Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,244 +1,281 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
# pip install audiomentations soundfile pyaudio
|
| 7 |
|
| 8 |
import os
|
| 9 |
import numpy as np
|
| 10 |
-
import pandas as pd
|
| 11 |
-
import librosa
|
| 12 |
import torch
|
| 13 |
import torch.nn as nn
|
| 14 |
import torch.nn.functional as F
|
| 15 |
-
from torch.utils.data import Dataset, DataLoader
|
| 16 |
-
from sklearn.model_selection import train_test_split
|
| 17 |
-
from sklearn.preprocessing import StandardScaler
|
| 18 |
-
import pickle
|
| 19 |
import gradio as gr
|
| 20 |
-
from typing import
|
| 21 |
import warnings
|
| 22 |
warnings.filterwarnings('ignore')
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
- RAVDESS (Emotional speech and song)
|
| 32 |
-
- TESS (Toronto Emotional Speech Set)
|
| 33 |
-
- CREMA-D (Crowd-sourced Emotional Multimodal Actors Dataset)
|
| 34 |
-
- DAIC-WOZ (Depression dataset)
|
| 35 |
-
"""
|
| 36 |
-
|
| 37 |
-
def __init__(self, data_paths):
|
| 38 |
-
self.data_paths = data_paths
|
| 39 |
-
self.emotion_map = {
|
| 40 |
-
'neutral': 0, 'calm': 1, 'happy': 2, 'sad': 3,
|
| 41 |
-
'angry': 4, 'fearful': 5, 'disgust': 6, 'surprised': 7
|
| 42 |
-
}
|
| 43 |
-
|
| 44 |
-
def load_ravdess(self, path):
|
| 45 |
-
"""
|
| 46 |
-
RAVDESS dataset structure: 03-01-01-01-01-01-01.wav
|
| 47 |
-
Modality-Channel-Emotion-Intensity-Statement-Repetition-Actor
|
| 48 |
-
"""
|
| 49 |
-
data = []
|
| 50 |
-
if not os.path.exists(path):
|
| 51 |
-
print(f"β οΈ RAVDESS path not found: {path}")
|
| 52 |
-
return pd.DataFrame()
|
| 53 |
-
|
| 54 |
-
for root, dirs, files in os.walk(path):
|
| 55 |
-
for file in files:
|
| 56 |
-
if file.endswith('.wav'):
|
| 57 |
-
file_path = os.path.join(root, file)
|
| 58 |
-
parts = file.split('-')
|
| 59 |
-
emotion_code = int(parts[2])
|
| 60 |
-
|
| 61 |
-
emotion_mapping = {
|
| 62 |
-
1: 'neutral', 2: 'calm', 3: 'happy', 4: 'sad',
|
| 63 |
-
5: 'angry', 6: 'fearful', 7: 'disgust', 8: 'surprised'
|
| 64 |
-
}
|
| 65 |
-
|
| 66 |
-
emotion = emotion_mapping.get(emotion_code, 'neutral')
|
| 67 |
-
intensity = int(parts[3])
|
| 68 |
-
|
| 69 |
-
data.append({
|
| 70 |
-
'path': file_path,
|
| 71 |
-
'emotion': emotion,
|
| 72 |
-
'intensity': intensity,
|
| 73 |
-
'source': 'ravdess'
|
| 74 |
-
})
|
| 75 |
-
|
| 76 |
-
return pd.DataFrame(data)
|
| 77 |
-
|
| 78 |
-
def load_tess(self, path):
|
| 79 |
-
"""TESS dataset: OAF_back_angry.wav"""
|
| 80 |
-
data = []
|
| 81 |
-
if not os.path.exists(path):
|
| 82 |
-
print(f"β οΈ TESS path not found: {path}")
|
| 83 |
-
return pd.DataFrame()
|
| 84 |
-
|
| 85 |
-
emotions = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprised']
|
| 86 |
-
|
| 87 |
-
for emotion in emotions:
|
| 88 |
-
emotion_path = os.path.join(path, emotion)
|
| 89 |
-
if os.path.exists(emotion_path):
|
| 90 |
-
for file in os.listdir(emotion_path):
|
| 91 |
-
if file.endswith('.wav'):
|
| 92 |
-
data.append({
|
| 93 |
-
'path': os.path.join(emotion_path, file),
|
| 94 |
-
'emotion': emotion,
|
| 95 |
-
'intensity': 2,
|
| 96 |
-
'source': 'tess'
|
| 97 |
-
})
|
| 98 |
-
|
| 99 |
-
return pd.DataFrame(data)
|
| 100 |
-
|
| 101 |
-
def load_cremad(self, path):
|
| 102 |
-
"""CREMA-D: 1001_DFA_ANG_XX.wav"""
|
| 103 |
-
data = []
|
| 104 |
-
if not os.path.exists(path):
|
| 105 |
-
print(f"β οΈ CREMA-D path not found: {path}")
|
| 106 |
-
return pd.DataFrame()
|
| 107 |
-
|
| 108 |
-
emotion_map = {
|
| 109 |
-
'ANG': 'angry', 'DIS': 'disgust', 'FEA': 'fearful',
|
| 110 |
-
'HAP': 'happy', 'NEU': 'neutral', 'SAD': 'sad'
|
| 111 |
-
}
|
| 112 |
-
|
| 113 |
-
for file in os.listdir(path):
|
| 114 |
-
if file.endswith('.wav'):
|
| 115 |
-
parts = file.split('_')
|
| 116 |
-
emotion = emotion_map.get(parts[2], 'neutral')
|
| 117 |
-
|
| 118 |
-
data.append({
|
| 119 |
-
'path': os.path.join(path, file),
|
| 120 |
-
'emotion': emotion,
|
| 121 |
-
'intensity': 2,
|
| 122 |
-
'source': 'cremad'
|
| 123 |
-
})
|
| 124 |
-
|
| 125 |
-
return pd.DataFrame(data)
|
| 126 |
-
|
| 127 |
-
def create_synthetic_data(self, n_samples=1000):
|
| 128 |
-
"""Create synthetic samples for testing"""
|
| 129 |
-
print("π Creating synthetic training data...")
|
| 130 |
-
data = []
|
| 131 |
-
emotions = list(self.emotion_map.keys())
|
| 132 |
-
|
| 133 |
-
for i in range(n_samples):
|
| 134 |
-
emotion = np.random.choice(emotions)
|
| 135 |
-
data.append({
|
| 136 |
-
'path': f'synthetic_{i}',
|
| 137 |
-
'emotion': emotion,
|
| 138 |
-
'intensity': np.random.randint(1, 3),
|
| 139 |
-
'source': 'synthetic'
|
| 140 |
-
})
|
| 141 |
-
|
| 142 |
-
return pd.DataFrame(data)
|
| 143 |
-
|
| 144 |
-
def load_all_datasets(self):
|
| 145 |
-
"""Combine all available datasets"""
|
| 146 |
-
all_data = []
|
| 147 |
-
|
| 148 |
-
for dataset_name, path in self.data_paths.items():
|
| 149 |
-
if dataset_name == 'ravdess':
|
| 150 |
-
df = self.load_ravdess(path)
|
| 151 |
-
elif dataset_name == 'tess':
|
| 152 |
-
df = self.load_tess(path)
|
| 153 |
-
elif dataset_name == 'cremad':
|
| 154 |
-
df = self.load_cremad(path)
|
| 155 |
-
else:
|
| 156 |
-
continue
|
| 157 |
-
|
| 158 |
-
if not df.empty:
|
| 159 |
-
all_data.append(df)
|
| 160 |
-
print(f"β
Loaded {len(df)} samples from {dataset_name}")
|
| 161 |
-
|
| 162 |
-
# If no real datasets found, use synthetic data
|
| 163 |
-
if not all_data:
|
| 164 |
-
print("β οΈ No real datasets found. Using synthetic data for demonstration.")
|
| 165 |
-
all_data.append(self.create_synthetic_data())
|
| 166 |
-
|
| 167 |
-
combined_df = pd.concat(all_data, ignore_index=True)
|
| 168 |
-
print(f"\nπ Total samples: {len(combined_df)}")
|
| 169 |
-
print(f"Emotion distribution:\n{combined_df['emotion'].value_counts()}\n")
|
| 170 |
-
|
| 171 |
-
return combined_df
|
| 172 |
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
# ============================================
|
| 175 |
-
#
|
| 176 |
# ============================================
|
| 177 |
|
| 178 |
-
class
|
| 179 |
-
"""
|
| 180 |
|
| 181 |
def __init__(self, sr=16000, n_mfcc=40):
|
| 182 |
self.sr = sr
|
| 183 |
self.n_mfcc = n_mfcc
|
| 184 |
|
| 185 |
-
def
|
| 186 |
-
"""
|
| 187 |
-
|
| 188 |
-
if is_synthetic:
|
| 189 |
-
# Generate synthetic features for demo
|
| 190 |
-
return self._generate_synthetic_features(audio_path)
|
| 191 |
-
|
| 192 |
try:
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
-
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
pitch_values = []
|
| 204 |
for t in range(pitches.shape[1]):
|
| 205 |
index = magnitudes[:, t].argmax()
|
| 206 |
pitch = pitches[index, t]
|
| 207 |
if pitch > 0:
|
| 208 |
pitch_values.append(pitch)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
|
| 215 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
monotone_score = 1 / (1 + pitch_std) if pitch_std > 0 else 1.0
|
| 217 |
|
| 218 |
# 3. Energy features
|
| 219 |
-
rms =
|
| 220 |
energy_mean = np.mean(rms)
|
| 221 |
energy_std = np.std(rms)
|
| 222 |
energy_max = np.max(rms)
|
| 223 |
|
| 224 |
-
# 4. Zero Crossing Rate
|
| 225 |
-
zcr =
|
| 226 |
zcr_mean = np.mean(zcr)
|
| 227 |
zcr_std = np.std(zcr)
|
| 228 |
|
| 229 |
# 5. Spectral features
|
| 230 |
-
spectral_centroid
|
| 231 |
-
|
| 232 |
-
spectral_bandwidth = np.mean(librosa.feature.spectral_bandwidth(y=y, sr=sr))
|
| 233 |
|
| 234 |
-
# 6. Chroma
|
| 235 |
-
|
| 236 |
-
chroma_mean = np.mean(chroma)
|
| 237 |
|
| 238 |
# 7. Tempo
|
| 239 |
-
tempo
|
| 240 |
|
| 241 |
-
# Combine
|
| 242 |
features = np.concatenate([
|
| 243 |
mfcc_mean,
|
| 244 |
mfcc_std,
|
|
@@ -259,91 +296,21 @@ class AudioFeatureExtractor:
|
|
| 259 |
)
|
| 260 |
|
| 261 |
return {
|
| 262 |
-
'features': features,
|
| 263 |
-
'vocal_affect_score': vocal_affect_score,
|
| 264 |
-
'monotone_score': monotone_score,
|
| 265 |
-
'vocal_energy_score': vocal_energy_score,
|
| 266 |
-
'pitch_variability': pitch_std,
|
| 267 |
-
'energy_level': energy_mean
|
| 268 |
}
|
| 269 |
|
| 270 |
except Exception as e:
|
| 271 |
-
print(f"Error
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
def _generate_synthetic_features(self, identifier):
|
| 275 |
-
"""Generate synthetic features for demonstration"""
|
| 276 |
-
np.random.seed(hash(str(identifier)) % 2**32)
|
| 277 |
-
|
| 278 |
-
# Simulate realistic feature distributions
|
| 279 |
-
emotion = str(identifier).split('_')[-1] if 'synthetic' in str(identifier) else 'neutral'
|
| 280 |
-
|
| 281 |
-
# Emotion-specific parameters
|
| 282 |
-
emotion_params = {
|
| 283 |
-
'angry': {'pitch_std': 80, 'energy': 0.8, 'tempo': 140},
|
| 284 |
-
'happy': {'pitch_std': 70, 'energy': 0.7, 'tempo': 130},
|
| 285 |
-
'sad': {'pitch_std': 20, 'energy': 0.3, 'tempo': 80},
|
| 286 |
-
'fearful': {'pitch_std': 90, 'energy': 0.6, 'tempo': 150},
|
| 287 |
-
'neutral': {'pitch_std': 40, 'energy': 0.5, 'tempo': 100},
|
| 288 |
-
'calm': {'pitch_std': 30, 'energy': 0.4, 'tempo': 90},
|
| 289 |
-
}
|
| 290 |
-
|
| 291 |
-
params = emotion_params.get(emotion, emotion_params['neutral'])
|
| 292 |
-
|
| 293 |
-
# Generate features
|
| 294 |
-
mfcc_mean = np.random.randn(self.n_mfcc) * 10
|
| 295 |
-
mfcc_std = np.abs(np.random.randn(self.n_mfcc) * 5)
|
| 296 |
-
|
| 297 |
-
pitch_std = params['pitch_std'] + np.random.randn() * 10
|
| 298 |
-
pitch_mean = 150 + np.random.randn() * 20
|
| 299 |
-
pitch_min = pitch_mean - pitch_std
|
| 300 |
-
pitch_max = pitch_mean + pitch_std
|
| 301 |
-
monotone_score = 1 / (1 + pitch_std/100)
|
| 302 |
-
|
| 303 |
-
energy_mean = params['energy'] + np.random.randn() * 0.1
|
| 304 |
-
energy_std = np.abs(np.random.randn() * 0.1)
|
| 305 |
-
energy_max = energy_mean * 1.5
|
| 306 |
-
|
| 307 |
-
zcr_mean = 0.1 + np.random.randn() * 0.02
|
| 308 |
-
zcr_std = 0.05 + np.random.randn() * 0.01
|
| 309 |
-
|
| 310 |
-
spectral_centroid = 1500 + np.random.randn() * 200
|
| 311 |
-
spectral_rolloff = 3000 + np.random.randn() * 300
|
| 312 |
-
spectral_bandwidth = 1800 + np.random.randn() * 200
|
| 313 |
-
|
| 314 |
-
chroma_mean = 0.5 + np.random.randn() * 0.1
|
| 315 |
-
tempo = params['tempo'] + np.random.randn() * 10
|
| 316 |
-
|
| 317 |
-
features = np.concatenate([
|
| 318 |
-
mfcc_mean,
|
| 319 |
-
mfcc_std,
|
| 320 |
-
[pitch_mean, pitch_std, pitch_min, pitch_max, monotone_score],
|
| 321 |
-
[energy_mean, energy_std, energy_max],
|
| 322 |
-
[zcr_mean, zcr_std],
|
| 323 |
-
[spectral_centroid, spectral_rolloff, spectral_bandwidth],
|
| 324 |
-
[chroma_mean],
|
| 325 |
-
[tempo]
|
| 326 |
-
])
|
| 327 |
-
|
| 328 |
-
vocal_affect_score = self._calculate_vocal_affect(
|
| 329 |
-
pitch_std, energy_std, spectral_centroid
|
| 330 |
-
)
|
| 331 |
-
vocal_energy_score = self._calculate_vocal_energy(
|
| 332 |
-
energy_mean, tempo, zcr_mean
|
| 333 |
-
)
|
| 334 |
-
|
| 335 |
-
return {
|
| 336 |
-
'features': features,
|
| 337 |
-
'vocal_affect_score': vocal_affect_score,
|
| 338 |
-
'monotone_score': monotone_score,
|
| 339 |
-
'vocal_energy_score': vocal_energy_score,
|
| 340 |
-
'pitch_variability': pitch_std,
|
| 341 |
-
'energy_level': energy_mean
|
| 342 |
-
}
|
| 343 |
|
| 344 |
def _calculate_vocal_affect(self, pitch_std, energy_std, spectral_centroid):
|
| 345 |
-
"""Calculate emotional intensity
|
| 346 |
-
# Normalize and combine indicators
|
| 347 |
pitch_component = min(pitch_std / 100, 1.0)
|
| 348 |
energy_component = min(energy_std / 0.5, 1.0)
|
| 349 |
spectral_component = min(spectral_centroid / 3000, 1.0)
|
|
@@ -352,10 +319,10 @@ class AudioFeatureExtractor:
|
|
| 352 |
energy_component * 0.4 +
|
| 353 |
spectral_component * 0.2)
|
| 354 |
|
| 355 |
-
return affect_score
|
| 356 |
|
| 357 |
def _calculate_vocal_energy(self, energy_mean, tempo, zcr_mean):
|
| 358 |
-
"""Calculate vocal energy/activation
|
| 359 |
energy_component = min(energy_mean / 1.0, 1.0)
|
| 360 |
tempo_component = min(tempo / 180, 1.0)
|
| 361 |
zcr_component = min(zcr_mean / 0.3, 1.0)
|
|
@@ -364,72 +331,32 @@ class AudioFeatureExtractor:
|
|
| 364 |
tempo_component * 0.3 +
|
| 365 |
zcr_component * 0.2)
|
| 366 |
|
| 367 |
-
return energy_score
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
# ============================================
|
| 371 |
-
# 3. PYTORCH DATASET
|
| 372 |
-
# ============================================
|
| 373 |
-
|
| 374 |
-
class EmotionAudioDataset(Dataset):
|
| 375 |
-
def __init__(self, dataframe, feature_extractor, emotion_map):
|
| 376 |
-
self.dataframe = dataframe
|
| 377 |
-
self.feature_extractor = feature_extractor
|
| 378 |
-
self.emotion_map = emotion_map
|
| 379 |
-
self.features_cache = {}
|
| 380 |
-
|
| 381 |
-
def __len__(self):
|
| 382 |
-
return len(self.dataframe)
|
| 383 |
|
| 384 |
-
def
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
emotion = row['emotion']
|
| 388 |
-
|
| 389 |
-
# Check if features are cached
|
| 390 |
-
if audio_path not in self.features_cache:
|
| 391 |
-
is_synthetic = row['source'] == 'synthetic'
|
| 392 |
-
feature_dict = self.feature_extractor.extract_features(
|
| 393 |
-
audio_path, is_synthetic=is_synthetic
|
| 394 |
-
)
|
| 395 |
-
self.features_cache[audio_path] = feature_dict
|
| 396 |
-
else:
|
| 397 |
-
feature_dict = self.features_cache[audio_path]
|
| 398 |
-
|
| 399 |
-
features = torch.FloatTensor(feature_dict['features'])
|
| 400 |
-
label = self.emotion_map[emotion]
|
| 401 |
-
|
| 402 |
-
# Additional targets for multi-task learning
|
| 403 |
-
vocal_affect = torch.FloatTensor([feature_dict['vocal_affect_score']])
|
| 404 |
-
monotone = torch.FloatTensor([feature_dict['monotone_score']])
|
| 405 |
-
vocal_energy = torch.FloatTensor([feature_dict['vocal_energy_score']])
|
| 406 |
-
|
| 407 |
return {
|
| 408 |
-
'features':
|
| 409 |
-
'
|
| 410 |
-
'
|
| 411 |
-
'
|
| 412 |
-
'
|
|
|
|
| 413 |
}
|
| 414 |
|
| 415 |
|
| 416 |
# ============================================
|
| 417 |
-
#
|
| 418 |
# ============================================
|
| 419 |
|
| 420 |
class MultiTaskEmotionModel(nn.Module):
|
| 421 |
-
"""
|
| 422 |
-
Multi-task learning model for:
|
| 423 |
-
1. Emotion classification
|
| 424 |
-
2. Vocal affect score regression
|
| 425 |
-
3. Monotone score regression
|
| 426 |
-
4. Vocal energy score regression
|
| 427 |
-
"""
|
| 428 |
|
| 429 |
-
def __init__(self, input_dim, num_emotions, dropout=0.5):
|
| 430 |
super(MultiTaskEmotionModel, self).__init__()
|
| 431 |
|
| 432 |
-
# Shared
|
| 433 |
self.shared_layers = nn.Sequential(
|
| 434 |
nn.Linear(input_dim, 512),
|
| 435 |
nn.BatchNorm1d(512),
|
|
@@ -447,8 +374,7 @@ class MultiTaskEmotionModel(nn.Module):
|
|
| 447 |
nn.Dropout(dropout/2)
|
| 448 |
)
|
| 449 |
|
| 450 |
-
#
|
| 451 |
-
# 1. Emotion classification
|
| 452 |
self.emotion_head = nn.Sequential(
|
| 453 |
nn.Linear(128, 64),
|
| 454 |
nn.ReLU(),
|
|
@@ -456,7 +382,7 @@ class MultiTaskEmotionModel(nn.Module):
|
|
| 456 |
nn.Linear(64, num_emotions)
|
| 457 |
)
|
| 458 |
|
| 459 |
-
#
|
| 460 |
self.affect_head = nn.Sequential(
|
| 461 |
nn.Linear(128, 32),
|
| 462 |
nn.ReLU(),
|
|
@@ -464,7 +390,6 @@ class MultiTaskEmotionModel(nn.Module):
|
|
| 464 |
nn.Sigmoid()
|
| 465 |
)
|
| 466 |
|
| 467 |
-
# 3. Monotone score regression
|
| 468 |
self.monotone_head = nn.Sequential(
|
| 469 |
nn.Linear(128, 32),
|
| 470 |
nn.ReLU(),
|
|
@@ -472,7 +397,6 @@ class MultiTaskEmotionModel(nn.Module):
|
|
| 472 |
nn.Sigmoid()
|
| 473 |
)
|
| 474 |
|
| 475 |
-
# 4. Vocal energy regression
|
| 476 |
self.energy_head = nn.Sequential(
|
| 477 |
nn.Linear(128, 32),
|
| 478 |
nn.ReLU(),
|
|
@@ -481,329 +405,69 @@ class MultiTaskEmotionModel(nn.Module):
|
|
| 481 |
)
|
| 482 |
|
| 483 |
def forward(self, x):
|
| 484 |
-
|
| 485 |
-
shared_features = self.shared_layers(x)
|
| 486 |
-
|
| 487 |
-
# Task-specific outputs
|
| 488 |
-
emotion_logits = self.emotion_head(shared_features)
|
| 489 |
-
vocal_affect = self.affect_head(shared_features)
|
| 490 |
-
monotone_score = self.monotone_head(shared_features)
|
| 491 |
-
vocal_energy = self.energy_head(shared_features)
|
| 492 |
|
| 493 |
return {
|
| 494 |
-
'emotion_logits':
|
| 495 |
-
'vocal_affect':
|
| 496 |
-
'monotone_score':
|
| 497 |
-
'vocal_energy':
|
| 498 |
}
|
| 499 |
|
| 500 |
|
| 501 |
# ============================================
|
| 502 |
-
#
|
| 503 |
-
# ============================================
|
| 504 |
-
|
| 505 |
-
class EmotionModelTrainer:
|
| 506 |
-
def __init__(self, model, device, learning_rate=0.001):
|
| 507 |
-
self.model = model.to(device)
|
| 508 |
-
self.device = device
|
| 509 |
-
self.optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
| 510 |
-
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
| 511 |
-
self.optimizer, mode='min', patience=5, factor=0.5
|
| 512 |
-
)
|
| 513 |
-
|
| 514 |
-
# Loss functions
|
| 515 |
-
self.emotion_criterion = nn.CrossEntropyLoss()
|
| 516 |
-
self.regression_criterion = nn.MSELoss()
|
| 517 |
-
|
| 518 |
-
def train_epoch(self, train_loader):
|
| 519 |
-
self.model.train()
|
| 520 |
-
total_loss = 0
|
| 521 |
-
correct = 0
|
| 522 |
-
total = 0
|
| 523 |
-
|
| 524 |
-
for batch in train_loader:
|
| 525 |
-
features = batch['features'].to(self.device)
|
| 526 |
-
emotion_labels = batch['emotion_label'].to(self.device)
|
| 527 |
-
vocal_affect = batch['vocal_affect'].to(self.device)
|
| 528 |
-
monotone = batch['monotone'].to(self.device)
|
| 529 |
-
vocal_energy = batch['vocal_energy'].to(self.device)
|
| 530 |
-
|
| 531 |
-
self.optimizer.zero_grad()
|
| 532 |
-
|
| 533 |
-
# Forward pass
|
| 534 |
-
outputs = self.model(features)
|
| 535 |
-
|
| 536 |
-
# Calculate losses
|
| 537 |
-
emotion_loss = self.emotion_criterion(
|
| 538 |
-
outputs['emotion_logits'], emotion_labels
|
| 539 |
-
)
|
| 540 |
-
affect_loss = self.regression_criterion(
|
| 541 |
-
outputs['vocal_affect'], vocal_affect
|
| 542 |
-
)
|
| 543 |
-
monotone_loss = self.regression_criterion(
|
| 544 |
-
outputs['monotone_score'], monotone
|
| 545 |
-
)
|
| 546 |
-
energy_loss = self.regression_criterion(
|
| 547 |
-
outputs['vocal_energy'], vocal_energy
|
| 548 |
-
)
|
| 549 |
-
|
| 550 |
-
# Combined loss with weights
|
| 551 |
-
loss = (emotion_loss * 1.0 +
|
| 552 |
-
affect_loss * 0.5 +
|
| 553 |
-
monotone_loss * 0.5 +
|
| 554 |
-
energy_loss * 0.5)
|
| 555 |
-
|
| 556 |
-
# Backward pass
|
| 557 |
-
loss.backward()
|
| 558 |
-
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
|
| 559 |
-
self.optimizer.step()
|
| 560 |
-
|
| 561 |
-
total_loss += loss.item()
|
| 562 |
-
|
| 563 |
-
# Calculate accuracy
|
| 564 |
-
_, predicted = outputs['emotion_logits'].max(1)
|
| 565 |
-
total += emotion_labels.size(0)
|
| 566 |
-
correct += predicted.eq(emotion_labels).sum().item()
|
| 567 |
-
|
| 568 |
-
avg_loss = total_loss / len(train_loader)
|
| 569 |
-
accuracy = 100. * correct / total
|
| 570 |
-
|
| 571 |
-
return avg_loss, accuracy
|
| 572 |
-
|
| 573 |
-
def validate(self, val_loader):
|
| 574 |
-
self.model.eval()
|
| 575 |
-
total_loss = 0
|
| 576 |
-
correct = 0
|
| 577 |
-
total = 0
|
| 578 |
-
|
| 579 |
-
with torch.no_grad():
|
| 580 |
-
for batch in val_loader:
|
| 581 |
-
features = batch['features'].to(self.device)
|
| 582 |
-
emotion_labels = batch['emotion_label'].to(self.device)
|
| 583 |
-
vocal_affect = batch['vocal_affect'].to(self.device)
|
| 584 |
-
monotone = batch['monotone'].to(self.device)
|
| 585 |
-
vocal_energy = batch['vocal_energy'].to(self.device)
|
| 586 |
-
|
| 587 |
-
outputs = self.model(features)
|
| 588 |
-
|
| 589 |
-
emotion_loss = self.emotion_criterion(
|
| 590 |
-
outputs['emotion_logits'], emotion_labels
|
| 591 |
-
)
|
| 592 |
-
affect_loss = self.regression_criterion(
|
| 593 |
-
outputs['vocal_affect'], vocal_affect
|
| 594 |
-
)
|
| 595 |
-
monotone_loss = self.regression_criterion(
|
| 596 |
-
outputs['monotone_score'], monotone
|
| 597 |
-
)
|
| 598 |
-
energy_loss = self.regression_criterion(
|
| 599 |
-
outputs['vocal_energy'], vocal_energy
|
| 600 |
-
)
|
| 601 |
-
|
| 602 |
-
loss = (emotion_loss * 1.0 +
|
| 603 |
-
affect_loss * 0.5 +
|
| 604 |
-
monotone_loss * 0.5 +
|
| 605 |
-
energy_loss * 0.5)
|
| 606 |
-
|
| 607 |
-
total_loss += loss.item()
|
| 608 |
-
|
| 609 |
-
_, predicted = outputs['emotion_logits'].max(1)
|
| 610 |
-
total += emotion_labels.size(0)
|
| 611 |
-
correct += predicted.eq(emotion_labels).sum().item()
|
| 612 |
-
|
| 613 |
-
avg_loss = total_loss / len(val_loader)
|
| 614 |
-
accuracy = 100. * correct / total
|
| 615 |
-
|
| 616 |
-
return avg_loss, accuracy
|
| 617 |
-
|
| 618 |
-
def train(self, train_loader, val_loader, epochs=50, early_stop_patience=10):
|
| 619 |
-
best_val_acc = 0
|
| 620 |
-
patience_counter = 0
|
| 621 |
-
history = {'train_loss': [], 'train_acc': [], 'val_loss': [], 'val_acc': []}
|
| 622 |
-
|
| 623 |
-
for epoch in range(epochs):
|
| 624 |
-
train_loss, train_acc = self.train_epoch(train_loader)
|
| 625 |
-
val_loss, val_acc = self.validate(val_loader)
|
| 626 |
-
|
| 627 |
-
history['train_loss'].append(train_loss)
|
| 628 |
-
history['train_acc'].append(train_acc)
|
| 629 |
-
history['val_loss'].append(val_loss)
|
| 630 |
-
history['val_acc'].append(val_acc)
|
| 631 |
-
|
| 632 |
-
print(f'Epoch {epoch+1}/{epochs}:')
|
| 633 |
-
print(f' Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.2f}%')
|
| 634 |
-
print(f' Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.2f}%')
|
| 635 |
-
|
| 636 |
-
# Learning rate scheduling
|
| 637 |
-
self.scheduler.step(val_loss)
|
| 638 |
-
|
| 639 |
-
# Early stopping
|
| 640 |
-
if val_acc > best_val_acc:
|
| 641 |
-
best_val_acc = val_acc
|
| 642 |
-
patience_counter = 0
|
| 643 |
-
# Save best model
|
| 644 |
-
torch.save(self.model.state_dict(), 'best_emotion_model.pth')
|
| 645 |
-
print(f' β
New best model saved! (Val Acc: {val_acc:.2f}%)')
|
| 646 |
-
else:
|
| 647 |
-
patience_counter += 1
|
| 648 |
-
|
| 649 |
-
if patience_counter >= early_stop_patience:
|
| 650 |
-
print(f'\nβ οΈ Early stopping triggered after {epoch+1} epochs')
|
| 651 |
-
break
|
| 652 |
-
|
| 653 |
-
print(f'\nπ― Best validation accuracy: {best_val_acc:.2f}%')
|
| 654 |
-
return history
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
# ============================================
|
| 658 |
-
# 6. MAIN TRAINING FUNCTION
|
| 659 |
-
# ============================================
|
| 660 |
-
|
| 661 |
-
def train_emotion_model():
|
| 662 |
-
"""Main function to train the emotion detection model"""
|
| 663 |
-
|
| 664 |
-
print("="*60)
|
| 665 |
-
print("ποΈ AUDIO EMOTION & MENTAL HEALTH DETECTION MODEL")
|
| 666 |
-
print("="*60)
|
| 667 |
-
|
| 668 |
-
# Configuration
|
| 669 |
-
BATCH_SIZE = 32
|
| 670 |
-
EPOCHS = 50
|
| 671 |
-
LEARNING_RATE = 0.001
|
| 672 |
-
|
| 673 |
-
# Define dataset paths (modify these to your actual paths)
|
| 674 |
-
data_paths = {
|
| 675 |
-
'ravdess': './datasets/RAVDESS',
|
| 676 |
-
'tess': './datasets/TESS',
|
| 677 |
-
'cremad': './datasets/CREMA-D'
|
| 678 |
-
}
|
| 679 |
-
|
| 680 |
-
# 1. Load datasets
|
| 681 |
-
print("\nπ Loading datasets...")
|
| 682 |
-
dataset_loader = AudioDatasetLoader(data_paths)
|
| 683 |
-
df = dataset_loader.load_all_datasets()
|
| 684 |
-
|
| 685 |
-
# 2. Initialize feature extractor
|
| 686 |
-
print("\nπ§ Initializing feature extractor...")
|
| 687 |
-
feature_extractor = AudioFeatureExtractor(sr=16000, n_mfcc=40)
|
| 688 |
-
|
| 689 |
-
# 3. Create emotion mapping
|
| 690 |
-
emotion_map = {
|
| 691 |
-
'neutral': 0, 'calm': 1, 'happy': 2, 'sad': 3,
|
| 692 |
-
'angry': 4, 'fearful': 5, 'disgust': 6, 'surprised': 7
|
| 693 |
-
}
|
| 694 |
-
reverse_emotion_map = {v: k for k, v in emotion_map.items()}
|
| 695 |
-
|
| 696 |
-
# 4. Split data
|
| 697 |
-
print("\nβοΈ Splitting data...")
|
| 698 |
-
train_df, val_df = train_test_split(df, test_size=0.2, random_state=42,
|
| 699 |
-
stratify=df['emotion'])
|
| 700 |
-
|
| 701 |
-
print(f"Training samples: {len(train_df)}")
|
| 702 |
-
print(f"Validation samples: {len(val_df)}")
|
| 703 |
-
|
| 704 |
-
# 5. Create datasets and dataloaders
|
| 705 |
-
print("\nπ Creating datasets...")
|
| 706 |
-
train_dataset = EmotionAudioDataset(train_df, feature_extractor, emotion_map)
|
| 707 |
-
val_dataset = EmotionAudioDataset(val_df, feature_extractor, emotion_map)
|
| 708 |
-
|
| 709 |
-
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE,
|
| 710 |
-
shuffle=True, num_workers=0)
|
| 711 |
-
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE,
|
| 712 |
-
shuffle=False, num_workers=0)
|
| 713 |
-
|
| 714 |
-
# 6. Get feature dimension
|
| 715 |
-
sample_features = train_dataset[0]['features']
|
| 716 |
-
input_dim = sample_features.shape[0]
|
| 717 |
-
print(f"Feature dimension: {input_dim}")
|
| 718 |
-
|
| 719 |
-
# 7. Initialize model
|
| 720 |
-
print("\nπ€ Initializing model...")
|
| 721 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 722 |
-
print(f"Using device: {device}")
|
| 723 |
-
|
| 724 |
-
model = MultiTaskEmotionModel(
|
| 725 |
-
input_dim=input_dim,
|
| 726 |
-
num_emotions=len(emotion_map),
|
| 727 |
-
dropout=0.5
|
| 728 |
-
)
|
| 729 |
-
|
| 730 |
-
# 8. Train model
|
| 731 |
-
print("\nπ Starting training...")
|
| 732 |
-
trainer = EmotionModelTrainer(model, device, learning_rate=LEARNING_RATE)
|
| 733 |
-
history = trainer.train(train_loader, val_loader, epochs=EPOCHS,
|
| 734 |
-
early_stop_patience=10)
|
| 735 |
-
|
| 736 |
-
# 9. Load best model
|
| 737 |
-
model.load_state_dict(torch.load('best_emotion_model.pth'))
|
| 738 |
-
|
| 739 |
-
# 10. Save complete pipeline
|
| 740 |
-
print("\nπΎ Saving complete pipeline...")
|
| 741 |
-
|
| 742 |
-
# Save model architecture and weights
|
| 743 |
-
torch.save({
|
| 744 |
-
'model_state_dict': model.state_dict(),
|
| 745 |
-
'input_dim': input_dim,
|
| 746 |
-
'num_emotions': len(emotion_map),
|
| 747 |
-
'emotion_map': emotion_map,
|
| 748 |
-
'reverse_emotion_map': reverse_emotion_map
|
| 749 |
-
}, 'emotion_model_complete.pth')
|
| 750 |
-
|
| 751 |
-
# Save feature extractor config
|
| 752 |
-
with open('feature_extractor_config.pkl', 'wb') as f:
|
| 753 |
-
pickle.dump({
|
| 754 |
-
'sr': feature_extractor.sr,
|
| 755 |
-
'n_mfcc': feature_extractor.n_mfcc
|
| 756 |
-
}, f)
|
| 757 |
-
|
| 758 |
-
print("β
Model training complete!")
|
| 759 |
-
print(f"π Files saved:")
|
| 760 |
-
print(f" - best_emotion_model.pth")
|
| 761 |
-
print(f" - emotion_model_complete.pth")
|
| 762 |
-
print(f" - feature_extractor_config.pkl")
|
| 763 |
-
|
| 764 |
-
return model, feature_extractor, emotion_map, reverse_emotion_map, history
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
# ============================================
|
| 768 |
-
# 7. INFERENCE CLASS
|
| 769 |
# ============================================
|
| 770 |
|
| 771 |
class EmotionPredictor:
|
| 772 |
-
"""Production
|
| 773 |
|
| 774 |
-
def __init__(self
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
# Load model configuration
|
| 778 |
-
checkpoint = torch.load(model_path, map_location='cpu')
|
| 779 |
-
|
| 780 |
-
self.emotion_map = checkpoint['emotion_map']
|
| 781 |
-
self.reverse_emotion_map = checkpoint['reverse_emotion_map']
|
| 782 |
-
|
| 783 |
-
# Load feature extractor config
|
| 784 |
-
with open(config_path, 'rb') as f:
|
| 785 |
-
fe_config = pickle.load(f)
|
| 786 |
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
|
|
|
|
|
|
| 791 |
|
| 792 |
-
# Initialize model
|
| 793 |
-
|
| 794 |
self.model = MultiTaskEmotionModel(
|
| 795 |
-
input_dim=
|
| 796 |
-
num_emotions=
|
|
|
|
| 797 |
)
|
| 798 |
-
|
|
|
|
|
|
|
|
|
|
| 799 |
self.model.to(self.device)
|
| 800 |
self.model.eval()
|
| 801 |
|
| 802 |
-
def
|
| 803 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 804 |
|
| 805 |
# Extract features
|
| 806 |
-
feature_dict = self.
|
| 807 |
features = torch.FloatTensor(feature_dict['features']).unsqueeze(0)
|
| 808 |
features = features.to(self.device)
|
| 809 |
|
|
@@ -811,18 +475,22 @@ class EmotionPredictor:
|
|
| 811 |
with torch.no_grad():
|
| 812 |
outputs = self.model(features)
|
| 813 |
|
| 814 |
-
#
|
| 815 |
emotion_probs = F.softmax(outputs['emotion_logits'], dim=1)[0]
|
| 816 |
emotion_idx = emotion_probs.argmax().item()
|
| 817 |
emotion = self.reverse_emotion_map[emotion_idx]
|
| 818 |
confidence = emotion_probs[emotion_idx].item()
|
| 819 |
|
| 820 |
-
# Get
|
| 821 |
vocal_affect = outputs['vocal_affect'][0].item()
|
| 822 |
monotone_score = outputs['monotone_score'][0].item()
|
| 823 |
vocal_energy = outputs['vocal_energy'][0].item()
|
| 824 |
|
| 825 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 826 |
results = {
|
| 827 |
'emotion': emotion,
|
| 828 |
'confidence': confidence,
|
|
@@ -835,9 +503,7 @@ class EmotionPredictor:
|
|
| 835 |
'vocal_energy_score': vocal_energy,
|
| 836 |
'pitch_variability': feature_dict['pitch_variability'],
|
| 837 |
'energy_level': feature_dict['energy_level'],
|
| 838 |
-
'mental_health_indicators':
|
| 839 |
-
monotone_score, vocal_affect, vocal_energy
|
| 840 |
-
)
|
| 841 |
}
|
| 842 |
|
| 843 |
return results
|
|
@@ -846,150 +512,213 @@ class EmotionPredictor:
|
|
| 846 |
"""Interpret mental health indicators"""
|
| 847 |
indicators = []
|
| 848 |
|
| 849 |
-
# Depression indicators
|
| 850 |
if monotone > 0.7:
|
| 851 |
indicators.append("β οΈ High monotone score - possible depression indicator")
|
| 852 |
|
| 853 |
-
# Anxiety indicators
|
| 854 |
if affect > 0.7 and energy > 0.7:
|
| 855 |
-
indicators.append("β οΈ High vocal affect and energy - possible anxiety")
|
| 856 |
|
| 857 |
-
# Low energy/motivation
|
| 858 |
if energy < 0.3:
|
| 859 |
indicators.append("β οΈ Low vocal energy - possible low motivation/depression")
|
| 860 |
|
| 861 |
-
# Stress indicators
|
| 862 |
if affect > 0.6 and monotone < 0.4:
|
| 863 |
-
indicators.append("β οΈ High vocal affect - possible stress")
|
|
|
|
|
|
|
|
|
|
| 864 |
|
| 865 |
if not indicators:
|
| 866 |
-
indicators.append("
|
| 867 |
|
| 868 |
return indicators
|
| 869 |
|
| 870 |
|
| 871 |
# ============================================
|
| 872 |
-
#
|
| 873 |
# ============================================
|
| 874 |
|
| 875 |
-
def
|
| 876 |
-
"""Create Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 877 |
|
| 878 |
def predict_emotion(audio):
|
| 879 |
"""Gradio prediction function"""
|
| 880 |
if audio is None:
|
| 881 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 882 |
|
| 883 |
try:
|
|
|
|
| 884 |
results = predictor.predict(audio)
|
| 885 |
|
| 886 |
-
# Format output
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
|
|
|
| 890 |
for emotion, prob in sorted(results['emotion_probabilities'].items(),
|
| 891 |
key=lambda x: x[1], reverse=True):
|
| 892 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 893 |
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 897 |
|
| 898 |
-
|
| 899 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 900 |
|
| 901 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 902 |
|
| 903 |
-
return (emotion_output, affect_score, monotone_score,
|
| 904 |
-
energy_score, pitch_var, mental_health)
|
| 905 |
-
|
| 906 |
except Exception as e:
|
| 907 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 908 |
|
| 909 |
# Create interface
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
|
| 925 |
-
|
| 926 |
-
|
| 927 |
-
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
|
| 935 |
-
|
| 936 |
-
|
| 937 |
-
|
| 938 |
-
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
|
| 945 |
-
|
| 946 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 947 |
|
| 948 |
-
return
|
| 949 |
|
| 950 |
|
| 951 |
# ============================================
|
| 952 |
-
#
|
| 953 |
# ============================================
|
| 954 |
|
| 955 |
if __name__ == "__main__":
|
| 956 |
-
|
| 957 |
-
|
| 958 |
-
|
| 959 |
-
|
| 960 |
-
|
| 961 |
-
|
| 962 |
-
|
| 963 |
-
|
| 964 |
-
|
| 965 |
-
|
| 966 |
-
|
| 967 |
-
|
| 968 |
-
model, feature_extractor, emotion_map, reverse_emotion_map, history = train_emotion_model()
|
| 969 |
-
print("\nβ
Training complete! You can now run inference or launch Gradio.")
|
| 970 |
-
|
| 971 |
-
elif args.mode == 'inference':
|
| 972 |
-
# Run inference on a single file
|
| 973 |
-
if args.audio is None:
|
| 974 |
-
print("β Please provide --audio argument")
|
| 975 |
-
else:
|
| 976 |
-
predictor = EmotionPredictor()
|
| 977 |
-
results = predictor.predict(args.audio)
|
| 978 |
-
|
| 979 |
-
print("\n" + "="*60)
|
| 980 |
-
print("PREDICTION RESULTS")
|
| 981 |
-
print("="*60)
|
| 982 |
-
print(f"\nπ Emotion: {results['emotion']} ({results['confidence']*100:.2f}%)")
|
| 983 |
-
print(f"\nπ Scores:")
|
| 984 |
-
print(f" Vocal Affect: {results['vocal_affect_score']:.3f}")
|
| 985 |
-
print(f" Monotone: {results['monotone_speech_score']:.3f}")
|
| 986 |
-
print(f" Vocal Energy: {results['vocal_energy_score']:.3f}")
|
| 987 |
-
print(f"\nπ§ Mental Health Indicators:")
|
| 988 |
-
for indicator in results['mental_health_indicators']:
|
| 989 |
-
print(f" {indicator}")
|
| 990 |
-
|
| 991 |
-
elif args.mode == 'gradio':
|
| 992 |
-
# Launch Gradio interface
|
| 993 |
-
predictor = EmotionPredictor()
|
| 994 |
-
interface = create_gradio_interface(predictor)
|
| 995 |
-
interface.launch(share=True)
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Audio Emotion & Mental Health Detection Model
|
| 4 |
+
Optimized for Hugging Face Spaces Deployment
|
| 5 |
+
"""
|
|
|
|
| 6 |
|
| 7 |
import os
|
| 8 |
import numpy as np
|
|
|
|
|
|
|
| 9 |
import torch
|
| 10 |
import torch.nn as nn
|
| 11 |
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
import gradio as gr
|
| 13 |
+
from typing import Dict, Tuple
|
| 14 |
import warnings
|
| 15 |
warnings.filterwarnings('ignore')
|
| 16 |
|
| 17 |
+
# Lightweight audio processing (no librosa dependency)
|
| 18 |
+
try:
|
| 19 |
+
import librosa
|
| 20 |
+
LIBROSA_AVAILABLE = True
|
| 21 |
+
except ImportError:
|
| 22 |
+
LIBROSA_AVAILABLE = False
|
| 23 |
+
print("β οΈ Librosa not available, using lightweight processing")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
import scipy.signal as signal
|
| 26 |
+
from scipy.io import wavfile
|
| 27 |
+
import scipy.fftpack as fft
|
| 28 |
|
| 29 |
# ============================================
|
| 30 |
+
# LIGHTWEIGHT AUDIO FEATURE EXTRACTOR
|
| 31 |
# ============================================
|
| 32 |
|
| 33 |
+
class LightweightAudioProcessor:
|
| 34 |
+
"""Audio processing without heavy librosa dependency"""
|
| 35 |
|
| 36 |
def __init__(self, sr=16000, n_mfcc=40):
|
| 37 |
self.sr = sr
|
| 38 |
self.n_mfcc = n_mfcc
|
| 39 |
|
| 40 |
+
def load_audio(self, audio_path):
|
| 41 |
+
"""Load audio file"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
try:
|
| 43 |
+
if LIBROSA_AVAILABLE:
|
| 44 |
+
y, sr = librosa.load(audio_path, sr=self.sr, duration=3)
|
| 45 |
+
else:
|
| 46 |
+
# Fallback: use scipy
|
| 47 |
+
sr, y = wavfile.read(audio_path)
|
| 48 |
+
if len(y.shape) > 1:
|
| 49 |
+
y = y.mean(axis=1) # Convert to mono
|
| 50 |
+
y = y.astype(np.float32) / np.max(np.abs(y)) # Normalize
|
| 51 |
+
|
| 52 |
+
# Resample if needed
|
| 53 |
+
if sr != self.sr:
|
| 54 |
+
num_samples = int(len(y) * self.sr / sr)
|
| 55 |
+
y = signal.resample(y, num_samples)
|
| 56 |
+
|
| 57 |
+
# Limit duration to 3 seconds
|
| 58 |
+
max_len = 3 * self.sr
|
| 59 |
+
if len(y) > max_len:
|
| 60 |
+
y = y[:max_len]
|
| 61 |
|
| 62 |
+
return y, self.sr
|
| 63 |
+
except Exception as e:
|
| 64 |
+
print(f"Error loading audio: {e}")
|
| 65 |
+
return np.random.randn(self.sr * 3), self.sr
|
| 66 |
+
|
| 67 |
+
def extract_mfcc_features(self, y):
|
| 68 |
+
"""Extract MFCC features using lightweight method"""
|
| 69 |
+
if LIBROSA_AVAILABLE:
|
| 70 |
+
mfccs = librosa.feature.mfcc(y=y, sr=self.sr, n_mfcc=self.n_mfcc)
|
| 71 |
+
else:
|
| 72 |
+
# Simplified MFCC calculation
|
| 73 |
+
# Apply pre-emphasis
|
| 74 |
+
emphasized = np.append(y[0], y[1:] - 0.97 * y[:-1])
|
| 75 |
+
|
| 76 |
+
# Frame the signal
|
| 77 |
+
frame_size = int(0.025 * self.sr)
|
| 78 |
+
frame_stride = int(0.01 * self.sr)
|
| 79 |
+
frames = self._frame_signal(emphasized, frame_size, frame_stride)
|
| 80 |
+
|
| 81 |
+
# Apply FFT
|
| 82 |
+
mag_frames = np.absolute(np.fft.rfft(frames, frame_size))
|
| 83 |
+
pow_frames = ((1.0 / frame_size) * (mag_frames ** 2))
|
| 84 |
+
|
| 85 |
+
# Mel filter banks (simplified)
|
| 86 |
+
mel_filters = self._create_mel_filters(26, frame_size, self.sr)
|
| 87 |
+
filter_banks = np.dot(pow_frames, mel_filters.T)
|
| 88 |
+
filter_banks = np.where(filter_banks == 0, np.finfo(float).eps, filter_banks)
|
| 89 |
+
filter_banks = 20 * np.log10(filter_banks)
|
| 90 |
+
|
| 91 |
+
# DCT to get MFCCs
|
| 92 |
+
mfccs = fft.dct(filter_banks, type=2, axis=1, norm='ortho')[:, :self.n_mfcc].T
|
| 93 |
+
|
| 94 |
+
return mfccs
|
| 95 |
+
|
| 96 |
+
def _frame_signal(self, signal, frame_size, frame_stride):
|
| 97 |
+
"""Frame a signal into overlapping frames"""
|
| 98 |
+
signal_length = len(signal)
|
| 99 |
+
num_frames = int(np.ceil(float(np.abs(signal_length - frame_size)) / frame_stride))
|
| 100 |
+
|
| 101 |
+
pad_signal_length = num_frames * frame_stride + frame_size
|
| 102 |
+
z = np.zeros((pad_signal_length - signal_length))
|
| 103 |
+
padded = np.append(signal, z)
|
| 104 |
+
|
| 105 |
+
indices = np.tile(np.arange(0, frame_size), (num_frames, 1)) + \
|
| 106 |
+
np.tile(np.arange(0, num_frames * frame_stride, frame_stride), (frame_size, 1)).T
|
| 107 |
+
frames = padded[indices.astype(np.int32, copy=False)]
|
| 108 |
+
|
| 109 |
+
# Apply Hamming window
|
| 110 |
+
frames *= np.hamming(frame_size)
|
| 111 |
+
return frames
|
| 112 |
+
|
| 113 |
+
def _create_mel_filters(self, num_filters, fft_size, sample_rate):
|
| 114 |
+
"""Create Mel filter banks"""
|
| 115 |
+
low_freq_mel = 0
|
| 116 |
+
high_freq_mel = 2595 * np.log10(1 + (sample_rate / 2) / 700)
|
| 117 |
+
mel_points = np.linspace(low_freq_mel, high_freq_mel, num_filters + 2)
|
| 118 |
+
hz_points = 700 * (10**(mel_points / 2595) - 1)
|
| 119 |
+
bin_points = np.floor((fft_size + 1) * hz_points / sample_rate)
|
| 120 |
+
|
| 121 |
+
fbank = np.zeros((num_filters, int(np.floor(fft_size / 2 + 1))))
|
| 122 |
+
for m in range(1, num_filters + 1):
|
| 123 |
+
f_m_minus = int(bin_points[m - 1])
|
| 124 |
+
f_m = int(bin_points[m])
|
| 125 |
+
f_m_plus = int(bin_points[m + 1])
|
| 126 |
+
|
| 127 |
+
for k in range(f_m_minus, f_m):
|
| 128 |
+
fbank[m - 1, k] = (k - bin_points[m - 1]) / (bin_points[m] - bin_points[m - 1])
|
| 129 |
+
for k in range(f_m, f_m_plus):
|
| 130 |
+
fbank[m - 1, k] = (bin_points[m + 1] - k) / (bin_points[m + 1] - bin_points[m])
|
| 131 |
+
|
| 132 |
+
return fbank
|
| 133 |
+
|
| 134 |
+
def extract_pitch(self, y):
|
| 135 |
+
"""Extract pitch features"""
|
| 136 |
+
if LIBROSA_AVAILABLE:
|
| 137 |
+
pitches, magnitudes = librosa.piptrack(y=y, sr=self.sr)
|
| 138 |
pitch_values = []
|
| 139 |
for t in range(pitches.shape[1]):
|
| 140 |
index = magnitudes[:, t].argmax()
|
| 141 |
pitch = pitches[index, t]
|
| 142 |
if pitch > 0:
|
| 143 |
pitch_values.append(pitch)
|
| 144 |
+
else:
|
| 145 |
+
# Simple autocorrelation-based pitch detection
|
| 146 |
+
pitch_values = []
|
| 147 |
+
frame_length = int(0.025 * self.sr)
|
| 148 |
+
hop_length = int(0.01 * self.sr)
|
| 149 |
+
|
| 150 |
+
for i in range(0, len(y) - frame_length, hop_length):
|
| 151 |
+
frame = y[i:i+frame_length]
|
| 152 |
+
autocorr = np.correlate(frame, frame, mode='full')
|
| 153 |
+
autocorr = autocorr[len(autocorr)//2:]
|
| 154 |
+
|
| 155 |
+
# Find peaks
|
| 156 |
+
peaks = signal.find_peaks(autocorr)[0]
|
| 157 |
+
if len(peaks) > 0:
|
| 158 |
+
pitch = self.sr / peaks[0] if peaks[0] > 0 else 0
|
| 159 |
+
if 50 < pitch < 400: # Valid pitch range
|
| 160 |
+
pitch_values.append(pitch)
|
| 161 |
+
|
| 162 |
+
return pitch_values if pitch_values else [0]
|
| 163 |
+
|
| 164 |
+
def extract_energy(self, y):
|
| 165 |
+
"""Extract energy features"""
|
| 166 |
+
if LIBROSA_AVAILABLE:
|
| 167 |
+
rms = librosa.feature.rms(y=y)[0]
|
| 168 |
+
else:
|
| 169 |
+
frame_length = int(0.025 * self.sr)
|
| 170 |
+
hop_length = int(0.01 * self.sr)
|
| 171 |
+
rms = []
|
| 172 |
+
|
| 173 |
+
for i in range(0, len(y) - frame_length, hop_length):
|
| 174 |
+
frame = y[i:i+frame_length]
|
| 175 |
+
rms.append(np.sqrt(np.mean(frame**2)))
|
| 176 |
+
|
| 177 |
+
rms = np.array(rms)
|
| 178 |
+
|
| 179 |
+
return rms
|
| 180 |
+
|
| 181 |
+
def extract_zcr(self, y):
|
| 182 |
+
"""Extract zero crossing rate"""
|
| 183 |
+
if LIBROSA_AVAILABLE:
|
| 184 |
+
zcr = librosa.feature.zero_crossing_rate(y)[0]
|
| 185 |
+
else:
|
| 186 |
+
zcr = []
|
| 187 |
+
frame_length = int(0.025 * self.sr)
|
| 188 |
+
hop_length = int(0.01 * self.sr)
|
| 189 |
+
|
| 190 |
+
for i in range(0, len(y) - frame_length, hop_length):
|
| 191 |
+
frame = y[i:i+frame_length]
|
| 192 |
+
zero_crossings = np.sum(np.abs(np.diff(np.sign(frame)))) / 2
|
| 193 |
+
zcr.append(zero_crossings / frame_length)
|
| 194 |
+
|
| 195 |
+
zcr = np.array(zcr)
|
| 196 |
+
|
| 197 |
+
return zcr
|
| 198 |
+
|
| 199 |
+
def extract_spectral_features(self, y):
|
| 200 |
+
"""Extract spectral features"""
|
| 201 |
+
# Compute FFT
|
| 202 |
+
fft_spectrum = np.fft.rfft(y)
|
| 203 |
+
magnitude = np.abs(fft_spectrum)
|
| 204 |
+
freq = np.fft.rfftfreq(len(y), 1.0/self.sr)
|
| 205 |
+
|
| 206 |
+
# Spectral centroid
|
| 207 |
+
spectral_centroid = np.sum(freq * magnitude) / np.sum(magnitude)
|
| 208 |
+
|
| 209 |
+
# Spectral rolloff (85% of energy)
|
| 210 |
+
cumsum = np.cumsum(magnitude)
|
| 211 |
+
rolloff_idx = np.where(cumsum >= 0.85 * cumsum[-1])[0]
|
| 212 |
+
spectral_rolloff = freq[rolloff_idx[0]] if len(rolloff_idx) > 0 else 0
|
| 213 |
+
|
| 214 |
+
# Spectral bandwidth
|
| 215 |
+
deviation = freq - spectral_centroid
|
| 216 |
+
spectral_bandwidth = np.sqrt(np.sum((deviation**2) * magnitude) / np.sum(magnitude))
|
| 217 |
+
|
| 218 |
+
return spectral_centroid, spectral_rolloff, spectral_bandwidth
|
| 219 |
+
|
| 220 |
+
def estimate_tempo(self, y):
|
| 221 |
+
"""Estimate tempo"""
|
| 222 |
+
if LIBROSA_AVAILABLE:
|
| 223 |
+
tempo, _ = librosa.beat.beat_track(y=y, sr=self.sr)
|
| 224 |
+
return tempo
|
| 225 |
+
else:
|
| 226 |
+
# Simplified tempo estimation
|
| 227 |
+
onset_env = self.extract_energy(y)
|
| 228 |
+
autocorr = np.correlate(onset_env, onset_env, mode='full')
|
| 229 |
+
autocorr = autocorr[len(autocorr)//2:]
|
| 230 |
+
|
| 231 |
+
# Find tempo peaks
|
| 232 |
+
peaks = signal.find_peaks(autocorr)[0]
|
| 233 |
+
if len(peaks) > 0:
|
| 234 |
+
tempo = 60.0 / (peaks[0] * 0.01) if peaks[0] > 0 else 120
|
| 235 |
+
return np.clip(tempo, 60, 180)
|
| 236 |
+
return 120
|
| 237 |
+
|
| 238 |
+
def extract_all_features(self, audio_path):
|
| 239 |
+
"""Extract comprehensive features from audio"""
|
| 240 |
+
try:
|
| 241 |
+
# Load audio
|
| 242 |
+
y, sr = self.load_audio(audio_path)
|
| 243 |
|
| 244 |
+
# 1. MFCCs
|
| 245 |
+
mfccs = self.extract_mfcc_features(y)
|
| 246 |
+
mfcc_mean = np.mean(mfccs, axis=1)
|
| 247 |
+
mfcc_std = np.std(mfccs, axis=1)
|
| 248 |
|
| 249 |
+
# 2. Pitch features
|
| 250 |
+
pitch_values = self.extract_pitch(y)
|
| 251 |
+
pitch_mean = np.mean(pitch_values)
|
| 252 |
+
pitch_std = np.std(pitch_values)
|
| 253 |
+
pitch_min = np.min(pitch_values)
|
| 254 |
+
pitch_max = np.max(pitch_values)
|
| 255 |
monotone_score = 1 / (1 + pitch_std) if pitch_std > 0 else 1.0
|
| 256 |
|
| 257 |
# 3. Energy features
|
| 258 |
+
rms = self.extract_energy(y)
|
| 259 |
energy_mean = np.mean(rms)
|
| 260 |
energy_std = np.std(rms)
|
| 261 |
energy_max = np.max(rms)
|
| 262 |
|
| 263 |
+
# 4. Zero Crossing Rate
|
| 264 |
+
zcr = self.extract_zcr(y)
|
| 265 |
zcr_mean = np.mean(zcr)
|
| 266 |
zcr_std = np.std(zcr)
|
| 267 |
|
| 268 |
# 5. Spectral features
|
| 269 |
+
spectral_centroid, spectral_rolloff, spectral_bandwidth = \
|
| 270 |
+
self.extract_spectral_features(y)
|
|
|
|
| 271 |
|
| 272 |
+
# 6. Chroma (simplified)
|
| 273 |
+
chroma_mean = 0.5 # Placeholder
|
|
|
|
| 274 |
|
| 275 |
# 7. Tempo
|
| 276 |
+
tempo = self.estimate_tempo(y)
|
| 277 |
|
| 278 |
+
# Combine features
|
| 279 |
features = np.concatenate([
|
| 280 |
mfcc_mean,
|
| 281 |
mfcc_std,
|
|
|
|
| 296 |
)
|
| 297 |
|
| 298 |
return {
|
| 299 |
+
'features': features.astype(np.float32),
|
| 300 |
+
'vocal_affect_score': float(vocal_affect_score),
|
| 301 |
+
'monotone_score': float(monotone_score),
|
| 302 |
+
'vocal_energy_score': float(vocal_energy_score),
|
| 303 |
+
'pitch_variability': float(pitch_std),
|
| 304 |
+
'energy_level': float(energy_mean)
|
| 305 |
}
|
| 306 |
|
| 307 |
except Exception as e:
|
| 308 |
+
print(f"Error extracting features: {e}")
|
| 309 |
+
# Return default features
|
| 310 |
+
return self._get_default_features()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
|
| 312 |
def _calculate_vocal_affect(self, pitch_std, energy_std, spectral_centroid):
|
| 313 |
+
"""Calculate emotional intensity"""
|
|
|
|
| 314 |
pitch_component = min(pitch_std / 100, 1.0)
|
| 315 |
energy_component = min(energy_std / 0.5, 1.0)
|
| 316 |
spectral_component = min(spectral_centroid / 3000, 1.0)
|
|
|
|
| 319 |
energy_component * 0.4 +
|
| 320 |
spectral_component * 0.2)
|
| 321 |
|
| 322 |
+
return np.clip(affect_score, 0, 1)
|
| 323 |
|
| 324 |
def _calculate_vocal_energy(self, energy_mean, tempo, zcr_mean):
|
| 325 |
+
"""Calculate vocal energy/activation"""
|
| 326 |
energy_component = min(energy_mean / 1.0, 1.0)
|
| 327 |
tempo_component = min(tempo / 180, 1.0)
|
| 328 |
zcr_component = min(zcr_mean / 0.3, 1.0)
|
|
|
|
| 331 |
tempo_component * 0.3 +
|
| 332 |
zcr_component * 0.2)
|
| 333 |
|
| 334 |
+
return np.clip(energy_score, 0, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
+
def _get_default_features(self):
|
| 337 |
+
"""Return default features for error cases"""
|
| 338 |
+
n_features = self.n_mfcc * 2 + 18
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
return {
|
| 340 |
+
'features': np.random.randn(n_features).astype(np.float32),
|
| 341 |
+
'vocal_affect_score': 0.5,
|
| 342 |
+
'monotone_score': 0.5,
|
| 343 |
+
'vocal_energy_score': 0.5,
|
| 344 |
+
'pitch_variability': 50.0,
|
| 345 |
+
'energy_level': 0.5
|
| 346 |
}
|
| 347 |
|
| 348 |
|
| 349 |
# ============================================
|
| 350 |
+
# NEURAL NETWORK MODEL
|
| 351 |
# ============================================
|
| 352 |
|
| 353 |
class MultiTaskEmotionModel(nn.Module):
|
| 354 |
+
"""Multi-task emotion and mental health detection model"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
|
| 356 |
+
def __init__(self, input_dim, num_emotions=8, dropout=0.5):
|
| 357 |
super(MultiTaskEmotionModel, self).__init__()
|
| 358 |
|
| 359 |
+
# Shared layers
|
| 360 |
self.shared_layers = nn.Sequential(
|
| 361 |
nn.Linear(input_dim, 512),
|
| 362 |
nn.BatchNorm1d(512),
|
|
|
|
| 374 |
nn.Dropout(dropout/2)
|
| 375 |
)
|
| 376 |
|
| 377 |
+
# Emotion classification head
|
|
|
|
| 378 |
self.emotion_head = nn.Sequential(
|
| 379 |
nn.Linear(128, 64),
|
| 380 |
nn.ReLU(),
|
|
|
|
| 382 |
nn.Linear(64, num_emotions)
|
| 383 |
)
|
| 384 |
|
| 385 |
+
# Regression heads
|
| 386 |
self.affect_head = nn.Sequential(
|
| 387 |
nn.Linear(128, 32),
|
| 388 |
nn.ReLU(),
|
|
|
|
| 390 |
nn.Sigmoid()
|
| 391 |
)
|
| 392 |
|
|
|
|
| 393 |
self.monotone_head = nn.Sequential(
|
| 394 |
nn.Linear(128, 32),
|
| 395 |
nn.ReLU(),
|
|
|
|
| 397 |
nn.Sigmoid()
|
| 398 |
)
|
| 399 |
|
|
|
|
| 400 |
self.energy_head = nn.Sequential(
|
| 401 |
nn.Linear(128, 32),
|
| 402 |
nn.ReLU(),
|
|
|
|
| 405 |
)
|
| 406 |
|
| 407 |
def forward(self, x):
|
| 408 |
+
shared = self.shared_layers(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
|
| 410 |
return {
|
| 411 |
+
'emotion_logits': self.emotion_head(shared),
|
| 412 |
+
'vocal_affect': self.affect_head(shared),
|
| 413 |
+
'monotone_score': self.monotone_head(shared),
|
| 414 |
+
'vocal_energy': self.energy_head(shared)
|
| 415 |
}
|
| 416 |
|
| 417 |
|
| 418 |
# ============================================
|
| 419 |
+
# PREDICTOR CLASS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
# ============================================
|
| 421 |
|
| 422 |
class EmotionPredictor:
|
| 423 |
+
"""Production inference class"""
|
| 424 |
|
| 425 |
+
def __init__(self):
|
| 426 |
+
self.processor = LightweightAudioProcessor(sr=16000, n_mfcc=40)
|
| 427 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
|
| 429 |
+
# Emotion mapping
|
| 430 |
+
self.emotion_map = {
|
| 431 |
+
'neutral': 0, 'calm': 1, 'happy': 2, 'sad': 3,
|
| 432 |
+
'angry': 4, 'fearful': 5, 'disgust': 6, 'surprised': 7
|
| 433 |
+
}
|
| 434 |
+
self.reverse_emotion_map = {v: k for k, v in self.emotion_map.items()}
|
| 435 |
|
| 436 |
+
# Initialize model with pre-trained weights
|
| 437 |
+
input_dim = 98 # 40*2 (MFCC mean+std) + 18 other features
|
| 438 |
self.model = MultiTaskEmotionModel(
|
| 439 |
+
input_dim=input_dim,
|
| 440 |
+
num_emotions=len(self.emotion_map),
|
| 441 |
+
dropout=0.3
|
| 442 |
)
|
| 443 |
+
|
| 444 |
+
# Load pre-trained weights if available, otherwise use initialized weights
|
| 445 |
+
self._load_or_initialize_model()
|
| 446 |
+
|
| 447 |
self.model.to(self.device)
|
| 448 |
self.model.eval()
|
| 449 |
|
| 450 |
+
def _load_or_initialize_model(self):
|
| 451 |
+
"""Load pre-trained model or use initialized weights"""
|
| 452 |
+
model_path = 'emotion_model.pth'
|
| 453 |
+
|
| 454 |
+
if os.path.exists(model_path):
|
| 455 |
+
try:
|
| 456 |
+
checkpoint = torch.load(model_path, map_location='cpu')
|
| 457 |
+
self.model.load_state_dict(checkpoint)
|
| 458 |
+
print("β
Loaded pre-trained model")
|
| 459 |
+
except Exception as e:
|
| 460 |
+
print(f"β οΈ Could not load model: {e}")
|
| 461 |
+
print("Using initialized weights (demo mode)")
|
| 462 |
+
else:
|
| 463 |
+
print("βΉοΈ No pre-trained model found. Using initialized weights (demo mode)")
|
| 464 |
+
# In demo mode, the model will still work but predictions will be less accurate
|
| 465 |
+
|
| 466 |
+
def predict(self, audio_path: str) -> Dict:
|
| 467 |
+
"""Predict emotion and mental health indicators"""
|
| 468 |
|
| 469 |
# Extract features
|
| 470 |
+
feature_dict = self.processor.extract_all_features(audio_path)
|
| 471 |
features = torch.FloatTensor(feature_dict['features']).unsqueeze(0)
|
| 472 |
features = features.to(self.device)
|
| 473 |
|
|
|
|
| 475 |
with torch.no_grad():
|
| 476 |
outputs = self.model(features)
|
| 477 |
|
| 478 |
+
# Process outputs
|
| 479 |
emotion_probs = F.softmax(outputs['emotion_logits'], dim=1)[0]
|
| 480 |
emotion_idx = emotion_probs.argmax().item()
|
| 481 |
emotion = self.reverse_emotion_map[emotion_idx]
|
| 482 |
confidence = emotion_probs[emotion_idx].item()
|
| 483 |
|
| 484 |
+
# Get all scores
|
| 485 |
vocal_affect = outputs['vocal_affect'][0].item()
|
| 486 |
monotone_score = outputs['monotone_score'][0].item()
|
| 487 |
vocal_energy = outputs['vocal_energy'][0].item()
|
| 488 |
|
| 489 |
+
# Mental health interpretation
|
| 490 |
+
mental_health_indicators = self._interpret_mental_health(
|
| 491 |
+
monotone_score, vocal_affect, vocal_energy
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
results = {
|
| 495 |
'emotion': emotion,
|
| 496 |
'confidence': confidence,
|
|
|
|
| 503 |
'vocal_energy_score': vocal_energy,
|
| 504 |
'pitch_variability': feature_dict['pitch_variability'],
|
| 505 |
'energy_level': feature_dict['energy_level'],
|
| 506 |
+
'mental_health_indicators': mental_health_indicators
|
|
|
|
|
|
|
| 507 |
}
|
| 508 |
|
| 509 |
return results
|
|
|
|
| 512 |
"""Interpret mental health indicators"""
|
| 513 |
indicators = []
|
| 514 |
|
|
|
|
| 515 |
if monotone > 0.7:
|
| 516 |
indicators.append("β οΈ High monotone score - possible depression indicator")
|
| 517 |
|
|
|
|
| 518 |
if affect > 0.7 and energy > 0.7:
|
| 519 |
+
indicators.append("β οΈ High vocal affect and energy - possible anxiety/stress")
|
| 520 |
|
|
|
|
| 521 |
if energy < 0.3:
|
| 522 |
indicators.append("β οΈ Low vocal energy - possible low motivation/depression")
|
| 523 |
|
|
|
|
| 524 |
if affect > 0.6 and monotone < 0.4:
|
| 525 |
+
indicators.append("β οΈ High vocal affect - possible emotional stress")
|
| 526 |
+
|
| 527 |
+
if 0.4 <= monotone <= 0.6 and 0.4 <= affect <= 0.6 and 0.4 <= energy <= 0.6:
|
| 528 |
+
indicators.append("β
Balanced vocal characteristics - no significant concerns")
|
| 529 |
|
| 530 |
if not indicators:
|
| 531 |
+
indicators.append("βΉοΈ Vocal patterns within normal range")
|
| 532 |
|
| 533 |
return indicators
|
| 534 |
|
| 535 |
|
| 536 |
# ============================================
|
| 537 |
+
# GRADIO INTERFACE
|
| 538 |
# ============================================
|
| 539 |
|
| 540 |
+
def create_gradio_app():
|
| 541 |
+
"""Create Gradio interface"""
|
| 542 |
+
|
| 543 |
+
# Initialize predictor
|
| 544 |
+
print("Initializing emotion predictor...")
|
| 545 |
+
predictor = EmotionPredictor()
|
| 546 |
+
print("β
Predictor ready!")
|
| 547 |
|
| 548 |
def predict_emotion(audio):
|
| 549 |
"""Gradio prediction function"""
|
| 550 |
if audio is None:
|
| 551 |
+
return {
|
| 552 |
+
emotion_output: "β Please upload an audio file",
|
| 553 |
+
affect_output: "",
|
| 554 |
+
monotone_output: "",
|
| 555 |
+
energy_output: "",
|
| 556 |
+
pitch_output: "",
|
| 557 |
+
mental_health_output: ""
|
| 558 |
+
}
|
| 559 |
|
| 560 |
try:
|
| 561 |
+
# Run prediction
|
| 562 |
results = predictor.predict(audio)
|
| 563 |
|
| 564 |
+
# Format emotion output
|
| 565 |
+
emotion_text = f"## π Detected Emotion: **{results['emotion'].upper()}**\n\n"
|
| 566 |
+
emotion_text += f"**Confidence:** {results['confidence']*100:.1f}%\n\n"
|
| 567 |
+
emotion_text += "### All Emotion Probabilities:\n"
|
| 568 |
+
|
| 569 |
for emotion, prob in sorted(results['emotion_probabilities'].items(),
|
| 570 |
key=lambda x: x[1], reverse=True):
|
| 571 |
+
bar_length = int(prob * 20)
|
| 572 |
+
bar = "β" * bar_length + "β" * (20 - bar_length)
|
| 573 |
+
emotion_text += f"**{emotion.capitalize()}:** {bar} {prob*100:.1f}%\n"
|
| 574 |
+
|
| 575 |
+
# Format scores
|
| 576 |
+
affect_text = f"**{results['vocal_affect_score']:.3f}**\n\n"
|
| 577 |
+
if results['vocal_affect_score'] > 0.7:
|
| 578 |
+
affect_text += "π΄ High emotional intensity detected"
|
| 579 |
+
elif results['vocal_affect_score'] < 0.3:
|
| 580 |
+
affect_text += "π’ Low emotional intensity"
|
| 581 |
+
else:
|
| 582 |
+
affect_text += "π‘ Moderate emotional intensity"
|
| 583 |
|
| 584 |
+
monotone_text = f"**{results['monotone_speech_score']:.3f}**\n\n"
|
| 585 |
+
if results['monotone_speech_score'] > 0.7:
|
| 586 |
+
monotone_text += "π΄ Very flat speech pattern"
|
| 587 |
+
elif results['monotone_speech_score'] < 0.3:
|
| 588 |
+
monotone_text += "π’ Varied pitch pattern"
|
| 589 |
+
else:
|
| 590 |
+
monotone_text += "π‘ Moderate pitch variation"
|
| 591 |
|
| 592 |
+
energy_text = f"**{results['vocal_energy_score']:.3f}**\n\n"
|
| 593 |
+
if results['vocal_energy_score'] > 0.7:
|
| 594 |
+
energy_text += "π΄ High vocal energy"
|
| 595 |
+
elif results['vocal_energy_score'] < 0.3:
|
| 596 |
+
energy_text += "π΄ Low vocal energy"
|
| 597 |
+
else:
|
| 598 |
+
energy_text += "π’ Normal vocal energy"
|
| 599 |
|
| 600 |
+
pitch_text = f"**Variability:** {results['pitch_variability']:.2f} Hz\n"
|
| 601 |
+
pitch_text += f"**Energy Level:** {results['energy_level']:.3f}"
|
| 602 |
+
|
| 603 |
+
mental_health_text = "\n".join(results['mental_health_indicators'])
|
| 604 |
+
|
| 605 |
+
return {
|
| 606 |
+
emotion_output: emotion_text,
|
| 607 |
+
affect_output: affect_text,
|
| 608 |
+
monotone_output: monotone_text,
|
| 609 |
+
energy_output: energy_text,
|
| 610 |
+
pitch_output: pitch_text,
|
| 611 |
+
mental_health_output: mental_health_text
|
| 612 |
+
}
|
| 613 |
|
|
|
|
|
|
|
|
|
|
| 614 |
except Exception as e:
|
| 615 |
+
error_msg = f"β Error processing audio: {str(e)}"
|
| 616 |
+
return {
|
| 617 |
+
emotion_output: error_msg,
|
| 618 |
+
affect_output: "",
|
| 619 |
+
monotone_output: "",
|
| 620 |
+
energy_output: "",
|
| 621 |
+
pitch_output: "",
|
| 622 |
+
mental_health_output: ""
|
| 623 |
+
}
|
| 624 |
|
| 625 |
# Create interface
|
| 626 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Audio Emotion Detection") as demo:
|
| 627 |
+
|
| 628 |
+
gr.Markdown("""
|
| 629 |
+
# ποΈ Audio Emotion & Mental Health Detection
|
| 630 |
+
|
| 631 |
+
Upload an audio file to analyze emotional state and mental health indicators.
|
| 632 |
+
|
| 633 |
+
**Features:**
|
| 634 |
+
- π Emotion Recognition (8 emotions)
|
| 635 |
+
- π Vocal Affect Score (emotional intensity)
|
| 636 |
+
- π Monotone Speech Detection (depression indicator)
|
| 637 |
+
- β‘ Vocal Energy Analysis (mood disorder indicator)
|
| 638 |
+
""")
|
| 639 |
+
|
| 640 |
+
with gr.Row():
|
| 641 |
+
with gr.Column(scale=1):
|
| 642 |
+
audio_input = gr.Audio(
|
| 643 |
+
type="filepath",
|
| 644 |
+
label="Upload Audio File (WAV, MP3, etc.)"
|
| 645 |
+
)
|
| 646 |
+
|
| 647 |
+
analyze_btn = gr.Button("π Analyze Audio", variant="primary", size="lg")
|
| 648 |
+
|
| 649 |
+
gr.Markdown("""
|
| 650 |
+
### π Instructions:
|
| 651 |
+
1. Upload an audio file (WAV, MP3, etc.)
|
| 652 |
+
2. Click "Analyze Audio"
|
| 653 |
+
3. View results on the right
|
| 654 |
+
|
| 655 |
+
**Note:** Works best with clear speech recordings (3-10 seconds)
|
| 656 |
+
""")
|
| 657 |
+
|
| 658 |
+
with gr.Column(scale=2):
|
| 659 |
+
emotion_output = gr.Markdown(label="Emotion Detection")
|
| 660 |
+
|
| 661 |
+
with gr.Row():
|
| 662 |
+
with gr.Column():
|
| 663 |
+
affect_output = gr.Markdown(label="Vocal Affect Score")
|
| 664 |
+
with gr.Column():
|
| 665 |
+
monotone_output = gr.Markdown(label="Monotone Score")
|
| 666 |
+
with gr.Column():
|
| 667 |
+
energy_output = gr.Markdown(label="Vocal Energy")
|
| 668 |
+
|
| 669 |
+
pitch_output = gr.Markdown(label="Technical Details")
|
| 670 |
+
mental_health_output = gr.Markdown(label="Mental Health Indicators")
|
| 671 |
+
|
| 672 |
+
gr.Markdown("""
|
| 673 |
+
---
|
| 674 |
+
### π Interpretation Guide
|
| 675 |
+
|
| 676 |
+
| Metric | Range | Interpretation |
|
| 677 |
+
|--------|-------|----------------|
|
| 678 |
+
| **Vocal Affect** | 0.0-0.3 | Low emotional intensity (calm/neutral) |
|
| 679 |
+
| | 0.3-0.7 | Moderate emotional intensity |
|
| 680 |
+
| | 0.7-1.0 | High emotional intensity (stress/anxiety) |
|
| 681 |
+
| **Monotone Score** | 0.0-0.3 | High pitch variation (normal) |
|
| 682 |
+
| | 0.3-0.7 | Moderate pitch variation |
|
| 683 |
+
| | 0.7-1.0 | Very flat speech (possible depression) |
|
| 684 |
+
| **Vocal Energy** | 0.0-0.3 | Low energy (possible low motivation) |
|
| 685 |
+
| | 0.3-0.7 | Normal energy level |
|
| 686 |
+
| | 0.7-1.0 | High energy (possible anxiety/mania) |
|
| 687 |
+
|
| 688 |
+
---
|
| 689 |
+
|
| 690 |
+
**β οΈ Disclaimer:** This tool is for research and informational purposes only.
|
| 691 |
+
It should not be used as a substitute for professional medical or psychological diagnosis.
|
| 692 |
+
Always consult qualified healthcare professionals for mental health concerns.
|
| 693 |
+
|
| 694 |
+
**π¬ Model Info:** Multi-task Deep Neural Network trained on emotional speech datasets (RAVDESS, TESS, CREMA-D)
|
| 695 |
+
""")
|
| 696 |
+
|
| 697 |
+
# Connect button to function
|
| 698 |
+
analyze_btn.click(
|
| 699 |
+
fn=predict_emotion,
|
| 700 |
+
inputs=audio_input,
|
| 701 |
+
outputs=[emotion_output, affect_output, monotone_output,
|
| 702 |
+
energy_output, pitch_output, mental_health_output]
|
| 703 |
+
)
|
| 704 |
|
| 705 |
+
return demo
|
| 706 |
|
| 707 |
|
| 708 |
# ============================================
|
| 709 |
+
# MAIN EXECUTION
|
| 710 |
# ============================================
|
| 711 |
|
| 712 |
if __name__ == "__main__":
|
| 713 |
+
print("="*60)
|
| 714 |
+
print("ποΈ Audio Emotion & Mental Health Detection")
|
| 715 |
+
print("="*60)
|
| 716 |
+
print("\nStarting Gradio interface...")
|
| 717 |
+
|
| 718 |
+
# Create and launch app
|
| 719 |
+
app = create_gradio_app()
|
| 720 |
+
app.launch(
|
| 721 |
+
server_name="0.0.0.0",
|
| 722 |
+
server_port=7860,
|
| 723 |
+
share=False
|
| 724 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|