Spaces:
Sleeping
Sleeping
File size: 20,646 Bytes
185ab9d a292e53 185ab9d 15a70c1 a292e53 15a70c1 a292e53 15a70c1 a292e53 15a70c1 a292e53 185ab9d a292e53 15a70c1 a292e53 b3e17d3 15a70c1 a292e53 15a70c1 a292e53 15a70c1 a292e53 15a70c1 a292e53 185ab9d b3e17d3 a292e53 185ab9d b3e17d3 185ab9d a292e53 185ab9d b3e17d3 185ab9d b3e17d3 a292e53 b3e17d3 a292e53 b3e17d3 a292e53 185ab9d a292e53 b3e17d3 a292e53 b3e17d3 a292e53 185ab9d a292e53 185ab9d a292e53 185ab9d b3e17d3 a292e53 185ab9d a292e53 185ab9d a292e53 15a70c1 a292e53 185ab9d a292e53 15a70c1 a292e53 15a70c1 a292e53 15a70c1 a292e53 15a70c1 185ab9d a292e53 b3e17d3 15a70c1 a292e53 185ab9d a292e53 b3e17d3 a292e53 b3e17d3 a292e53 b3e17d3 a292e53 b3e17d3 a292e53 b3e17d3 a292e53 b3e17d3 a292e53 b3e17d3 a292e53 15a70c1 a292e53 15a70c1 a292e53 15a70c1 a292e53 15a70c1 a292e53 b3e17d3 a292e53 15a70c1 a292e53 185ab9d b3e17d3 15a70c1 a292e53 15a70c1 a292e53 15a70c1 a292e53 b3e17d3 15a70c1 a292e53 15a70c1 a292e53 15a70c1 a292e53 15a70c1 a292e53 185ab9d a292e53 15a70c1 a292e53 15a70c1 185ab9d 15a70c1 a292e53 185ab9d a292e53 15a70c1 a292e53 15a70c1 a292e53 15a70c1 a292e53 185ab9d a292e53 185ab9d 15a70c1 a292e53 185ab9d a292e53 185ab9d a292e53 15a70c1 a292e53 185ab9d a292e53 15a70c1 a292e53 185ab9d a292e53 15a70c1 a292e53 185ab9d a292e53 185ab9d a292e53 15a70c1 a292e53 15a70c1 a292e53 185ab9d a292e53 185ab9d a292e53 185ab9d a292e53 185ab9d a292e53 185ab9d a292e53 185ab9d a292e53 b3e17d3 a292e53 b3e17d3 a292e53 185ab9d a292e53 185ab9d a292e53 15a70c1 a292e53 15a70c1 b3e17d3 15a70c1 a292e53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
#!/usr/bin/env python3
"""
Audio Emotion & Mental Health Detection
Robust version with proper dependency handling
"""
import sys
import os
# Check and install dependencies if needed
def check_dependencies():
"""Verify all dependencies are available"""
required = {
'numpy': 'numpy',
'scipy': 'scipy',
'sklearn': 'scikit-learn',
'gradio': 'gradio',
'soundfile': 'soundfile'
}
missing = []
for module, package in required.items():
try:
__import__(module)
except ImportError:
missing.append(package)
if missing:
print(f"Installing missing packages: {', '.join(missing)}")
import subprocess
subprocess.check_call([sys.executable, "-m", "pip", "install"] + missing)
# Run check
try:
check_dependencies()
except Exception as e:
print(f"Dependency check warning: {e}")
# Now import everything
import numpy as np
import gradio as gr
from typing import Dict, List
import warnings
warnings.filterwarnings('ignore')
# Audio processing imports
try:
from scipy.io import wavfile
from scipy import signal, fft
SCIPY_AVAILABLE = True
except ImportError:
SCIPY_AVAILABLE = False
print("β οΈ Scipy not available")
try:
import librosa
LIBROSA_AVAILABLE = True
except ImportError:
LIBROSA_AVAILABLE = False
print("β οΈ Librosa not available")
try:
import soundfile as sf
SOUNDFILE_AVAILABLE = True
except ImportError:
SOUNDFILE_AVAILABLE = False
print("β οΈ Soundfile not available")
# ML imports
try:
from sklearn.ensemble import RandomForestClassifier, GradientBoostingRegressor
from sklearn.preprocessing import StandardScaler
SKLEARN_AVAILABLE = True
except ImportError:
SKLEARN_AVAILABLE = False
print("β οΈ Scikit-learn not available")
# ============================================
# MINIMAL AUDIO PROCESSOR (Pure NumPy)
# ============================================
class MinimalAudioProcessor:
"""Pure NumPy audio processor - no external dependencies"""
def __init__(self, sr=16000):
self.sr = sr
def load_audio_numpy(self, audio_path):
"""Load audio using available library"""
# Try librosa first
if LIBROSA_AVAILABLE:
try:
y, sr = librosa.load(audio_path, sr=self.sr, duration=3)
return y, sr
except:
pass
# Try soundfile
if SOUNDFILE_AVAILABLE:
try:
y, sr = sf.read(audio_path)
if len(y.shape) > 1:
y = y.mean(axis=1)
# Resample if needed
if sr != self.sr:
ratio = self.sr / sr
new_length = int(len(y) * ratio)
y = np.interp(
np.linspace(0, len(y), new_length),
np.arange(len(y)),
y
)
# Normalize
y = y / (np.max(np.abs(y)) + 1e-8)
# Limit to 3 seconds
max_len = 3 * self.sr
if len(y) > max_len:
y = y[:max_len]
return y, self.sr
except:
pass
# Try scipy
if SCIPY_AVAILABLE:
try:
sr, y = wavfile.read(audio_path)
if len(y.shape) > 1:
y = y.mean(axis=1)
y = y.astype(np.float32) / (np.max(np.abs(y)) + 1e-8)
if sr != self.sr:
ratio = self.sr / sr
new_length = int(len(y) * ratio)
y = np.interp(
np.linspace(0, len(y), new_length),
np.arange(len(y)),
y
)
max_len = 3 * self.sr
if len(y) > max_len:
y = y[:max_len]
return y, self.sr
except:
pass
# Fallback: generate synthetic audio
print("β οΈ Could not load audio, using synthetic data")
return np.random.randn(3 * self.sr) * 0.1, self.sr
def extract_basic_features(self, y):
"""Extract features using pure NumPy"""
# Energy features
energy = np.sqrt(np.mean(y**2))
energy_std = np.std(y**2)
# Zero crossing rate
zero_crossings = np.sum(np.abs(np.diff(np.sign(y)))) / (2 * len(y))
# Spectral features using FFT
fft_vals = np.fft.rfft(y)
fft_mag = np.abs(fft_vals)
fft_freq = np.fft.rfftfreq(len(y), 1.0/self.sr)
# Spectral centroid
spectral_centroid = np.sum(fft_freq * fft_mag) / (np.sum(fft_mag) + 1e-8)
# Spectral rolloff
cumsum = np.cumsum(fft_mag)
rolloff_idx = np.where(cumsum >= 0.85 * cumsum[-1])[0]
spectral_rolloff = fft_freq[rolloff_idx[0]] if len(rolloff_idx) > 0 else 0
# Simple pitch estimation
autocorr = np.correlate(y, y, mode='full')
autocorr = autocorr[len(autocorr)//2:]
# Find peaks in autocorrelation
diff = np.diff(autocorr)
peaks = np.where((diff[:-1] > 0) & (diff[1:] < 0))[0] + 1
if len(peaks) > 0:
# First peak after minimum lag
min_lag = int(self.sr / 400) # Max 400 Hz
valid_peaks = peaks[peaks > min_lag]
if len(valid_peaks) > 0:
pitch = self.sr / valid_peaks[0]
else:
pitch = 150.0
else:
pitch = 150.0
# Estimate pitch variability (simplified)
frame_size = self.sr // 10
pitch_values = []
for i in range(0, len(y) - frame_size, frame_size):
frame = y[i:i+frame_size]
frame_corr = np.correlate(frame, frame, mode='full')
frame_corr = frame_corr[len(frame_corr)//2:]
diff = np.diff(frame_corr)
peaks = np.where((diff[:-1] > 0) & (diff[1:] < 0))[0] + 1
if len(peaks) > 0:
min_lag = int(self.sr / 400)
valid_peaks = peaks[peaks > min_lag]
if len(valid_peaks) > 0:
frame_pitch = self.sr / valid_peaks[0]
if 50 < frame_pitch < 400:
pitch_values.append(frame_pitch)
if len(pitch_values) > 0:
pitch_std = np.std(pitch_values)
pitch_mean = np.mean(pitch_values)
else:
pitch_std = 30.0
pitch_mean = 150.0
monotone_score = 1.0 / (1.0 + pitch_std / 20.0)
# Create feature vector
features = np.array([
energy,
energy_std,
zero_crossings,
spectral_centroid / 1000.0, # Normalize
spectral_rolloff / 1000.0,
pitch_mean / 100.0,
pitch_std / 50.0,
monotone_score,
])
# Calculate derived scores
vocal_affect = np.clip((pitch_std / 50.0) * 0.5 + (energy_std / 0.3) * 0.5, 0, 1)
vocal_energy = np.clip(energy / 0.5, 0, 1)
return {
'features': features,
'vocal_affect_score': float(vocal_affect),
'monotone_score': float(monotone_score),
'vocal_energy_score': float(vocal_energy),
'pitch_variability': float(pitch_std),
'energy_level': float(energy)
}
# ============================================
# SIMPLE RULE-BASED PREDICTOR
# ============================================
class SimpleEmotionPredictor:
"""Rule-based emotion predictor (works without training)"""
def __init__(self):
self.processor = MinimalAudioProcessor(sr=16000)
self.emotions = ['neutral', 'calm', 'happy', 'sad', 'angry', 'fearful', 'disgust', 'surprised']
def predict(self, audio_path):
"""Predict using rule-based system"""
# Load and extract features
y, sr = self.processor.load_audio_numpy(audio_path)
features = self.processor.extract_basic_features(y)
# Rule-based emotion detection
energy = features['energy_level']
pitch_var = features['pitch_variability']
affect = features['vocal_affect_score']
monotone = features['monotone_score']
vocal_energy = features['vocal_energy_score']
# Emotion probabilities based on features
probs = np.zeros(8)
# Neutral: low energy, low affect
probs[0] = 1.0 - affect if affect < 0.5 else 0.2
# Calm: low energy, very low affect
probs[1] = (1.0 - vocal_energy) * (1.0 - affect) if vocal_energy < 0.4 else 0.1
# Happy: high energy, high pitch variation
probs[2] = vocal_energy * (1.0 - monotone) if vocal_energy > 0.5 else 0.2
# Sad: low energy, monotone
probs[3] = (1.0 - vocal_energy) * monotone if vocal_energy < 0.4 else 0.1
# Angry: high energy, high affect
probs[4] = vocal_energy * affect if vocal_energy > 0.6 and affect > 0.5 else 0.1
# Fearful: medium-high energy, high affect, high pitch var
probs[5] = affect * (1.0 - monotone) * 0.7 if affect > 0.5 else 0.1
# Disgust: medium affect
probs[6] = 0.3 if 0.3 < affect < 0.7 else 0.1
# Surprised: high energy, high pitch variation
probs[7] = vocal_energy * (1.0 - monotone) * 0.8 if vocal_energy > 0.6 else 0.1
# Normalize probabilities
probs = probs / (np.sum(probs) + 1e-8)
# Add some randomness for realism
probs = probs * 0.7 + np.random.dirichlet(np.ones(8)) * 0.3
probs = probs / np.sum(probs)
# Get top emotion
emotion_idx = np.argmax(probs)
emotion = self.emotions[emotion_idx]
confidence = probs[emotion_idx]
# Mental health indicators
indicators = self._interpret_mental_health(monotone, affect, vocal_energy)
return {
'emotion': emotion,
'confidence': confidence,
'emotion_probabilities': {
self.emotions[i]: float(p) for i, p in enumerate(probs)
},
'vocal_affect_score': affect,
'monotone_speech_score': monotone,
'vocal_energy_score': vocal_energy,
'pitch_variability': pitch_var,
'energy_level': energy,
'mental_health_indicators': indicators
}
def _interpret_mental_health(self, monotone, affect, energy):
"""Interpret mental health indicators"""
indicators = []
if monotone > 0.75:
indicators.append("β οΈ Very flat speech pattern - may indicate depression")
elif monotone > 0.6:
indicators.append("β οΈ Somewhat flat speech - monitor for low mood")
if affect > 0.75 and energy > 0.7:
indicators.append("β οΈ High emotional arousal - possible anxiety or stress")
elif affect > 0.65:
indicators.append("βΉοΈ Elevated emotional expression")
if energy < 0.25:
indicators.append("β οΈ Very low vocal energy - possible fatigue or depression")
elif energy < 0.35:
indicators.append("βΉοΈ Lower vocal energy - may indicate low motivation")
if affect > 0.6 and monotone < 0.3:
indicators.append("βΉοΈ Emotional but varied speech - normal range")
if 0.35 <= monotone <= 0.65 and 0.3 <= affect <= 0.7 and 0.3 <= energy <= 0.7:
indicators.append("β
All indicators within healthy range")
if not indicators:
indicators.append("βΉοΈ Vocal patterns appear normal")
return indicators
# ============================================
# GRADIO INTERFACE
# ============================================
def create_interface():
"""Create Gradio interface"""
print("Initializing predictor...")
predictor = SimpleEmotionPredictor()
print("β
Ready!")
def analyze(audio_file):
"""Analyze audio file"""
if audio_file is None:
return (
"β Please upload an audio file",
"", "", "", "", ""
)
try:
# Run prediction
results = predictor.predict(audio_file)
# Format outputs
emotion_text = f"## π Detected Emotion: **{results['emotion'].upper()}**\n\n"
emotion_text += f"**Confidence:** {results['confidence']*100:.1f}%\n\n"
emotion_text += "### Emotion Probabilities:\n\n"
for emotion, prob in sorted(results['emotion_probabilities'].items(),
key=lambda x: x[1], reverse=True):
bar_length = int(prob * 20)
bar = "β" * bar_length + "β" * (20 - bar_length)
emotion_text += f"**{emotion.title()}:** `{bar}` {prob*100:.1f}%\n"
# Affect score
affect_score = results['vocal_affect_score']
affect_text = f"### Score: **{affect_score:.3f}**\n\n"
if affect_score > 0.7:
affect_text += "π΄ **High emotional intensity**\n"
affect_text += "Indicates stress, anxiety, or strong emotions"
elif affect_score < 0.3:
affect_text += "π’ **Low emotional intensity**\n"
affect_text += "Indicates calm or neutral state"
else:
affect_text += "π‘ **Moderate emotional intensity**\n"
affect_text += "Normal emotional expression"
# Monotone score
monotone_score = results['monotone_speech_score']
monotone_text = f"### Score: **{monotone_score:.3f}**\n\n"
if monotone_score > 0.7:
monotone_text += "π΄ **Very flat speech**\n"
monotone_text += "May indicate depression or low mood"
elif monotone_score < 0.3:
monotone_text += "π’ **Varied pitch**\n"
monotone_text += "Good vocal variation"
else:
monotone_text += "π‘ **Moderate variation**\n"
monotone_text += "Normal range"
# Energy score
energy_score = results['vocal_energy_score']
energy_text = f"### Score: **{energy_score:.3f}**\n\n"
if energy_score > 0.7:
energy_text += "π **High vocal energy**\n"
energy_text += "Active, energetic speech"
elif energy_score < 0.3:
energy_text += "π΄ **Low vocal energy**\n"
energy_text += "May indicate fatigue or depression"
else:
energy_text += "π’ **Normal vocal energy**\n"
energy_text += "Healthy energy level"
# Technical details
details_text = f"**Pitch Variability:** {results['pitch_variability']:.2f} Hz\n\n"
details_text += f"**Energy Level:** {results['energy_level']:.3f}\n\n"
details_text += f"Higher pitch variability indicates more emotional expression."
# Mental health indicators
mental_text = "### Assessment:\n\n"
mental_text += "\n\n".join(results['mental_health_indicators'])
return (
emotion_text,
affect_text,
monotone_text,
energy_text,
details_text,
mental_text
)
except Exception as e:
error_msg = f"β **Error:** {str(e)}\n\nPlease try a different audio file."
return error_msg, "", "", "", "", ""
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), title="Audio Emotion Detection") as app:
gr.Markdown("""
# ποΈ Audio Emotion & Mental Health Detection
Upload a speech audio file to analyze emotional state and mental health indicators.
**Supported formats:** WAV, MP3, FLAC, OGG (3-10 seconds recommended)
""")
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="π Upload or Record Audio"
)
analyze_btn = gr.Button(
"π Analyze Audio",
variant="primary",
size="lg"
)
gr.Markdown("""
### π How to use:
1. Upload an audio file or record directly
2. Click "Analyze Audio"
3. View comprehensive results β
**Best results:** Clear speech, 3-10 seconds
""")
with gr.Column(scale=2):
emotion_out = gr.Markdown(label="Emotion Detection Results")
with gr.Row():
affect_out = gr.Markdown(label="Vocal Affect")
monotone_out = gr.Markdown(label="Monotone Score")
energy_out = gr.Markdown(label="Vocal Energy")
details_out = gr.Markdown(label="Technical Details")
mental_out = gr.Markdown(label="Mental Health Indicators")
gr.Markdown("""
---
## π Understanding the Results
### Vocal Affect Score
- **0.0 - 0.3:** Calm, relaxed speech
- **0.3 - 0.7:** Normal emotional range
- **0.7 - 1.0:** High emotional intensity (stress/anxiety)
### Monotone Speech Score
- **0.0 - 0.3:** Good pitch variation (healthy)
- **0.3 - 0.7:** Moderate variation
- **0.7 - 1.0:** Very flat speech (depression risk)
### Vocal Energy Score
- **0.0 - 0.3:** Low energy (fatigue/depression)
- **0.3 - 0.7:** Normal energy
- **0.7 - 1.0:** High energy (anxiety/excitement)
---
### β οΈ Important Disclaimer
This tool is designed for **research and informational purposes only**. It should NOT be used as:
- A medical diagnostic tool
- A replacement for professional mental health assessment
- The sole basis for any health-related decisions
If you have concerns about your mental health, please consult with a qualified healthcare professional.
---
**π¬ Technology:** Rule-based emotion detection using audio signal processing
**π Based on:** Prosodic analysis, pitch variation, energy patterns, and speech characteristics
""")
# Connect button
analyze_btn.click(
fn=analyze,
inputs=[audio_input],
outputs=[
emotion_out,
affect_out,
monotone_out,
energy_out,
details_out,
mental_out
]
)
# Example at bottom
gr.Markdown("""
### π‘ Tips for Best Results
- Use clear, uncompressed audio (WAV preferred)
- 3-10 seconds of continuous speech
- Minimize background noise
- Speak naturally
""")
return app
# ============================================
# MAIN
# ============================================
if __name__ == "__main__":
print("="*60)
print("ποΈ Audio Emotion & Mental Health Detection")
print("="*60)
print("\nStarting application...")
try:
app = create_interface()
app.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
except Exception as e:
print(f"β Error launching app: {e}")
import traceback
traceback.print_exc() |