Create advanced_rag.py
Browse files- advanced_rag.py +124 -0
advanced_rag.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 3 |
+
from typing import List
|
| 4 |
+
|
| 5 |
+
from langchain_community.llms import Replicate # importing from langchain depricated; use langchain_community for several modules here
|
| 6 |
+
from langchain_community.document_loaders import OnlinePDFLoader
|
| 7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
+
from langchain_community.vectorstores import FAISS
|
| 9 |
+
from langchain_community.embeddings import CohereEmbeddings
|
| 10 |
+
from langchain_community.retrievers import BM25Retriever
|
| 11 |
+
from langchain.retrievers import EnsembleRetriever
|
| 12 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
| 13 |
+
from langchain.retrievers.document_compressors import CohereRerank
|
| 14 |
+
from langchain.prompts import ChatPromptTemplate
|
| 15 |
+
from langchain.schema import StrOutputParser
|
| 16 |
+
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class ElevatedRagChain:
|
| 20 |
+
'''
|
| 21 |
+
Class ElevatedRagChain integrates various components from the langchain library to build
|
| 22 |
+
an advanced retrieval-augmented generation (RAG) system designed to process documents
|
| 23 |
+
by reading in, chunking, embedding, and adding their chunk embeddings to FAISS vector store
|
| 24 |
+
for efficient retrieval. It uses the embeddings to retrieve relevant document chunks
|
| 25 |
+
in response to user queries.
|
| 26 |
+
The chunks are retrieved using an ensemble retriever (BM25 retriever + FAISS retriver)
|
| 27 |
+
and passed through a Cohere reranker before being used as context
|
| 28 |
+
for generating answers using a Llama 2 large language model (LLM).
|
| 29 |
+
'''
|
| 30 |
+
def __init__(self) -> None:
|
| 31 |
+
'''
|
| 32 |
+
Initialize the class with predefined model, embedding function, weights, and top_k value
|
| 33 |
+
'''
|
| 34 |
+
self.llama2_70b = 'meta/llama-2-70b-chat:2d19859030ff705a87c746f7e96eea03aefb71f166725aee39692f1476566d48'
|
| 35 |
+
self.embed_func = CohereEmbeddings(model="embed-english-light-v3.0")
|
| 36 |
+
self.bm25_weight = 0.6
|
| 37 |
+
self.faiss_weight = 0.4
|
| 38 |
+
self.top_k = 5
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def add_pdfs_to_vectore_store(
|
| 42 |
+
self,
|
| 43 |
+
pdf_links: List,
|
| 44 |
+
chunk_size: int=1500,
|
| 45 |
+
) -> None:
|
| 46 |
+
'''
|
| 47 |
+
Processes PDF documents by loading, chunking, embedding, and adding them to a FAISS vector store.
|
| 48 |
+
Build an advanced RAG system
|
| 49 |
+
Args:
|
| 50 |
+
pdf_links (List): list of URLs pointing to the PDF documents to be processed
|
| 51 |
+
chunk_size (int, optional): size of text chunks to split the documents into, defaults to 1500
|
| 52 |
+
'''
|
| 53 |
+
# load pdfs
|
| 54 |
+
self.raw_data = [ OnlinePDFLoader(doc).load()[0] for doc in pdf_links ]
|
| 55 |
+
|
| 56 |
+
# chunk text
|
| 57 |
+
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=100)
|
| 58 |
+
self.split_data = self.text_splitter.split_documents(self.raw_data)
|
| 59 |
+
|
| 60 |
+
# add chunks to BM25 retriever
|
| 61 |
+
self.bm25_retriever = BM25Retriever.from_documents(self.split_data)
|
| 62 |
+
self.bm25_retriever.k = self.top_k
|
| 63 |
+
|
| 64 |
+
# embed and add chunks to vectore store
|
| 65 |
+
self.vector_store = FAISS.from_documents(self.split_data, self.embed_func)
|
| 66 |
+
self.faiss_retriever = self.vector_store.as_retriever(search_kwargs={"k": self.top_k})
|
| 67 |
+
print("All PDFs processed and added to vectore store.")
|
| 68 |
+
|
| 69 |
+
# build advanced RAG system
|
| 70 |
+
self.build_elevated_rag_system()
|
| 71 |
+
print("RAG system is built successfully.")
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def build_elevated_rag_system(self) -> None:
|
| 75 |
+
'''
|
| 76 |
+
Build an advanced RAG system from different components:
|
| 77 |
+
* BM25 retriever
|
| 78 |
+
* FAISS vector store retriever
|
| 79 |
+
* Llama 2 model
|
| 80 |
+
'''
|
| 81 |
+
# combine BM25 and FAISS retrievers into an ensemble retriever
|
| 82 |
+
self.ensemble_retriever = EnsembleRetriever(
|
| 83 |
+
retrievers=[self.bm25_retriever, self.faiss_retriever],
|
| 84 |
+
weights=[self.bm25_weight, self.faiss_weight]
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# use reranker to improve retrieval quality
|
| 88 |
+
self.reranker = CohereRerank(top_n=5)
|
| 89 |
+
self.rerank_retriever = ContextualCompressionRetriever( # combine ensemble retriever and reranker
|
| 90 |
+
base_retriever=self.ensemble_retriever,
|
| 91 |
+
base_compressor=self.reranker,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# define prompt template for the language model
|
| 95 |
+
RAG_PROMPT_TEMPLATE = """\
|
| 96 |
+
Use the following context to provide a detailed technical answer the user's question.
|
| 97 |
+
Do not use an introduction similar to "Based on the provided documents, ...", just answer the question.
|
| 98 |
+
If you don't know the answer, please respond with "I don't know".
|
| 99 |
+
|
| 100 |
+
Context:
|
| 101 |
+
{context}
|
| 102 |
+
|
| 103 |
+
User's question:
|
| 104 |
+
{question}
|
| 105 |
+
"""
|
| 106 |
+
self.rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
|
| 107 |
+
self.str_output_parser = StrOutputParser()
|
| 108 |
+
|
| 109 |
+
# parallel execution of context retrieval and question passing
|
| 110 |
+
self.entry_point_and_elevated_retriever = RunnableParallel(
|
| 111 |
+
{
|
| 112 |
+
"context" : self.rerank_retriever,
|
| 113 |
+
"question" : RunnablePassthrough()
|
| 114 |
+
}
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# initialize Llama 2 model with specific parameters
|
| 118 |
+
self.llm = Replicate(
|
| 119 |
+
model=self.llama2_70b,
|
| 120 |
+
model_kwargs={"temperature": 0.5,"top_p": 1, "max_new_tokens":1000}
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
# chain components to form final elevated RAG system using LangChain Expression Language (LCEL)
|
| 124 |
+
self.elevated_rag_chain = self.entry_point_and_elevated_retriever | self.rag_prompt | self.llm #| self.str_output_parser
|