Added hybrid.py and store.
Browse files- .gitattributes +1 -0
- app.py +9 -1
- hybrid.py +293 -0
- pufendorfdocs.store +3 -0
- vector3_db/a1b2bf9f-4f30-46a6-a6c2-b6ca99effce9/length.bin +1 -1
- vector3_db/chroma.sqlite3 +1 -1
.gitattributes
CHANGED
|
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
*.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
| 37 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
*.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
| 37 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
*.store filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -11,7 +11,13 @@ import json
|
|
| 11 |
from sentence_transformers import CrossEncoder
|
| 12 |
import numpy as np
|
| 13 |
from datetime import datetime
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
# openAI API credits:
|
| 16 |
# https://platform.openai.com/settings/organization/billing/overview
|
| 17 |
|
|
@@ -414,4 +420,6 @@ with gr.Blocks(theme=theme) as demo_blocks:
|
|
| 414 |
# demo.launch(share=True)
|
| 415 |
if __name__ == "__main__":
|
| 416 |
print("Starting")
|
|
|
|
|
|
|
| 417 |
demo_blocks.launch()
|
|
|
|
| 11 |
from sentence_transformers import CrossEncoder
|
| 12 |
import numpy as np
|
| 13 |
from datetime import datetime
|
| 14 |
+
from hybrid import (
|
| 15 |
+
embedding_model,
|
| 16 |
+
reranker_model,
|
| 17 |
+
create_hybrid_retriever,
|
| 18 |
+
retrieve,
|
| 19 |
+
InMemoryDocumentStore,
|
| 20 |
+
)
|
| 21 |
# openAI API credits:
|
| 22 |
# https://platform.openai.com/settings/organization/billing/overview
|
| 23 |
|
|
|
|
| 420 |
# demo.launch(share=True)
|
| 421 |
if __name__ == "__main__":
|
| 422 |
print("Starting")
|
| 423 |
+
doc_store = InMemoryDocumentStore().load_from_disk("pufendorfdocs.store")
|
| 424 |
+
print(f"Number of documents: {doc_store.count_documents()}.")
|
| 425 |
demo_blocks.launch()
|
hybrid.py
ADDED
|
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
| 4 |
+
from datasets import load_from_disk
|
| 5 |
+
from haystack import Document
|
| 6 |
+
from haystack.components.writers import DocumentWriter
|
| 7 |
+
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
|
| 8 |
+
from haystack.components.preprocessors.document_splitter import DocumentSplitter
|
| 9 |
+
from haystack import Pipeline
|
| 10 |
+
from haystack.components.retrievers.in_memory import (
|
| 11 |
+
InMemoryBM25Retriever,
|
| 12 |
+
InMemoryEmbeddingRetriever,
|
| 13 |
+
)
|
| 14 |
+
from haystack.components.embedders import SentenceTransformersTextEmbedder
|
| 15 |
+
from haystack.components.joiners import DocumentJoiner
|
| 16 |
+
|
| 17 |
+
# from haystack.components.rankers import TransformersSimilarityRanker
|
| 18 |
+
from haystack.components.rankers import SentenceTransformersSimilarityRanker
|
| 19 |
+
from haystack.document_stores.types import DuplicatePolicy
|
| 20 |
+
from haystack.components.converters import PyPDFToDocument
|
| 21 |
+
from haystack.components.preprocessors import DocumentCleaner
|
| 22 |
+
from haystack.components.builders import PromptBuilder
|
| 23 |
+
from haystack_integrations.components.generators.ollama import OllamaGenerator
|
| 24 |
+
from pathlib import Path
|
| 25 |
+
from haystack.components.converters import DOCXToDocument
|
| 26 |
+
import re
|
| 27 |
+
import argparse
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
"""
|
| 31 |
+
python hybrid.py -c newstore.store │
|
| 32 |
+
python hybrid.py -r newstore.store -q "who is pufendorf"
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
# embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
|
| 36 |
+
embedding_model = "sentence-transformers/all-MiniLM-L12-v2"
|
| 37 |
+
|
| 38 |
+
# see https://huggingface.co/BAAI/bge-m3
|
| 39 |
+
reranker_model = "BAAI/bge-reranker-base"
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def build_store_from_dir(dir_path: str) -> InMemoryDocumentStore:
|
| 43 |
+
root = Path(dir_path)
|
| 44 |
+
pdfs = sorted(str(p) for p in root.rglob("*.pdf"))
|
| 45 |
+
docxs = sorted(str(p) for p in root.rglob("*.docx"))
|
| 46 |
+
|
| 47 |
+
print(pdfs)
|
| 48 |
+
print(docxs)
|
| 49 |
+
|
| 50 |
+
pdf_conv = PyPDFToDocument()
|
| 51 |
+
docx_conv = DOCXToDocument()
|
| 52 |
+
|
| 53 |
+
docs = []
|
| 54 |
+
if pdfs:
|
| 55 |
+
out = pdf_conv.run(sources=pdfs, meta=[{"source": p} for p in pdfs])
|
| 56 |
+
docs.extend(out["documents"])
|
| 57 |
+
if docxs:
|
| 58 |
+
out = docx_conv.run(sources=docxs, meta=[{"source": p} for p in docxs])
|
| 59 |
+
docs.extend(out["documents"])
|
| 60 |
+
|
| 61 |
+
return docs
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# Example usage:
|
| 65 |
+
# store = build_store_from_dir("/path/to/folder")
|
| 66 |
+
# print(len(store.filter_documents({})))
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# As above, but splits the contents into sentences.
|
| 70 |
+
def create_index_split(docs, doc_store, split_length=5, split_overlap=1):
|
| 71 |
+
document_splitter = DocumentSplitter(
|
| 72 |
+
split_by="sentence", split_length=split_length, split_overlap=split_overlap
|
| 73 |
+
)
|
| 74 |
+
document_embedder = SentenceTransformersDocumentEmbedder(
|
| 75 |
+
model=embedding_model,
|
| 76 |
+
)
|
| 77 |
+
document_writer = DocumentWriter(doc_store, policy=DuplicatePolicy.SKIP)
|
| 78 |
+
|
| 79 |
+
indexing_pipeline = Pipeline()
|
| 80 |
+
indexing_pipeline.add_component("document_splitter", document_splitter)
|
| 81 |
+
indexing_pipeline.add_component("document_embedder", document_embedder)
|
| 82 |
+
indexing_pipeline.add_component("document_writer", document_writer)
|
| 83 |
+
|
| 84 |
+
indexing_pipeline.connect("document_splitter", "document_embedder")
|
| 85 |
+
indexing_pipeline.connect("document_embedder", "document_writer")
|
| 86 |
+
|
| 87 |
+
indexing_pipeline.run({"document_splitter": {"documents": docs}})
|
| 88 |
+
|
| 89 |
+
hybrid_retrieval = create_hybrid_retriever(doc_store)
|
| 90 |
+
return hybrid_retrieval
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
# Just the retriever pipeline on a document store.
|
| 94 |
+
# Creates an embedding and BM25 retriever on the doc_store.
|
| 95 |
+
def create_hybrid_retriever(doc_store):
|
| 96 |
+
text_embedder = SentenceTransformersTextEmbedder(
|
| 97 |
+
model=embedding_model,
|
| 98 |
+
)
|
| 99 |
+
embedding_retriever = InMemoryEmbeddingRetriever(doc_store)
|
| 100 |
+
bm25_retriever = InMemoryBM25Retriever(doc_store)
|
| 101 |
+
|
| 102 |
+
document_joiner = DocumentJoiner()
|
| 103 |
+
# ranker = TransformersSimilarityRanker(model=reranker_model)
|
| 104 |
+
# Needs haystack-ai >= 2.14
|
| 105 |
+
ranker = SentenceTransformersSimilarityRanker(model=reranker_model)
|
| 106 |
+
|
| 107 |
+
hybrid_retrieval = Pipeline()
|
| 108 |
+
hybrid_retrieval.add_component("text_embedder", text_embedder)
|
| 109 |
+
hybrid_retrieval.add_component("embedding_retriever", embedding_retriever)
|
| 110 |
+
hybrid_retrieval.add_component("bm25_retriever", bm25_retriever)
|
| 111 |
+
hybrid_retrieval.add_component("document_joiner", document_joiner)
|
| 112 |
+
hybrid_retrieval.add_component("ranker", ranker)
|
| 113 |
+
|
| 114 |
+
hybrid_retrieval.connect("text_embedder", "embedding_retriever")
|
| 115 |
+
hybrid_retrieval.connect("bm25_retriever", "document_joiner")
|
| 116 |
+
hybrid_retrieval.connect("embedding_retriever", "document_joiner")
|
| 117 |
+
hybrid_retrieval.connect("document_joiner", "ranker")
|
| 118 |
+
|
| 119 |
+
return hybrid_retrieval
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def create_embedding_retriever(doc_store):
|
| 123 |
+
text_embedder = SentenceTransformersTextEmbedder(
|
| 124 |
+
model=embedding_model, # "BAAI/bge-small-en-v1.5" #, device=ComponentDevice.from_str("cuda:0")
|
| 125 |
+
)
|
| 126 |
+
embedding_retriever = InMemoryEmbeddingRetriever(doc_store)
|
| 127 |
+
|
| 128 |
+
ranker = SentenceTransformersSimilarityRanker(model=reranker_model)
|
| 129 |
+
|
| 130 |
+
embedding_retrieval = Pipeline()
|
| 131 |
+
embedding_retrieval.add_component("text_embedder", text_embedder)
|
| 132 |
+
embedding_retrieval.add_component("embedding_retriever", embedding_retriever)
|
| 133 |
+
embedding_retrieval.add_component("ranker", ranker)
|
| 134 |
+
|
| 135 |
+
embedding_retrieval.connect("text_embedder", "embedding_retriever")
|
| 136 |
+
embedding_retrieval.connect("embedding_retriever", "ranker")
|
| 137 |
+
|
| 138 |
+
return embedding_retrieval
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def create_bm25_retriever(doc_store):
|
| 142 |
+
bm25_retriever = InMemoryBM25Retriever(doc_store)
|
| 143 |
+
|
| 144 |
+
document_joiner = DocumentJoiner()
|
| 145 |
+
ranker = SentenceTransformersSimilarityRanker(model=reranker_model)
|
| 146 |
+
|
| 147 |
+
bm25_retrieval = Pipeline()
|
| 148 |
+
bm25_retrieval.add_component("bm25_retriever", bm25_retriever)
|
| 149 |
+
bm25_retrieval.add_component("ranker", ranker)
|
| 150 |
+
bm25_retrieval.connect("bm25_retriever", "ranker")
|
| 151 |
+
|
| 152 |
+
return bm25_retrieval
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
# Run the pre-defined retrievers, returns the top_k best documents.
|
| 156 |
+
# We can filter the doc store if we find a name in the query.
|
| 157 |
+
# filters = {
|
| 158 |
+
# "operator": "AND",
|
| 159 |
+
# "conditions": [
|
| 160 |
+
# {"field": "meta.type", "operator": "==", "value": "article"},
|
| 161 |
+
# {"field": "meta.genre", "operator": "in", "value": ["economy", "politics"]},
|
| 162 |
+
# ],
|
| 163 |
+
# }
|
| 164 |
+
# results = DocumentStore.filter_documents(filters=filters)
|
| 165 |
+
def retrieve(retriever, query, top_k=8, scale=True):
|
| 166 |
+
result = retriever.run(
|
| 167 |
+
{
|
| 168 |
+
"text_embedder": {"text": query},
|
| 169 |
+
"bm25_retriever": {
|
| 170 |
+
"query": query,
|
| 171 |
+
"top_k": top_k,
|
| 172 |
+
"scale_score": scale,
|
| 173 |
+
# "filters": {"field": "meta.researcher_name",
|
| 174 |
+
# "operator": "==",
|
| 175 |
+
# "value": "P. Berck"}
|
| 176 |
+
},
|
| 177 |
+
"embedding_retriever": {"top_k": top_k, "scale_score": True},
|
| 178 |
+
"ranker": {"query": query, "top_k": top_k, "scale_score": True},
|
| 179 |
+
}
|
| 180 |
+
)
|
| 181 |
+
# print(result)
|
| 182 |
+
# pretty_print_results(result["ranker"])
|
| 183 |
+
return result["ranker"]["documents"]
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def retrieve_embedded(retriever, query, top_k=8, scale=True):
|
| 187 |
+
result = retriever.run(
|
| 188 |
+
{
|
| 189 |
+
"text_embedder": {"text": query},
|
| 190 |
+
"embedding_retriever": {"top_k": top_k, "scale_score": scale},
|
| 191 |
+
"ranker": {"query": query, "top_k": top_k, "scale_score": scale},
|
| 192 |
+
}
|
| 193 |
+
)
|
| 194 |
+
return result["ranker"]["documents"]
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def retrieve_bm25(retriever, query, top_k=8, scale=True):
|
| 198 |
+
result = retriever.run(
|
| 199 |
+
{
|
| 200 |
+
"bm25_retriever": {
|
| 201 |
+
"query": query,
|
| 202 |
+
"top_k": top_k,
|
| 203 |
+
"scale_score": scale,
|
| 204 |
+
# "filters": {"field": "meta.researcher_name",
|
| 205 |
+
# "operator": "==",
|
| 206 |
+
# "value": "P. Berck"}
|
| 207 |
+
},
|
| 208 |
+
"ranker": {"query": query, "top_k": top_k, "scale_score": True},
|
| 209 |
+
}
|
| 210 |
+
)
|
| 211 |
+
# print(result)
|
| 212 |
+
# pretty_print_results(result["ranker"])
|
| 213 |
+
return result["ranker"]["documents"]
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def print_res(doc, width=0):
|
| 217 |
+
try:
|
| 218 |
+
txt = doc.meta["researcher_name"] + ":" + " ".join(doc.content.split())
|
| 219 |
+
except KeyError:
|
| 220 |
+
txt = " ".join(doc.content.split())
|
| 221 |
+
if width > 0:
|
| 222 |
+
txt_width = width - 8 - 3 - 1 # float and ... and LF
|
| 223 |
+
txt = txt[0:txt_width] + "..."
|
| 224 |
+
print("{:.5f}".format(doc.score), txt)
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
if __name__ == "__main__":
|
| 228 |
+
terminal_width = os.get_terminal_size().columns
|
| 229 |
+
parser = argparse.ArgumentParser()
|
| 230 |
+
parser.add_argument(
|
| 231 |
+
"-c", "--create_store", help="Create a new data store.", default=None
|
| 232 |
+
)
|
| 233 |
+
parser.add_argument("-d", "--dataset", help="Dataset filename.", default=None)
|
| 234 |
+
parser.add_argument("-r", "--read_store", help="Read a data store.", default=None)
|
| 235 |
+
parser.add_argument(
|
| 236 |
+
"-s",
|
| 237 |
+
"--scale",
|
| 238 |
+
action="store_false",
|
| 239 |
+
help="Do not scale retrieved scores.",
|
| 240 |
+
default=True,
|
| 241 |
+
)
|
| 242 |
+
parser.add_argument("--top_k", type=int, help="Retriever top_k.", default=8)
|
| 243 |
+
parser.add_argument("-q", "--query", help="Query DBs.", default=None)
|
| 244 |
+
args = parser.parse_args()
|
| 245 |
+
query = args.query
|
| 246 |
+
|
| 247 |
+
if args.create_store:
|
| 248 |
+
docs = build_store_from_dir("../Gradio/docs")
|
| 249 |
+
rs_doc_store = InMemoryDocumentStore()
|
| 250 |
+
print("Starting create_index_nosplit()")
|
| 251 |
+
create_index_split(docs, rs_doc_store)
|
| 252 |
+
rs_doc_store.save_to_disk(args.create_store)
|
| 253 |
+
print("Ready create_index_nosplit()")
|
| 254 |
+
|
| 255 |
+
if not args.query:
|
| 256 |
+
sys.exit(0)
|
| 257 |
+
|
| 258 |
+
if not args.read_store and not args.create_store:
|
| 259 |
+
args.read_store = "research_docs_ns.store"
|
| 260 |
+
elif not args.read_store and args.create_store:
|
| 261 |
+
args.read_store = args.create_store
|
| 262 |
+
print(f"Loading document store {args.read_store}...")
|
| 263 |
+
doc_store = InMemoryDocumentStore().load_from_disk(args.read_store)
|
| 264 |
+
print(f"Number of documents: {doc_store.count_documents()}.")
|
| 265 |
+
|
| 266 |
+
# Docs are already indexed/embedded in the store.
|
| 267 |
+
hybrid_retrieval = create_hybrid_retriever(doc_store)
|
| 268 |
+
|
| 269 |
+
documents = retrieve(hybrid_retrieval, query, top_k=args.top_k, scale=args.scale)
|
| 270 |
+
print("=" * 80)
|
| 271 |
+
print("== Hybrid")
|
| 272 |
+
print("=" * 80)
|
| 273 |
+
for doc in documents:
|
| 274 |
+
# print(doc.id, doc.meta["names"], ":", doc.meta["title"])
|
| 275 |
+
print_res(doc, terminal_width)
|
| 276 |
+
|
| 277 |
+
embedding_retrieval = create_embedding_retriever(doc_store)
|
| 278 |
+
documents = retrieve_embedded(
|
| 279 |
+
embedding_retrieval, query, top_k=args.top_k, scale=args.scale
|
| 280 |
+
)
|
| 281 |
+
print("=" * 80)
|
| 282 |
+
print("== Embedding")
|
| 283 |
+
print("=" * 80)
|
| 284 |
+
for doc in documents:
|
| 285 |
+
print_res(doc, terminal_width)
|
| 286 |
+
|
| 287 |
+
bm25_retrieval = create_bm25_retriever(doc_store)
|
| 288 |
+
documents = retrieve_bm25(bm25_retrieval, query, top_k=args.top_k, scale=args.scale)
|
| 289 |
+
print("=" * 80)
|
| 290 |
+
print("== bm25")
|
| 291 |
+
print("=" * 80)
|
| 292 |
+
for doc in documents:
|
| 293 |
+
print_res(doc, terminal_width)
|
pufendorfdocs.store
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2e1919adcb2c09b60c3e2e731e05bf2fb97246987855c30f6ddd419e009fc64e
|
| 3 |
+
size 9391350
|
vector3_db/a1b2bf9f-4f30-46a6-a6c2-b6ca99effce9/length.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 40000
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cc238a7a80a8cb9db9df824df6a3252ba0dd6f473223db345f2c4727a127151f
|
| 3 |
size 40000
|
vector3_db/chroma.sqlite3
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 11452416
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2cc72bc69672f1f5b68354ede0d475127b802f0ccc23c123c1cdb4186df4e549
|
| 3 |
size 11452416
|