Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import math
|
| 5 |
+
import pickle
|
| 6 |
+
import shutil
|
| 7 |
+
import subprocess
|
| 8 |
+
import sys
|
| 9 |
+
import textwrap
|
| 10 |
+
import time
|
| 11 |
+
from dataclasses import dataclass
|
| 12 |
+
from typing import Optional
|
| 13 |
+
import spaces
|
| 14 |
+
|
| 15 |
+
import gradio as gr
|
| 16 |
+
import numpy as np
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
from torch.nn import functional as F
|
| 20 |
+
|
| 21 |
+
# --- One-Time Setup Function ---
|
| 22 |
+
|
| 23 |
+
def setup_data():
|
| 24 |
+
"""
|
| 25 |
+
Checks for dataset metadata and prepares it if missing.
|
| 26 |
+
This involves cloning a repo, running a script, and cleaning up.
|
| 27 |
+
"""
|
| 28 |
+
data_dir = 'shakespeare_char'
|
| 29 |
+
meta_path = os.path.join(data_dir, 'meta.pkl')
|
| 30 |
+
|
| 31 |
+
if os.path.exists(meta_path):
|
| 32 |
+
print("Dataset metadata found. Skipping setup.")
|
| 33 |
+
return
|
| 34 |
+
|
| 35 |
+
print("Dataset metadata not found. Starting one-time setup...")
|
| 36 |
+
print("This may take a minute...")
|
| 37 |
+
|
| 38 |
+
repo_url = "https://github.com/karpathy/nanoGPT"
|
| 39 |
+
repo_dir = "nanoGPT"
|
| 40 |
+
|
| 41 |
+
try:
|
| 42 |
+
# 1. Clone the repository
|
| 43 |
+
print(f"Cloning {repo_url}...")
|
| 44 |
+
subprocess.run(["git", "clone", repo_url], check=True, capture_output=True)
|
| 45 |
+
|
| 46 |
+
# 2. Copy the data directory
|
| 47 |
+
source_data_dir = os.path.join(repo_dir, 'data', 'shakespeare_char')
|
| 48 |
+
print(f"Copying data from {source_data_dir} to {data_dir}...")
|
| 49 |
+
shutil.copytree(source_data_dir, data_dir)
|
| 50 |
+
|
| 51 |
+
# 3. Run the preparation script
|
| 52 |
+
prepare_script_path = os.path.join(data_dir, 'prepare.py')
|
| 53 |
+
print(f"Running {prepare_script_path} to generate metadata...")
|
| 54 |
+
# Use the same python executable that is running this script
|
| 55 |
+
subprocess.run([sys.executable, prepare_script_path], check=True, capture_output=True)
|
| 56 |
+
|
| 57 |
+
print("Setup successful. 'meta.pkl' has been created.")
|
| 58 |
+
|
| 59 |
+
except subprocess.CalledProcessError as e:
|
| 60 |
+
print(f"An error occurred during setup: {e}", file=sys.stderr)
|
| 61 |
+
print(f"Stdout: {e.stdout.decode()}", file=sys.stderr)
|
| 62 |
+
print(f"Stderr: {e.stderr.decode()}", file=sys.stderr)
|
| 63 |
+
sys.exit("Setup failed. Please check your git installation and internet connection.")
|
| 64 |
+
except Exception as e:
|
| 65 |
+
print(f"An unexpected error occurred: {e}", file=sys.stderr)
|
| 66 |
+
sys.exit("Setup failed.")
|
| 67 |
+
finally:
|
| 68 |
+
# 4. Clean up the cloned repository
|
| 69 |
+
if os.path.exists(repo_dir):
|
| 70 |
+
print(f"Cleaning up by removing '{repo_dir}' directory...")
|
| 71 |
+
shutil.rmtree(repo_dir)
|
| 72 |
+
|
| 73 |
+
# --- Run Setup and Load Data ---
|
| 74 |
+
setup_data()
|
| 75 |
+
|
| 76 |
+
# Load metadata for character mappings
|
| 77 |
+
data_dir = './shakespeare_char/'
|
| 78 |
+
meta_path = os.path.join(data_dir, 'meta.pkl')
|
| 79 |
+
with open(meta_path, 'rb') as f:
|
| 80 |
+
meta = pickle.load(f)
|
| 81 |
+
|
| 82 |
+
itos = meta['itos']
|
| 83 |
+
stoi = meta['stoi']
|
| 84 |
+
vocab_size = meta['vocab_size']
|
| 85 |
+
CONTEXT_LENGTH = 256
|
| 86 |
+
|
| 87 |
+
def decode(indices_tensor: torch.Tensor):
|
| 88 |
+
'''Decodes a 1D tensor of indices to text'''
|
| 89 |
+
if indices_tensor.dim() == 2:
|
| 90 |
+
indices_tensor = indices_tensor[0]
|
| 91 |
+
indices = indices_tensor.cpu().numpy()
|
| 92 |
+
return ''.join([itos[i] for i in indices])
|
| 93 |
+
|
| 94 |
+
def wrap_text(long_text, width=80):
|
| 95 |
+
"""Wraps text to a maximum line width, preserving paragraph breaks."""
|
| 96 |
+
paragraphs = long_text.splitlines()
|
| 97 |
+
wrapped = [textwrap.fill(p, width=width) if p else '' for p in paragraphs]
|
| 98 |
+
return "\n".join(wrapped)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
# --- Model Architecture (Copied from the notebook) ---
|
| 102 |
+
|
| 103 |
+
class MLP(nn.Module):
|
| 104 |
+
def __init__(self, config):
|
| 105 |
+
super().__init__()
|
| 106 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
| 107 |
+
self.gelu = nn.GELU()
|
| 108 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
| 109 |
+
self.dropout = nn.Dropout(config.dropout)
|
| 110 |
+
def forward(self, x):
|
| 111 |
+
return self.dropout(self.c_proj(self.gelu(self.c_fc(x))))
|
| 112 |
+
|
| 113 |
+
class SelfAttention(nn.Module):
|
| 114 |
+
def __init__(self, config):
|
| 115 |
+
super().__init__()
|
| 116 |
+
assert config.n_embd % config.n_head == 0
|
| 117 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
| 118 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
| 119 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
| 120 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
| 121 |
+
self.n_head = config.n_head
|
| 122 |
+
self.n_embd = config.n_embd
|
| 123 |
+
self.dropout = config.dropout
|
| 124 |
+
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
|
| 125 |
+
def forward(self, x):
|
| 126 |
+
B, T, C = x.size()
|
| 127 |
+
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
| 128 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 129 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 130 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 131 |
+
if self.flash:
|
| 132 |
+
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=False)
|
| 133 |
+
else:
|
| 134 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
| 135 |
+
att = F.softmax(att, dim=-1)
|
| 136 |
+
att = self.attn_dropout(att)
|
| 137 |
+
y = att @ v
|
| 138 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
| 139 |
+
return self.resid_dropout(self.c_proj(y))
|
| 140 |
+
|
| 141 |
+
def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
|
| 142 |
+
return x * (1 + scale) + shift
|
| 143 |
+
|
| 144 |
+
def bias_add_scale(x: torch.Tensor, bias: Optional[torch.Tensor], scale: torch.Tensor, residual: Optional[torch.Tensor]) -> torch.Tensor:
|
| 145 |
+
out = scale * (x + bias) if bias is not None else scale * x
|
| 146 |
+
return residual + out if residual is not None else out
|
| 147 |
+
|
| 148 |
+
class DDiTBlock(nn.Module):
|
| 149 |
+
def __init__(self, config):
|
| 150 |
+
super().__init__()
|
| 151 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, bias=config.bias)
|
| 152 |
+
self.attn = SelfAttention(config)
|
| 153 |
+
self.ln_2 = nn.LayerNorm(config.n_embd, bias=config.bias)
|
| 154 |
+
self.mlp = MLP(config)
|
| 155 |
+
self.adaLN_modulation = nn.Linear(config.cond_dim, 6 * config.n_embd, bias=True)
|
| 156 |
+
self.adaLN_modulation.weight.data.zero_()
|
| 157 |
+
self.adaLN_modulation.bias.data.zero_()
|
| 158 |
+
def forward(self, x, c):
|
| 159 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
|
| 160 |
+
x_skip = x
|
| 161 |
+
x = modulate(self.ln_1(x), shift_msa, scale_msa)
|
| 162 |
+
x = self.attn(x)
|
| 163 |
+
x = bias_add_scale(x, None, gate_msa, x_skip)
|
| 164 |
+
x = bias_add_scale(self.mlp(modulate(self.ln_2(x), shift_mlp, scale_mlp)), None, gate_mlp, x)
|
| 165 |
+
return x
|
| 166 |
+
|
| 167 |
+
class DDitFinalLayer(nn.Module):
|
| 168 |
+
def __init__(self, config):
|
| 169 |
+
super().__init__()
|
| 170 |
+
self.norm_final = nn.LayerNorm(config.n_embd, bias=config.bias)
|
| 171 |
+
self.linear = nn.Linear(config.n_embd, config.vocab_size)
|
| 172 |
+
self.linear.weight.data.zero_()
|
| 173 |
+
self.linear.bias.data.zero_()
|
| 174 |
+
self.adaLN_modulation = nn.Linear(config.cond_dim, 2 * config.n_embd)
|
| 175 |
+
self.adaLN_modulation.weight.data.zero_()
|
| 176 |
+
self.adaLN_modulation.bias.data.zero_()
|
| 177 |
+
def forward(self, x, c):
|
| 178 |
+
shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
|
| 179 |
+
x = modulate(self.norm_final(x), shift, scale)
|
| 180 |
+
return self.linear(x)
|
| 181 |
+
|
| 182 |
+
class TimestepEmbedder(nn.Module):
|
| 183 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 184 |
+
super().__init__()
|
| 185 |
+
self.mlp = nn.Sequential(
|
| 186 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
| 187 |
+
nn.SiLU(),
|
| 188 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
| 189 |
+
)
|
| 190 |
+
self.frequency_embedding_size = frequency_embedding_size
|
| 191 |
+
@staticmethod
|
| 192 |
+
def timestep_embedding(t, dim, max_period=10000):
|
| 193 |
+
half = dim // 2
|
| 194 |
+
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=t.device)
|
| 195 |
+
args = t[:, None].float() * freqs[None]
|
| 196 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 197 |
+
if dim % 2:
|
| 198 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 199 |
+
return embedding
|
| 200 |
+
def forward(self, t):
|
| 201 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
| 202 |
+
return self.mlp(t_freq)
|
| 203 |
+
|
| 204 |
+
class GPT(nn.Module):
|
| 205 |
+
def __init__(self, config):
|
| 206 |
+
super().__init__()
|
| 207 |
+
self.config = config
|
| 208 |
+
self.sigma_map = TimestepEmbedder(config.cond_dim)
|
| 209 |
+
self.transformer = nn.ModuleDict(dict(
|
| 210 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
| 211 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
| 212 |
+
drop = nn.Dropout(config.dropout),
|
| 213 |
+
h = nn.ModuleList([DDiTBlock(config) for _ in range(config.n_layer)]),
|
| 214 |
+
))
|
| 215 |
+
self.lm_head = DDitFinalLayer(config)
|
| 216 |
+
self.apply(self._init_weights)
|
| 217 |
+
def _init_weights(self, module):
|
| 218 |
+
if isinstance(module, nn.Linear):
|
| 219 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 220 |
+
if module.bias is not None:
|
| 221 |
+
torch.nn.init.zeros_(module.bias)
|
| 222 |
+
elif isinstance(module, nn.Embedding):
|
| 223 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 224 |
+
def forward(self, idx, sigma):
|
| 225 |
+
sigma = sigma.reshape(-1)
|
| 226 |
+
b, t = idx.size()
|
| 227 |
+
c = F.silu(self.sigma_map(sigma))
|
| 228 |
+
pos = torch.arange(0, t, dtype=torch.long, device=idx.device)
|
| 229 |
+
tok_emb = self.transformer.wte(idx)
|
| 230 |
+
pos_emb = self.transformer.wpe(pos)
|
| 231 |
+
x = self.transformer.drop(tok_emb + pos_emb)
|
| 232 |
+
for block in self.transformer.h:
|
| 233 |
+
x = block(x, c)
|
| 234 |
+
x = self.lm_head(x, c)
|
| 235 |
+
return torch.scatter(x, -1, idx[..., None], torch.zeros_like(x[..., :1]))
|
| 236 |
+
|
| 237 |
+
@dataclass
|
| 238 |
+
class GPTConfig:
|
| 239 |
+
block_size: int = 1024
|
| 240 |
+
vocab_size: int = 50304
|
| 241 |
+
n_layer: int = 12
|
| 242 |
+
n_head: int = 12
|
| 243 |
+
n_embd: int = 768
|
| 244 |
+
cond_dim: int = 64
|
| 245 |
+
dropout: float = 0.0
|
| 246 |
+
bias: bool = False
|
| 247 |
+
|
| 248 |
+
# --- Noise Schedule & Sampling Logic ---
|
| 249 |
+
|
| 250 |
+
class GeometricNoise:
|
| 251 |
+
def __init__(self, sigma_min=1e-4, sigma_max=20):
|
| 252 |
+
self.sigmas = 1.0 * torch.tensor([sigma_min, sigma_max])
|
| 253 |
+
def rate_noise(self, t):
|
| 254 |
+
return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t * (self.sigmas[1].log() - self.sigmas[0].log())
|
| 255 |
+
def total_noise(self, t):
|
| 256 |
+
return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t
|
| 257 |
+
def __call__(self, t):
|
| 258 |
+
return self.total_noise(t), self.rate_noise(t)
|
| 259 |
+
|
| 260 |
+
def transition(x_t: torch.Tensor, delta_sigma: torch.Tensor) -> torch.Tensor:
|
| 261 |
+
base_prob = (1 - torch.exp(-delta_sigma[..., None])) / vocab_size
|
| 262 |
+
trans = torch.ones(*x_t.shape, vocab_size, device=x_t.device) * base_prob
|
| 263 |
+
trans = trans.scatter(-1, x_t[..., None], torch.zeros_like(trans))
|
| 264 |
+
diag_fill = 1 - trans.sum(dim=-1, keepdim=True)
|
| 265 |
+
return trans.scatter(-1, x_t[..., None], diag_fill)
|
| 266 |
+
|
| 267 |
+
def staggered_score(score, delta_sigma):
|
| 268 |
+
exp_factor = torch.exp(-delta_sigma)[..., None]
|
| 269 |
+
correction = ((exp_factor - 1) / (vocab_size * exp_factor)) * score.sum(dim=-1, keepdim=True)
|
| 270 |
+
return correction + score / exp_factor
|
| 271 |
+
|
| 272 |
+
def sample_categorical(probs: torch.Tensor) -> torch.Tensor:
|
| 273 |
+
eps = 1e-10
|
| 274 |
+
gumbel_noise = -torch.log(-torch.log(torch.rand_like(probs) + eps) + eps)
|
| 275 |
+
return torch.argmax(torch.log(probs + eps) + gumbel_noise, dim=-1)
|
| 276 |
+
|
| 277 |
+
# --- Global Model Loading ---
|
| 278 |
+
|
| 279 |
+
print("Setting up model and device...")
|
| 280 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 281 |
+
model_args = dict(n_layer=6, n_head=6, n_embd=384, cond_dim=64,
|
| 282 |
+
bias=False, vocab_size=vocab_size, block_size=CONTEXT_LENGTH, dropout=0.2)
|
| 283 |
+
config = GPTConfig(**model_args)
|
| 284 |
+
model = GPT(config)
|
| 285 |
+
|
| 286 |
+
print("Loading pre-trained model weights...")
|
| 287 |
+
model.load_state_dict(
|
| 288 |
+
torch.hub.load_state_dict_from_url(
|
| 289 |
+
'https://raw.githubusercontent.com/ash80/diffusion-gpt/master/pretrained_model/model_epoch_25.pth',
|
| 290 |
+
map_location=DEVICE
|
| 291 |
+
)
|
| 292 |
+
)
|
| 293 |
+
model.to(DEVICE)
|
| 294 |
+
model.eval()
|
| 295 |
+
|
| 296 |
+
NOISE = GeometricNoise(sigma_min=1e-4, sigma_max=20)
|
| 297 |
+
print("Model setup complete. Launching Gradio demo...")
|
| 298 |
+
|
| 299 |
+
# --- Gradio Generation Function ---
|
| 300 |
+
|
| 301 |
+
@spaces.GPU
|
| 302 |
+
def generate_text(steps):
|
| 303 |
+
"""Generator function that yields denoised text at each step."""
|
| 304 |
+
steps = int(steps)
|
| 305 |
+
eps = 1e-5
|
| 306 |
+
timesteps = torch.linspace(1, eps, steps + 1, device=DEVICE)
|
| 307 |
+
step_size = (1 - eps) / steps
|
| 308 |
+
|
| 309 |
+
# Start with a fresh random sample
|
| 310 |
+
x = torch.randint(0, vocab_size, (1, CONTEXT_LENGTH), device=DEVICE)
|
| 311 |
+
|
| 312 |
+
# Initial random text
|
| 313 |
+
initial_text = decode(x)
|
| 314 |
+
yield f"Step 0/{steps} (Initial Noise):\n\n{wrap_text(initial_text)}"
|
| 315 |
+
time.sleep(0.5)
|
| 316 |
+
|
| 317 |
+
with torch.no_grad():
|
| 318 |
+
for i in range(steps):
|
| 319 |
+
progress(i / steps, desc=f"Denoising Step {i+1}/{steps}")
|
| 320 |
+
|
| 321 |
+
t = timesteps[i] * torch.ones(x.shape[0], 1, device=DEVICE)
|
| 322 |
+
curr_sigma_bar = NOISE(t)[0]
|
| 323 |
+
|
| 324 |
+
next_sigma_bar = NOISE(t - step_size)[0]
|
| 325 |
+
delta_sigma = curr_sigma_bar - next_sigma_bar
|
| 326 |
+
|
| 327 |
+
log_score = model(x, curr_sigma_bar)
|
| 328 |
+
score = torch.exp(log_score)
|
| 329 |
+
|
| 330 |
+
stag_score = staggered_score(score, delta_sigma)
|
| 331 |
+
probs = stag_score * transition(x, delta_sigma)
|
| 332 |
+
x = sample_categorical(probs)
|
| 333 |
+
|
| 334 |
+
# Yield the decoded text and step info
|
| 335 |
+
decoded_text = decode(x)
|
| 336 |
+
yield f"Step {i+1}/{steps}:\n\n{wrap_text(decoded_text)}"
|
| 337 |
+
|
| 338 |
+
# Final result
|
| 339 |
+
final_text = decode(x)
|
| 340 |
+
yield f"Final Result (Step {steps}/{steps}):\n\n{wrap_text(final_text)}"
|
| 341 |
+
|
| 342 |
+
# --- Gradio Interface ---
|
| 343 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 344 |
+
gr.Markdown(
|
| 345 |
+
"""
|
| 346 |
+
# The Annotated Discrete Diffusion Model: Live Demo
|
| 347 |
+
This demo visualizes the denoising process of a character-level discrete diffusion model.
|
| 348 |
+
Start with pure random noise and watch as coherent text, in the style of Shakespeare, emerges over several steps.
|
| 349 |
+
"""
|
| 350 |
+
)
|
| 351 |
+
with gr.Row():
|
| 352 |
+
steps_slider = gr.Slider(
|
| 353 |
+
minimum=10,
|
| 354 |
+
maximum=200,
|
| 355 |
+
value=128,
|
| 356 |
+
step=1,
|
| 357 |
+
label="Number of Denoising Steps",
|