File size: 10,562 Bytes
dd32acc 3dc3f9b dd32acc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import os
import sys
from haystack.document_stores.in_memory import InMemoryDocumentStore
from datasets import load_from_disk
from haystack import Document
from haystack.components.writers import DocumentWriter
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
from haystack.components.preprocessors.document_splitter import DocumentSplitter
from haystack import Pipeline
from haystack.components.retrievers.in_memory import (
InMemoryBM25Retriever,
InMemoryEmbeddingRetriever,
)
from haystack.components.embedders import SentenceTransformersTextEmbedder
from haystack.components.joiners import DocumentJoiner
# from haystack.components.rankers import TransformersSimilarityRanker
from haystack.components.rankers import SentenceTransformersSimilarityRanker
from haystack.document_stores.types import DuplicatePolicy
from haystack.components.converters import PyPDFToDocument
from haystack.components.preprocessors import DocumentCleaner
from haystack.components.builders import PromptBuilder
from pathlib import Path
from haystack.components.converters import DOCXToDocument
import re
import argparse
"""
python hybrid.py -c newstore.store │
python hybrid.py -r newstore.store -q "who is pufendorf"
"""
embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
# see https://huggingface.co/BAAI/bge-m3
reranker_model = "BAAI/bge-reranker-base"
def build_store_from_dir(dir_path: str) -> InMemoryDocumentStore:
root = Path(dir_path)
pdfs = sorted(str(p) for p in root.rglob("*.pdf"))
docxs = sorted(str(p) for p in root.rglob("*.docx"))
print(pdfs)
print(docxs)
pdf_conv = PyPDFToDocument()
docx_conv = DOCXToDocument()
docs = []
if pdfs:
out = pdf_conv.run(sources=pdfs, meta=[{"source": p} for p in pdfs])
docs.extend(out["documents"])
if docxs:
out = docx_conv.run(sources=docxs, meta=[{"source": p} for p in docxs])
docs.extend(out["documents"])
return docs
# Example usage:
# store = build_store_from_dir("/path/to/folder")
# print(len(store.filter_documents({})))
# As above, but splits the contents into sentences.
def create_index_split(docs, doc_store, split_length=5, split_overlap=1):
document_splitter = DocumentSplitter(
split_by="sentence", split_length=split_length, split_overlap=split_overlap
)
document_embedder = SentenceTransformersDocumentEmbedder(
model=embedding_model,
)
document_writer = DocumentWriter(doc_store, policy=DuplicatePolicy.SKIP)
indexing_pipeline = Pipeline()
indexing_pipeline.add_component("document_splitter", document_splitter)
indexing_pipeline.add_component("document_embedder", document_embedder)
indexing_pipeline.add_component("document_writer", document_writer)
indexing_pipeline.connect("document_splitter", "document_embedder")
indexing_pipeline.connect("document_embedder", "document_writer")
indexing_pipeline.run({"document_splitter": {"documents": docs}})
hybrid_retrieval = create_hybrid_retriever(doc_store)
return hybrid_retrieval
# Just the retriever pipeline on a document store.
# Creates an embedding and BM25 retriever on the doc_store.
def create_hybrid_retriever(doc_store):
text_embedder = SentenceTransformersTextEmbedder(
model=embedding_model,
)
embedding_retriever = InMemoryEmbeddingRetriever(doc_store)
bm25_retriever = InMemoryBM25Retriever(doc_store)
document_joiner = DocumentJoiner()
# ranker = TransformersSimilarityRanker(model=reranker_model)
# Needs haystack-ai >= 2.14
ranker = SentenceTransformersSimilarityRanker(model=reranker_model)
hybrid_retrieval = Pipeline()
hybrid_retrieval.add_component("text_embedder", text_embedder)
hybrid_retrieval.add_component("embedding_retriever", embedding_retriever)
hybrid_retrieval.add_component("bm25_retriever", bm25_retriever)
hybrid_retrieval.add_component("document_joiner", document_joiner)
hybrid_retrieval.add_component("ranker", ranker)
hybrid_retrieval.connect("text_embedder", "embedding_retriever")
hybrid_retrieval.connect("bm25_retriever", "document_joiner")
hybrid_retrieval.connect("embedding_retriever", "document_joiner")
hybrid_retrieval.connect("document_joiner", "ranker")
return hybrid_retrieval
def create_embedding_retriever(doc_store):
text_embedder = SentenceTransformersTextEmbedder(
model=embedding_model, # "BAAI/bge-small-en-v1.5" #, device=ComponentDevice.from_str("cuda:0")
)
embedding_retriever = InMemoryEmbeddingRetriever(doc_store)
ranker = SentenceTransformersSimilarityRanker(model=reranker_model)
embedding_retrieval = Pipeline()
embedding_retrieval.add_component("text_embedder", text_embedder)
embedding_retrieval.add_component("embedding_retriever", embedding_retriever)
embedding_retrieval.add_component("ranker", ranker)
embedding_retrieval.connect("text_embedder", "embedding_retriever")
embedding_retrieval.connect("embedding_retriever", "ranker")
return embedding_retrieval
def create_bm25_retriever(doc_store):
bm25_retriever = InMemoryBM25Retriever(doc_store)
document_joiner = DocumentJoiner()
ranker = SentenceTransformersSimilarityRanker(model=reranker_model)
bm25_retrieval = Pipeline()
bm25_retrieval.add_component("bm25_retriever", bm25_retriever)
bm25_retrieval.add_component("ranker", ranker)
bm25_retrieval.connect("bm25_retriever", "ranker")
return bm25_retrieval
# Run the pre-defined retrievers, returns the top_k best documents.
# We can filter the doc store if we find a name in the query.
# filters = {
# "operator": "AND",
# "conditions": [
# {"field": "meta.type", "operator": "==", "value": "article"},
# {"field": "meta.genre", "operator": "in", "value": ["economy", "politics"]},
# ],
# }
# results = DocumentStore.filter_documents(filters=filters)
def retrieve(retriever, query, top_k=8, scale=True):
result = retriever.run(
{
"text_embedder": {"text": query},
"bm25_retriever": {
"query": query,
"top_k": top_k,
"scale_score": scale,
# "filters": {"field": "meta.researcher_name",
# "operator": "==",
# "value": "P. Berck"}
},
"embedding_retriever": {"top_k": top_k, "scale_score": True},
"ranker": {"query": query, "top_k": top_k, "scale_score": True},
}
)
# print(result)
# pretty_print_results(result["ranker"])
return result["ranker"]["documents"]
def retrieve_embedded(retriever, query, top_k=8, scale=True):
result = retriever.run(
{
"text_embedder": {"text": query},
"embedding_retriever": {"top_k": top_k, "scale_score": scale},
"ranker": {"query": query, "top_k": top_k, "scale_score": scale},
}
)
return result["ranker"]["documents"]
def retrieve_bm25(retriever, query, top_k=8, scale=True):
result = retriever.run(
{
"bm25_retriever": {
"query": query,
"top_k": top_k,
"scale_score": scale,
# "filters": {"field": "meta.researcher_name",
# "operator": "==",
# "value": "P. Berck"}
},
"ranker": {"query": query, "top_k": top_k, "scale_score": True},
}
)
# print(result)
# pretty_print_results(result["ranker"])
return result["ranker"]["documents"]
def print_res(doc, width=0):
try:
txt = doc.meta["researcher_name"] + ":" + " ".join(doc.content.split())
except KeyError:
txt = " ".join(doc.content.split())
if width > 0:
txt_width = width - 8 - 3 - 1 # float and ... and LF
txt = txt[0:txt_width] + "..."
print("{:.5f}".format(doc.score), txt)
if __name__ == "__main__":
terminal_width = os.get_terminal_size().columns
parser = argparse.ArgumentParser()
parser.add_argument(
"-c", "--create_store", help="Create a new data store.", default=None
)
parser.add_argument("-d", "--dataset", help="Dataset filename.", default=None)
parser.add_argument("-r", "--read_store", help="Read a data store.", default=None)
parser.add_argument(
"-s",
"--scale",
action="store_false",
help="Do not scale retrieved scores.",
default=True,
)
parser.add_argument("--top_k", type=int, help="Retriever top_k.", default=8)
parser.add_argument("-q", "--query", help="Query DBs.", default=None)
args = parser.parse_args()
query = args.query
if args.create_store:
docs = build_store_from_dir("../Gradio/docs")
rs_doc_store = InMemoryDocumentStore()
print("Starting create_index_nosplit()")
create_index_split(docs, rs_doc_store)
rs_doc_store.save_to_disk(args.create_store)
print("Ready create_index_nosplit()")
if not args.query:
sys.exit(0)
if not args.read_store and not args.create_store:
args.read_store = "research_docs_ns.store"
elif not args.read_store and args.create_store:
args.read_store = args.create_store
print(f"Loading document store {args.read_store}...")
doc_store = InMemoryDocumentStore().load_from_disk(args.read_store)
print(f"Number of documents: {doc_store.count_documents()}.")
# Docs are already indexed/embedded in the store.
hybrid_retrieval = create_hybrid_retriever(doc_store)
documents = retrieve(hybrid_retrieval, query, top_k=args.top_k, scale=args.scale)
print("=" * 80)
print("== Hybrid")
print("=" * 80)
for doc in documents:
# print(doc.id, doc.meta["names"], ":", doc.meta["title"])
print_res(doc, terminal_width)
embedding_retrieval = create_embedding_retriever(doc_store)
documents = retrieve_embedded(
embedding_retrieval, query, top_k=args.top_k, scale=args.scale
)
print("=" * 80)
print("== Embedding")
print("=" * 80)
for doc in documents:
print_res(doc, terminal_width)
bm25_retrieval = create_bm25_retriever(doc_store)
documents = retrieve_bm25(bm25_retrieval, query, top_k=args.top_k, scale=args.scale)
print("=" * 80)
print("== bm25")
print("=" * 80)
for doc in documents:
print_res(doc, terminal_width)
|