File size: 10,562 Bytes
dd32acc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dc3f9b
dd32acc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
import sys
from haystack.document_stores.in_memory import InMemoryDocumentStore
from datasets import load_from_disk
from haystack import Document
from haystack.components.writers import DocumentWriter
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
from haystack.components.preprocessors.document_splitter import DocumentSplitter
from haystack import Pipeline
from haystack.components.retrievers.in_memory import (
    InMemoryBM25Retriever,
    InMemoryEmbeddingRetriever,
)
from haystack.components.embedders import SentenceTransformersTextEmbedder
from haystack.components.joiners import DocumentJoiner

# from haystack.components.rankers import TransformersSimilarityRanker
from haystack.components.rankers import SentenceTransformersSimilarityRanker
from haystack.document_stores.types import DuplicatePolicy
from haystack.components.converters import PyPDFToDocument
from haystack.components.preprocessors import DocumentCleaner
from haystack.components.builders import PromptBuilder
from pathlib import Path
from haystack.components.converters import DOCXToDocument
import re
import argparse


"""
python hybrid.py -c newstore.store                                                          │
python hybrid.py -r newstore.store -q "who is pufendorf"
"""

embedding_model = "sentence-transformers/all-MiniLM-L6-v2"

# see https://huggingface.co/BAAI/bge-m3
reranker_model = "BAAI/bge-reranker-base"


def build_store_from_dir(dir_path: str) -> InMemoryDocumentStore:
    root = Path(dir_path)
    pdfs = sorted(str(p) for p in root.rglob("*.pdf"))
    docxs = sorted(str(p) for p in root.rglob("*.docx"))

    print(pdfs)
    print(docxs)

    pdf_conv = PyPDFToDocument()
    docx_conv = DOCXToDocument()

    docs = []
    if pdfs:
        out = pdf_conv.run(sources=pdfs, meta=[{"source": p} for p in pdfs])
        docs.extend(out["documents"])
    if docxs:
        out = docx_conv.run(sources=docxs, meta=[{"source": p} for p in docxs])
        docs.extend(out["documents"])

    return docs


# Example usage:
# store = build_store_from_dir("/path/to/folder")
# print(len(store.filter_documents({})))


# As above, but splits the contents into sentences.
def create_index_split(docs, doc_store, split_length=5, split_overlap=1):
    document_splitter = DocumentSplitter(
        split_by="sentence", split_length=split_length, split_overlap=split_overlap
    )
    document_embedder = SentenceTransformersDocumentEmbedder(
        model=embedding_model,
    )
    document_writer = DocumentWriter(doc_store, policy=DuplicatePolicy.SKIP)

    indexing_pipeline = Pipeline()
    indexing_pipeline.add_component("document_splitter", document_splitter)
    indexing_pipeline.add_component("document_embedder", document_embedder)
    indexing_pipeline.add_component("document_writer", document_writer)

    indexing_pipeline.connect("document_splitter", "document_embedder")
    indexing_pipeline.connect("document_embedder", "document_writer")

    indexing_pipeline.run({"document_splitter": {"documents": docs}})

    hybrid_retrieval = create_hybrid_retriever(doc_store)
    return hybrid_retrieval


# Just the retriever pipeline on a document store.
# Creates an embedding and BM25 retriever on the doc_store.
def create_hybrid_retriever(doc_store):
    text_embedder = SentenceTransformersTextEmbedder(
        model=embedding_model,
    )
    embedding_retriever = InMemoryEmbeddingRetriever(doc_store)
    bm25_retriever = InMemoryBM25Retriever(doc_store)

    document_joiner = DocumentJoiner()
    # ranker = TransformersSimilarityRanker(model=reranker_model)
    # Needs haystack-ai >= 2.14
    ranker = SentenceTransformersSimilarityRanker(model=reranker_model)

    hybrid_retrieval = Pipeline()
    hybrid_retrieval.add_component("text_embedder", text_embedder)
    hybrid_retrieval.add_component("embedding_retriever", embedding_retriever)
    hybrid_retrieval.add_component("bm25_retriever", bm25_retriever)
    hybrid_retrieval.add_component("document_joiner", document_joiner)
    hybrid_retrieval.add_component("ranker", ranker)

    hybrid_retrieval.connect("text_embedder", "embedding_retriever")
    hybrid_retrieval.connect("bm25_retriever", "document_joiner")
    hybrid_retrieval.connect("embedding_retriever", "document_joiner")
    hybrid_retrieval.connect("document_joiner", "ranker")

    return hybrid_retrieval


def create_embedding_retriever(doc_store):
    text_embedder = SentenceTransformersTextEmbedder(
        model=embedding_model,  # "BAAI/bge-small-en-v1.5" #, device=ComponentDevice.from_str("cuda:0")
    )
    embedding_retriever = InMemoryEmbeddingRetriever(doc_store)

    ranker = SentenceTransformersSimilarityRanker(model=reranker_model)

    embedding_retrieval = Pipeline()
    embedding_retrieval.add_component("text_embedder", text_embedder)
    embedding_retrieval.add_component("embedding_retriever", embedding_retriever)
    embedding_retrieval.add_component("ranker", ranker)

    embedding_retrieval.connect("text_embedder", "embedding_retriever")
    embedding_retrieval.connect("embedding_retriever", "ranker")

    return embedding_retrieval


def create_bm25_retriever(doc_store):
    bm25_retriever = InMemoryBM25Retriever(doc_store)

    document_joiner = DocumentJoiner()
    ranker = SentenceTransformersSimilarityRanker(model=reranker_model)

    bm25_retrieval = Pipeline()
    bm25_retrieval.add_component("bm25_retriever", bm25_retriever)
    bm25_retrieval.add_component("ranker", ranker)
    bm25_retrieval.connect("bm25_retriever", "ranker")

    return bm25_retrieval


# Run the pre-defined retrievers, returns the top_k best documents.
# We can filter the doc store if we find a name in the query.
# filters = {
#     "operator": "AND",
#     "conditions": [
#         {"field": "meta.type", "operator": "==", "value": "article"},
#         {"field": "meta.genre", "operator": "in", "value": ["economy", "politics"]},
#     ],
# }
# results = DocumentStore.filter_documents(filters=filters)
def retrieve(retriever, query, top_k=8, scale=True):
    result = retriever.run(
        {
            "text_embedder": {"text": query},
            "bm25_retriever": {
                "query": query,
                "top_k": top_k,
                "scale_score": scale,
                # "filters": {"field": "meta.researcher_name",
                #             "operator": "==",
                #             "value": "P. Berck"}
            },
            "embedding_retriever": {"top_k": top_k, "scale_score": True},
            "ranker": {"query": query, "top_k": top_k, "scale_score": True},
        }
    )
    # print(result)
    # pretty_print_results(result["ranker"])
    return result["ranker"]["documents"]


def retrieve_embedded(retriever, query, top_k=8, scale=True):
    result = retriever.run(
        {
            "text_embedder": {"text": query},
            "embedding_retriever": {"top_k": top_k, "scale_score": scale},
            "ranker": {"query": query, "top_k": top_k, "scale_score": scale},
        }
    )
    return result["ranker"]["documents"]


def retrieve_bm25(retriever, query, top_k=8, scale=True):
    result = retriever.run(
        {
            "bm25_retriever": {
                "query": query,
                "top_k": top_k,
                "scale_score": scale,
                # "filters": {"field": "meta.researcher_name",
                #             "operator": "==",
                #             "value": "P. Berck"}
            },
            "ranker": {"query": query, "top_k": top_k, "scale_score": True},
        }
    )
    # print(result)
    # pretty_print_results(result["ranker"])
    return result["ranker"]["documents"]


def print_res(doc, width=0):
    try:
        txt = doc.meta["researcher_name"] + ":" + " ".join(doc.content.split())
    except KeyError:
        txt = " ".join(doc.content.split())
    if width > 0:
        txt_width = width - 8 - 3 - 1  # float and ... and LF
        txt = txt[0:txt_width] + "..."
    print("{:.5f}".format(doc.score), txt)


if __name__ == "__main__":
    terminal_width = os.get_terminal_size().columns
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-c", "--create_store", help="Create a new data store.", default=None
    )
    parser.add_argument("-d", "--dataset", help="Dataset filename.", default=None)
    parser.add_argument("-r", "--read_store", help="Read a data store.", default=None)
    parser.add_argument(
        "-s",
        "--scale",
        action="store_false",
        help="Do not scale retrieved scores.",
        default=True,
    )
    parser.add_argument("--top_k", type=int, help="Retriever top_k.", default=8)
    parser.add_argument("-q", "--query", help="Query DBs.", default=None)
    args = parser.parse_args()
    query = args.query

    if args.create_store:
        docs = build_store_from_dir("../Gradio/docs")
        rs_doc_store = InMemoryDocumentStore()
        print("Starting create_index_nosplit()")
        create_index_split(docs, rs_doc_store)
        rs_doc_store.save_to_disk(args.create_store)
        print("Ready create_index_nosplit()")

    if not args.query:
        sys.exit(0)

    if not args.read_store and not args.create_store:
        args.read_store = "research_docs_ns.store"
    elif not args.read_store and args.create_store:
        args.read_store = args.create_store
    print(f"Loading document store {args.read_store}...")
    doc_store = InMemoryDocumentStore().load_from_disk(args.read_store)
    print(f"Number of documents: {doc_store.count_documents()}.")

    # Docs are already indexed/embedded in the store.
    hybrid_retrieval = create_hybrid_retriever(doc_store)

    documents = retrieve(hybrid_retrieval, query, top_k=args.top_k, scale=args.scale)
    print("=" * 80)
    print("== Hybrid")
    print("=" * 80)
    for doc in documents:
        # print(doc.id, doc.meta["names"], ":", doc.meta["title"])
        print_res(doc, terminal_width)

    embedding_retrieval = create_embedding_retriever(doc_store)
    documents = retrieve_embedded(
        embedding_retrieval, query, top_k=args.top_k, scale=args.scale
    )
    print("=" * 80)
    print("== Embedding")
    print("=" * 80)
    for doc in documents:
        print_res(doc, terminal_width)

    bm25_retrieval = create_bm25_retriever(doc_store)
    documents = retrieve_bm25(bm25_retrieval, query, top_k=args.top_k, scale=args.scale)
    print("=" * 80)
    print("== bm25")
    print("=" * 80)
    for doc in documents:
        print_res(doc, terminal_width)