):
scene_dir = os.path.join(self.ROOT, scene_name)
# print(id, scene_name)
image_names = os.listdir(os.path.join(scene_dir, 'color'))
image_names = sorted(image_names)
intrinsic = np.loadtxt(os.path.join(scene_dir, 'intrinsic', 'intrinsic_color.txt'))[:3,:3]
image_num = len(image_names)
# precompute the window indices
for i in range(0, image_num, self.start_freq):
last_id = i+self.winsize
if last_id >= image_num:
break
if filter and self.filter_windows(i, last_id, image_names):
continue
self.win_bid.append((num_count+i, num_count+last_id))
self.intrinsics.append(intrinsic)
self.images += image_names
self.sceneids += [id,] * image_num
num_count += image_num
# print(self.sceneids, self.scene_names)
self.intrinsics = np.stack(self.intrinsics, axis=0)
print(self.intrinsics.shape)
assert len(self.sceneids)==len(self.images), f"{len(self.sceneids)}, {len(self.images)}"
def __len__(self):
if self.rand_sel:
return self.sel_num*len(self.win_bid)
return len(self.win_bid)
def get_img_idxes(self, idx, rng):
if self.rand_sel:
sid, eid = self.win_bid[idx//self.sel_num]
if idx % self.sel_num == 0:
return np.linspace(sid, eid, self.num_views, endpoint=True, dtype=int)
if self.num_views == 2:
return [sid, eid]
sel_ids = rng.choice(range(sid+1, eid), self.num_views-2, replace=False)
sel_ids.sort()
return [sid] + list(sel_ids) + [eid]
else:
sid, eid = self.win_bid[idx]
return [sid + i*self.sample_freq for i in range(self.num_views)]
def _get_views(self, idx, resolution, rng):
image_idxes = self.get_img_idxes(idx, rng)
# print(image_idxes)
views = []
for view_idx in image_idxes:
scene_id = self.sceneids[view_idx]
scene_dir = osp.join(self.ROOT, self.scene_names[scene_id])
intrinsics = self.intrinsics[scene_id]
basename = self.images[view_idx]
camera_pose = np.loadtxt(osp.join(scene_dir, 'pose', basename.replace('.jpg', '.txt')))
# Load RGB image
rgb_image = imread_cv2(osp.join(scene_dir, 'color', basename))
# Load depthmap
depthmap = imread_cv2(osp.join(scene_dir, 'depth', basename.replace('.jpg', '.png')), cv2.IMREAD_UNCHANGED)
depthmap[~np.isfinite(depthmap)] = 0 # invalid
depthmap = depthmap.astype(np.float32) / 1000
depthmap[depthmap > 20] = 0 # invalid
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx)
views.append(dict(
img=rgb_image,
depthmap=depthmap.astype(np.float32),
camera_pose=camera_pose.astype(np.float32),
camera_intrinsics=intrinsics.astype(np.float32),
dataset='Aria',
label=self.scene_names[scene_id] + '_' + basename,
instance=f'{str(idx)}_{str(view_idx)}',
))
# print([view['label'] for view in views])
return views
if __name__ == "__main__":
import trimesh
num_views = 4
# dataset = Aria_Seq(resolution=(224,224),
# num_views=num_views,
# start_freq=1, sample_freq=2)
dataset = Aria_Seq(split='train', resolution=(224,224),
num_views=num_views,
start_freq=1, rand_sel=True, winsize=6, sel_num=3)
save_dir = "visualization/aria_seq_views"
os.makedirs(save_dir, exist_ok=True)
for idx in np.random.permutation(len(dataset))[:10]:
os.makedirs(osp.join(save_dir, str(idx)), exist_ok=True)
views = dataset[(idx,0)]
assert len(views) == num_views
all_pts = []
all_color=[]
for i, view in enumerate(views):
img = np.array(view['img']).transpose(1, 2, 0)
# save_path = osp.join(save_dir, str(idx), f"{'_'.join(view_name(view).split('/')[1:])}.jpg")
save_path = osp.join(save_dir, str(idx), f"{i}_{view['label']}")
# img=cv2.COLOR_RGB2BGR(img)
img=img[...,::-1]
img = (img+1)/2
cv2.imwrite(save_path, img*255)
print(f"save to {save_path}")
img = img[...,::-1]
pts3d = np.array(view['pts3d']).reshape(-1,3)
pct = trimesh.PointCloud(pts3d, colors=img.reshape(-1, 3))
pct.export(save_path.replace('.jpg','.ply'))
all_pts.append(pts3d)
all_color.append(img.reshape(-1, 3))
all_pts = np.concatenate(all_pts, axis=0)
all_color = np.concatenate(all_color, axis=0)
pct = trimesh.PointCloud(all_pts, all_color)
pct.export(osp.join(save_dir, str(idx), f"all.ply")) |