Spaces:
Runtime error
Runtime error
added model
Browse files- app.py +106 -4
- model/merges.txt +0 -0
- model/pytorch_roberta_sentiment.bin +3 -0
- model/vocab.json +0 -0
- requirements.txt +3 -1
app.py
CHANGED
|
@@ -1,14 +1,116 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
st.markdown("### Hello, world!")
|
| 4 |
-
st.markdown("<img width=200px src='https://rozetked.me/images/uploads/dwoilp3BVjlE.jpg'>", unsafe_allow_html=True)
|
| 5 |
# ^-- можно показывать пользователю текст, картинки, ограниченное подмножество html - всё как в jupyter
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
from transformers import pipeline
|
| 11 |
# тут уже знакомый вам код с huggingface.transformers -- его можно заменить на что угодно от fairseq до catboost
|
| 12 |
|
| 13 |
-
|
|
|
|
| 14 |
# выводим результаты модели в текстовое поле, на потеху пользователю
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import transformers
|
| 7 |
+
import json
|
| 8 |
+
from torch.utils.data import Dataset, DataLoader
|
| 9 |
+
from transformers import RobertaModel, RobertaTokenizer
|
| 10 |
+
import transformers
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
idx_to_tag = {0: 'cs',
|
| 14 |
+
1: 'stat',
|
| 15 |
+
2: 'physics',
|
| 16 |
+
3: 'math',
|
| 17 |
+
4: 'cond-mat',
|
| 18 |
+
5: 'q-bio',
|
| 19 |
+
6: 'eess',
|
| 20 |
+
7: 'quant-ph',
|
| 21 |
+
8: 'astro-ph',
|
| 22 |
+
9: 'nlin',
|
| 23 |
+
10: 'q-fin',
|
| 24 |
+
11: 'gr-qc',
|
| 25 |
+
12: 'hep-th',
|
| 26 |
+
13: 'hep-ex',
|
| 27 |
+
14: 'econ',
|
| 28 |
+
15: 'hep-ph',
|
| 29 |
+
16: 'nucl-th',
|
| 30 |
+
17: 'hep-lat',
|
| 31 |
+
18: 'math-ph',
|
| 32 |
+
19: 'nucl-ex'}
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
tag_to_idx = {'cs': 0,
|
| 36 |
+
'stat': 1,
|
| 37 |
+
'physics': 2,
|
| 38 |
+
'math': 3,
|
| 39 |
+
'cond-mat': 4,
|
| 40 |
+
'q-bio': 5,
|
| 41 |
+
'eess': 6,
|
| 42 |
+
'quant-ph': 7,
|
| 43 |
+
'astro-ph': 8,
|
| 44 |
+
'nlin': 9,
|
| 45 |
+
'q-fin': 10,
|
| 46 |
+
'gr-qc': 11,
|
| 47 |
+
'hep-th': 12,
|
| 48 |
+
'hep-ex': 13,
|
| 49 |
+
'econ': 14,
|
| 50 |
+
'hep-ph': 15,
|
| 51 |
+
'nucl-th': 16,
|
| 52 |
+
'hep-lat': 17,
|
| 53 |
+
'math-ph': 18,
|
| 54 |
+
'nucl-ex': 19}
|
| 55 |
+
|
| 56 |
+
class RobertaClass(torch.nn.Module):
|
| 57 |
+
def __init__(self):
|
| 58 |
+
super(RobertaClass, self).__init__()
|
| 59 |
+
self.l1 = RobertaModel.from_pretrained("roberta-base")
|
| 60 |
+
self.pre_classifier = torch.nn.Linear(768, 768)
|
| 61 |
+
self.dropout = torch.nn.Dropout(0.3)
|
| 62 |
+
self.classifier = torch.nn.Linear(768, 5)
|
| 63 |
+
|
| 64 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
| 65 |
+
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
| 66 |
+
hidden_state = output_1[0]
|
| 67 |
+
pooler = hidden_state[:, 0]
|
| 68 |
+
pooler = self.pre_classifier(pooler)
|
| 69 |
+
pooler = torch.nn.ReLU()(pooler)
|
| 70 |
+
pooler = self.dropout(pooler)
|
| 71 |
+
output = self.classifier(pooler)
|
| 72 |
+
return output
|
| 73 |
+
|
| 74 |
+
tokenizer = RobertaTokenizer.from_pretrained('roberta-base', truncation=True, do_lower_case=True,
|
| 75 |
+
vocab_file='model/vocab.json',
|
| 76 |
+
merges_file='model/merges.txt')
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
model = torch.load('model/pytorch_roberta_sentiment.bin', map_location=torch.device('cpu'))
|
| 81 |
+
|
| 82 |
|
| 83 |
st.markdown("### Hello, world!")
|
| 84 |
+
# st.markdown("<img width=200px src='https://rozetked.me/images/uploads/dwoilp3BVjlE.jpg'>", unsafe_allow_html=True)
|
| 85 |
# ^-- можно показывать пользователю текст, картинки, ограниченное подмножество html - всё как в jupyter
|
| 86 |
|
| 87 |
+
title = st.text_area("Title HERE")
|
| 88 |
+
abstract = st.text_area("Abstract HERE")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
text = title + " : " + abstract
|
| 93 |
+
|
| 94 |
+
inputs = tokenizer.encode_plus(
|
| 95 |
+
text,
|
| 96 |
+
None,
|
| 97 |
+
add_special_tokens=True,
|
| 98 |
+
max_length=256,
|
| 99 |
+
pad_to_max_length=True,
|
| 100 |
+
return_token_type_ids=True
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
ids = torch.Tensor(inputs['input_ids']).long()
|
| 105 |
+
mask = torch.Tensor(inputs['attention_mask']).long()
|
| 106 |
+
token_type_ids = torch.Tensor(inputs['token_type_ids']).long()
|
| 107 |
+
|
| 108 |
+
ans = model(ids.unsqueeze(0), mask.unsqueeze(0), token_type_ids.unsqueeze(0))
|
| 109 |
+
|
| 110 |
|
| 111 |
from transformers import pipeline
|
| 112 |
# тут уже знакомый вам код с huggingface.transformers -- его можно заменить на что угодно от fairseq до catboost
|
| 113 |
|
| 114 |
+
idx = torch.nn.functional.softmax(ans[0], dim=0).argmax().item()
|
| 115 |
+
st.markdown(f'{idx_to_tag[idx]}')
|
| 116 |
# выводим результаты модели в текстовое поле, на потеху пользователю
|
model/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model/pytorch_roberta_sentiment.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d981012dade5ff2425eff3ccfb9bdbdc2938b1785009fa969acca60916a75ff0
|
| 3 |
+
size 501514997
|
model/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
CHANGED
|
@@ -1,3 +1,5 @@
|
|
| 1 |
torch
|
| 2 |
streamlit
|
| 3 |
-
transformers
|
|
|
|
|
|
|
|
|
| 1 |
torch
|
| 2 |
streamlit
|
| 3 |
+
transformers
|
| 4 |
+
pandas
|
| 5 |
+
numpy
|