Update advanced_rag.py
Browse files- advanced_rag.py +76 -54
advanced_rag.py
CHANGED
|
@@ -2,7 +2,11 @@ import os
|
|
| 2 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 3 |
from typing import List
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from langchain_community.document_loaders import OnlinePDFLoader
|
| 7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
from langchain_community.vectorstores import FAISS
|
|
@@ -15,110 +19,128 @@ from langchain.prompts import ChatPromptTemplate
|
|
| 15 |
from langchain.schema import StrOutputParser
|
| 16 |
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
class ElevatedRagChain:
|
| 20 |
'''
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
The chunks are retrieved using an ensemble retriever (BM25 retriever + FAISS retriver)
|
| 27 |
-
and passed through a Cohere reranker before being used as context
|
| 28 |
-
for generating answers using a Llama 2 large language model (LLM).
|
| 29 |
'''
|
| 30 |
def __init__(self) -> None:
|
| 31 |
'''
|
| 32 |
-
Initialize the class with predefined
|
| 33 |
'''
|
| 34 |
-
self.llama2_70b = 'meta/llama-2-70b-chat:2d19859030ff705a87c746f7e96eea03aefb71f166725aee39692f1476566d48'
|
| 35 |
self.embed_func = CohereEmbeddings(model="embed-english-light-v3.0")
|
| 36 |
self.bm25_weight = 0.6
|
| 37 |
self.faiss_weight = 0.4
|
| 38 |
self.top_k = 5
|
| 39 |
|
| 40 |
-
|
| 41 |
def add_pdfs_to_vectore_store(
|
| 42 |
self,
|
| 43 |
pdf_links: List,
|
| 44 |
-
chunk_size: int=1500,
|
| 45 |
-
|
| 46 |
'''
|
| 47 |
Processes PDF documents by loading, chunking, embedding, and adding them to a FAISS vector store.
|
| 48 |
-
|
| 49 |
Args:
|
| 50 |
-
pdf_links (List): list of URLs pointing to the PDF documents to be processed
|
| 51 |
-
chunk_size (int, optional): size of text chunks to split the documents into, defaults to 1500
|
| 52 |
'''
|
| 53 |
-
#
|
| 54 |
-
self.raw_data = [
|
| 55 |
|
| 56 |
-
#
|
| 57 |
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=100)
|
| 58 |
self.split_data = self.text_splitter.split_documents(self.raw_data)
|
| 59 |
|
| 60 |
-
#
|
| 61 |
-
self.bm25_retriever
|
| 62 |
self.bm25_retriever.k = self.top_k
|
| 63 |
|
| 64 |
-
#
|
| 65 |
-
self.vector_store
|
| 66 |
-
self.faiss_retriever
|
| 67 |
-
print("All PDFs processed and added to
|
| 68 |
|
| 69 |
-
#
|
| 70 |
self.build_elevated_rag_system()
|
| 71 |
print("RAG system is built successfully.")
|
| 72 |
|
| 73 |
-
|
| 74 |
def build_elevated_rag_system(self) -> None:
|
| 75 |
'''
|
| 76 |
-
Build an advanced RAG system
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
'''
|
| 81 |
-
#
|
| 82 |
self.ensemble_retriever = EnsembleRetriever(
|
| 83 |
retrievers=[self.bm25_retriever, self.faiss_retriever],
|
| 84 |
weights=[self.bm25_weight, self.faiss_weight]
|
| 85 |
)
|
| 86 |
|
| 87 |
-
#
|
| 88 |
self.reranker = CohereRerank(top_n=5)
|
| 89 |
-
self.rerank_retriever = ContextualCompressionRetriever(
|
| 90 |
base_retriever=self.ensemble_retriever,
|
| 91 |
base_compressor=self.reranker,
|
| 92 |
)
|
| 93 |
|
| 94 |
-
#
|
| 95 |
RAG_PROMPT_TEMPLATE = """\
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
self.rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
|
| 107 |
self.str_output_parser = StrOutputParser()
|
| 108 |
|
| 109 |
-
# parallel execution of context retrieval and question
|
| 110 |
self.entry_point_and_elevated_retriever = RunnableParallel(
|
| 111 |
{
|
| 112 |
-
"context"
|
| 113 |
-
"question"
|
| 114 |
}
|
| 115 |
)
|
| 116 |
|
| 117 |
-
#
|
| 118 |
-
self.llm =
|
| 119 |
-
model=self.llama2_70b,
|
| 120 |
-
model_kwargs={"temperature": 0.5,"top_p": 1, "max_new_tokens":1000}
|
| 121 |
-
)
|
| 122 |
|
| 123 |
-
#
|
| 124 |
-
|
|
|
|
|
|
| 2 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 3 |
from typing import List
|
| 4 |
|
| 5 |
+
# Imports for our DeepSeek model pipeline
|
| 6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 7 |
+
from langchain.llms import HuggingFacePipeline
|
| 8 |
+
|
| 9 |
+
# Other LangChain and community imports
|
| 10 |
from langchain_community.document_loaders import OnlinePDFLoader
|
| 11 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 12 |
from langchain_community.vectorstores import FAISS
|
|
|
|
| 19 |
from langchain.schema import StrOutputParser
|
| 20 |
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
| 21 |
|
| 22 |
+
def create_deepseek_pipeline() -> HuggingFacePipeline:
|
| 23 |
+
"""
|
| 24 |
+
Create a HuggingFace pipeline using the DeepSeek-R1 model and wrap it as a LangChain LLM.
|
| 25 |
+
"""
|
| 26 |
+
# Load the DeepSeek model and tokenizer
|
| 27 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 28 |
+
"deepseek-ai/DeepSeek-R1",
|
| 29 |
+
trust_remote_code=True
|
| 30 |
+
)
|
| 31 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1")
|
| 32 |
+
|
| 33 |
+
# Create a text-generation pipeline.
|
| 34 |
+
# You can adjust parameters like max_length, temperature, and top_p as needed.
|
| 35 |
+
pipe = pipeline(
|
| 36 |
+
"text-generation",
|
| 37 |
+
model=model,
|
| 38 |
+
tokenizer=tokenizer,
|
| 39 |
+
trust_remote_code=True,
|
| 40 |
+
max_length=2048,
|
| 41 |
+
do_sample=True,
|
| 42 |
+
temperature=0.5,
|
| 43 |
+
top_p=1
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Wrap the pipeline with HuggingFacePipeline for LangChain compatibility
|
| 47 |
+
return HuggingFacePipeline(pipeline=pipe)
|
| 48 |
|
| 49 |
class ElevatedRagChain:
|
| 50 |
'''
|
| 51 |
+
ElevatedRagChain integrates various components from LangChain to build an advanced
|
| 52 |
+
retrieval-augmented generation (RAG) system. It processes PDF documents by loading,
|
| 53 |
+
chunking, embedding, and adding their embeddings to a FAISS vector store for efficient
|
| 54 |
+
retrieval. It then uses an ensemble retriever (BM25 + FAISS) with a reranker and uses a
|
| 55 |
+
DeepSeek model (via a Transformers pipeline) for generating detailed technical answers.
|
|
|
|
|
|
|
|
|
|
| 56 |
'''
|
| 57 |
def __init__(self) -> None:
|
| 58 |
'''
|
| 59 |
+
Initialize the class with predefined embedding function, weights, and top_k value.
|
| 60 |
'''
|
|
|
|
| 61 |
self.embed_func = CohereEmbeddings(model="embed-english-light-v3.0")
|
| 62 |
self.bm25_weight = 0.6
|
| 63 |
self.faiss_weight = 0.4
|
| 64 |
self.top_k = 5
|
| 65 |
|
|
|
|
| 66 |
def add_pdfs_to_vectore_store(
|
| 67 |
self,
|
| 68 |
pdf_links: List,
|
| 69 |
+
chunk_size: int = 1500,
|
| 70 |
+
) -> None:
|
| 71 |
'''
|
| 72 |
Processes PDF documents by loading, chunking, embedding, and adding them to a FAISS vector store.
|
| 73 |
+
|
| 74 |
Args:
|
| 75 |
+
pdf_links (List): list of URLs pointing to the PDF documents to be processed.
|
| 76 |
+
chunk_size (int, optional): size of text chunks to split the documents into, defaults to 1500.
|
| 77 |
'''
|
| 78 |
+
# Load PDFs
|
| 79 |
+
self.raw_data = [OnlinePDFLoader(doc).load()[0] for doc in pdf_links]
|
| 80 |
|
| 81 |
+
# Chunk text
|
| 82 |
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=100)
|
| 83 |
self.split_data = self.text_splitter.split_documents(self.raw_data)
|
| 84 |
|
| 85 |
+
# Create BM25 retriever from the split documents
|
| 86 |
+
self.bm25_retriever = BM25Retriever.from_documents(self.split_data)
|
| 87 |
self.bm25_retriever.k = self.top_k
|
| 88 |
|
| 89 |
+
# Embed and add chunks to FAISS vector store
|
| 90 |
+
self.vector_store = FAISS.from_documents(self.split_data, self.embed_func)
|
| 91 |
+
self.faiss_retriever = self.vector_store.as_retriever(search_kwargs={"k": self.top_k})
|
| 92 |
+
print("All PDFs processed and added to vector store.")
|
| 93 |
|
| 94 |
+
# Build the advanced RAG system
|
| 95 |
self.build_elevated_rag_system()
|
| 96 |
print("RAG system is built successfully.")
|
| 97 |
|
|
|
|
| 98 |
def build_elevated_rag_system(self) -> None:
|
| 99 |
'''
|
| 100 |
+
Build an advanced RAG system by combining:
|
| 101 |
+
- BM25 retriever
|
| 102 |
+
- FAISS vector store retriever
|
| 103 |
+
- A DeepSeek model (via a HuggingFace pipeline)
|
| 104 |
'''
|
| 105 |
+
# Combine BM25 and FAISS retrievers into an ensemble retriever
|
| 106 |
self.ensemble_retriever = EnsembleRetriever(
|
| 107 |
retrievers=[self.bm25_retriever, self.faiss_retriever],
|
| 108 |
weights=[self.bm25_weight, self.faiss_weight]
|
| 109 |
)
|
| 110 |
|
| 111 |
+
# Use a Cohere reranker to improve retrieval quality
|
| 112 |
self.reranker = CohereRerank(top_n=5)
|
| 113 |
+
self.rerank_retriever = ContextualCompressionRetriever(
|
| 114 |
base_retriever=self.ensemble_retriever,
|
| 115 |
base_compressor=self.reranker,
|
| 116 |
)
|
| 117 |
|
| 118 |
+
# Define the prompt template for the language model
|
| 119 |
RAG_PROMPT_TEMPLATE = """\
|
| 120 |
+
Use the following context to provide a detailed technical answer to the user's question.
|
| 121 |
+
Do not include an introduction like "Based on the provided documents, ...". Just answer the question.
|
| 122 |
+
If you don't know the answer, please respond with "I don't know".
|
| 123 |
|
| 124 |
+
Context:
|
| 125 |
+
{context}
|
| 126 |
|
| 127 |
+
User's question:
|
| 128 |
+
{question}
|
| 129 |
+
"""
|
| 130 |
self.rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
|
| 131 |
self.str_output_parser = StrOutputParser()
|
| 132 |
|
| 133 |
+
# Prepare parallel execution of context retrieval and question processing
|
| 134 |
self.entry_point_and_elevated_retriever = RunnableParallel(
|
| 135 |
{
|
| 136 |
+
"context": self.rerank_retriever,
|
| 137 |
+
"question": RunnablePassthrough()
|
| 138 |
}
|
| 139 |
)
|
| 140 |
|
| 141 |
+
# Initialize the DeepSeek model using a HuggingFace pipeline as our LLM
|
| 142 |
+
self.llm = create_deepseek_pipeline()
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
# Chain the components to form the final elevated RAG system.
|
| 145 |
+
# Note: Depending on your needs, you may wish to add self.str_output_parser at the end.
|
| 146 |
+
self.elevated_rag_chain = self.entry_point_and_elevated_retriever | self.rag_prompt | self.llm
|