Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| from diffusers import FlowMatchEulerDiscreteScheduler, QwenImageEditPlusPipeline | |
| # from optimization import optimize_pipeline_ | |
| # from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| # from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| # from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| import math | |
| # --- Model Loading --- | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Scheduler configuration for Lightning | |
| scheduler_config = { | |
| "base_image_seq_len": 256, | |
| "base_shift": math.log(5), | |
| "invert_sigmas": False, | |
| "max_image_seq_len": 8192, | |
| "max_shift": math.log(3), | |
| "num_train_timesteps": 1000, | |
| "shift": 1.0, | |
| "shift_terminal": None, | |
| "stochastic_sampling": False, | |
| "time_shift_type": "exponential", | |
| "use_beta_sigmas": False, | |
| "use_dynamic_shifting": True, | |
| "use_exponential_sigmas": False, | |
| "use_karras_sigmas": False, | |
| } | |
| # Initialize scheduler with Lightning config | |
| scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) | |
| # Load the model pipeline | |
| pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2511", | |
| scheduler=scheduler, | |
| torch_dtype=dtype).to(device) | |
| pipe.load_lora_weights( | |
| "lightx2v/Qwen-Image-Edit-2511-Lightning", | |
| weight_name="Qwen-Image-Edit-2511-Lightning-4steps-V1.0-fp32.safetensors" | |
| ) | |
| pipe.fuse_lora() | |
| # # Apply the same optimizations from the first version | |
| # pipe.transformer.__class__ = QwenImageTransformer2DModel | |
| # pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| # # --- Ahead-of-time compilation --- | |
| # optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") | |
| # --- UI Constants and Helpers --- | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def use_output_as_input(output_images): | |
| """Convert output images to input format for the gallery""" | |
| if output_images is None or len(output_images) == 0: | |
| return [] | |
| return output_images | |
| # --- Main Inference Function (with hardcoded negative prompt) --- | |
| def infer( | |
| image_1, | |
| image_2, | |
| image_3, | |
| prompt, | |
| seed=42, | |
| randomize_seed=False, | |
| true_guidance_scale=1.0, | |
| num_inference_steps=4, | |
| height=None, | |
| width=None, | |
| num_images_per_prompt=1, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| """ | |
| Run image-editing inference using the Qwen-Image-Edit pipeline. | |
| Parameters: | |
| images (list): Input images from the Gradio gallery (PIL or path-based). | |
| prompt (str): Editing instruction (may be rewritten by LLM if enabled). | |
| seed (int): Random seed for reproducibility. | |
| randomize_seed (bool): If True, overrides seed with a random value. | |
| true_guidance_scale (float): CFG scale used by Qwen-Image. | |
| num_inference_steps (int): Number of diffusion steps. | |
| height (int | None): Optional output height override. | |
| width (int | None): Optional output width override. | |
| rewrite_prompt (bool): Whether to rewrite the prompt using Qwen-2.5-VL. | |
| num_images_per_prompt (int): Number of images to generate. | |
| progress: Gradio progress callback. | |
| Returns: | |
| tuple: (generated_images, seed_used, UI_visibility_update) | |
| """ | |
| # Hardcode the negative prompt as requested | |
| negative_prompt = " " | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| # Set up the generator for reproducibility | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| # Load input images into a list of PIL Images | |
| pil_images = [] | |
| for item in [image_1, image_2, image_3]: | |
| if item is None: continue | |
| pil_images.append(item.convert("RGB")) | |
| if height==256 and width==256: | |
| height, width = None, None | |
| print(f"Calling pipeline with prompt: '{prompt}'") | |
| print(f"Negative Prompt: '{negative_prompt}'") | |
| print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}, Size: {width}x{height}") | |
| # Generate the image | |
| images = pipe( | |
| image=pil_images if len(pil_images) > 0 else None, | |
| prompt=prompt, | |
| height=height, | |
| width=width, | |
| negative_prompt=negative_prompt, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| true_cfg_scale=true_guidance_scale, | |
| num_images_per_prompt=num_images_per_prompt, | |
| ).images | |
| # Return images, seed, and make button visible | |
| return images[0], seed, gr.update(visible=True) | |
| # --- Examples and UI Layout --- | |
| examples = [] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 1024px; | |
| } | |
| #logo-title { | |
| text-align: center; | |
| } | |
| #logo-title img { | |
| width: 400px; | |
| } | |
| #edit_text{margin-top: -62px !important} | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.HTML(""" | |
| <div id="logo-title"> | |
| <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Edit Logo" width="400" style="display: block; margin: 0 auto;"> | |
| <h2 style="font-style: italic;color: #5b47d1;margin-top: -27px !important;margin-left: 96px">[Plus] Fast, 4-steps with LightX2V LoRA</h2> | |
| </div> | |
| """) | |
| gr.Markdown(""" | |
| [Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. | |
| This demo uses the new [Qwen-Image-Edit-2511](https://huggingface.co/Qwen/Qwen-Image-Edit-2511) with the [Qwen-Image-Lightning-2511](https://huggingface.co/lightx2v/Qwen-Image-Edit-2511-Lightning) LoRA for accelerated inference. | |
| Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) to run locally with ComfyUI or diffusers. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_1 = gr.Image(label="image 1", type="pil", interactive=True) | |
| with gr.Accordion("More references", open=False): | |
| with gr.Row(): | |
| image_2 = gr.Image(label="image 2", type="pil", interactive=True) | |
| image_3 = gr.Image(label="image 3", type="pil", interactive=True) | |
| with gr.Column(): | |
| result = gr.Image(label="Result", type="pil", interactive=False) | |
| # Add this button right after the result gallery - initially hidden | |
| use_output_btn = gr.Button("↗️ Use as image 1", variant="secondary", size="sm", visible=False) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| placeholder="describe the edit instruction", | |
| container=False, | |
| lines=5 | |
| ) | |
| with gr.Row(): | |
| run_button = gr.Button("Edit!", variant="primary") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| # Negative prompt UI element is removed here | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| true_guidance_scale = gr.Slider( | |
| label="True guidance scale", | |
| minimum=1.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=1.0 | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=40, | |
| step=1, | |
| value=4, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=2048, | |
| step=8, | |
| value=None, | |
| ) | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=2048, | |
| step=8, | |
| value=None, | |
| ) | |
| # gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False) | |
| gr.on( | |
| triggers=[run_button.click], | |
| fn=infer, | |
| inputs=[ | |
| image_1, | |
| image_2, | |
| image_3, | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| true_guidance_scale, | |
| num_inference_steps, | |
| height, | |
| width, | |
| ], | |
| outputs=[result, seed, use_output_btn], # Added use_output_btn to outputs | |
| ) | |
| # Add the new event handler for the "Use Output as Input" button | |
| use_output_btn.click( | |
| fn=use_output_as_input, | |
| inputs=[result], | |
| outputs=[image_1] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(mcp_server=True, show_error=True) |