import gradio as gr import numpy as np import random import torch import spaces from PIL import Image from diffusers import FlowMatchEulerDiscreteScheduler, QwenImageEditPlusPipeline # from optimization import optimize_pipeline_ # from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline # from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel # from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 import math # --- Model Loading --- dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" # Scheduler configuration for Lightning scheduler_config = { "base_image_seq_len": 256, "base_shift": math.log(5), "invert_sigmas": False, "max_image_seq_len": 8192, "max_shift": math.log(3), "num_train_timesteps": 1000, "shift": 1.0, "shift_terminal": None, "stochastic_sampling": False, "time_shift_type": "exponential", "use_beta_sigmas": False, "use_dynamic_shifting": True, "use_exponential_sigmas": False, "use_karras_sigmas": False, } # Initialize scheduler with Lightning config scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) # Load the model pipeline pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2511", scheduler=scheduler, torch_dtype=dtype).to(device) pipe.load_lora_weights( "lightx2v/Qwen-Image-Edit-2511-Lightning", weight_name="Qwen-Image-Edit-2511-Lightning-4steps-V1.0-fp32.safetensors" ) pipe.fuse_lora() # # Apply the same optimizations from the first version # pipe.transformer.__class__ = QwenImageTransformer2DModel # pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) # # --- Ahead-of-time compilation --- # optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") # --- UI Constants and Helpers --- MAX_SEED = np.iinfo(np.int32).max def use_output_as_input(output_images): """Convert output images to input format for the gallery""" if output_images is None or len(output_images) == 0: return [] return output_images # --- Main Inference Function (with hardcoded negative prompt) --- @spaces.GPU() def infer( image_1, image_2, image_3, prompt, seed=42, randomize_seed=False, true_guidance_scale=1.0, num_inference_steps=4, height=None, width=None, num_images_per_prompt=1, progress=gr.Progress(track_tqdm=True), ): """ Run image-editing inference using the Qwen-Image-Edit pipeline. Parameters: images (list): Input images from the Gradio gallery (PIL or path-based). prompt (str): Editing instruction (may be rewritten by LLM if enabled). seed (int): Random seed for reproducibility. randomize_seed (bool): If True, overrides seed with a random value. true_guidance_scale (float): CFG scale used by Qwen-Image. num_inference_steps (int): Number of diffusion steps. height (int | None): Optional output height override. width (int | None): Optional output width override. rewrite_prompt (bool): Whether to rewrite the prompt using Qwen-2.5-VL. num_images_per_prompt (int): Number of images to generate. progress: Gradio progress callback. Returns: tuple: (generated_images, seed_used, UI_visibility_update) """ # Hardcode the negative prompt as requested negative_prompt = " " if randomize_seed: seed = random.randint(0, MAX_SEED) # Set up the generator for reproducibility generator = torch.Generator(device=device).manual_seed(seed) # Load input images into a list of PIL Images pil_images = [] for item in [image_1, image_2, image_3]: if item is None: continue pil_images.append(item.convert("RGB")) if height==256 and width==256: height, width = None, None print(f"Calling pipeline with prompt: '{prompt}'") print(f"Negative Prompt: '{negative_prompt}'") print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}, Size: {width}x{height}") # Generate the image images = pipe( image=pil_images if len(pil_images) > 0 else None, prompt=prompt, height=height, width=width, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, generator=generator, true_cfg_scale=true_guidance_scale, num_images_per_prompt=num_images_per_prompt, ).images # Return images, seed, and make button visible return images[0], seed, gr.update(visible=True) # --- Examples and UI Layout --- examples = [] css = """ #col-container { margin: 0 auto; max-width: 1024px; } #logo-title { text-align: center; } #logo-title img { width: 400px; } #edit_text{margin-top: -62px !important} """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML("""
Qwen-Image Edit Logo

[Plus] Fast, 4-steps with LightX2V LoRA

""") gr.Markdown(""" [Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. This demo uses the new [Qwen-Image-Edit-2511](https://huggingface.co/Qwen/Qwen-Image-Edit-2511) with the [Qwen-Image-Lightning-2511](https://huggingface.co/lightx2v/Qwen-Image-Edit-2511-Lightning) LoRA for accelerated inference. Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) to run locally with ComfyUI or diffusers. """) with gr.Row(): with gr.Column(): image_1 = gr.Image(label="image 1", type="pil", interactive=True) with gr.Accordion("More references", open=False): with gr.Row(): image_2 = gr.Image(label="image 2", type="pil", interactive=True) image_3 = gr.Image(label="image 3", type="pil", interactive=True) with gr.Column(): result = gr.Image(label="Result", type="pil", interactive=False) # Add this button right after the result gallery - initially hidden use_output_btn = gr.Button("↗️ Use as image 1", variant="secondary", size="sm", visible=False) with gr.Row(): with gr.Column(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, placeholder="describe the edit instruction", container=False, lines=5 ) with gr.Row(): run_button = gr.Button("Edit!", variant="primary") with gr.Accordion("Advanced Settings", open=False): # Negative prompt UI element is removed here seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): true_guidance_scale = gr.Slider( label="True guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0 ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=40, step=1, value=4, ) height = gr.Slider( label="Height", minimum=256, maximum=2048, step=8, value=None, ) width = gr.Slider( label="Width", minimum=256, maximum=2048, step=8, value=None, ) # gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False) gr.on( triggers=[run_button.click], fn=infer, inputs=[ image_1, image_2, image_3, prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, ], outputs=[result, seed, use_output_btn], # Added use_output_btn to outputs ) # Add the new event handler for the "Use Output as Input" button use_output_btn.click( fn=use_output_as_input, inputs=[result], outputs=[image_1] ) if __name__ == "__main__": demo.launch(mcp_server=True, show_error=True)