File size: 26,901 Bytes
950423a d40e922 89579a0 e69fe14 0376597 a15931a 89579a0 950423a 89579a0 31beab0 950423a 89579a0 b10ea83 004c898 bfca4c0 50f1e3f 89579a0 3bd3f7b 88db242 89579a0 1b10ccd f1724e4 89579a0 a15931a 0376597 50f1e3f a15931a b75364c a15931a 0376597 a15931a 0376597 50f1e3f a15931a b75364c a15931a 0376597 a15931a 0376597 89579a0 cf08c02 89579a0 d40e922 cf08c02 d40e922 cf08c02 d40e922 e3f0878 89579a0 12fb7c9 3bd3f7b 89579a0 12fb7c9 3bd3f7b 12fb7c9 a15931a 12fb7c9 0376597 12fb7c9 d40e922 3bd3f7b 1b74014 3c768c1 3bd3f7b a15931a d40e922 3bd3f7b 12fb7c9 3bd3f7b 12fb7c9 89579a0 3bd3f7b 89579a0 e69fe14 35588b6 a15931a 35588b6 a15931a 35588b6 a15931a 35588b6 82af080 3bd3f7b 89579a0 e69fe14 12fb7c9 89579a0 e69fe14 12fb7c9 89579a0 12fb7c9 89579a0 12fb7c9 35588b6 3bd3f7b 35588b6 12fb7c9 89579a0 3bd3f7b 89579a0 a15931a b733054 a15931a b733054 a15931a b733054 a15931a b733054 43c5104 b733054 a15931a b733054 a15931a 5d479fd a15931a 5d479fd a15931a 5d479fd d40e922 a15931a 722854c 89579a0 1b10ccd 31beab0 1b10ccd 31beab0 3bd3f7b d40e922 1b10ccd 3bd3f7b 31beab0 1b10ccd a15931a 1b10ccd a15931a 1b10ccd a15931a 1b10ccd a15931a 3bd3f7b 1b10ccd a15931a 3bd3f7b a15931a 1b10ccd a15931a 1b10ccd a15931a 3bd3f7b a15931a 3bd3f7b a15931a 3bd3f7b a15931a 31beab0 3bd3f7b 31beab0 1b10ccd 31beab0 3bd3f7b a15931a 3bd3f7b 31beab0 3bd3f7b d40e922 3bd3f7b d40e922 31beab0 1b10ccd 31beab0 1b10ccd 31beab0 1b10ccd 31beab0 1b10ccd 31beab0 1b10ccd 31beab0 a15931a 31beab0 3bd3f7b 31beab0 a15931a 31beab0 89579a0 a15931a f972073 89579a0 a15931a 6e152ee a15931a 31beab0 88db242 a15931a 31beab0 89579a0 a15931a 88db242 a15931a 3bd3f7b a15931a 3bd3f7b a15931a 1b10ccd a15931a 3bd3f7b 31beab0 89579a0 31beab0 89579a0 1b10ccd 89579a0 31beab0 f972073 31beab0 a15931a 89579a0 a15931a 89579a0 3bd3f7b 9621022 89579a0 d376fd8 4d7e97c 89579a0 3bd3f7b 89579a0 4d7e97c e3f0878 4d7e97c e3f0878 89579a0 d376fd8 89579a0 e3f0878 12fb7c9 d376fd8 89579a0 4d7e97c 12fb7c9 3bd3f7b 12fb7c9 3bd3f7b 12fb7c9 89579a0 39db035 89579a0 12fb7c9 e3f0878 1b74014 89579a0 12fb7c9 89579a0 82af080 4d7e97c a15931a 4d7e97c 722854c a15931a 3bd3f7b a15931a 89579a0 3bd3f7b a15931a 722854c a15931a 31beab0 a15931a 31beab0 f972073 a15931a f972073 89579a0 1b10ccd d40e922 89579a0 d40e922 89579a0 a15931a 1b10ccd 89579a0 a15931a 89579a0 3bd3f7b db8d868 89579a0 31beab0 a15931a 64a0397 c048135 64a0397 c048135 64a0397 5878602 71c9dd8 5878602 d40e922 a15931a 3bd3f7b d40e922 3bd3f7b d40e922 950423a 89579a0 12fb7c9 3bd3f7b 950423a 89579a0 3bd3f7b 89579a0 d40e922 950423a 89579a0 fb63ae7 950423a e3f0878 d40e922 3bd3f7b e3f0878 d40e922 89579a0 3bd3f7b 89579a0 d40e922 89579a0 950423a 89579a0 a15931a 950423a 89579a0 6994490 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter
import json
import os
import time
import requests
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.errors import HfHubHTTPError
import backoff
from dotenv import load_dotenv
import pandas as pd
import random
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.triggers.cron import CronTrigger
# Load environment variables
load_dotenv()
# =============================================================================
# CONFIGURATION
# =============================================================================
AGENTS_REPO = "SWE-Arena/bot_data" # HuggingFace dataset for assistant metadata
LEADERBOARD_FILENAME = f"{os.getenv('COMPOSE_PROJECT_NAME')}.json"
LEADERBOARD_REPO = "SWE-Arena/leaderboard_data" # HuggingFace dataset for leaderboard data
MAX_RETRIES = 5
LEADERBOARD_COLUMNS = [
("Assistant", "string"),
("Website", "string"),
("Total PRs", "number"),
("Total Commits", "number"),
("Merged PRs", "number"),
("Acceptance Rate (%)", "number"),
]
# =============================================================================
# HUGGINGFACE API WRAPPERS WITH BACKOFF
# =============================================================================
def is_rate_limit_error(e):
"""Check if exception is a HuggingFace rate limit error (429)."""
if isinstance(e, HfHubHTTPError):
return e.response.status_code == 429
return False
@backoff.on_exception(
backoff.expo,
HfHubHTTPError,
max_tries=MAX_RETRIES,
base=300,
max_value=3600,
giveup=lambda e: not is_rate_limit_error(e),
on_backoff=lambda details: print(
f"Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
)
)
def list_repo_files_with_backoff(api, **kwargs):
"""Wrapper for api.list_repo_files() with exponential backoff for rate limits."""
return api.list_repo_files(**kwargs)
@backoff.on_exception(
backoff.expo,
HfHubHTTPError,
max_tries=MAX_RETRIES,
base=300,
max_value=3600,
giveup=lambda e: not is_rate_limit_error(e),
on_backoff=lambda details: print(
f"Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
)
)
def hf_hub_download_with_backoff(**kwargs):
"""Wrapper for hf_hub_download() with exponential backoff for rate limits."""
return hf_hub_download(**kwargs)
# =============================================================================
# GITHUB USERNAME VALIDATION
# =============================================================================
def validate_github_username(identifier):
"""Verify that a GitHub identifier exists."""
try:
response = requests.get(f'https://api.github.com/users/{identifier}', timeout=10)
return (True, "Username is valid") if response.status_code == 200 else (False, "GitHub identifier not found" if response.status_code == 404 else f"Validation error: HTTP {response.status_code}")
except Exception as e:
return False, f"Validation error: {str(e)}"
# =============================================================================
# HUGGINGFACE DATASET OPERATIONS
# =============================================================================
def load_agents_from_hf():
"""Load all assistant metadata JSON files from HuggingFace dataset."""
try:
api = HfApi()
assistants = []
# List all files in the repository
files = list_repo_files_with_backoff(api=api, repo_id=AGENTS_REPO, repo_type="dataset")
# Filter for JSON files only
json_files = [f for f in files if f.endswith('.json')]
# Download and parse each JSON file
for json_file in json_files:
try:
file_path = hf_hub_download_with_backoff(
repo_id=AGENTS_REPO,
filename=json_file,
repo_type="dataset"
)
with open(file_path, 'r') as f:
agent_data = json.load(f)
# Only process assistants with status == "active"
if agent_data.get('status') != 'active':
continue
# Extract github_identifier from filename (e.g., "assistant[bot].json" -> "assistant[bot]")
filename_identifier = json_file.replace('.json', '')
# Add or override github_identifier to match filename
agent_data['github_identifier'] = filename_identifier
assistants.append(agent_data)
except Exception as e:
print(f"Warning: Could not load {json_file}: {str(e)}")
continue
print(f"Loaded {len(assistants)} assistants from HuggingFace")
return assistants
except Exception as e:
print(f"Could not load assistants from HuggingFace: {str(e)}")
return None
def get_hf_token():
"""Get HuggingFace token from environment variables."""
token = os.getenv('HF_TOKEN')
if not token:
print("Warning: HF_TOKEN not found in environment variables")
return token
def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, token, max_retries=5):
"""
Upload file to HuggingFace with exponential backoff retry logic.
Args:
api: HfApi instance
path_or_fileobj: Local file path to upload
path_in_repo: Target path in the repository
repo_id: Repository ID
repo_type: Type of repository (e.g., "dataset")
token: HuggingFace token
max_retries: Maximum number of retry attempts
Returns:
True if upload succeeded, raises exception if all retries failed
"""
delay = 2.0 # Initial delay in seconds
for attempt in range(max_retries):
try:
api.upload_file(
path_or_fileobj=path_or_fileobj,
path_in_repo=path_in_repo,
repo_id=repo_id,
repo_type=repo_type,
token=token
)
if attempt > 0:
print(f" Upload succeeded on attempt {attempt + 1}/{max_retries}")
return True
except Exception as e:
if attempt < max_retries - 1:
wait_time = delay + random.uniform(0, 1.0)
print(f" Upload failed (attempt {attempt + 1}/{max_retries}): {str(e)}")
print(f" Retrying in {wait_time:.1f} seconds...")
time.sleep(wait_time)
delay = min(delay * 2, 60.0) # Exponential backoff, max 60s
else:
print(f" Upload failed after {max_retries} attempts: {str(e)}")
raise
def save_agent_to_hf(data):
"""Save a new assistant to HuggingFace dataset as {identifier}.json in root."""
try:
api = HfApi()
token = get_hf_token()
if not token:
raise Exception("No HuggingFace token found. Please set HF_TOKEN in your Space settings.")
identifier = data['github_identifier']
filename = f"{identifier}.json"
# Save locally first
with open(filename, 'w') as f:
json.dump(data, f, indent=2)
try:
# Upload to HuggingFace (root directory)
upload_with_retry(
api=api,
path_or_fileobj=filename,
path_in_repo=filename,
repo_id=AGENTS_REPO,
repo_type="dataset",
token=token
)
print(f"Saved assistant to HuggingFace: {filename}")
return True
finally:
# Always clean up local file, even if upload fails
if os.path.exists(filename):
os.remove(filename)
except Exception as e:
print(f"Error saving assistant: {str(e)}")
return False
def load_leaderboard_data_from_hf():
"""
Load leaderboard data and monthly metrics from HuggingFace dataset.
Returns:
dict: Dictionary with 'leaderboard', 'monthly_metrics', and 'metadata' keys
Returns None if file doesn't exist or error occurs
"""
try:
token = get_hf_token()
# Download file
file_path = hf_hub_download_with_backoff(
repo_id=LEADERBOARD_REPO,
filename=LEADERBOARD_FILENAME,
repo_type="dataset",
token=token
)
# Load JSON data
with open(file_path, 'r') as f:
data = json.load(f)
last_updated = data.get('metadata', {}).get('last_updated', 'Unknown')
print(f"Loaded leaderboard data from HuggingFace (last updated: {last_updated})")
return data
except Exception as e:
print(f"Could not load leaderboard data from HuggingFace: {str(e)}")
return None
# =============================================================================
# UI FUNCTIONS
# =============================================================================
def create_monthly_metrics_plot(type="pr", top_n=5):
"""
Create a Plotly figure showing monthly metrics.
- For PRs: Acceptance Rate (%) as line curves, Total PRs as bar charts
- For Commits: Total Commits as bar charts
Each assistant gets a unique color for both their line and bars.
Args:
type: Type of metrics to display - "pr" or "commit" (default: "pr")
top_n: Number of top assistants to show (default: 5)
"""
# Determine metrics key and field names based on type
if type == "commit":
metrics_key = 'commit_monthly_metrics'
total_field = 'total_commits'
no_data_msg = "No commit data available for visualization"
total_label = "Total Commits"
print_msg = "commit"
has_rate = False
else: # default to "pr"
metrics_key = 'pr_monthly_metrics'
total_field = 'total_prs'
no_data_msg = "No PR data available for visualization"
total_label = "Total PRs"
print_msg = "PR"
has_rate = True
# Load from saved dataset
saved_data = load_leaderboard_data_from_hf()
if not saved_data or metrics_key not in saved_data:
# Return an empty figure with a message
fig = go.Figure()
fig.add_annotation(
text=no_data_msg,
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False,
font=dict(size=16)
)
fig.update_layout(
title=None,
xaxis_title=None,
height=500
)
return fig
metrics = saved_data[metrics_key]
print(f"Loaded {print_msg} monthly metrics from saved dataset")
# Apply top_n filter if specified
if top_n is not None and top_n > 0 and metrics.get('assistants'):
# Calculate total count for each assistant
agent_totals = []
for agent_name in metrics['assistants']:
agent_data = metrics['data'].get(agent_name, {})
total_count = sum(agent_data.get(total_field, []))
agent_totals.append((agent_name, total_count))
# Sort by total count and take top N
agent_totals.sort(key=lambda x: x[1], reverse=True)
top_agents = [agent_name for agent_name, _ in agent_totals[:top_n]]
# Filter metrics to only include top assistants
metrics = {
'assistants': top_agents,
'months': metrics['months'],
'data': {assistant: metrics['data'][assistant] for assistant in top_agents if assistant in metrics['data']}
}
if not metrics['assistants'] or not metrics['months']:
# Return an empty figure with a message
fig = go.Figure()
fig.add_annotation(
text="No data available for visualization",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False,
font=dict(size=16)
)
fig.update_layout(
title=None,
xaxis_title=None,
height=500
)
return fig
# Create figure with secondary y-axis (for PRs) or single axis (for commits)
if has_rate:
fig = make_subplots(specs=[[{"secondary_y": True}]])
else:
fig = go.Figure()
# Generate unique colors for many assistants using HSL color space
def generate_color(index, total):
"""Generate distinct colors using HSL color space for better distribution"""
hue = (index * 360 / total) % 360
saturation = 70 + (index % 3) * 10 # Vary saturation slightly
lightness = 45 + (index % 2) * 10 # Vary lightness slightly
return f'hsl({hue}, {saturation}%, {lightness}%)'
assistants = metrics['assistants']
months = metrics['months']
data = metrics['data']
# Generate colors for all assistants
agent_colors = {assistant: generate_color(idx, len(assistants)) for idx, assistant in enumerate(assistants)}
# Add traces for each assistant
for idx, agent_name in enumerate(assistants):
color = agent_colors[agent_name]
agent_data = data[agent_name]
if has_rate:
# Add line trace for acceptance rate (left y-axis) - PR only
acceptance_rates = agent_data['acceptance_rates']
# Filter out None values for plotting
x_acceptance = [month for month, rate in zip(months, acceptance_rates) if rate is not None]
y_acceptance = [rate for rate in acceptance_rates if rate is not None]
if x_acceptance and y_acceptance: # Only add trace if there's data
fig.add_trace(
go.Scatter(
x=x_acceptance,
y=y_acceptance,
name=agent_name,
mode='lines+markers',
line=dict(color=color, width=2),
marker=dict(size=8),
legendgroup=agent_name,
showlegend=(top_n is not None and top_n <= 10), # Show legend for top N assistants
hovertemplate='<b>Assistant: %{fullData.name}</b><br>' +
'Month: %{x}<br>' +
'Acceptance Rate: %{y:.2f}%<br>' +
'<extra></extra>'
),
secondary_y=False
)
# Add bar trace for total count (right y-axis for PRs, single axis for commits)
# Only show bars for months where assistant has data
x_bars = []
y_bars = []
for month, count in zip(months, agent_data[total_field]):
if count > 0: # Only include months with data
x_bars.append(month)
y_bars.append(count)
if x_bars and y_bars: # Only add trace if there's data
trace_args = {
'x': x_bars,
'y': y_bars,
'name': agent_name,
'marker': dict(color=color, opacity=0.7 if type == "commit" else 0.6),
'legendgroup': agent_name,
'showlegend': False if has_rate else (top_n is not None and top_n <= 10),
'hovertemplate': f'<b>Assistant: %{{fullData.name}}</b><br>' +
f'Month: %{{x}}<br>' +
f'{total_label}: %{{y}}<br>' +
'<extra></extra>',
'offsetgroup': agent_name
}
if has_rate:
fig.add_trace(go.Bar(**trace_args), secondary_y=True)
else:
fig.add_trace(go.Bar(**trace_args))
# Update axes labels
fig.update_xaxes(title_text=None)
if has_rate:
# For PRs: dual y-axes
fig.update_yaxes(
title_text="<b>Acceptance Rate (%)</b>",
range=[0, 100],
secondary_y=False,
showticklabels=True,
tickmode='linear',
dtick=10,
showgrid=True
)
fig.update_yaxes(title_text=f"<b>{total_label}</b>", secondary_y=True)
else:
# For commits: single y-axis
fig.update_yaxes(title_text=f"<b>{total_label}</b>")
# Update layout
show_legend = (top_n is not None and top_n <= 10)
fig.update_layout(
title=None,
hovermode='closest', # Show individual assistant info on hover
barmode='group',
height=600,
showlegend=show_legend,
margin=dict(l=50, r=150 if show_legend else 50, t=50, b=50) # More right margin when legend is shown
)
return fig
def get_leaderboard_dataframe():
"""
Load leaderboard from saved dataset and convert to pandas DataFrame for display.
Returns formatted DataFrame sorted by total PRs.
"""
# Load from saved dataset
saved_data = load_leaderboard_data_from_hf()
if not saved_data or 'leaderboard' not in saved_data:
print(f"No leaderboard data available")
# Return empty DataFrame with correct columns if no data
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
return pd.DataFrame(columns=column_names)
cache_dict = saved_data['leaderboard']
last_updated = saved_data.get('metadata', {}).get('last_updated', 'Unknown')
print(f"Loaded leaderboard from saved dataset (last updated: {last_updated})")
print(f"Cache dict size: {len(cache_dict)}")
if not cache_dict:
print("WARNING: cache_dict is empty!")
# Return empty DataFrame with correct columns if no data
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
return pd.DataFrame(columns=column_names)
rows = []
filtered_count = 0
for identifier, data in cache_dict.items():
total_prs = data.get('total_prs', 0)
print(f" Assistant '{identifier}': {total_prs} PRs")
# Filter out assistants with zero total PRs
if total_prs == 0:
filtered_count += 1
continue
# Only include display-relevant fields
rows.append([
data.get('name', 'Unknown'),
data.get('website', 'N/A'),
total_prs,
data.get('total_commits', 0),
data.get('merged_prs', 0),
data.get('acceptance_rate', 0.0),
])
print(f"Filtered out {filtered_count} assistants with 0 PRs")
print(f"Leaderboard will show {len(rows)} assistants")
# Create DataFrame
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
df = pd.DataFrame(rows, columns=column_names)
# Ensure numeric types
numeric_cols = ["Total PRs", "Total Commits", "Merged PRs", "Acceptance Rate (%)"]
for col in numeric_cols:
if col in df.columns:
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
# Sort by Total PRs descending
if "Total PRs" in df.columns and not df.empty:
df = df.sort_values(by="Total PRs", ascending=False).reset_index(drop=True)
print(f"Final DataFrame shape: {df.shape}")
print("="*60 + "\n")
return df
def submit_agent(identifier, agent_name, organization, website):
"""
Submit a new assistant to the leaderboard.
Validates input and saves submission.
"""
# Validate required fields
if not identifier or not identifier.strip():
return "ERROR: GitHub identifier is required", gr.update()
if not agent_name or not agent_name.strip():
return "ERROR: Assistant name is required", gr.update()
if not organization or not organization.strip():
return "ERROR: Organization name is required", gr.update()
if not website or not website.strip():
return "ERROR: Website URL is required", gr.update()
# Clean inputs
identifier = identifier.strip()
agent_name = agent_name.strip()
organization = organization.strip()
website = website.strip()
# Validate GitHub identifier
is_valid, message = validate_github_username(identifier)
if not is_valid:
return f"ERROR: {message}", gr.update()
# Check for duplicates by loading assistants from HuggingFace
assistants = load_agents_from_hf()
if assistants:
existing_names = {assistant['github_identifier'] for assistant in assistants}
if identifier in existing_names:
return f"WARNING: Assistant with identifier '{identifier}' already exists", gr.update()
# Create submission
submission = {
'name': agent_name,
'organization': organization,
'github_identifier': identifier,
'website': website,
'status': 'active'
}
# Save to HuggingFace
if not save_agent_to_hf(submission):
return "ERROR: Failed to save submission", gr.update()
# Return success message - data will be populated by backend updates
return f"SUCCESS: Successfully submitted {agent_name}! PR data will be automatically populated by the backend system via the maintainers.", gr.update()
# =============================================================================
# DATA RELOAD FUNCTION
# =============================================================================
def reload_leaderboard_data():
"""
Reload leaderboard data from HuggingFace.
This function is called by the scheduler on a daily basis.
"""
print(f"\n{'='*80}")
print(f"Reloading leaderboard data from HuggingFace...")
print(f"{'='*80}\n")
try:
data = load_leaderboard_data_from_hf()
if data:
print(f"Successfully reloaded leaderboard data")
print(f" Last updated: {data.get('metadata', {}).get('last_updated', 'Unknown')}")
print(f" Assistants: {len(data.get('leaderboard', {}))}")
else:
print(f"No data available")
except Exception as e:
print(f"Error reloading leaderboard data: {str(e)}")
print(f"{'='*80}\n")
# =============================================================================
# GRADIO APPLICATION
# =============================================================================
print(f"\nStarting SWE Assistant PR Leaderboard")
print(f" Data source: {LEADERBOARD_REPO}")
print(f" Reload frequency: Daily at 12:00 AM UTC\n")
# Start APScheduler for daily data reload at 12:00 AM UTC
scheduler = BackgroundScheduler(timezone="UTC")
scheduler.add_job(
reload_leaderboard_data,
trigger=CronTrigger(hour=0, minute=0), # 12:00 AM UTC daily
id='daily_data_reload',
name='Daily Data Reload',
replace_existing=True
)
scheduler.start()
print(f"\n{'='*80}")
print(f"Scheduler initialized successfully")
print(f"Reload schedule: Daily at 12:00 AM UTC")
print(f"On startup: Loads cached data from HuggingFace on demand")
print(f"{'='*80}\n")
# Create Gradio interface
with gr.Blocks(title="SWE Assistant PR & Commit Leaderboard", theme=gr.themes.Soft()) as app:
gr.Markdown("# SWE Assistant PR & Commit Leaderboard")
gr.Markdown(f"Track and compare GitHub pull request and commit statistics for SWE assistants")
with gr.Tabs():
# Leaderboard Tab
with gr.Tab("Leaderboard"):
gr.Markdown("*Statistics are based on assistant PR and commit activity tracked by the system*")
leaderboard_table = Leaderboard(
value=pd.DataFrame(columns=[col[0] for col in LEADERBOARD_COLUMNS]), # Empty initially
datatype=LEADERBOARD_COLUMNS,
search_columns=["Assistant", "Website"],
filter_columns=[
ColumnFilter(
"Acceptance Rate (%)",
min=0,
max=100,
default=[0, 100],
type="slider",
label="Acceptance Rate (%)"
)
]
)
# Load leaderboard data when app starts
app.load(
fn=get_leaderboard_dataframe,
inputs=[],
outputs=[leaderboard_table]
)
# Monthly Performance Metrics
gr.Markdown("---")
gr.Markdown("## Monthly Performance Metrics - Top 5 Assistants")
with gr.Row():
with gr.Column():
gr.Markdown("*PR volume and acceptance rate over time*")
pr_monthly_metrics_plot = gr.Plot()
with gr.Column():
gr.Markdown("*Commit volume over time*")
commit_monthly_metrics_plot = gr.Plot()
# Load monthly metrics when app starts
app.load(
fn=lambda: create_monthly_metrics_plot(),
inputs=[],
outputs=[pr_monthly_metrics_plot]
)
app.load(
fn=lambda: create_monthly_metrics_plot(type="commit"),
inputs=[],
outputs=[commit_monthly_metrics_plot]
)
# Submit Assistant Tab
with gr.Tab("Submit Your Assistant"):
gr.Markdown("Fill in the details below to add your assistant to the leaderboard.")
with gr.Row():
with gr.Column():
github_input = gr.Textbox(
label="GitHub Identifier*",
placeholder="Your assistant username (e.g., my-assistant[bot])"
)
name_input = gr.Textbox(
label="Assistant Name*",
placeholder="Your assistant's display name"
)
with gr.Column():
organization_input = gr.Textbox(
label="Organization*",
placeholder="Your organization or team name"
)
website_input = gr.Textbox(
label="Website*",
placeholder="https://your-assistant-website.com"
)
submit_button = gr.Button(
"Submit Assistant",
variant="primary"
)
submission_status = gr.Textbox(
label="Submission Status",
interactive=False
)
# Event handler
submit_button.click(
fn=submit_agent,
inputs=[github_input, name_input, organization_input, website_input],
outputs=[submission_status, leaderboard_table]
)
# Launch application
if __name__ == "__main__":
app.launch()
|