Spaces:
Paused
Paused
File size: 16,086 Bytes
a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 5d89594 e3acd98 a835137 5d89594 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 d1a16a0 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 d1a16a0 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 e3acd98 93eee8b a835137 93eee8b e3acd98 a835137 e3acd98 a835137 e3acd98 a835137 93eee8b e3acd98 a835137 e3acd98 a835137 b15b37a a835137 b15b37a a835137 b15b37a a835137 b15b37a a835137 b15b37a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import gradio as gr
import spaces
import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np
import math
import os
import pickle
import requests
import textwrap
import subprocess
import shutil
from dataclasses import dataclass
from typing import Optional
def setup_environment():
"""
Checks for and sets up the necessary data and code.
- Clones nanoGPT if not present.
- Copies the shakespeare_char dataset directory.
- Runs the data preparation script to create meta.pkl and binary files.
This function makes the script self-contained.
"""
nano_gpt_repo_path = 'nanoGPT'
data_dir_path = 'shakespeare_char'
meta_path = os.path.join(data_dir_path, 'meta.pkl')
# If the final metadata file already exists, we assume setup is complete.
if os.path.exists(meta_path):
print("Dataset and metadata found. Skipping setup.")
return
print("Required data not found. Starting one-time setup...")
# 1. Clone nanoGPT repository if it doesn't exist
if not os.path.exists(nano_gpt_repo_path):
print(f"Cloning nanoGPT repository...")
try:
subprocess.run(
['git', 'clone', 'https://github.com/karpathy/nanoGPT.git'],
check=True, capture_output=True, text=True
)
print("Cloned successfully.")
except subprocess.CalledProcessError as e:
print(f"Error cloning repository: {e.stderr}")
raise
else:
print("nanoGPT repository already exists.")
# 2. Copy the dataset directory if it doesn't exist
source_data_dir = os.path.join(nano_gpt_repo_path, 'data', 'shakespeare_char')
if not os.path.exists(data_dir_path):
print(f"Copying '{source_data_dir}' to '{data_dir_path}'...")
shutil.copytree(source_data_dir, data_dir_path)
print("Copied successfully.")
else:
print(f"'{data_dir_path}' directory already exists.")
# 3. Run the data preparation script
prepare_script_path = os.path.join(data_dir_path, 'prepare.py')
if not os.path.exists(meta_path):
print(f"Running data preparation script: '{prepare_script_path}'...")
# We need to run the script from within its directory for it to find input.txt
try:
subprocess.run(
['python', 'prepare.py'],
check=True, cwd=data_dir_path, capture_output=True, text=True
)
print("Data preparation script finished successfully.")
except subprocess.CalledProcessError as e:
print(f"Error running prepare.py: {e.stderr}")
raise
print("Setup complete.")
# Run the setup process before anything else
setup_environment()
# --- 2. Global Setup & Helper Functions ---
# Load metadata (guaranteed to exist by the setup function)
data_dir = './shakespeare_char/'
meta_path = os.path.join(data_dir, 'meta.pkl')
with open(meta_path, 'rb') as f:
meta = pickle.load(f)
vocab_size = meta['vocab_size']
itos = meta['itos']
stoi = meta['stoi']
context_length = 256
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def decode(indices_tensor: torch.Tensor):
"""Decodes a 1D tensor of indices to text"""
if indices_tensor.dim() > 1:
indices_tensor = indices_tensor.squeeze(0)
indices = indices_tensor.cpu().numpy()
return ''.join([itos.get(i, '?') for i in indices]) # Use .get for safety
def wrap_text(long_text, width=80):
"""Wraps text to a maximum line width, preserving paragraph breaks."""
paragraphs = long_text.splitlines()
wrapped = [textwrap.fill(p, width=width) if p else '' for p in paragraphs]
return "\n".join(wrapped)
# --- 3. Model Architecture (Identical to Notebook) ---
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50304
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
cond_dim: int = 64
dropout: float = 0.0
bias: bool = False
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
class SelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
def forward(self, x):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
if self.flash:
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=False)
else:
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_dropout(self.c_proj(y))
return y
def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
return x * (1 + scale) + shift
def bias_add_scale(x: torch.Tensor, bias: Optional[torch.Tensor], scale: torch.Tensor, residual: Optional[torch.Tensor]) -> torch.Tensor:
if bias is not None:
out = scale * (x + bias)
else:
out = scale * x
if residual is not None:
out = residual + out
return out
class DDiTBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd, bias=config.bias)
self.attn = SelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd, bias=config.bias)
self.mlp = MLP(config)
self.adaLN_modulation = nn.Linear(config.cond_dim, 6 * config.n_embd)
self.adaLN_modulation.weight.data.zero_()
self.adaLN_modulation.bias.data.zero_()
def forward(self, x, c):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
x_skip = x
x = modulate(self.ln_1(x), shift_msa, scale_msa)
x = self.attn(x)
x = bias_add_scale(self.attn(self.ln_1(x)), None, gate_msa, x_skip)
x = bias_add_scale(self.mlp(modulate(self.ln_2(x), shift_mlp, scale_mlp)), None, gate_mlp, x)
return x
class DDitFinalLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.norm_final = nn.LayerNorm(config.n_embd, bias=config.bias)
self.linear = nn.Linear(config.n_embd, config.vocab_size)
self.linear.weight.data.zero_()
self.linear.bias.data.zero_()
self.adaLN_modulation = nn.Linear(config.cond_dim, 2 * config.n_embd)
self.adaLN_modulation.weight.data.zero_()
self.adaLN_modulation.bias.data.zero_()
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class TimestepEmbedder(nn.Module):
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
self.sigma_map = TimestepEmbedder(config.cond_dim)
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
drop = nn.Dropout(config.dropout),
h = nn.ModuleList([DDiTBlock(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd, bias=config.bias),
))
self.lm_head = DDitFinalLayer(config)
self.apply(self._init_weights)
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, sigma):
sigma = sigma.reshape(-1)
b, t = idx.size()
c = F.silu(self.sigma_map(sigma))
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
x = block(x, c)
x = self.transformer.ln_f(x)
x = self.lm_head(x, c)
x = torch.scatter(x, -1, idx[..., None], torch.zeros_like(x[..., :1]))
return x
class GeometricNoise:
def __init__(self, sigma_min=1e-4, sigma_max=20):
self.sigmas = 1.0 * torch.tensor([sigma_min, sigma_max]).to(device)
def rate_noise(self, t):
return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t * (self.sigmas[1].log() - self.sigmas[0].log())
def total_noise(self, t):
return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t
def __call__(self, t):
return self.total_noise(t), self.rate_noise(t)
# --- 4. Inference & Sampling Logic (Identical to Notebook) ---
def transition(x_t: torch.Tensor, delta_sigma: torch.Tensor) -> torch.Tensor:
base_prob = (1 - torch.exp(-delta_sigma[..., None])) / vocab_size
trans = torch.ones(*x_t.shape, vocab_size, device=x_t.device) * base_prob
trans = trans.scatter(-1, x_t[..., None], torch.zeros_like(trans))
diag_fill = 1 - trans.sum(dim=-1, keepdim=True)
trans = trans.scatter(-1, x_t[..., None], diag_fill)
return trans
def staggered_score(score, delta_sigma):
exp_factor = torch.exp(-delta_sigma)[..., None]
correction = ((exp_factor - 1) / (vocab_size * exp_factor)) * score.sum(dim=-1, keepdim=True)
return correction + score / exp_factor
def sample_categorical(probs: torch.Tensor) -> torch.Tensor:
eps = 1e-10
gumbel_noise = -torch.log(-torch.log(torch.rand_like(probs) + eps) + eps)
return torch.argmax(torch.log(probs + eps) + gumbel_noise, dim=-1)
# --- 5. Model Initialization and Loading ---
print("Initializing and loading the pretrained model...")
model_args = dict(n_layer=6, n_head=6, n_embd=384, cond_dim=64,
bias=False, vocab_size=vocab_size, block_size=context_length, dropout=0.2)
config = GPTConfig(**model_args)
model = GPT(config)
model.load_state_dict(
torch.hub.load_state_dict_from_url(
'https://raw.githubusercontent.com/ash80/diffusion-gpt/master/pretrained_model/model_epoch_25.pth',
map_location=device
)
)
model.to(device)
model.eval()
noise = GeometricNoise(sigma_min=1e-4, sigma_max=20)
print("Model loaded successfully.")
# --- 6. Gradio Interface ---
@spaces.GPU
def generate_text(steps):
"""
The main generation function for the Gradio app.
This function contains the exact denoising loop from the notebook.
"""
steps = int(steps)
eps = 1e-5
# Start with a random sample
x = torch.randint(0, vocab_size, (1, context_length), device=device)
initial_text = f"--- Initial Random Noise ---\n\n{wrap_text(decode(x[0]))}"
yield initial_text
timesteps = torch.linspace(1, eps, steps + 1, device=device)
step_size = (1 - eps) / steps
with torch.no_grad():
for i in range(steps):
t = timesteps[i] * torch.ones(x.shape[0], 1, device=device)
curr_sigma_bar = noise(t)[0]
# This logic block handles all but the last step
next_sigma_bar = noise(t - step_size)[0]
delta_sigma = curr_sigma_bar - next_sigma_bar
log_score = model(x, curr_sigma_bar)
score = torch.exp(log_score)
stag_score = staggered_score(score, delta_sigma)
probs = stag_score * transition(x, delta_sigma)
x = sample_categorical(probs)
# Yield intermediate result
progress_text = f"--- Denoising Step {i + 1}/{steps} ---\n\n{wrap_text(decode(x[0]))}"
yield progress_text
# Final denoising step
t = timesteps[steps] * torch.ones(x.shape[0], 1, device=device)
curr_sigma_bar = noise(t)[0]
delta_sigma = curr_sigma_bar # delta is curr_sigma - 0
log_score = model(x, curr_sigma_bar)
score = torch.exp(log_score)
stag_score = staggered_score(score, delta_sigma)
probs = stag_score * transition(x, delta_sigma)
x = sample_categorical(probs)
final_text = f"--- Final Denoised Text (Step {steps}) ---\n\n{wrap_text(decode(x[0]))}"
yield final_text
# Define the Gradio UI
with gr.Blocks(theme=gr.themes.Citrus()) as demo:
gr.Markdown(
"""
# The Annotated Discrete Diffusion Models
This Gradio demo provides an interactive implementation of the character-level discrete diffusion model from the notebook.
The model starts with random characters (noise) and iteratively denoises them to generate coherent text in the style of Shakespeare.
"""
)
steps_slider = gr.Slider(
minimum=10,
maximum=256,
value=128,
step=1,
label="Denoising Steps",
info="Number of steps in the reverse diffusion process."
)
generate_button = gr.Button("Generate", variant="primary")
output_textbox = gr.Textbox(
label="Generated Text",
lines=15,
interactive=False,
show_copy_button=True,
placeholder="Generation will appear here..."
)
generate_button.click(
fn=generate_text,
inputs=[steps_slider],
outputs=[output_textbox]
)
if __name__ == "__main__":
demo.launch() |