import gradio as gr import numpy as np import random import torch import spaces from PIL import Image from diffusers import FlowMatchEulerDiscreteScheduler, QwenImageEditPlusPipeline # from optimization import optimize_pipeline_ # from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline # from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel # from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 import math # --- Model Loading --- dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" # Scheduler configuration for Lightning scheduler_config = { "base_image_seq_len": 256, "base_shift": math.log(5), "invert_sigmas": False, "max_image_seq_len": 8192, "max_shift": math.log(3), "num_train_timesteps": 1000, "shift": 1.0, "shift_terminal": None, "stochastic_sampling": False, "time_shift_type": "exponential", "use_beta_sigmas": False, "use_dynamic_shifting": True, "use_exponential_sigmas": False, "use_karras_sigmas": False, } # Initialize scheduler with Lightning config scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) # Load the model pipeline pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2511", scheduler=scheduler, torch_dtype=dtype).to(device) pipe.load_lora_weights( "lightx2v/Qwen-Image-Edit-2511-Lightning", weight_name="Qwen-Image-Edit-2511-Lightning-4steps-V1.0-fp32.safetensors" ) pipe.fuse_lora() # # Apply the same optimizations from the first version # pipe.transformer.__class__ = QwenImageTransformer2DModel # pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) # # --- Ahead-of-time compilation --- # optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") # --- UI Constants and Helpers --- MAX_SEED = np.iinfo(np.int32).max def use_output_as_input(output_images): """Convert output images to input format for the gallery""" if output_images is None or len(output_images) == 0: return [] return output_images # --- Main Inference Function (with hardcoded negative prompt) --- @spaces.GPU() def infer( image_1, image_2, image_3, prompt, seed=42, randomize_seed=False, true_guidance_scale=1.0, num_inference_steps=4, height=None, width=None, num_images_per_prompt=1, progress=gr.Progress(track_tqdm=True), ): """ Run image-editing inference using the Qwen-Image-Edit pipeline. Parameters: images (list): Input images from the Gradio gallery (PIL or path-based). prompt (str): Editing instruction (may be rewritten by LLM if enabled). seed (int): Random seed for reproducibility. randomize_seed (bool): If True, overrides seed with a random value. true_guidance_scale (float): CFG scale used by Qwen-Image. num_inference_steps (int): Number of diffusion steps. height (int | None): Optional output height override. width (int | None): Optional output width override. rewrite_prompt (bool): Whether to rewrite the prompt using Qwen-2.5-VL. num_images_per_prompt (int): Number of images to generate. progress: Gradio progress callback. Returns: tuple: (generated_images, seed_used, UI_visibility_update) """ # Hardcode the negative prompt as requested negative_prompt = " " if randomize_seed: seed = random.randint(0, MAX_SEED) # Set up the generator for reproducibility generator = torch.Generator(device=device).manual_seed(seed) # Load input images into a list of PIL Images pil_images = [] for item in [image_1, image_2, image_3]: if item is None: continue pil_images.append(item.convert("RGB")) if height==256 and width==256: height, width = None, None print(f"Calling pipeline with prompt: '{prompt}'") print(f"Negative Prompt: '{negative_prompt}'") print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}, Size: {width}x{height}") # Generate the image images = pipe( image=pil_images if len(pil_images) > 0 else None, prompt=prompt, height=height, width=width, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, generator=generator, true_cfg_scale=true_guidance_scale, num_images_per_prompt=num_images_per_prompt, ).images # Return images, seed, and make button visible return images[0], seed, gr.update(visible=True) # --- Examples and UI Layout --- examples = [] css = """ #col-container { margin: 0 auto; max-width: 1024px; } #logo-title { text-align: center; } #logo-title img { width: 400px; } #edit_text{margin-top: -62px !important} """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML("""