zhimin-z
commited on
Commit
·
a15931a
1
Parent(s):
e7d88ff
refine
Browse files- .gitignore +1 -1
- Dockerfile +6 -18
- README.md +1 -1
- app.py +292 -1141
- docker-compose.yml +21 -0
- msr.py +635 -475
- requirements.txt +3 -5
.gitignore
CHANGED
|
@@ -2,4 +2,4 @@
|
|
| 2 |
*.env
|
| 3 |
*.venv
|
| 4 |
*.ipynb
|
| 5 |
-
*.pyc
|
|
|
|
| 2 |
*.env
|
| 3 |
*.venv
|
| 4 |
*.ipynb
|
| 5 |
+
*.pyc
|
Dockerfile
CHANGED
|
@@ -1,34 +1,22 @@
|
|
| 1 |
-
# Use official Python runtime as base image
|
| 2 |
FROM python:3.12-slim
|
| 3 |
|
| 4 |
# Set working directory
|
| 5 |
WORKDIR /app
|
| 6 |
|
| 7 |
-
# Install system dependencies
|
| 8 |
RUN apt-get update && apt-get install -y \
|
| 9 |
-
|
|
|
|
| 10 |
&& rm -rf /var/lib/apt/lists/*
|
| 11 |
|
| 12 |
-
# Copy requirements
|
| 13 |
COPY requirements.txt .
|
| 14 |
|
| 15 |
# Install Python dependencies
|
| 16 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 17 |
|
| 18 |
-
# Copy application files
|
| 19 |
-
COPY .env .
|
| 20 |
-
COPY msr.py .
|
| 21 |
-
|
| 22 |
-
# Create a non-root user for security (optional but recommended)
|
| 23 |
-
RUN useradd -m -u 1000 appuser && chown -R appuser:appuser /app
|
| 24 |
-
USER appuser
|
| 25 |
-
|
| 26 |
-
# Expose port for Gradio web interface (default is 7860)
|
| 27 |
-
EXPOSE 7860
|
| 28 |
-
|
| 29 |
# Set environment variables
|
| 30 |
-
ENV
|
| 31 |
-
ENV GRADIO_SERVER_PORT=7860
|
| 32 |
|
| 33 |
-
# Run the
|
| 34 |
CMD ["python", "msr.py"]
|
|
|
|
|
|
|
| 1 |
FROM python:3.12-slim
|
| 2 |
|
| 3 |
# Set working directory
|
| 4 |
WORKDIR /app
|
| 5 |
|
| 6 |
+
# Install system dependencies
|
| 7 |
RUN apt-get update && apt-get install -y \
|
| 8 |
+
gcc \
|
| 9 |
+
g++ \
|
| 10 |
&& rm -rf /var/lib/apt/lists/*
|
| 11 |
|
| 12 |
+
# Copy requirements file
|
| 13 |
COPY requirements.txt .
|
| 14 |
|
| 15 |
# Install Python dependencies
|
| 16 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
# Set environment variables
|
| 19 |
+
ENV PYTHONUNBUFFERED=1
|
|
|
|
| 20 |
|
| 21 |
+
# Run the mining script with scheduler
|
| 22 |
CMD ["python", "msr.py"]
|
README.md
CHANGED
|
@@ -57,7 +57,7 @@ We search GitHub using multiple query patterns to catch all PRs associated with
|
|
| 57 |
- Co-authored commits (`co-authored-by:`)
|
| 58 |
|
| 59 |
**Regular Updates**
|
| 60 |
-
The leaderboard refreshes automatically
|
| 61 |
|
| 62 |
**Community Submissions**
|
| 63 |
Anyone can submit a coding agent to track via the leaderboard. We store agent metadata in Hugging Face datasets (`SWE-Arena/bot_metadata`) and issue metadata in (`SWE-Arena/issue_metadata`). The leaderboard is dynamically constructed from the issue metadata. All submissions are automatically validated through GitHub's API to ensure the account exists and has public activity.
|
|
|
|
| 57 |
- Co-authored commits (`co-authored-by:`)
|
| 58 |
|
| 59 |
**Regular Updates**
|
| 60 |
+
The leaderboard refreshes automatically on the 8nd of each month at 12:00 AM UTC.
|
| 61 |
|
| 62 |
**Community Submissions**
|
| 63 |
Anyone can submit a coding agent to track via the leaderboard. We store agent metadata in Hugging Face datasets (`SWE-Arena/bot_metadata`) and issue metadata in (`SWE-Arena/issue_metadata`). The leaderboard is dynamically constructed from the issue metadata. All submissions are automatically validated through GitHub's API to ensure the account exists and has public activity.
|
app.py
CHANGED
|
@@ -3,21 +3,17 @@ from gradio_leaderboard import Leaderboard, ColumnFilter
|
|
| 3 |
import json
|
| 4 |
import os
|
| 5 |
import time
|
| 6 |
-
import tempfile
|
| 7 |
import requests
|
| 8 |
-
from datetime import datetime, timezone, timedelta
|
| 9 |
-
from collections import defaultdict
|
| 10 |
from huggingface_hub import HfApi, hf_hub_download
|
| 11 |
from huggingface_hub.errors import HfHubHTTPError
|
|
|
|
| 12 |
from dotenv import load_dotenv
|
| 13 |
import pandas as pd
|
| 14 |
-
import backoff
|
| 15 |
import random
|
| 16 |
import plotly.graph_objects as go
|
| 17 |
from plotly.subplots import make_subplots
|
| 18 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 19 |
from apscheduler.triggers.cron import CronTrigger
|
| 20 |
-
from google.cloud import bigquery
|
| 21 |
|
| 22 |
# Load environment variables
|
| 23 |
load_dotenv()
|
|
@@ -27,10 +23,7 @@ load_dotenv()
|
|
| 27 |
# =============================================================================
|
| 28 |
|
| 29 |
AGENTS_REPO = "SWE-Arena/bot_metadata" # HuggingFace dataset for agent metadata
|
| 30 |
-
|
| 31 |
-
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata" # For storing computed leaderboard data
|
| 32 |
-
LEADERBOARD_TIME_FRAME_DAYS = 180 # Time frame for constructing leaderboard
|
| 33 |
-
UPDATE_TIME_FRAME_DAYS = 30 # Time frame for mining new PRs
|
| 34 |
|
| 35 |
LEADERBOARD_COLUMNS = [
|
| 36 |
("Agent Name", "string"),
|
|
@@ -40,71 +33,8 @@ LEADERBOARD_COLUMNS = [
|
|
| 40 |
("Acceptance Rate (%)", "number"),
|
| 41 |
]
|
| 42 |
|
| 43 |
-
# Global cache for leaderboard data (loaded once at startup)
|
| 44 |
-
_LEADERBOARD_CACHE = None
|
| 45 |
-
|
| 46 |
# =============================================================================
|
| 47 |
-
#
|
| 48 |
-
# =============================================================================
|
| 49 |
-
|
| 50 |
-
def load_jsonl(filename):
|
| 51 |
-
"""Load JSONL file and return list of dictionaries."""
|
| 52 |
-
if not os.path.exists(filename):
|
| 53 |
-
return []
|
| 54 |
-
|
| 55 |
-
data = []
|
| 56 |
-
with open(filename, 'r', encoding='utf-8') as f:
|
| 57 |
-
for line in f:
|
| 58 |
-
line = line.strip()
|
| 59 |
-
if line:
|
| 60 |
-
try:
|
| 61 |
-
entry = json.loads(line)
|
| 62 |
-
data.append(entry)
|
| 63 |
-
except json.JSONDecodeError as e:
|
| 64 |
-
print(f"Warning: Skipping invalid JSON line: {e}")
|
| 65 |
-
return data
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
def save_jsonl(filename, data):
|
| 69 |
-
"""Save list of dictionaries to JSONL file."""
|
| 70 |
-
with open(filename, 'w', encoding='utf-8') as f:
|
| 71 |
-
for item in data:
|
| 72 |
-
f.write(json.dumps(item) + '\n')
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
def parse_date_string(date_string):
|
| 76 |
-
"""
|
| 77 |
-
Parse date string to datetime object, handling various formats.
|
| 78 |
-
|
| 79 |
-
Handles:
|
| 80 |
-
- ISO format with 'T' or space between date and time
|
| 81 |
-
- Timezone with 'Z' or incomplete offset (+00, -00)
|
| 82 |
-
- Complete timezone offset (+00:00, -00:00)
|
| 83 |
-
|
| 84 |
-
Args:
|
| 85 |
-
date_string: Date string in various formats
|
| 86 |
-
|
| 87 |
-
Returns:
|
| 88 |
-
datetime object or raises exception
|
| 89 |
-
"""
|
| 90 |
-
if not date_string:
|
| 91 |
-
raise ValueError("Empty date string")
|
| 92 |
-
|
| 93 |
-
# Replace space with 'T' for ISO format compatibility
|
| 94 |
-
date_string = date_string.replace(' ', 'T')
|
| 95 |
-
|
| 96 |
-
# Fix incomplete timezone offset (+00 or -00 -> +00:00 or -00:00)
|
| 97 |
-
if date_string[-3:-2] in ('+', '-') and ':' not in date_string[-3:]:
|
| 98 |
-
date_string = date_string + ':00'
|
| 99 |
-
|
| 100 |
-
# Parse the date string (handles both with and without microseconds)
|
| 101 |
-
dt = datetime.fromisoformat(date_string.replace('Z', '+00:00'))
|
| 102 |
-
|
| 103 |
-
return dt
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
# =============================================================================
|
| 107 |
-
# HUGGINGFACE API RETRY WRAPPERS
|
| 108 |
# =============================================================================
|
| 109 |
|
| 110 |
def is_rate_limit_error(e):
|
|
@@ -114,368 +44,123 @@ def is_rate_limit_error(e):
|
|
| 114 |
return False
|
| 115 |
|
| 116 |
|
| 117 |
-
def backoff_handler(details):
|
| 118 |
-
"""Handler to print retry attempt information."""
|
| 119 |
-
wait_time = details['wait']
|
| 120 |
-
tries = details['tries']
|
| 121 |
-
wait_minutes = wait_time / 60
|
| 122 |
-
print(f" ⏳ Rate limited. Retrying in {wait_minutes:.1f} minutes ({wait_time:.0f}s) - attempt {tries}/8...")
|
| 123 |
-
|
| 124 |
-
|
| 125 |
@backoff.on_exception(
|
| 126 |
backoff.expo,
|
| 127 |
HfHubHTTPError,
|
| 128 |
-
giveup=lambda e: not is_rate_limit_error(e),
|
| 129 |
max_tries=8,
|
| 130 |
-
base=300,
|
| 131 |
-
max_value=3600,
|
| 132 |
-
|
| 133 |
-
on_backoff=
|
|
|
|
|
|
|
| 134 |
)
|
| 135 |
def list_repo_files_with_backoff(api, **kwargs):
|
| 136 |
-
"""Wrapper for
|
| 137 |
return api.list_repo_files(**kwargs)
|
| 138 |
|
| 139 |
|
| 140 |
@backoff.on_exception(
|
| 141 |
backoff.expo,
|
| 142 |
HfHubHTTPError,
|
| 143 |
-
giveup=lambda e: not is_rate_limit_error(e),
|
| 144 |
max_tries=8,
|
| 145 |
-
base=300,
|
| 146 |
-
max_value=3600,
|
| 147 |
-
|
| 148 |
-
on_backoff=
|
|
|
|
|
|
|
| 149 |
)
|
| 150 |
def hf_hub_download_with_backoff(**kwargs):
|
| 151 |
-
"""Wrapper for hf_hub_download with exponential backoff
|
| 152 |
return hf_hub_download(**kwargs)
|
| 153 |
|
| 154 |
|
| 155 |
-
@backoff.on_exception(
|
| 156 |
-
backoff.expo,
|
| 157 |
-
HfHubHTTPError,
|
| 158 |
-
giveup=lambda e: not is_rate_limit_error(e),
|
| 159 |
-
max_tries=8,
|
| 160 |
-
base=300, # Start at 5 minutes (300 seconds)
|
| 161 |
-
max_value=3600, # Cap at 60 minutes (3600 seconds)
|
| 162 |
-
jitter=backoff.full_jitter,
|
| 163 |
-
on_backoff=backoff_handler
|
| 164 |
-
)
|
| 165 |
-
def upload_folder_with_backoff(api, **kwargs):
|
| 166 |
-
"""Wrapper for HfApi.upload_folder with exponential backoff on rate limits."""
|
| 167 |
-
return api.upload_folder(**kwargs)
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
@backoff.on_exception(
|
| 171 |
-
backoff.expo,
|
| 172 |
-
HfHubHTTPError,
|
| 173 |
-
giveup=lambda e: not is_rate_limit_error(e),
|
| 174 |
-
max_tries=8,
|
| 175 |
-
base=300, # Start at 5 minutes (300 seconds)
|
| 176 |
-
max_value=3600, # Cap at 60 minutes (3600 seconds)
|
| 177 |
-
jitter=backoff.full_jitter,
|
| 178 |
-
on_backoff=backoff_handler
|
| 179 |
-
)
|
| 180 |
-
def upload_file_with_backoff(api, **kwargs):
|
| 181 |
-
"""Wrapper for HfApi.upload_file with exponential backoff on rate limits."""
|
| 182 |
-
return api.upload_file(**kwargs)
|
| 183 |
-
|
| 184 |
-
|
| 185 |
# =============================================================================
|
| 186 |
-
#
|
| 187 |
# =============================================================================
|
| 188 |
|
| 189 |
-
def
|
| 190 |
"""
|
| 191 |
-
|
| 192 |
-
|
| 193 |
|
| 194 |
-
|
| 195 |
-
client: BigQuery client instance
|
| 196 |
-
identifiers: List of GitHub usernames/bot identifiers
|
| 197 |
-
start_date: Start datetime (timezone-aware)
|
| 198 |
-
end_date: End datetime (timezone-aware)
|
| 199 |
-
batch_size: Number of agents to process per batch (default: 100)
|
| 200 |
-
upload_immediately: If True, upload each batch's results to HuggingFace immediately (default: True)
|
| 201 |
-
|
| 202 |
-
Returns:
|
| 203 |
-
Dictionary mapping agent identifier to list of issue metadata
|
| 204 |
"""
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
total_batches = len(batches)
|
| 208 |
-
|
| 209 |
-
print(f"\n🔍 Using BATCHED approach for {len(identifiers)} agents")
|
| 210 |
-
print(f" Total batches: {total_batches} (batch size: {batch_size})")
|
| 211 |
-
print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
|
| 212 |
-
if upload_immediately:
|
| 213 |
-
print(f" Upload mode: Immediate (after each batch)")
|
| 214 |
-
else:
|
| 215 |
-
print(f" Upload mode: Deferred (all at once)")
|
| 216 |
-
|
| 217 |
-
# Collect results from all batches
|
| 218 |
-
all_metadata = {}
|
| 219 |
-
|
| 220 |
-
for batch_num, batch_identifiers in enumerate(batches, 1):
|
| 221 |
-
print(f"\n📦 Processing batch {batch_num}/{total_batches} ({len(batch_identifiers)} agents)...")
|
| 222 |
-
|
| 223 |
try:
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
)
|
| 228 |
|
| 229 |
-
|
| 230 |
-
for identifier, metadata_list in batch_results.items():
|
| 231 |
-
if identifier in all_metadata:
|
| 232 |
-
all_metadata[identifier].extend(metadata_list)
|
| 233 |
-
else:
|
| 234 |
-
all_metadata[identifier] = metadata_list
|
| 235 |
-
|
| 236 |
-
print(f" ✓ Batch {batch_num}/{total_batches} complete")
|
| 237 |
-
|
| 238 |
-
# Upload immediately after this batch if enabled
|
| 239 |
-
if upload_immediately and batch_results:
|
| 240 |
-
print(f"\n 📤 Uploading batch {batch_num}/{total_batches} results to HuggingFace...")
|
| 241 |
-
upload_success = 0
|
| 242 |
-
upload_errors = 0
|
| 243 |
-
|
| 244 |
-
for identifier, metadata_list in batch_results.items():
|
| 245 |
-
if metadata_list:
|
| 246 |
-
if save_pr_metadata_to_hf(metadata_list, identifier):
|
| 247 |
-
upload_success += 1
|
| 248 |
-
else:
|
| 249 |
-
upload_errors += 1
|
| 250 |
-
|
| 251 |
-
print(f" ✓ Batch {batch_num}/{total_batches} upload complete ({upload_success} agents uploaded, {upload_errors} errors)")
|
| 252 |
-
|
| 253 |
-
except Exception as e:
|
| 254 |
-
print(f" ✗ Batch {batch_num}/{total_batches} failed: {str(e)}")
|
| 255 |
-
print(f" Continuing with remaining batches...")
|
| 256 |
-
continue
|
| 257 |
-
|
| 258 |
-
total_prs = sum(len(metadata_list) for metadata_list in all_metadata.values())
|
| 259 |
-
print(f"\n✓ All batches complete! Found {total_prs} total PRs across {len(all_metadata)} agents")
|
| 260 |
-
|
| 261 |
-
return all_metadata
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
def get_bigquery_client():
|
| 265 |
-
"""
|
| 266 |
-
Initialize BigQuery client using credentials from environment variable.
|
| 267 |
-
|
| 268 |
-
Expects GOOGLE_APPLICATION_CREDENTIALS_JSON environment variable containing
|
| 269 |
-
the service account JSON credentials as a string.
|
| 270 |
-
"""
|
| 271 |
-
# Get the JSON content from environment variable
|
| 272 |
-
creds_json = os.environ.get('GOOGLE_APPLICATION_CREDENTIALS_JSON')
|
| 273 |
-
|
| 274 |
-
if creds_json:
|
| 275 |
-
# Create a temporary file to store credentials
|
| 276 |
-
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as temp_file:
|
| 277 |
-
temp_file.write(creds_json)
|
| 278 |
-
temp_path = temp_file.name
|
| 279 |
-
|
| 280 |
-
# Set environment variable to point to temp file
|
| 281 |
-
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = temp_path
|
| 282 |
-
|
| 283 |
-
# Initialize BigQuery client
|
| 284 |
-
client = bigquery.Client()
|
| 285 |
|
| 286 |
-
|
| 287 |
-
|
|
|
|
| 288 |
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
def generate_table_union_statements(start_date, end_date):
|
| 295 |
-
"""
|
| 296 |
-
Generate UNION ALL statements for githubarchive.month tables in date range.
|
| 297 |
-
|
| 298 |
-
Args:
|
| 299 |
-
start_date: Start datetime
|
| 300 |
-
end_date: End datetime
|
| 301 |
-
|
| 302 |
-
Returns:
|
| 303 |
-
String with UNION ALL SELECT statements for all tables in range
|
| 304 |
-
"""
|
| 305 |
-
table_names = []
|
| 306 |
-
|
| 307 |
-
# Start from the beginning of start_date's month
|
| 308 |
-
current_date = start_date.replace(day=1)
|
| 309 |
-
end_month = end_date.replace(day=1)
|
| 310 |
-
|
| 311 |
-
while current_date <= end_month:
|
| 312 |
-
table_name = f"`githubarchive.month.{current_date.strftime('%Y%m')}`"
|
| 313 |
-
table_names.append(table_name)
|
| 314 |
-
|
| 315 |
-
# Move to next month
|
| 316 |
-
if current_date.month == 12:
|
| 317 |
-
current_date = current_date.replace(year=current_date.year + 1, month=1)
|
| 318 |
-
else:
|
| 319 |
-
current_date = current_date.replace(month=current_date.month + 1)
|
| 320 |
-
|
| 321 |
-
# Create UNION ALL chain
|
| 322 |
-
union_parts = [f"SELECT * FROM {table}" for table in table_names]
|
| 323 |
-
return " UNION ALL ".join(union_parts)
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
def fetch_all_pr_metadata_single_query(client, identifiers, start_date, end_date):
|
| 327 |
-
"""
|
| 328 |
-
Fetch PR metadata for a BATCH of agents using ONE comprehensive BigQuery query.
|
| 329 |
-
|
| 330 |
-
NOTE: This function is designed for smaller batches (~100 agents).
|
| 331 |
-
For large numbers of agents, use fetch_issue_metadata_batched() instead.
|
| 332 |
-
|
| 333 |
-
This query fetches PRs authored by agents (user.login matches identifier).
|
| 334 |
-
|
| 335 |
-
Args:
|
| 336 |
-
client: BigQuery client instance
|
| 337 |
-
identifiers: List of GitHub usernames/bot identifiers
|
| 338 |
-
start_date: Start datetime (timezone-aware)
|
| 339 |
-
end_date: End datetime (timezone-aware)
|
| 340 |
-
|
| 341 |
-
Returns:
|
| 342 |
-
Dictionary mapping agent identifier to list of PR metadata
|
| 343 |
-
"""
|
| 344 |
-
print(f" Querying BigQuery for {len(identifiers)} agents in this batch...")
|
| 345 |
-
print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
|
| 346 |
-
|
| 347 |
-
# Generate table UNION statements for the time range
|
| 348 |
-
table_union = generate_table_union_statements(start_date, end_date)
|
| 349 |
-
|
| 350 |
-
# Build identifier list for SQL IN clause (author matching only)
|
| 351 |
-
author_list = ', '.join([f"'{id}'" for id in identifiers])
|
| 352 |
-
|
| 353 |
-
# Build comprehensive query with CTE
|
| 354 |
-
query = f"""
|
| 355 |
-
WITH pr_events AS (
|
| 356 |
-
-- Get all PR events (opened, closed) for all agents
|
| 357 |
-
SELECT
|
| 358 |
-
JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as html_url,
|
| 359 |
-
JSON_EXTRACT_SCALAR(payload, '$.pull_request.user.login') as pr_author,
|
| 360 |
-
JSON_EXTRACT_SCALAR(payload, '$.pull_request.created_at') as created_at,
|
| 361 |
-
CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.merged') AS BOOL) as is_merged,
|
| 362 |
-
JSON_EXTRACT_SCALAR(payload, '$.pull_request.merged_at') as merged_at,
|
| 363 |
-
JSON_EXTRACT_SCALAR(payload, '$.pull_request.closed_at') as closed_at,
|
| 364 |
-
JSON_EXTRACT_SCALAR(payload, '$.action') as action,
|
| 365 |
-
created_at as event_time
|
| 366 |
-
FROM (
|
| 367 |
-
{table_union}
|
| 368 |
-
) t
|
| 369 |
-
WHERE
|
| 370 |
-
type = 'PullRequestEvent'
|
| 371 |
-
AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') IS NOT NULL
|
| 372 |
-
AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.user.login') IN ({author_list})
|
| 373 |
-
),
|
| 374 |
-
|
| 375 |
-
pr_latest_state AS (
|
| 376 |
-
-- Get the latest state for each PR (most recent event)
|
| 377 |
-
SELECT
|
| 378 |
-
html_url,
|
| 379 |
-
pr_author,
|
| 380 |
-
created_at,
|
| 381 |
-
merged_at,
|
| 382 |
-
closed_at,
|
| 383 |
-
ROW_NUMBER() OVER (PARTITION BY html_url ORDER BY event_time DESC) as row_num
|
| 384 |
-
FROM pr_events
|
| 385 |
-
)
|
| 386 |
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
FROM pr_latest_state
|
| 395 |
-
WHERE row_num = 1
|
| 396 |
-
ORDER BY created_at DESC
|
| 397 |
-
"""
|
| 398 |
|
| 399 |
-
|
| 400 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 401 |
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
print(f" ✓ Found {len(results)} PRs in this batch")
|
| 407 |
-
|
| 408 |
-
# Group results by agent
|
| 409 |
-
metadata_by_agent = defaultdict(list)
|
| 410 |
-
|
| 411 |
-
for row in results:
|
| 412 |
-
# Convert datetime objects to ISO strings
|
| 413 |
-
created_at = row.created_at
|
| 414 |
-
if hasattr(created_at, 'isoformat'):
|
| 415 |
-
created_at = created_at.isoformat()
|
| 416 |
-
|
| 417 |
-
merged_at = row.merged_at
|
| 418 |
-
if hasattr(merged_at, 'isoformat'):
|
| 419 |
-
merged_at = merged_at.isoformat()
|
| 420 |
-
|
| 421 |
-
closed_at = row.closed_at
|
| 422 |
-
if hasattr(closed_at, 'isoformat'):
|
| 423 |
-
closed_at = closed_at.isoformat()
|
| 424 |
-
|
| 425 |
-
pr_data = {
|
| 426 |
-
'html_url': row.html_url,
|
| 427 |
-
'created_at': created_at,
|
| 428 |
-
'merged_at': merged_at,
|
| 429 |
-
'closed_at': closed_at,
|
| 430 |
-
}
|
| 431 |
-
|
| 432 |
-
# Assign to agent based on author
|
| 433 |
-
pr_author = row.pr_author
|
| 434 |
-
if pr_author and pr_author in identifiers:
|
| 435 |
-
metadata_by_agent[pr_author].append(pr_data)
|
| 436 |
-
|
| 437 |
-
# Print breakdown by agent (only show agents with PRs)
|
| 438 |
-
print(f" 📊 Batch breakdown:")
|
| 439 |
-
for identifier in identifiers:
|
| 440 |
-
count = len(metadata_by_agent.get(identifier, []))
|
| 441 |
-
if count > 0:
|
| 442 |
-
metadata = metadata_by_agent[identifier]
|
| 443 |
-
merged_count = sum(1 for m in metadata if m['merged_at'] is not None)
|
| 444 |
-
closed_count = sum(1 for m in metadata if m['closed_at'] is not None and m['merged_at'] is None)
|
| 445 |
-
open_count = count - merged_count - closed_count
|
| 446 |
-
print(f" {identifier}: {count} PRs ({merged_count} merged, {closed_count} closed, {open_count} open)")
|
| 447 |
-
|
| 448 |
-
# Convert defaultdict to regular dict
|
| 449 |
-
return dict(metadata_by_agent)
|
| 450 |
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
|
|
|
| 456 |
|
|
|
|
|
|
|
| 457 |
|
| 458 |
-
|
| 459 |
-
#
|
| 460 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
token = os.getenv('GITHUB_TOKEN')
|
| 465 |
-
if not token:
|
| 466 |
-
print("Warning: GITHUB_TOKEN not found. Validation will be limited.")
|
| 467 |
-
return token
|
| 468 |
|
| 469 |
|
| 470 |
def validate_github_username(identifier):
|
| 471 |
-
"""Verify that a GitHub identifier exists
|
| 472 |
try:
|
| 473 |
-
token = get_github_token()
|
| 474 |
-
headers = {'Authorization': f'token {token}'} if token else {}
|
| 475 |
url = f'https://api.github.com/users/{identifier}'
|
| 476 |
-
|
| 477 |
-
response
|
| 478 |
-
|
| 479 |
if response.status_code == 200:
|
| 480 |
return True, "Username is valid"
|
| 481 |
elif response.status_code == 404:
|
|
@@ -486,414 +171,6 @@ def validate_github_username(identifier):
|
|
| 486 |
return False, f"Validation error: {str(e)}"
|
| 487 |
|
| 488 |
|
| 489 |
-
# =============================================================================
|
| 490 |
-
# PR STATISTICS
|
| 491 |
-
# =============================================================================
|
| 492 |
-
|
| 493 |
-
def calculate_pr_stats_from_metadata(metadata_list):
|
| 494 |
-
"""
|
| 495 |
-
Calculate statistics from a list of PR metadata (lightweight objects).
|
| 496 |
-
Works with minimal metadata: html_url, created_at, merged_at, closed_at.
|
| 497 |
-
|
| 498 |
-
Returns a dictionary with comprehensive PR metrics.
|
| 499 |
-
|
| 500 |
-
Acceptance rate is calculated as:
|
| 501 |
-
merged PRs / (merged PRs + closed but not merged PRs) * 100
|
| 502 |
-
|
| 503 |
-
This only counts PRs where a decision has been made (either merged or rejected/closed).
|
| 504 |
-
"""
|
| 505 |
-
total_prs = len(metadata_list)
|
| 506 |
-
merged = sum(1 for pr_meta in metadata_list if pr_meta.get('merged_at'))
|
| 507 |
-
|
| 508 |
-
# Count closed PRs (rejected) - those with closed_at but no merged_at
|
| 509 |
-
closed_not_merged = sum(1 for pr_meta in metadata_list
|
| 510 |
-
if pr_meta.get('closed_at') and not pr_meta.get('merged_at'))
|
| 511 |
-
|
| 512 |
-
# Total decisions made = merged + closed (rejected)
|
| 513 |
-
total_decisions = merged + closed_not_merged
|
| 514 |
-
|
| 515 |
-
# Calculate acceptance rate based on decisions made
|
| 516 |
-
acceptance_rate = (merged / total_decisions * 100) if total_decisions > 0 else 0
|
| 517 |
-
|
| 518 |
-
return {
|
| 519 |
-
'total_prs': total_prs,
|
| 520 |
-
'merged_prs': merged,
|
| 521 |
-
'acceptance_rate': round(acceptance_rate, 2),
|
| 522 |
-
}
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
def calculate_monthly_metrics_by_agent(top_n=None):
|
| 526 |
-
"""
|
| 527 |
-
Calculate monthly metrics for all agents (or top N agents) for visualization.
|
| 528 |
-
Loads data directly from SWE-Arena/pr_metadata dataset.
|
| 529 |
-
|
| 530 |
-
Args:
|
| 531 |
-
top_n: If specified, only return metrics for the top N agents by total PRs.
|
| 532 |
-
Agents are ranked by their total PR count across all months.
|
| 533 |
-
|
| 534 |
-
Returns:
|
| 535 |
-
dict: {
|
| 536 |
-
'agents': list of agent names,
|
| 537 |
-
'months': list of month labels (e.g., '2025-01'),
|
| 538 |
-
'data': {
|
| 539 |
-
agent_name: {
|
| 540 |
-
'acceptance_rates': list of acceptance rates by month,
|
| 541 |
-
'total_prs': list of PR counts by month,
|
| 542 |
-
'merged_prs': list of merged PR counts by month,
|
| 543 |
-
'closed_not_merged': list of closed but not merged PR counts by month
|
| 544 |
-
}
|
| 545 |
-
}
|
| 546 |
-
}
|
| 547 |
-
"""
|
| 548 |
-
# Load ALL agents from HuggingFace agents repo
|
| 549 |
-
agents = load_agents_from_hf()
|
| 550 |
-
|
| 551 |
-
# Create mapping from agent_identifier to agent_name
|
| 552 |
-
identifier_to_name = {agent.get('github_identifier'): agent.get('name', 'Unknown') for agent in agents if agent.get('github_identifier')}
|
| 553 |
-
|
| 554 |
-
# Load all PR metadata from pr_metadata dataset
|
| 555 |
-
all_metadata = load_pr_metadata()
|
| 556 |
-
|
| 557 |
-
if not all_metadata:
|
| 558 |
-
return {'agents': [], 'months': [], 'data': {}}
|
| 559 |
-
|
| 560 |
-
# Group by agent and month
|
| 561 |
-
agent_month_data = defaultdict(lambda: defaultdict(list))
|
| 562 |
-
|
| 563 |
-
for pr_meta in all_metadata:
|
| 564 |
-
agent_identifier = pr_meta.get('agent_identifier')
|
| 565 |
-
created_at = pr_meta.get('created_at')
|
| 566 |
-
|
| 567 |
-
if not agent_identifier or not created_at:
|
| 568 |
-
continue
|
| 569 |
-
|
| 570 |
-
# Get agent_name from identifier
|
| 571 |
-
agent_name = identifier_to_name.get(agent_identifier, agent_identifier)
|
| 572 |
-
|
| 573 |
-
try:
|
| 574 |
-
dt = parse_date_string(created_at)
|
| 575 |
-
month_key = f"{dt.year}-{dt.month:02d}"
|
| 576 |
-
agent_month_data[agent_name][month_key].append(pr_meta)
|
| 577 |
-
except Exception as e:
|
| 578 |
-
print(f"Warning: Could not parse date '{created_at}': {e}")
|
| 579 |
-
continue
|
| 580 |
-
|
| 581 |
-
# Get all unique months and sort them
|
| 582 |
-
all_months = set()
|
| 583 |
-
for agent_data in agent_month_data.values():
|
| 584 |
-
all_months.update(agent_data.keys())
|
| 585 |
-
months = sorted(list(all_months))
|
| 586 |
-
|
| 587 |
-
# Calculate metrics for each agent and month
|
| 588 |
-
result_data = {}
|
| 589 |
-
for agent_name, month_dict in agent_month_data.items():
|
| 590 |
-
acceptance_rates = []
|
| 591 |
-
total_prs = []
|
| 592 |
-
merged_prs = []
|
| 593 |
-
closed_not_merged_list = []
|
| 594 |
-
|
| 595 |
-
for month in months:
|
| 596 |
-
prs_in_month = month_dict.get(month, [])
|
| 597 |
-
|
| 598 |
-
# Count merged PRs
|
| 599 |
-
merged_count = sum(1 for pr in prs_in_month if pr.get('merged_at'))
|
| 600 |
-
|
| 601 |
-
# Count closed but not merged
|
| 602 |
-
closed_not_merged_count = sum(1 for pr in prs_in_month
|
| 603 |
-
if pr.get('closed_at') and not pr.get('merged_at'))
|
| 604 |
-
|
| 605 |
-
# Total PRs created in this month
|
| 606 |
-
total_count = len(prs_in_month)
|
| 607 |
-
|
| 608 |
-
# Calculate acceptance rate
|
| 609 |
-
total_decisions = merged_count + closed_not_merged_count
|
| 610 |
-
acceptance_rate = (merged_count / total_decisions * 100) if total_decisions > 0 else None
|
| 611 |
-
|
| 612 |
-
acceptance_rates.append(acceptance_rate)
|
| 613 |
-
total_prs.append(total_count)
|
| 614 |
-
merged_prs.append(merged_count)
|
| 615 |
-
closed_not_merged_list.append(closed_not_merged_count)
|
| 616 |
-
|
| 617 |
-
result_data[agent_name] = {
|
| 618 |
-
'acceptance_rates': acceptance_rates,
|
| 619 |
-
'total_prs': total_prs,
|
| 620 |
-
'merged_prs': merged_prs,
|
| 621 |
-
'closed_not_merged': closed_not_merged_list
|
| 622 |
-
}
|
| 623 |
-
|
| 624 |
-
# Filter to top N agents if specified
|
| 625 |
-
agents_list = sorted(list(agent_month_data.keys()))
|
| 626 |
-
if top_n is not None and top_n > 0:
|
| 627 |
-
# Calculate total PRs for each agent across all months
|
| 628 |
-
agent_totals = []
|
| 629 |
-
for agent_name in agents_list:
|
| 630 |
-
total_pr_count = sum(result_data[agent_name]['total_prs'])
|
| 631 |
-
agent_totals.append((agent_name, total_pr_count))
|
| 632 |
-
|
| 633 |
-
# Sort by total PRs (descending) and take top N
|
| 634 |
-
agent_totals.sort(key=lambda x: x[1], reverse=True)
|
| 635 |
-
top_agents = [agent_name for agent_name, _ in agent_totals[:top_n]]
|
| 636 |
-
|
| 637 |
-
# Filter result_data to only include top agents
|
| 638 |
-
result_data = {agent: result_data[agent] for agent in top_agents if agent in result_data}
|
| 639 |
-
agents_list = top_agents
|
| 640 |
-
|
| 641 |
-
return {
|
| 642 |
-
'agents': agents_list,
|
| 643 |
-
'months': months,
|
| 644 |
-
'data': result_data
|
| 645 |
-
}
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
# =============================================================================
|
| 649 |
-
# PR METADATA STORAGE & RETRIEVAL
|
| 650 |
-
# =============================================================================
|
| 651 |
-
|
| 652 |
-
def group_metadata_by_date(metadata_list):
|
| 653 |
-
"""
|
| 654 |
-
Group PR metadata by exact date (year.month.day) for efficient daily storage.
|
| 655 |
-
Returns dict: {(year, month, day): [metadata_list]}
|
| 656 |
-
"""
|
| 657 |
-
grouped = defaultdict(list)
|
| 658 |
-
|
| 659 |
-
for pr_meta in metadata_list:
|
| 660 |
-
created_at = pr_meta.get('created_at')
|
| 661 |
-
if not created_at:
|
| 662 |
-
continue
|
| 663 |
-
|
| 664 |
-
try:
|
| 665 |
-
dt = parse_date_string(created_at)
|
| 666 |
-
key = (dt.year, dt.month, dt.day)
|
| 667 |
-
grouped[key].append(pr_meta)
|
| 668 |
-
except Exception as e:
|
| 669 |
-
print(f"Warning: Could not parse date '{created_at}': {e}")
|
| 670 |
-
|
| 671 |
-
return dict(grouped)
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
def save_pr_metadata_to_hf(metadata_list, agent_identifier):
|
| 675 |
-
"""
|
| 676 |
-
Save PR metadata to HuggingFace dataset, organized by [agent_identifier]/YYYY.MM.DD.jsonl.
|
| 677 |
-
Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's PRs.
|
| 678 |
-
|
| 679 |
-
This function OVERWRITES existing files completely with fresh data from BigQuery.
|
| 680 |
-
Uses batch upload to avoid rate limit (uploads entire folder in single operation).
|
| 681 |
-
|
| 682 |
-
Args:
|
| 683 |
-
metadata_list: List of PR metadata dictionaries
|
| 684 |
-
agent_identifier: GitHub identifier of the agent (used as folder name)
|
| 685 |
-
"""
|
| 686 |
-
import shutil
|
| 687 |
-
|
| 688 |
-
try:
|
| 689 |
-
token = get_hf_token()
|
| 690 |
-
if not token:
|
| 691 |
-
raise Exception("No HuggingFace token found")
|
| 692 |
-
|
| 693 |
-
api = HfApi(token=token)
|
| 694 |
-
|
| 695 |
-
# Group by date (year, month, day)
|
| 696 |
-
grouped = group_metadata_by_date(metadata_list)
|
| 697 |
-
|
| 698 |
-
if not grouped:
|
| 699 |
-
print(f" No valid metadata to save for {agent_identifier}")
|
| 700 |
-
return False
|
| 701 |
-
|
| 702 |
-
# Create a temporary directory for batch upload
|
| 703 |
-
temp_dir = tempfile.mkdtemp()
|
| 704 |
-
agent_folder = os.path.join(temp_dir, agent_identifier)
|
| 705 |
-
os.makedirs(agent_folder, exist_ok=True)
|
| 706 |
-
|
| 707 |
-
try:
|
| 708 |
-
print(f" 📦 Preparing batch upload for {len(grouped)} daily files...")
|
| 709 |
-
|
| 710 |
-
# Process each daily file
|
| 711 |
-
for (pr_year, month, day), day_metadata in grouped.items():
|
| 712 |
-
filename = f"{agent_identifier}/{pr_year}.{month:02d}.{day:02d}.jsonl"
|
| 713 |
-
local_filename = os.path.join(agent_folder, f"{pr_year}.{month:02d}.{day:02d}.jsonl")
|
| 714 |
-
|
| 715 |
-
# Sort by created_at for better organization
|
| 716 |
-
day_metadata.sort(key=lambda x: x.get('created_at', ''), reverse=True)
|
| 717 |
-
|
| 718 |
-
# Save to temp directory (complete overwrite, no merging)
|
| 719 |
-
save_jsonl(local_filename, day_metadata)
|
| 720 |
-
print(f" Prepared {len(day_metadata)} PRs for {filename}")
|
| 721 |
-
|
| 722 |
-
# Upload entire folder using upload_folder (single commit per agent)
|
| 723 |
-
print(f" 📤 Uploading {len(grouped)} files ({len(metadata_list)} total PRs)...")
|
| 724 |
-
upload_folder_with_backoff(
|
| 725 |
-
api,
|
| 726 |
-
folder_path=temp_dir,
|
| 727 |
-
repo_id=PR_METADATA_REPO,
|
| 728 |
-
repo_type="dataset",
|
| 729 |
-
commit_message=f"Update PR metadata for {agent_identifier}"
|
| 730 |
-
)
|
| 731 |
-
print(f" ✓ Batch upload complete for {agent_identifier}")
|
| 732 |
-
|
| 733 |
-
return True
|
| 734 |
-
|
| 735 |
-
finally:
|
| 736 |
-
# Always clean up temp directory
|
| 737 |
-
if os.path.exists(temp_dir):
|
| 738 |
-
shutil.rmtree(temp_dir)
|
| 739 |
-
|
| 740 |
-
except Exception as e:
|
| 741 |
-
print(f" ✗ Error saving PR metadata: {str(e)}")
|
| 742 |
-
import traceback
|
| 743 |
-
traceback.print_exc()
|
| 744 |
-
return False
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
def load_pr_metadata():
|
| 748 |
-
"""
|
| 749 |
-
Loads PR metadata from the last LEADERBOARD_TIME_FRAME_DAYS only.
|
| 750 |
-
|
| 751 |
-
Structure: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 752 |
-
|
| 753 |
-
Returns:
|
| 754 |
-
List of dictionaries with 'agent_identifier' added to each PR metadata.
|
| 755 |
-
Only includes PRs within the last LEADERBOARD_TIME_FRAME_DAYS.
|
| 756 |
-
"""
|
| 757 |
-
try:
|
| 758 |
-
api = HfApi()
|
| 759 |
-
token = get_hf_token()
|
| 760 |
-
|
| 761 |
-
# Calculate cutoff date for filtering
|
| 762 |
-
cutoff_date = datetime.now(timezone.utc) - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 763 |
-
|
| 764 |
-
# List all files in the repository
|
| 765 |
-
files = list_repo_files_with_backoff(api, repo_id=PR_METADATA_REPO, repo_type="dataset")
|
| 766 |
-
|
| 767 |
-
# Filter for files within the time frame: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 768 |
-
# Parse date from filename and only include files within LEADERBOARD_TIME_FRAME_DAYS
|
| 769 |
-
relevant_files = []
|
| 770 |
-
for f in files:
|
| 771 |
-
if f.endswith('.jsonl'):
|
| 772 |
-
parts = f.split('/')
|
| 773 |
-
if len(parts) == 2: # [agent_identifier]/YYYY.MM.DD.jsonl
|
| 774 |
-
filename = parts[1]
|
| 775 |
-
try:
|
| 776 |
-
# Parse date from filename: YYYY.MM.DD.jsonl
|
| 777 |
-
date_part = filename.replace('.jsonl', '') # Get YYYY.MM.DD
|
| 778 |
-
date_components = date_part.split('.')
|
| 779 |
-
if len(date_components) == 3:
|
| 780 |
-
file_year, file_month, file_day = map(int, date_components)
|
| 781 |
-
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc)
|
| 782 |
-
|
| 783 |
-
# Only include files within the time frame
|
| 784 |
-
if file_date >= cutoff_date:
|
| 785 |
-
relevant_files.append(f)
|
| 786 |
-
except Exception:
|
| 787 |
-
# If date parsing fails, skip this file
|
| 788 |
-
continue
|
| 789 |
-
|
| 790 |
-
total_months = LEADERBOARD_TIME_FRAME_DAYS // 30
|
| 791 |
-
print(f"📥 Loading PR metadata from last {total_months} months ({len(relevant_files)} daily files across all agents)...")
|
| 792 |
-
|
| 793 |
-
all_metadata = []
|
| 794 |
-
for filename in relevant_files:
|
| 795 |
-
try:
|
| 796 |
-
# Extract agent_identifier from path (first part)
|
| 797 |
-
# Format: agent_identifier/YYYY.MM.DD.jsonl
|
| 798 |
-
parts = filename.split('/')
|
| 799 |
-
if len(parts) != 2:
|
| 800 |
-
print(f" Warning: Unexpected filename format: {filename}")
|
| 801 |
-
continue
|
| 802 |
-
|
| 803 |
-
agent_identifier = parts[0]
|
| 804 |
-
|
| 805 |
-
file_path = hf_hub_download_with_backoff(
|
| 806 |
-
repo_id=PR_METADATA_REPO,
|
| 807 |
-
filename=filename,
|
| 808 |
-
repo_type="dataset",
|
| 809 |
-
token=token
|
| 810 |
-
)
|
| 811 |
-
day_metadata = load_jsonl(file_path)
|
| 812 |
-
|
| 813 |
-
# Filter individual PRs by created_at date as a double-check
|
| 814 |
-
for pr_meta in day_metadata:
|
| 815 |
-
created_at = pr_meta.get('created_at')
|
| 816 |
-
if created_at:
|
| 817 |
-
try:
|
| 818 |
-
dt = parse_date_string(created_at)
|
| 819 |
-
if dt >= cutoff_date:
|
| 820 |
-
pr_meta['agent_identifier'] = agent_identifier
|
| 821 |
-
all_metadata.append(pr_meta)
|
| 822 |
-
except Exception:
|
| 823 |
-
# If date parsing fails, skip this PR
|
| 824 |
-
continue
|
| 825 |
-
else:
|
| 826 |
-
# If no created_at, skip this PR
|
| 827 |
-
continue
|
| 828 |
-
|
| 829 |
-
print(f" ✓ Loaded PRs from {filename}")
|
| 830 |
-
except Exception as e:
|
| 831 |
-
print(f" Warning: Could not load {filename}: {str(e)}")
|
| 832 |
-
|
| 833 |
-
print(f"✓ Loaded {len(all_metadata)} total PRs from last {total_months} months")
|
| 834 |
-
return all_metadata
|
| 835 |
-
|
| 836 |
-
except Exception as e:
|
| 837 |
-
total_months = LEADERBOARD_TIME_FRAME_DAYS // 30
|
| 838 |
-
print(f"✗ Error loading PR metadata from last {total_months} months: {str(e)}")
|
| 839 |
-
return []
|
| 840 |
-
|
| 841 |
-
|
| 842 |
-
def get_daily_files_last_time_frame(agent_identifier):
|
| 843 |
-
"""
|
| 844 |
-
Get list of daily file paths for an agent from the configured time frame.
|
| 845 |
-
|
| 846 |
-
Args:
|
| 847 |
-
agent_identifier: GitHub identifier of the agent
|
| 848 |
-
|
| 849 |
-
Returns:
|
| 850 |
-
List of file paths in format: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 851 |
-
"""
|
| 852 |
-
try:
|
| 853 |
-
api = HfApi()
|
| 854 |
-
token = get_hf_token()
|
| 855 |
-
|
| 856 |
-
# Calculate date range using configured time frame
|
| 857 |
-
today = datetime.now(timezone.utc)
|
| 858 |
-
cutoff_date = today - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 859 |
-
|
| 860 |
-
# List all files in the repository
|
| 861 |
-
files = list_repo_files_with_backoff(api, repo_id=PR_METADATA_REPO, repo_type="dataset")
|
| 862 |
-
|
| 863 |
-
# Filter for files in this agent's folder
|
| 864 |
-
agent_pattern = f"{agent_identifier}/"
|
| 865 |
-
agent_files = [f for f in files if f.startswith(agent_pattern) and f.endswith('.jsonl')]
|
| 866 |
-
|
| 867 |
-
# Filter by date range (extract date from filename)
|
| 868 |
-
recent_files = []
|
| 869 |
-
for filename in agent_files:
|
| 870 |
-
try:
|
| 871 |
-
# Extract date from filename: YYYY.MM.DD.jsonl
|
| 872 |
-
parts = filename.split('/')
|
| 873 |
-
if len(parts) != 2:
|
| 874 |
-
continue
|
| 875 |
-
|
| 876 |
-
date_part = parts[1].replace('.jsonl', '') # Get YYYY.MM.DD
|
| 877 |
-
date_components = date_part.split('.')
|
| 878 |
-
if len(date_components) != 3:
|
| 879 |
-
continue
|
| 880 |
-
|
| 881 |
-
file_year, file_month, file_day = map(int, date_components)
|
| 882 |
-
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc)
|
| 883 |
-
|
| 884 |
-
# Include if within configured time frame
|
| 885 |
-
if cutoff_date <= file_date <= today:
|
| 886 |
-
recent_files.append(filename)
|
| 887 |
-
except Exception:
|
| 888 |
-
continue
|
| 889 |
-
|
| 890 |
-
return recent_files
|
| 891 |
-
|
| 892 |
-
except Exception as e:
|
| 893 |
-
print(f"Error getting daily files: {str(e)}")
|
| 894 |
-
return []
|
| 895 |
-
|
| 896 |
-
|
| 897 |
# =============================================================================
|
| 898 |
# HUGGINGFACE DATASET OPERATIONS
|
| 899 |
# =============================================================================
|
|
@@ -905,13 +182,11 @@ def load_agents_from_hf():
|
|
| 905 |
agents = []
|
| 906 |
|
| 907 |
# List all files in the repository
|
| 908 |
-
files = list_repo_files_with_backoff(api, repo_id=AGENTS_REPO, repo_type="dataset")
|
| 909 |
|
| 910 |
# Filter for JSON files only
|
| 911 |
json_files = [f for f in files if f.endswith('.json')]
|
| 912 |
|
| 913 |
-
print(f"Found {len(json_files)} agent files in {AGENTS_REPO}")
|
| 914 |
-
|
| 915 |
# Download and parse each JSON file
|
| 916 |
for json_file in json_files:
|
| 917 |
try:
|
|
@@ -928,9 +203,11 @@ def load_agents_from_hf():
|
|
| 928 |
if agent_data.get('status') != 'public':
|
| 929 |
continue
|
| 930 |
|
| 931 |
-
# Extract github_identifier from filename (
|
| 932 |
-
|
| 933 |
-
|
|
|
|
|
|
|
| 934 |
|
| 935 |
agents.append(agent_data)
|
| 936 |
|
|
@@ -938,7 +215,7 @@ def load_agents_from_hf():
|
|
| 938 |
print(f"Warning: Could not load {json_file}: {str(e)}")
|
| 939 |
continue
|
| 940 |
|
| 941 |
-
print(f"
|
| 942 |
return agents
|
| 943 |
|
| 944 |
except Exception as e:
|
|
@@ -954,37 +231,6 @@ def get_hf_token():
|
|
| 954 |
return token
|
| 955 |
|
| 956 |
|
| 957 |
-
def load_leaderboard_data_from_hf():
|
| 958 |
-
"""
|
| 959 |
-
Load pre-computed leaderboard and monthly metrics data from HuggingFace.
|
| 960 |
-
|
| 961 |
-
Returns:
|
| 962 |
-
Dictionary with 'leaderboard', 'monthly_metrics', and 'last_updated' keys.
|
| 963 |
-
Returns None if file doesn't exist or error occurs.
|
| 964 |
-
"""
|
| 965 |
-
try:
|
| 966 |
-
token = get_hf_token()
|
| 967 |
-
|
| 968 |
-
# Download the swe-pr.json file
|
| 969 |
-
file_path = hf_hub_download_with_backoff(
|
| 970 |
-
repo_id=LEADERBOARD_REPO,
|
| 971 |
-
filename="swe-pr.json",
|
| 972 |
-
repo_type="dataset",
|
| 973 |
-
token=token
|
| 974 |
-
)
|
| 975 |
-
|
| 976 |
-
with open(file_path, 'r') as f:
|
| 977 |
-
data = json.load(f)
|
| 978 |
-
|
| 979 |
-
print(f"✓ Loaded leaderboard data (last updated: {data.get('last_updated', 'Unknown')})")
|
| 980 |
-
return data
|
| 981 |
-
|
| 982 |
-
except Exception as e:
|
| 983 |
-
print(f"⚠️ Could not load leaderboard data from HuggingFace: {str(e)}")
|
| 984 |
-
print(f" Falling back to computing from raw PR metadata...")
|
| 985 |
-
return None
|
| 986 |
-
|
| 987 |
-
|
| 988 |
def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, token, max_retries=5):
|
| 989 |
"""
|
| 990 |
Upload file to HuggingFace with exponential backoff retry logic.
|
|
@@ -1013,18 +259,18 @@ def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, to
|
|
| 1013 |
token=token
|
| 1014 |
)
|
| 1015 |
if attempt > 0:
|
| 1016 |
-
print(f"
|
| 1017 |
return True
|
| 1018 |
|
| 1019 |
except Exception as e:
|
| 1020 |
if attempt < max_retries - 1:
|
| 1021 |
wait_time = delay + random.uniform(0, 1.0)
|
| 1022 |
-
print(f"
|
| 1023 |
-
print(f"
|
| 1024 |
time.sleep(wait_time)
|
| 1025 |
delay = min(delay * 2, 60.0) # Exponential backoff, max 60s
|
| 1026 |
else:
|
| 1027 |
-
print(f"
|
| 1028 |
raise
|
| 1029 |
|
| 1030 |
|
|
@@ -1054,7 +300,7 @@ def save_agent_to_hf(data):
|
|
| 1054 |
repo_type="dataset",
|
| 1055 |
token=token
|
| 1056 |
)
|
| 1057 |
-
print(f"
|
| 1058 |
return True
|
| 1059 |
finally:
|
| 1060 |
# Always clean up local file, even if upload fails
|
|
@@ -1062,208 +308,52 @@ def save_agent_to_hf(data):
|
|
| 1062 |
os.remove(filename)
|
| 1063 |
|
| 1064 |
except Exception as e:
|
| 1065 |
-
print(f"
|
| 1066 |
return False
|
| 1067 |
|
| 1068 |
|
| 1069 |
-
def
|
| 1070 |
"""
|
| 1071 |
-
|
| 1072 |
-
If the file exists, it will be overwritten.
|
| 1073 |
|
| 1074 |
Returns:
|
| 1075 |
-
|
|
|
|
| 1076 |
"""
|
| 1077 |
-
import io
|
| 1078 |
-
|
| 1079 |
try:
|
| 1080 |
token = get_hf_token()
|
| 1081 |
-
|
| 1082 |
-
raise Exception("No HuggingFace token found")
|
| 1083 |
-
|
| 1084 |
-
api = HfApi(token=token)
|
| 1085 |
-
|
| 1086 |
-
print(f"\n{'='*80}")
|
| 1087 |
-
print(f"📊 Preparing leaderboard and metrics data for upload...")
|
| 1088 |
-
print(f"{'='*80}\n")
|
| 1089 |
-
|
| 1090 |
-
# Get leaderboard data
|
| 1091 |
-
print(" Constructing leaderboard data...")
|
| 1092 |
-
leaderboard_data = construct_leaderboard_from_metadata()
|
| 1093 |
-
|
| 1094 |
-
# Get monthly metrics data (all agents, not just top N)
|
| 1095 |
-
print(" Calculating monthly metrics...")
|
| 1096 |
-
monthly_metrics = calculate_monthly_metrics_by_agent(top_n=None)
|
| 1097 |
-
|
| 1098 |
-
# Combine into a single structure
|
| 1099 |
-
combined_data = {
|
| 1100 |
-
"leaderboard": leaderboard_data,
|
| 1101 |
-
"monthly_metrics": monthly_metrics,
|
| 1102 |
-
"metadata": {
|
| 1103 |
-
"last_updated": datetime.now(timezone.utc).isoformat(),
|
| 1104 |
-
"time_frame_days": LEADERBOARD_TIME_FRAME_DAYS,
|
| 1105 |
-
"total_agents": len(leaderboard_data)
|
| 1106 |
-
}
|
| 1107 |
-
}
|
| 1108 |
-
|
| 1109 |
-
print(f" Leaderboard entries: {len(leaderboard_data)}")
|
| 1110 |
-
print(f" Monthly metrics for: {len(monthly_metrics['agents'])} agents")
|
| 1111 |
-
print(f" Time frame: {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 1112 |
-
|
| 1113 |
-
# Convert to JSON and create file-like object
|
| 1114 |
-
json_content = json.dumps(combined_data, indent=2)
|
| 1115 |
-
file_like_object = io.BytesIO(json_content.encode('utf-8'))
|
| 1116 |
|
| 1117 |
-
#
|
| 1118 |
-
|
| 1119 |
-
upload_file_with_backoff(
|
| 1120 |
-
api,
|
| 1121 |
-
path_or_fileobj=file_like_object,
|
| 1122 |
-
path_in_repo="swe-pr.json",
|
| 1123 |
repo_id=LEADERBOARD_REPO,
|
|
|
|
| 1124 |
repo_type="dataset",
|
| 1125 |
-
token=token
|
| 1126 |
-
commit_message=f"Update leaderboard data - {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')} UTC"
|
| 1127 |
)
|
| 1128 |
|
| 1129 |
-
|
| 1130 |
-
|
| 1131 |
-
|
| 1132 |
-
return True
|
| 1133 |
-
|
| 1134 |
-
except Exception as e:
|
| 1135 |
-
print(f" ✗ Error saving leaderboard data: {str(e)}")
|
| 1136 |
-
import traceback
|
| 1137 |
-
traceback.print_exc()
|
| 1138 |
-
return False
|
| 1139 |
-
|
| 1140 |
-
|
| 1141 |
-
# =============================================================================
|
| 1142 |
-
# DATA MANAGEMENT
|
| 1143 |
-
# =============================================================================
|
| 1144 |
-
|
| 1145 |
-
def mine_all_agents():
|
| 1146 |
-
"""
|
| 1147 |
-
Mine PR metadata for all agents within UPDATE_TIME_FRAME_DAYS and save to HuggingFace.
|
| 1148 |
-
Uses BATCHED BigQuery queries for all agents (efficient approach).
|
| 1149 |
-
"""
|
| 1150 |
-
# Load agent metadata from HuggingFace
|
| 1151 |
-
agents = load_agents_from_hf()
|
| 1152 |
-
if not agents:
|
| 1153 |
-
print("No agents found in HuggingFace dataset")
|
| 1154 |
-
return
|
| 1155 |
-
|
| 1156 |
-
# Extract all identifiers
|
| 1157 |
-
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
|
| 1158 |
-
if not identifiers:
|
| 1159 |
-
print("No valid agent identifiers found")
|
| 1160 |
-
return
|
| 1161 |
-
|
| 1162 |
-
print(f"\n{'='*80}")
|
| 1163 |
-
print(f"Starting PR metadata mining for {len(identifiers)} agents")
|
| 1164 |
-
print(f"Time frame: Last {UPDATE_TIME_FRAME_DAYS} days")
|
| 1165 |
-
print(f"Data source: BigQuery + GitHub Archive (BATCHED QUERIES)")
|
| 1166 |
-
print(f"{'='*80}\n")
|
| 1167 |
-
|
| 1168 |
-
# Initialize BigQuery client
|
| 1169 |
-
try:
|
| 1170 |
-
client = get_bigquery_client()
|
| 1171 |
-
except Exception as e:
|
| 1172 |
-
print(f"✗ Failed to initialize BigQuery client: {str(e)}")
|
| 1173 |
-
return
|
| 1174 |
-
|
| 1175 |
-
# Define time range: past UPDATE_TIME_FRAME_DAYS (excluding today)
|
| 1176 |
-
current_time = datetime.now(timezone.utc)
|
| 1177 |
-
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 1178 |
-
start_date = end_date - timedelta(days=UPDATE_TIME_FRAME_DAYS)
|
| 1179 |
-
|
| 1180 |
-
try:
|
| 1181 |
-
# Use batched approach for better performance
|
| 1182 |
-
# upload_immediately=True means each batch uploads to HuggingFace right after BigQuery completes
|
| 1183 |
-
all_metadata = fetch_issue_metadata_batched(
|
| 1184 |
-
client, identifiers, start_date, end_date, batch_size=100, upload_immediately=True
|
| 1185 |
-
)
|
| 1186 |
|
| 1187 |
-
|
| 1188 |
-
|
| 1189 |
-
agents_with_data = sum(1 for metadata_list in all_metadata.values() if metadata_list)
|
| 1190 |
|
| 1191 |
-
|
| 1192 |
-
print(f"✅ BigQuery mining and upload complete!")
|
| 1193 |
-
print(f" Total agents: {len(agents)}")
|
| 1194 |
-
print(f" Agents with data: {agents_with_data}")
|
| 1195 |
-
print(f" Total PRs found: {total_prs}")
|
| 1196 |
-
print(f"{'='*80}\n")
|
| 1197 |
|
| 1198 |
except Exception as e:
|
| 1199 |
-
print(f"
|
| 1200 |
-
|
| 1201 |
-
traceback.print_exc()
|
| 1202 |
-
return
|
| 1203 |
-
|
| 1204 |
-
# After mining is complete, save leaderboard and metrics to HuggingFace
|
| 1205 |
-
print(f"📤 Uploading leaderboard and metrics data...")
|
| 1206 |
-
if save_leaderboard_and_metrics_to_hf():
|
| 1207 |
-
print(f"✓ Leaderboard and metrics successfully uploaded to {LEADERBOARD_REPO}")
|
| 1208 |
-
else:
|
| 1209 |
-
print(f"⚠️ Failed to upload leaderboard and metrics data")
|
| 1210 |
-
|
| 1211 |
-
|
| 1212 |
-
def construct_leaderboard_from_metadata():
|
| 1213 |
-
"""
|
| 1214 |
-
Construct leaderboard from stored PR metadata instead of fetching all PRs.
|
| 1215 |
-
Much more memory-efficient and faster.
|
| 1216 |
-
|
| 1217 |
-
Returns dictionary of agent stats.
|
| 1218 |
-
"""
|
| 1219 |
-
print("📊 Constructing leaderboard from PR metadata...")
|
| 1220 |
-
# Load agents
|
| 1221 |
-
agents = load_agents_from_hf()
|
| 1222 |
-
if not agents:
|
| 1223 |
-
print("No agents found")
|
| 1224 |
-
return {}
|
| 1225 |
-
|
| 1226 |
-
# Load all PR metadata
|
| 1227 |
-
all_metadata = load_pr_metadata()
|
| 1228 |
-
|
| 1229 |
-
cache_dict = {}
|
| 1230 |
-
|
| 1231 |
-
for agent in agents:
|
| 1232 |
-
identifier = agent.get('github_identifier')
|
| 1233 |
-
agent_name = agent.get('name', 'Unknown')
|
| 1234 |
-
|
| 1235 |
-
# Filter metadata for this agent
|
| 1236 |
-
bot_metadata = [pr for pr in all_metadata if pr.get('agent_identifier') == identifier]
|
| 1237 |
-
|
| 1238 |
-
# Calculate stats
|
| 1239 |
-
stats = calculate_pr_stats_from_metadata(bot_metadata)
|
| 1240 |
-
|
| 1241 |
-
cache_dict[identifier] = {
|
| 1242 |
-
'name': agent_name,
|
| 1243 |
-
'website': agent.get('website', 'Unknown'),
|
| 1244 |
-
'github_identifier': identifier,
|
| 1245 |
-
**stats
|
| 1246 |
-
}
|
| 1247 |
-
|
| 1248 |
-
return cache_dict
|
| 1249 |
|
| 1250 |
|
| 1251 |
# =============================================================================
|
| 1252 |
# UI FUNCTIONS
|
| 1253 |
# =============================================================================
|
| 1254 |
|
| 1255 |
-
def generate_color(index, total):
|
| 1256 |
-
"""Generate distinct colors using HSL color space for better distribution"""
|
| 1257 |
-
hue = (index * 360 / total) % 360
|
| 1258 |
-
saturation = 70 + (index % 3) * 10 # Vary saturation slightly
|
| 1259 |
-
lightness = 45 + (index % 2) * 10 # Vary lightness slightly
|
| 1260 |
-
return f'hsl({hue}, {saturation}%, {lightness}%)'
|
| 1261 |
-
|
| 1262 |
-
|
| 1263 |
def create_monthly_metrics_plot(top_n=5):
|
| 1264 |
"""
|
| 1265 |
Create a Plotly figure with dual y-axes showing:
|
| 1266 |
-
- Left y-axis: Acceptance
|
| 1267 |
- Right y-axis: Total PRs created as bar charts
|
| 1268 |
|
| 1269 |
Each agent gets a unique color for both their line and bars.
|
|
@@ -1271,37 +361,47 @@ def create_monthly_metrics_plot(top_n=5):
|
|
| 1271 |
Args:
|
| 1272 |
top_n: Number of top agents to show (default: 5)
|
| 1273 |
"""
|
| 1274 |
-
|
| 1275 |
-
|
| 1276 |
-
|
| 1277 |
-
if
|
| 1278 |
-
|
| 1279 |
-
|
| 1280 |
-
|
| 1281 |
-
|
| 1282 |
-
|
| 1283 |
-
|
| 1284 |
-
|
| 1285 |
-
|
| 1286 |
-
|
| 1287 |
-
|
| 1288 |
-
|
| 1289 |
-
|
| 1290 |
-
|
| 1291 |
-
|
| 1292 |
-
|
| 1293 |
-
|
| 1294 |
-
|
| 1295 |
-
|
| 1296 |
-
|
| 1297 |
-
|
| 1298 |
-
|
| 1299 |
-
|
| 1300 |
-
|
| 1301 |
-
}
|
| 1302 |
-
|
| 1303 |
-
|
| 1304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1305 |
|
| 1306 |
if not metrics['agents'] or not metrics['months']:
|
| 1307 |
# Return an empty figure with a message
|
|
@@ -1322,11 +422,19 @@ def create_monthly_metrics_plot(top_n=5):
|
|
| 1322 |
# Create figure with secondary y-axis
|
| 1323 |
fig = make_subplots(specs=[[{"secondary_y": True}]])
|
| 1324 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1325 |
agents = metrics['agents']
|
| 1326 |
months = metrics['months']
|
| 1327 |
data = metrics['data']
|
| 1328 |
|
| 1329 |
-
# Generate colors for all agents
|
| 1330 |
agent_colors = {agent: generate_color(idx, len(agents)) for idx, agent in enumerate(agents)}
|
| 1331 |
|
| 1332 |
# Add traces for each agent
|
|
@@ -1348,10 +456,11 @@ def create_monthly_metrics_plot(top_n=5):
|
|
| 1348 |
name=agent_name,
|
| 1349 |
mode='lines+markers',
|
| 1350 |
line=dict(color=color, width=2),
|
| 1351 |
-
marker=dict(size=
|
| 1352 |
legendgroup=agent_name,
|
| 1353 |
-
showlegend=
|
| 1354 |
-
hovertemplate='<b
|
|
|
|
| 1355 |
'Acceptance Rate: %{y:.2f}%<br>' +
|
| 1356 |
'<extra></extra>'
|
| 1357 |
),
|
|
@@ -1375,8 +484,9 @@ def create_monthly_metrics_plot(top_n=5):
|
|
| 1375 |
name=agent_name,
|
| 1376 |
marker=dict(color=color, opacity=0.6),
|
| 1377 |
legendgroup=agent_name,
|
| 1378 |
-
showlegend=False, #
|
| 1379 |
-
hovertemplate='<b
|
|
|
|
| 1380 |
'Total PRs: %{y}<br>' +
|
| 1381 |
'<extra></extra>',
|
| 1382 |
offsetgroup=agent_name # Group bars by agent for proper spacing
|
|
@@ -1386,23 +496,26 @@ def create_monthly_metrics_plot(top_n=5):
|
|
| 1386 |
|
| 1387 |
# Update axes labels
|
| 1388 |
fig.update_xaxes(title_text=None)
|
| 1389 |
-
fig.update_yaxes(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1390 |
fig.update_yaxes(title_text="<b>Total PRs</b>", secondary_y=True)
|
| 1391 |
|
| 1392 |
# Update layout
|
|
|
|
| 1393 |
fig.update_layout(
|
| 1394 |
title=None,
|
| 1395 |
-
hovermode='closest',
|
| 1396 |
barmode='group',
|
| 1397 |
height=600,
|
| 1398 |
-
|
| 1399 |
-
|
| 1400 |
-
yanchor="bottom",
|
| 1401 |
-
y=1.02,
|
| 1402 |
-
xanchor="right",
|
| 1403 |
-
x=1
|
| 1404 |
-
),
|
| 1405 |
-
margin=dict(l=50, r=50, t=100, b=50)
|
| 1406 |
)
|
| 1407 |
|
| 1408 |
return fig
|
|
@@ -1410,36 +523,51 @@ def create_monthly_metrics_plot(top_n=5):
|
|
| 1410 |
|
| 1411 |
def get_leaderboard_dataframe():
|
| 1412 |
"""
|
| 1413 |
-
Load leaderboard
|
| 1414 |
-
Falls back to computing from PR metadata if cache is not available.
|
| 1415 |
Returns formatted DataFrame sorted by total PRs.
|
| 1416 |
"""
|
| 1417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1418 |
|
| 1419 |
-
|
| 1420 |
-
|
| 1421 |
-
|
| 1422 |
-
|
| 1423 |
-
# Fallback: compute from PR metadata
|
| 1424 |
-
cache_dict = construct_leaderboard_from_metadata()
|
| 1425 |
|
| 1426 |
if not cache_dict:
|
|
|
|
| 1427 |
# Return empty DataFrame with correct columns if no data
|
| 1428 |
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 1429 |
return pd.DataFrame(columns=column_names)
|
| 1430 |
|
| 1431 |
rows = []
|
|
|
|
| 1432 |
for identifier, data in cache_dict.items():
|
|
|
|
|
|
|
|
|
|
| 1433 |
# Filter out agents with zero total PRs
|
| 1434 |
-
if
|
| 1435 |
-
|
| 1436 |
-
|
| 1437 |
-
|
| 1438 |
-
|
| 1439 |
-
|
| 1440 |
-
|
| 1441 |
-
|
| 1442 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1443 |
|
| 1444 |
# Create DataFrame
|
| 1445 |
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
|
@@ -1455,111 +583,125 @@ def get_leaderboard_dataframe():
|
|
| 1455 |
if "Total PRs" in df.columns and not df.empty:
|
| 1456 |
df = df.sort_values(by="Total PRs", ascending=False).reset_index(drop=True)
|
| 1457 |
|
|
|
|
|
|
|
|
|
|
| 1458 |
return df
|
| 1459 |
|
| 1460 |
|
| 1461 |
-
def submit_agent(identifier, agent_name, organization,
|
| 1462 |
"""
|
| 1463 |
Submit a new agent to the leaderboard.
|
| 1464 |
Validates input and saves submission.
|
| 1465 |
-
PR data will be populated by the monthly mining task.
|
| 1466 |
"""
|
| 1467 |
# Validate required fields
|
| 1468 |
if not identifier or not identifier.strip():
|
| 1469 |
-
return "
|
| 1470 |
if not agent_name or not agent_name.strip():
|
| 1471 |
-
return "
|
| 1472 |
if not organization or not organization.strip():
|
| 1473 |
-
return "
|
| 1474 |
if not website or not website.strip():
|
| 1475 |
-
return "
|
| 1476 |
|
| 1477 |
# Clean inputs
|
| 1478 |
identifier = identifier.strip()
|
| 1479 |
agent_name = agent_name.strip()
|
| 1480 |
organization = organization.strip()
|
| 1481 |
-
description = description.strip()
|
| 1482 |
website = website.strip()
|
| 1483 |
|
| 1484 |
# Validate GitHub identifier
|
| 1485 |
is_valid, message = validate_github_username(identifier)
|
| 1486 |
if not is_valid:
|
| 1487 |
-
return f"
|
| 1488 |
|
| 1489 |
# Check for duplicates by loading agents from HuggingFace
|
| 1490 |
agents = load_agents_from_hf()
|
| 1491 |
if agents:
|
| 1492 |
existing_names = {agent['github_identifier'] for agent in agents}
|
| 1493 |
if identifier in existing_names:
|
| 1494 |
-
return f"
|
| 1495 |
|
| 1496 |
# Create submission
|
| 1497 |
submission = {
|
| 1498 |
'name': agent_name,
|
| 1499 |
'organization': organization,
|
| 1500 |
'github_identifier': identifier,
|
| 1501 |
-
'description': description,
|
| 1502 |
'website': website,
|
|
|
|
| 1503 |
}
|
| 1504 |
|
| 1505 |
# Save to HuggingFace
|
| 1506 |
if not save_agent_to_hf(submission):
|
| 1507 |
-
return "
|
|
|
|
|
|
|
|
|
|
| 1508 |
|
| 1509 |
-
|
| 1510 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1511 |
|
| 1512 |
|
| 1513 |
# =============================================================================
|
| 1514 |
# GRADIO APPLICATION
|
| 1515 |
# =============================================================================
|
| 1516 |
|
| 1517 |
-
print(f"\
|
| 1518 |
-
print(f"
|
| 1519 |
-
print(f"
|
| 1520 |
|
| 1521 |
-
# Start APScheduler for
|
| 1522 |
scheduler = BackgroundScheduler(timezone="UTC")
|
| 1523 |
scheduler.add_job(
|
| 1524 |
-
|
| 1525 |
-
trigger=CronTrigger(
|
| 1526 |
-
id='
|
| 1527 |
-
name='
|
| 1528 |
replace_existing=True
|
| 1529 |
)
|
| 1530 |
scheduler.start()
|
| 1531 |
print(f"\n{'='*80}")
|
| 1532 |
-
print(f"
|
| 1533 |
-
print(f"
|
| 1534 |
-
print(f"
|
| 1535 |
print(f"{'='*80}\n")
|
| 1536 |
|
| 1537 |
-
# Load leaderboard data from HuggingFace at startup
|
| 1538 |
-
print(f"📥 Loading leaderboard data from HuggingFace...")
|
| 1539 |
-
_LEADERBOARD_CACHE = load_leaderboard_data_from_hf()
|
| 1540 |
-
|
| 1541 |
-
if _LEADERBOARD_CACHE is None:
|
| 1542 |
-
print(f"⚠️ No cached leaderboard data found - will compute from raw PR metadata")
|
| 1543 |
-
else:
|
| 1544 |
-
print(f"✓ Leaderboard cache loaded successfully")
|
| 1545 |
-
|
| 1546 |
-
print()
|
| 1547 |
-
|
| 1548 |
# Create Gradio interface
|
| 1549 |
with gr.Blocks(title="SWE Agent PR Leaderboard", theme=gr.themes.Soft()) as app:
|
| 1550 |
-
|
| 1551 |
-
|
| 1552 |
-
gr.Markdown("# 🏆 SWE Agent PR Leaderboard")
|
| 1553 |
gr.Markdown(f"Track and compare GitHub pull request statistics for SWE agents")
|
| 1554 |
|
| 1555 |
with gr.Tabs():
|
| 1556 |
|
| 1557 |
# Leaderboard Tab
|
| 1558 |
-
with gr.Tab("
|
| 1559 |
-
gr.Markdown(
|
| 1560 |
-
|
| 1561 |
leaderboard_table = Leaderboard(
|
| 1562 |
-
value=
|
| 1563 |
datatype=LEADERBOARD_COLUMNS,
|
| 1564 |
search_columns=["Agent Name", "Website"],
|
| 1565 |
filter_columns=[
|
|
@@ -1574,16 +716,30 @@ with gr.Blocks(title="SWE Agent PR Leaderboard", theme=gr.themes.Soft()) as app:
|
|
| 1574 |
]
|
| 1575 |
)
|
| 1576 |
|
| 1577 |
-
|
| 1578 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1579 |
|
| 1580 |
-
|
| 1581 |
-
|
| 1582 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1583 |
)
|
| 1584 |
|
|
|
|
| 1585 |
# Submit Agent Tab
|
| 1586 |
-
with gr.Tab("
|
| 1587 |
|
| 1588 |
gr.Markdown("### Submit Your Agent")
|
| 1589 |
gr.Markdown("Fill in the details below to add your agent to the leaderboard.")
|
|
@@ -1592,7 +748,7 @@ with gr.Blocks(title="SWE Agent PR Leaderboard", theme=gr.themes.Soft()) as app:
|
|
| 1592 |
with gr.Column():
|
| 1593 |
github_input = gr.Textbox(
|
| 1594 |
label="GitHub Identifier*",
|
| 1595 |
-
placeholder="Your agent username (e.g., my-agent
|
| 1596 |
)
|
| 1597 |
name_input = gr.Textbox(
|
| 1598 |
label="Agent Name*",
|
|
@@ -1604,11 +760,6 @@ with gr.Blocks(title="SWE Agent PR Leaderboard", theme=gr.themes.Soft()) as app:
|
|
| 1604 |
label="Organization*",
|
| 1605 |
placeholder="Your organization or team name"
|
| 1606 |
)
|
| 1607 |
-
description_input = gr.Textbox(
|
| 1608 |
-
label="Description",
|
| 1609 |
-
placeholder="Brief description of your agent",
|
| 1610 |
-
lines=3
|
| 1611 |
-
)
|
| 1612 |
website_input = gr.Textbox(
|
| 1613 |
label="Website*",
|
| 1614 |
placeholder="https://your-agent-website.com"
|
|
@@ -1626,8 +777,8 @@ with gr.Blocks(title="SWE Agent PR Leaderboard", theme=gr.themes.Soft()) as app:
|
|
| 1626 |
# Event handler
|
| 1627 |
submit_button.click(
|
| 1628 |
fn=submit_agent,
|
| 1629 |
-
inputs=[github_input, name_input, organization_input,
|
| 1630 |
-
outputs=[submission_status, leaderboard_table
|
| 1631 |
)
|
| 1632 |
|
| 1633 |
|
|
|
|
| 3 |
import json
|
| 4 |
import os
|
| 5 |
import time
|
|
|
|
| 6 |
import requests
|
|
|
|
|
|
|
| 7 |
from huggingface_hub import HfApi, hf_hub_download
|
| 8 |
from huggingface_hub.errors import HfHubHTTPError
|
| 9 |
+
import backoff
|
| 10 |
from dotenv import load_dotenv
|
| 11 |
import pandas as pd
|
|
|
|
| 12 |
import random
|
| 13 |
import plotly.graph_objects as go
|
| 14 |
from plotly.subplots import make_subplots
|
| 15 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 16 |
from apscheduler.triggers.cron import CronTrigger
|
|
|
|
| 17 |
|
| 18 |
# Load environment variables
|
| 19 |
load_dotenv()
|
|
|
|
| 23 |
# =============================================================================
|
| 24 |
|
| 25 |
AGENTS_REPO = "SWE-Arena/bot_metadata" # HuggingFace dataset for agent metadata
|
| 26 |
+
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata" # HuggingFace dataset for leaderboard data
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
LEADERBOARD_COLUMNS = [
|
| 29 |
("Agent Name", "string"),
|
|
|
|
| 33 |
("Acceptance Rate (%)", "number"),
|
| 34 |
]
|
| 35 |
|
|
|
|
|
|
|
|
|
|
| 36 |
# =============================================================================
|
| 37 |
+
# HUGGINGFACE API WRAPPERS WITH BACKOFF
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
# =============================================================================
|
| 39 |
|
| 40 |
def is_rate_limit_error(e):
|
|
|
|
| 44 |
return False
|
| 45 |
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
@backoff.on_exception(
|
| 48 |
backoff.expo,
|
| 49 |
HfHubHTTPError,
|
|
|
|
| 50 |
max_tries=8,
|
| 51 |
+
base=300,
|
| 52 |
+
max_value=3600,
|
| 53 |
+
giveup=lambda e: not is_rate_limit_error(e),
|
| 54 |
+
on_backoff=lambda details: print(
|
| 55 |
+
f"Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
|
| 56 |
+
)
|
| 57 |
)
|
| 58 |
def list_repo_files_with_backoff(api, **kwargs):
|
| 59 |
+
"""Wrapper for api.list_repo_files() with exponential backoff for rate limits."""
|
| 60 |
return api.list_repo_files(**kwargs)
|
| 61 |
|
| 62 |
|
| 63 |
@backoff.on_exception(
|
| 64 |
backoff.expo,
|
| 65 |
HfHubHTTPError,
|
|
|
|
| 66 |
max_tries=8,
|
| 67 |
+
base=300,
|
| 68 |
+
max_value=3600,
|
| 69 |
+
giveup=lambda e: not is_rate_limit_error(e),
|
| 70 |
+
on_backoff=lambda details: print(
|
| 71 |
+
f"Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
|
| 72 |
+
)
|
| 73 |
)
|
| 74 |
def hf_hub_download_with_backoff(**kwargs):
|
| 75 |
+
"""Wrapper for hf_hub_download() with exponential backoff for rate limits."""
|
| 76 |
return hf_hub_download(**kwargs)
|
| 77 |
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
# =============================================================================
|
| 80 |
+
# GITHUB API OPERATIONS
|
| 81 |
# =============================================================================
|
| 82 |
|
| 83 |
+
def request_with_backoff(method, url, *, headers=None, params=None, json_body=None, data=None, max_retries=10, timeout=30):
|
| 84 |
"""
|
| 85 |
+
Perform an HTTP request with exponential backoff and jitter for GitHub API.
|
| 86 |
+
Retries on 403/429 (rate limits), 5xx server errors, and transient network exceptions.
|
| 87 |
|
| 88 |
+
Returns the final requests.Response on success or non-retryable status, or None after exhausting retries.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
"""
|
| 90 |
+
delay = 1.0
|
| 91 |
+
for attempt in range(max_retries):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
try:
|
| 93 |
+
resp = requests.request(
|
| 94 |
+
method,
|
| 95 |
+
url,
|
| 96 |
+
headers=headers or {},
|
| 97 |
+
params=params,
|
| 98 |
+
json=json_body,
|
| 99 |
+
data=data,
|
| 100 |
+
timeout=timeout
|
| 101 |
)
|
| 102 |
|
| 103 |
+
status = resp.status_code
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
+
# Success
|
| 106 |
+
if 200 <= status < 300:
|
| 107 |
+
return resp
|
| 108 |
|
| 109 |
+
# Rate limits or server errors -> retry with backoff
|
| 110 |
+
if status in (403, 429) or 500 <= status < 600:
|
| 111 |
+
wait = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
# Prefer Retry-After when present
|
| 114 |
+
retry_after = resp.headers.get('Retry-After') or resp.headers.get('retry-after')
|
| 115 |
+
if retry_after:
|
| 116 |
+
try:
|
| 117 |
+
wait = float(retry_after)
|
| 118 |
+
except Exception:
|
| 119 |
+
wait = None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
# Fallback to X-RateLimit-Reset when 403/429
|
| 122 |
+
if wait is None and status in (403, 429):
|
| 123 |
+
reset_hdr = resp.headers.get('X-RateLimit-Reset') or resp.headers.get('x-ratelimit-reset')
|
| 124 |
+
if reset_hdr:
|
| 125 |
+
try:
|
| 126 |
+
reset_timestamp = int(float(reset_hdr))
|
| 127 |
+
wait = max(reset_timestamp - time.time() + 2, 1)
|
| 128 |
+
except Exception:
|
| 129 |
+
wait = None
|
| 130 |
|
| 131 |
+
# Final fallback: exponential backoff with jitter
|
| 132 |
+
if wait is None:
|
| 133 |
+
wait = delay + random.uniform(0, 0.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
# Cap individual wait to avoid extreme sleeps
|
| 136 |
+
wait = max(1.0, min(wait, 120.0))
|
| 137 |
+
print(f"GitHub API {status}. Backing off {wait:.1f}s (attempt {attempt + 1}/{max_retries})...")
|
| 138 |
+
time.sleep(wait)
|
| 139 |
+
delay = min(delay * 2, 60.0)
|
| 140 |
+
continue
|
| 141 |
|
| 142 |
+
# Non-retryable error; return response for caller to handle
|
| 143 |
+
return resp
|
| 144 |
|
| 145 |
+
except requests.RequestException as e:
|
| 146 |
+
# Network error -> retry with backoff
|
| 147 |
+
wait = delay + random.uniform(0, 0.5)
|
| 148 |
+
wait = max(1.0, min(wait, 60.0))
|
| 149 |
+
print(f"Request error: {e}. Retrying in {wait:.1f}s (attempt {attempt + 1}/{max_retries})...")
|
| 150 |
+
time.sleep(wait)
|
| 151 |
+
delay = min(delay * 2, 60.0)
|
| 152 |
|
| 153 |
+
print(f"Exceeded max retries for {url}")
|
| 154 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
|
| 157 |
def validate_github_username(identifier):
|
| 158 |
+
"""Verify that a GitHub identifier exists with backoff-aware requests."""
|
| 159 |
try:
|
|
|
|
|
|
|
| 160 |
url = f'https://api.github.com/users/{identifier}'
|
| 161 |
+
response = request_with_backoff('GET', url, max_retries=1)
|
| 162 |
+
if response is None:
|
| 163 |
+
return False, "Validation error: network/rate limit exhausted"
|
| 164 |
if response.status_code == 200:
|
| 165 |
return True, "Username is valid"
|
| 166 |
elif response.status_code == 404:
|
|
|
|
| 171 |
return False, f"Validation error: {str(e)}"
|
| 172 |
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
# =============================================================================
|
| 175 |
# HUGGINGFACE DATASET OPERATIONS
|
| 176 |
# =============================================================================
|
|
|
|
| 182 |
agents = []
|
| 183 |
|
| 184 |
# List all files in the repository
|
| 185 |
+
files = list_repo_files_with_backoff(api=api, repo_id=AGENTS_REPO, repo_type="dataset")
|
| 186 |
|
| 187 |
# Filter for JSON files only
|
| 188 |
json_files = [f for f in files if f.endswith('.json')]
|
| 189 |
|
|
|
|
|
|
|
| 190 |
# Download and parse each JSON file
|
| 191 |
for json_file in json_files:
|
| 192 |
try:
|
|
|
|
| 203 |
if agent_data.get('status') != 'public':
|
| 204 |
continue
|
| 205 |
|
| 206 |
+
# Extract github_identifier from filename (e.g., "agent[bot].json" -> "agent[bot]")
|
| 207 |
+
filename_identifier = json_file.replace('.json', '')
|
| 208 |
+
|
| 209 |
+
# Add or override github_identifier to match filename
|
| 210 |
+
agent_data['github_identifier'] = filename_identifier
|
| 211 |
|
| 212 |
agents.append(agent_data)
|
| 213 |
|
|
|
|
| 215 |
print(f"Warning: Could not load {json_file}: {str(e)}")
|
| 216 |
continue
|
| 217 |
|
| 218 |
+
print(f"Loaded {len(agents)} agents from HuggingFace")
|
| 219 |
return agents
|
| 220 |
|
| 221 |
except Exception as e:
|
|
|
|
| 231 |
return token
|
| 232 |
|
| 233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, token, max_retries=5):
|
| 235 |
"""
|
| 236 |
Upload file to HuggingFace with exponential backoff retry logic.
|
|
|
|
| 259 |
token=token
|
| 260 |
)
|
| 261 |
if attempt > 0:
|
| 262 |
+
print(f" Upload succeeded on attempt {attempt + 1}/{max_retries}")
|
| 263 |
return True
|
| 264 |
|
| 265 |
except Exception as e:
|
| 266 |
if attempt < max_retries - 1:
|
| 267 |
wait_time = delay + random.uniform(0, 1.0)
|
| 268 |
+
print(f" Upload failed (attempt {attempt + 1}/{max_retries}): {str(e)}")
|
| 269 |
+
print(f" Retrying in {wait_time:.1f} seconds...")
|
| 270 |
time.sleep(wait_time)
|
| 271 |
delay = min(delay * 2, 60.0) # Exponential backoff, max 60s
|
| 272 |
else:
|
| 273 |
+
print(f" Upload failed after {max_retries} attempts: {str(e)}")
|
| 274 |
raise
|
| 275 |
|
| 276 |
|
|
|
|
| 300 |
repo_type="dataset",
|
| 301 |
token=token
|
| 302 |
)
|
| 303 |
+
print(f"Saved agent to HuggingFace: {filename}")
|
| 304 |
return True
|
| 305 |
finally:
|
| 306 |
# Always clean up local file, even if upload fails
|
|
|
|
| 308 |
os.remove(filename)
|
| 309 |
|
| 310 |
except Exception as e:
|
| 311 |
+
print(f"Error saving agent: {str(e)}")
|
| 312 |
return False
|
| 313 |
|
| 314 |
|
| 315 |
+
def load_leaderboard_data_from_hf():
|
| 316 |
"""
|
| 317 |
+
Load leaderboard data and monthly metrics from HuggingFace dataset.
|
|
|
|
| 318 |
|
| 319 |
Returns:
|
| 320 |
+
dict: Dictionary with 'leaderboard', 'monthly_metrics', and 'metadata' keys
|
| 321 |
+
Returns None if file doesn't exist or error occurs
|
| 322 |
"""
|
|
|
|
|
|
|
| 323 |
try:
|
| 324 |
token = get_hf_token()
|
| 325 |
+
filename = "swe-pr.json"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
|
| 327 |
+
# Download file
|
| 328 |
+
file_path = hf_hub_download_with_backoff(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
repo_id=LEADERBOARD_REPO,
|
| 330 |
+
filename=filename,
|
| 331 |
repo_type="dataset",
|
| 332 |
+
token=token
|
|
|
|
| 333 |
)
|
| 334 |
|
| 335 |
+
# Load JSON data
|
| 336 |
+
with open(file_path, 'r') as f:
|
| 337 |
+
data = json.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
|
| 339 |
+
last_updated = data.get('metadata', {}).get('last_updated', 'Unknown')
|
| 340 |
+
print(f"Loaded leaderboard data from HuggingFace (last updated: {last_updated})")
|
|
|
|
| 341 |
|
| 342 |
+
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
|
| 344 |
except Exception as e:
|
| 345 |
+
print(f"Could not load leaderboard data from HuggingFace: {str(e)}")
|
| 346 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
|
| 349 |
# =============================================================================
|
| 350 |
# UI FUNCTIONS
|
| 351 |
# =============================================================================
|
| 352 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
def create_monthly_metrics_plot(top_n=5):
|
| 354 |
"""
|
| 355 |
Create a Plotly figure with dual y-axes showing:
|
| 356 |
+
- Left y-axis: Acceptance Rate (%) as line curves
|
| 357 |
- Right y-axis: Total PRs created as bar charts
|
| 358 |
|
| 359 |
Each agent gets a unique color for both their line and bars.
|
|
|
|
| 361 |
Args:
|
| 362 |
top_n: Number of top agents to show (default: 5)
|
| 363 |
"""
|
| 364 |
+
# Load from saved dataset
|
| 365 |
+
saved_data = load_leaderboard_data_from_hf()
|
| 366 |
+
|
| 367 |
+
if not saved_data or 'monthly_metrics' not in saved_data:
|
| 368 |
+
# Return an empty figure with a message
|
| 369 |
+
fig = go.Figure()
|
| 370 |
+
fig.add_annotation(
|
| 371 |
+
text="No data available for visualization",
|
| 372 |
+
xref="paper", yref="paper",
|
| 373 |
+
x=0.5, y=0.5, showarrow=False,
|
| 374 |
+
font=dict(size=16)
|
| 375 |
+
)
|
| 376 |
+
fig.update_layout(
|
| 377 |
+
title=None,
|
| 378 |
+
xaxis_title=None,
|
| 379 |
+
height=500
|
| 380 |
+
)
|
| 381 |
+
return fig
|
| 382 |
+
|
| 383 |
+
metrics = saved_data['monthly_metrics']
|
| 384 |
+
print(f"Loaded monthly metrics from saved dataset")
|
| 385 |
+
|
| 386 |
+
# Apply top_n filter if specified
|
| 387 |
+
if top_n is not None and top_n > 0 and metrics.get('agents'):
|
| 388 |
+
# Calculate total PRs for each agent
|
| 389 |
+
agent_totals = []
|
| 390 |
+
for agent_name in metrics['agents']:
|
| 391 |
+
agent_data = metrics['data'].get(agent_name, {})
|
| 392 |
+
total_prs = sum(agent_data.get('total_prs', []))
|
| 393 |
+
agent_totals.append((agent_name, total_prs))
|
| 394 |
+
|
| 395 |
+
# Sort by total PRs and take top N
|
| 396 |
+
agent_totals.sort(key=lambda x: x[1], reverse=True)
|
| 397 |
+
top_agents = [agent_name for agent_name, _ in agent_totals[:top_n]]
|
| 398 |
+
|
| 399 |
+
# Filter metrics to only include top agents
|
| 400 |
+
metrics = {
|
| 401 |
+
'agents': top_agents,
|
| 402 |
+
'months': metrics['months'],
|
| 403 |
+
'data': {agent: metrics['data'][agent] for agent in top_agents if agent in metrics['data']}
|
| 404 |
+
}
|
| 405 |
|
| 406 |
if not metrics['agents'] or not metrics['months']:
|
| 407 |
# Return an empty figure with a message
|
|
|
|
| 422 |
# Create figure with secondary y-axis
|
| 423 |
fig = make_subplots(specs=[[{"secondary_y": True}]])
|
| 424 |
|
| 425 |
+
# Generate unique colors for many agents using HSL color space
|
| 426 |
+
def generate_color(index, total):
|
| 427 |
+
"""Generate distinct colors using HSL color space for better distribution"""
|
| 428 |
+
hue = (index * 360 / total) % 360
|
| 429 |
+
saturation = 70 + (index % 3) * 10 # Vary saturation slightly
|
| 430 |
+
lightness = 45 + (index % 2) * 10 # Vary lightness slightly
|
| 431 |
+
return f'hsl({hue}, {saturation}%, {lightness}%)'
|
| 432 |
+
|
| 433 |
agents = metrics['agents']
|
| 434 |
months = metrics['months']
|
| 435 |
data = metrics['data']
|
| 436 |
|
| 437 |
+
# Generate colors for all agents
|
| 438 |
agent_colors = {agent: generate_color(idx, len(agents)) for idx, agent in enumerate(agents)}
|
| 439 |
|
| 440 |
# Add traces for each agent
|
|
|
|
| 456 |
name=agent_name,
|
| 457 |
mode='lines+markers',
|
| 458 |
line=dict(color=color, width=2),
|
| 459 |
+
marker=dict(size=8),
|
| 460 |
legendgroup=agent_name,
|
| 461 |
+
showlegend=(top_n is not None and top_n <= 10), # Show legend for top N agents
|
| 462 |
+
hovertemplate='<b>Agent: %{fullData.name}</b><br>' +
|
| 463 |
+
'Month: %{x}<br>' +
|
| 464 |
'Acceptance Rate: %{y:.2f}%<br>' +
|
| 465 |
'<extra></extra>'
|
| 466 |
),
|
|
|
|
| 484 |
name=agent_name,
|
| 485 |
marker=dict(color=color, opacity=0.6),
|
| 486 |
legendgroup=agent_name,
|
| 487 |
+
showlegend=False, # Hide duplicate legend entry (already shown in Scatter)
|
| 488 |
+
hovertemplate='<b>Agent: %{fullData.name}</b><br>' +
|
| 489 |
+
'Month: %{x}<br>' +
|
| 490 |
'Total PRs: %{y}<br>' +
|
| 491 |
'<extra></extra>',
|
| 492 |
offsetgroup=agent_name # Group bars by agent for proper spacing
|
|
|
|
| 496 |
|
| 497 |
# Update axes labels
|
| 498 |
fig.update_xaxes(title_text=None)
|
| 499 |
+
fig.update_yaxes(
|
| 500 |
+
title_text="<b>Acceptance Rate (%)</b>",
|
| 501 |
+
range=[0, 100],
|
| 502 |
+
secondary_y=False,
|
| 503 |
+
showticklabels=True,
|
| 504 |
+
tickmode='linear',
|
| 505 |
+
dtick=10,
|
| 506 |
+
showgrid=True
|
| 507 |
+
)
|
| 508 |
fig.update_yaxes(title_text="<b>Total PRs</b>", secondary_y=True)
|
| 509 |
|
| 510 |
# Update layout
|
| 511 |
+
show_legend = (top_n is not None and top_n <= 10)
|
| 512 |
fig.update_layout(
|
| 513 |
title=None,
|
| 514 |
+
hovermode='closest', # Show individual agent info on hover
|
| 515 |
barmode='group',
|
| 516 |
height=600,
|
| 517 |
+
showlegend=show_legend,
|
| 518 |
+
margin=dict(l=50, r=150 if show_legend else 50, t=50, b=50) # More right margin when legend is shown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 519 |
)
|
| 520 |
|
| 521 |
return fig
|
|
|
|
| 523 |
|
| 524 |
def get_leaderboard_dataframe():
|
| 525 |
"""
|
| 526 |
+
Load leaderboard from saved dataset and convert to pandas DataFrame for display.
|
|
|
|
| 527 |
Returns formatted DataFrame sorted by total PRs.
|
| 528 |
"""
|
| 529 |
+
# Load from saved dataset
|
| 530 |
+
saved_data = load_leaderboard_data_from_hf()
|
| 531 |
+
|
| 532 |
+
if not saved_data or 'leaderboard' not in saved_data:
|
| 533 |
+
print(f"No leaderboard data available")
|
| 534 |
+
# Return empty DataFrame with correct columns if no data
|
| 535 |
+
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 536 |
+
return pd.DataFrame(columns=column_names)
|
| 537 |
|
| 538 |
+
cache_dict = saved_data['leaderboard']
|
| 539 |
+
last_updated = saved_data.get('metadata', {}).get('last_updated', 'Unknown')
|
| 540 |
+
print(f"Loaded leaderboard from saved dataset (last updated: {last_updated})")
|
| 541 |
+
print(f"Cache dict size: {len(cache_dict)}")
|
|
|
|
|
|
|
| 542 |
|
| 543 |
if not cache_dict:
|
| 544 |
+
print("WARNING: cache_dict is empty!")
|
| 545 |
# Return empty DataFrame with correct columns if no data
|
| 546 |
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 547 |
return pd.DataFrame(columns=column_names)
|
| 548 |
|
| 549 |
rows = []
|
| 550 |
+
filtered_count = 0
|
| 551 |
for identifier, data in cache_dict.items():
|
| 552 |
+
total_prs = data.get('total_prs', 0)
|
| 553 |
+
print(f" Agent '{identifier}': {total_prs} PRs")
|
| 554 |
+
|
| 555 |
# Filter out agents with zero total PRs
|
| 556 |
+
if total_prs == 0:
|
| 557 |
+
filtered_count += 1
|
| 558 |
+
continue
|
| 559 |
+
|
| 560 |
+
# Only include display-relevant fields
|
| 561 |
+
rows.append([
|
| 562 |
+
data.get('name', 'Unknown'),
|
| 563 |
+
data.get('website', 'N/A'),
|
| 564 |
+
total_prs,
|
| 565 |
+
data.get('merged_prs', 0),
|
| 566 |
+
data.get('acceptance_rate', 0.0),
|
| 567 |
+
])
|
| 568 |
+
|
| 569 |
+
print(f"Filtered out {filtered_count} agents with 0 PRs")
|
| 570 |
+
print(f"Leaderboard will show {len(rows)} agents")
|
| 571 |
|
| 572 |
# Create DataFrame
|
| 573 |
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
|
|
|
| 583 |
if "Total PRs" in df.columns and not df.empty:
|
| 584 |
df = df.sort_values(by="Total PRs", ascending=False).reset_index(drop=True)
|
| 585 |
|
| 586 |
+
print(f"Final DataFrame shape: {df.shape}")
|
| 587 |
+
print("="*60 + "\n")
|
| 588 |
+
|
| 589 |
return df
|
| 590 |
|
| 591 |
|
| 592 |
+
def submit_agent(identifier, agent_name, organization, website):
|
| 593 |
"""
|
| 594 |
Submit a new agent to the leaderboard.
|
| 595 |
Validates input and saves submission.
|
|
|
|
| 596 |
"""
|
| 597 |
# Validate required fields
|
| 598 |
if not identifier or not identifier.strip():
|
| 599 |
+
return "ERROR: GitHub identifier is required", get_leaderboard_dataframe()
|
| 600 |
if not agent_name or not agent_name.strip():
|
| 601 |
+
return "ERROR: Agent name is required", get_leaderboard_dataframe()
|
| 602 |
if not organization or not organization.strip():
|
| 603 |
+
return "ERROR: Organization name is required", get_leaderboard_dataframe()
|
| 604 |
if not website or not website.strip():
|
| 605 |
+
return "ERROR: Website URL is required", get_leaderboard_dataframe()
|
| 606 |
|
| 607 |
# Clean inputs
|
| 608 |
identifier = identifier.strip()
|
| 609 |
agent_name = agent_name.strip()
|
| 610 |
organization = organization.strip()
|
|
|
|
| 611 |
website = website.strip()
|
| 612 |
|
| 613 |
# Validate GitHub identifier
|
| 614 |
is_valid, message = validate_github_username(identifier)
|
| 615 |
if not is_valid:
|
| 616 |
+
return f"ERROR: {message}", get_leaderboard_dataframe()
|
| 617 |
|
| 618 |
# Check for duplicates by loading agents from HuggingFace
|
| 619 |
agents = load_agents_from_hf()
|
| 620 |
if agents:
|
| 621 |
existing_names = {agent['github_identifier'] for agent in agents}
|
| 622 |
if identifier in existing_names:
|
| 623 |
+
return f"WARNING: Agent with identifier '{identifier}' already exists", get_leaderboard_dataframe()
|
| 624 |
|
| 625 |
# Create submission
|
| 626 |
submission = {
|
| 627 |
'name': agent_name,
|
| 628 |
'organization': organization,
|
| 629 |
'github_identifier': identifier,
|
|
|
|
| 630 |
'website': website,
|
| 631 |
+
'status': 'public'
|
| 632 |
}
|
| 633 |
|
| 634 |
# Save to HuggingFace
|
| 635 |
if not save_agent_to_hf(submission):
|
| 636 |
+
return "ERROR: Failed to save submission", get_leaderboard_dataframe()
|
| 637 |
+
|
| 638 |
+
# Return success message - data will be populated by backend updates
|
| 639 |
+
return f"SUCCESS: Successfully submitted {agent_name}! PR data will be populated by the backend system.", get_leaderboard_dataframe()
|
| 640 |
|
| 641 |
+
|
| 642 |
+
# =============================================================================
|
| 643 |
+
# DATA RELOAD FUNCTION
|
| 644 |
+
# =============================================================================
|
| 645 |
+
|
| 646 |
+
def reload_leaderboard_data():
|
| 647 |
+
"""
|
| 648 |
+
Reload leaderboard data from HuggingFace.
|
| 649 |
+
This function is called by the scheduler on a daily basis.
|
| 650 |
+
"""
|
| 651 |
+
print(f"\n{'='*80}")
|
| 652 |
+
print(f"Reloading leaderboard data from HuggingFace...")
|
| 653 |
+
print(f"{'='*80}\n")
|
| 654 |
+
|
| 655 |
+
try:
|
| 656 |
+
data = load_leaderboard_data_from_hf()
|
| 657 |
+
if data:
|
| 658 |
+
print(f"Successfully reloaded leaderboard data")
|
| 659 |
+
print(f" Last updated: {data.get('metadata', {}).get('last_updated', 'Unknown')}")
|
| 660 |
+
print(f" Agents: {len(data.get('leaderboard', {}))}")
|
| 661 |
+
else:
|
| 662 |
+
print(f"No data available")
|
| 663 |
+
except Exception as e:
|
| 664 |
+
print(f"Error reloading leaderboard data: {str(e)}")
|
| 665 |
+
|
| 666 |
+
print(f"{'='*80}\n")
|
| 667 |
|
| 668 |
|
| 669 |
# =============================================================================
|
| 670 |
# GRADIO APPLICATION
|
| 671 |
# =============================================================================
|
| 672 |
|
| 673 |
+
print(f"\nStarting SWE Agent PR Leaderboard")
|
| 674 |
+
print(f" Data source: {LEADERBOARD_REPO}")
|
| 675 |
+
print(f" Reload frequency: Daily at 12:00 AM UTC\n")
|
| 676 |
|
| 677 |
+
# Start APScheduler for daily data reload at 12:00 AM UTC
|
| 678 |
scheduler = BackgroundScheduler(timezone="UTC")
|
| 679 |
scheduler.add_job(
|
| 680 |
+
reload_leaderboard_data,
|
| 681 |
+
trigger=CronTrigger(hour=0, minute=0), # 12:00 AM UTC daily
|
| 682 |
+
id='daily_data_reload',
|
| 683 |
+
name='Daily Data Reload',
|
| 684 |
replace_existing=True
|
| 685 |
)
|
| 686 |
scheduler.start()
|
| 687 |
print(f"\n{'='*80}")
|
| 688 |
+
print(f"Scheduler initialized successfully")
|
| 689 |
+
print(f"Reload schedule: Daily at 12:00 AM UTC")
|
| 690 |
+
print(f"On startup: Loads cached data from HuggingFace on demand")
|
| 691 |
print(f"{'='*80}\n")
|
| 692 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 693 |
# Create Gradio interface
|
| 694 |
with gr.Blocks(title="SWE Agent PR Leaderboard", theme=gr.themes.Soft()) as app:
|
| 695 |
+
gr.Markdown("# SWE Agent PR Leaderboard")
|
|
|
|
|
|
|
| 696 |
gr.Markdown(f"Track and compare GitHub pull request statistics for SWE agents")
|
| 697 |
|
| 698 |
with gr.Tabs():
|
| 699 |
|
| 700 |
# Leaderboard Tab
|
| 701 |
+
with gr.Tab("Leaderboard"):
|
| 702 |
+
gr.Markdown("*Statistics are based on agent PR activity tracked by the system*")
|
|
|
|
| 703 |
leaderboard_table = Leaderboard(
|
| 704 |
+
value=pd.DataFrame(columns=[col[0] for col in LEADERBOARD_COLUMNS]), # Empty initially
|
| 705 |
datatype=LEADERBOARD_COLUMNS,
|
| 706 |
search_columns=["Agent Name", "Website"],
|
| 707 |
filter_columns=[
|
|
|
|
| 716 |
]
|
| 717 |
)
|
| 718 |
|
| 719 |
+
# Load leaderboard data when app starts
|
| 720 |
+
app.load(
|
| 721 |
+
fn=get_leaderboard_dataframe,
|
| 722 |
+
inputs=[],
|
| 723 |
+
outputs=[leaderboard_table]
|
| 724 |
+
)
|
| 725 |
+
|
| 726 |
+
# Monthly Metrics Section
|
| 727 |
+
gr.Markdown("---") # Divider
|
| 728 |
+
gr.Markdown("### Monthly Performance - Top 5 Agents")
|
| 729 |
+
gr.Markdown("*Shows acceptance rate trends and PR volumes for the most active agents*")
|
| 730 |
|
| 731 |
+
monthly_metrics_plot = gr.Plot(label="Monthly Metrics")
|
| 732 |
+
|
| 733 |
+
# Load monthly metrics when app starts
|
| 734 |
+
app.load(
|
| 735 |
+
fn=lambda: create_monthly_metrics_plot(),
|
| 736 |
+
inputs=[],
|
| 737 |
+
outputs=[monthly_metrics_plot]
|
| 738 |
)
|
| 739 |
|
| 740 |
+
|
| 741 |
# Submit Agent Tab
|
| 742 |
+
with gr.Tab("Submit Agent"):
|
| 743 |
|
| 744 |
gr.Markdown("### Submit Your Agent")
|
| 745 |
gr.Markdown("Fill in the details below to add your agent to the leaderboard.")
|
|
|
|
| 748 |
with gr.Column():
|
| 749 |
github_input = gr.Textbox(
|
| 750 |
label="GitHub Identifier*",
|
| 751 |
+
placeholder="Your agent username (e.g., my-agent[bot])"
|
| 752 |
)
|
| 753 |
name_input = gr.Textbox(
|
| 754 |
label="Agent Name*",
|
|
|
|
| 760 |
label="Organization*",
|
| 761 |
placeholder="Your organization or team name"
|
| 762 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 763 |
website_input = gr.Textbox(
|
| 764 |
label="Website*",
|
| 765 |
placeholder="https://your-agent-website.com"
|
|
|
|
| 777 |
# Event handler
|
| 778 |
submit_button.click(
|
| 779 |
fn=submit_agent,
|
| 780 |
+
inputs=[github_input, name_input, organization_input, website_input],
|
| 781 |
+
outputs=[submission_status, leaderboard_table]
|
| 782 |
)
|
| 783 |
|
| 784 |
|
docker-compose.yml
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
services:
|
| 2 |
+
msr-miner:
|
| 3 |
+
build:
|
| 4 |
+
context: .
|
| 5 |
+
dockerfile: Dockerfile
|
| 6 |
+
container_name: gharchive-miner
|
| 7 |
+
restart: unless-stopped
|
| 8 |
+
env_file:
|
| 9 |
+
- .env
|
| 10 |
+
volumes:
|
| 11 |
+
# Mount entire workspace for live code updates
|
| 12 |
+
- .:/app
|
| 13 |
+
# Mount gharchive workspace for data storage
|
| 14 |
+
- ../gharchive:/gharchive:ro
|
| 15 |
+
environment:
|
| 16 |
+
- PYTHONUNBUFFERED=1
|
| 17 |
+
logging:
|
| 18 |
+
driver: "json-file"
|
| 19 |
+
options:
|
| 20 |
+
max-size: "10m"
|
| 21 |
+
max-file: "3"
|
msr.py
CHANGED
|
@@ -1,18 +1,25 @@
|
|
| 1 |
"""
|
| 2 |
Minimalist PR Metadata Mining Script
|
| 3 |
-
Mines PR metadata from
|
| 4 |
"""
|
| 5 |
|
| 6 |
import json
|
| 7 |
import os
|
|
|
|
| 8 |
import tempfile
|
| 9 |
from datetime import datetime, timezone, timedelta
|
| 10 |
from collections import defaultdict
|
|
|
|
| 11 |
from huggingface_hub import HfApi, hf_hub_download
|
| 12 |
from huggingface_hub.errors import HfHubHTTPError
|
| 13 |
from dotenv import load_dotenv
|
| 14 |
-
|
| 15 |
import backoff
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Load environment variables
|
| 18 |
load_dotenv()
|
|
@@ -23,8 +30,27 @@ load_dotenv()
|
|
| 23 |
|
| 24 |
AGENTS_REPO = "SWE-Arena/bot_metadata"
|
| 25 |
PR_METADATA_REPO = "SWE-Arena/pr_metadata"
|
| 26 |
-
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata" #
|
| 27 |
-
LEADERBOARD_TIME_FRAME_DAYS = 180 # Time frame for
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
# =============================================================================
|
| 30 |
# UTILITY FUNCTIONS
|
|
@@ -54,246 +80,329 @@ def save_jsonl(filename, data):
|
|
| 54 |
f.write(json.dumps(item) + '\n')
|
| 55 |
|
| 56 |
|
| 57 |
-
def
|
| 58 |
"""
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
| 63 |
"""
|
| 64 |
-
|
| 65 |
-
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
temp_path = temp_file.name
|
| 72 |
|
| 73 |
-
#
|
| 74 |
-
|
| 75 |
|
| 76 |
-
#
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
#
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
return client
|
| 83 |
-
else:
|
| 84 |
-
raise ValueError("GOOGLE_APPLICATION_CREDENTIALS_JSON not found in environment")
|
| 85 |
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
-
def
|
| 88 |
"""
|
| 89 |
-
|
| 90 |
|
| 91 |
Args:
|
| 92 |
-
|
| 93 |
-
end_date: End datetime
|
| 94 |
|
| 95 |
Returns:
|
| 96 |
-
|
| 97 |
"""
|
| 98 |
-
|
|
|
|
| 99 |
|
| 100 |
-
#
|
| 101 |
-
|
| 102 |
-
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
-
|
| 115 |
-
union_parts = [f"SELECT * FROM {table}" for table in table_names]
|
| 116 |
-
return " UNION ALL ".join(union_parts)
|
| 117 |
|
| 118 |
|
| 119 |
-
def
|
| 120 |
-
"""
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
|
| 127 |
# =============================================================================
|
| 128 |
-
# HUGGINGFACE API
|
| 129 |
# =============================================================================
|
| 130 |
|
| 131 |
-
def
|
| 132 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 133 |
if isinstance(e, HfHubHTTPError):
|
| 134 |
-
|
| 135 |
-
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
| 144 |
|
| 145 |
|
| 146 |
@backoff.on_exception(
|
| 147 |
backoff.expo,
|
| 148 |
-
HfHubHTTPError,
|
| 149 |
-
giveup=lambda e: not is_rate_limit_error(e),
|
| 150 |
max_tries=8,
|
| 151 |
-
base=300,
|
| 152 |
-
max_value=3600,
|
| 153 |
-
|
| 154 |
-
on_backoff=
|
|
|
|
|
|
|
| 155 |
)
|
| 156 |
def list_repo_files_with_backoff(api, **kwargs):
|
| 157 |
-
"""Wrapper for
|
| 158 |
return api.list_repo_files(**kwargs)
|
| 159 |
|
| 160 |
|
| 161 |
@backoff.on_exception(
|
| 162 |
backoff.expo,
|
| 163 |
-
HfHubHTTPError,
|
| 164 |
-
giveup=lambda e: not is_rate_limit_error(e),
|
| 165 |
max_tries=8,
|
| 166 |
-
base=300,
|
| 167 |
-
max_value=3600,
|
| 168 |
-
|
| 169 |
-
on_backoff=
|
|
|
|
|
|
|
| 170 |
)
|
| 171 |
def hf_hub_download_with_backoff(**kwargs):
|
| 172 |
-
"""Wrapper for hf_hub_download with exponential backoff
|
| 173 |
return hf_hub_download(**kwargs)
|
| 174 |
|
| 175 |
|
| 176 |
@backoff.on_exception(
|
| 177 |
backoff.expo,
|
| 178 |
-
HfHubHTTPError,
|
| 179 |
-
giveup=lambda e: not is_rate_limit_error(e),
|
| 180 |
max_tries=8,
|
| 181 |
-
base=300,
|
| 182 |
-
max_value=3600,
|
| 183 |
-
|
| 184 |
-
on_backoff=
|
|
|
|
|
|
|
| 185 |
)
|
| 186 |
-
def
|
| 187 |
-
"""Wrapper for
|
| 188 |
-
return api.
|
| 189 |
|
| 190 |
|
| 191 |
@backoff.on_exception(
|
| 192 |
backoff.expo,
|
| 193 |
-
HfHubHTTPError,
|
| 194 |
-
giveup=lambda e: not is_rate_limit_error(e),
|
| 195 |
max_tries=8,
|
| 196 |
-
base=300,
|
| 197 |
-
max_value=3600,
|
| 198 |
-
|
| 199 |
-
on_backoff=
|
|
|
|
|
|
|
| 200 |
)
|
| 201 |
-
def
|
| 202 |
-
"""Wrapper for
|
| 203 |
-
return api.
|
| 204 |
-
|
| 205 |
|
| 206 |
-
# =============================================================================
|
| 207 |
-
# BIGQUERY FUNCTIONS
|
| 208 |
-
# =============================================================================
|
| 209 |
|
| 210 |
-
def
|
| 211 |
"""
|
| 212 |
-
|
| 213 |
-
Splits agents into smaller batches to avoid performance issues with large numbers of agents.
|
| 214 |
-
|
| 215 |
-
Args:
|
| 216 |
-
client: BigQuery client instance
|
| 217 |
-
identifiers: List of GitHub usernames/bot identifiers
|
| 218 |
-
start_date: Start datetime (timezone-aware)
|
| 219 |
-
end_date: End datetime (timezone-aware)
|
| 220 |
-
batch_size: Number of agents to process per batch (default: 100)
|
| 221 |
-
upload_immediately: If True, upload each batch's results to HuggingFace immediately (default: True)
|
| 222 |
|
| 223 |
Returns:
|
| 224 |
-
|
| 225 |
"""
|
| 226 |
-
#
|
| 227 |
-
|
| 228 |
-
total_batches = len(batches)
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
else:
|
| 236 |
-
print(f" Upload mode: Deferred (all at once)")
|
| 237 |
|
| 238 |
-
|
| 239 |
-
all_metadata = {}
|
| 240 |
|
| 241 |
-
for batch_num, batch_identifiers in enumerate(batches, 1):
|
| 242 |
-
print(f"\n📦 Processing batch {batch_num}/{total_batches} ({len(batch_identifiers)} agents)...")
|
| 243 |
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
)
|
| 249 |
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
else:
|
| 255 |
-
all_metadata[identifier] = metadata_list
|
| 256 |
|
| 257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
print(f"\n 📤 Uploading batch {batch_num}/{total_batches} results to HuggingFace...")
|
| 262 |
-
upload_success = 0
|
| 263 |
-
upload_errors = 0
|
| 264 |
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
-
|
|
|
|
|
|
|
| 273 |
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
print(f" Continuing with remaining batches...")
|
| 277 |
-
continue
|
| 278 |
|
| 279 |
-
|
| 280 |
-
|
|
|
|
| 281 |
|
| 282 |
-
return
|
| 283 |
|
| 284 |
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
|
| 289 |
-
|
| 290 |
-
|
|
|
|
| 291 |
|
| 292 |
This query fetches:
|
| 293 |
1. PRs authored by agents (user.login matches identifier)
|
|
|
|
| 294 |
|
| 295 |
Args:
|
| 296 |
-
|
| 297 |
identifiers: List of GitHub usernames/bot identifiers
|
| 298 |
start_date: Start datetime (timezone-aware)
|
| 299 |
end_date: End datetime (timezone-aware)
|
|
@@ -303,7 +412,7 @@ def fetch_all_pr_metadata_single_query(client, identifiers, start_date, end_date
|
|
| 303 |
{
|
| 304 |
'agent-identifier': [
|
| 305 |
{
|
| 306 |
-
'
|
| 307 |
'created_at': Creation timestamp,
|
| 308 |
'merged_at': Merge timestamp (if merged, else None),
|
| 309 |
'closed_at': Close timestamp (if closed but not merged, else None)
|
|
@@ -313,35 +422,30 @@ def fetch_all_pr_metadata_single_query(client, identifiers, start_date, end_date
|
|
| 313 |
...
|
| 314 |
}
|
| 315 |
"""
|
| 316 |
-
|
| 317 |
-
|
| 318 |
|
| 319 |
-
#
|
| 320 |
-
|
| 321 |
|
| 322 |
-
# Build
|
| 323 |
-
author_list = ', '.join([f"'{id}'" for id in identifiers])
|
| 324 |
-
|
| 325 |
-
# Build comprehensive query with CTE
|
| 326 |
query = f"""
|
| 327 |
WITH pr_events AS (
|
| 328 |
-- Get all PR events (opened, closed) for all agents
|
| 329 |
SELECT
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
created_at as event_time
|
| 338 |
-
FROM (
|
| 339 |
-
{table_union}
|
| 340 |
-
) t
|
| 341 |
WHERE
|
| 342 |
-
type = 'PullRequestEvent'
|
| 343 |
-
AND
|
| 344 |
-
AND
|
| 345 |
),
|
| 346 |
|
| 347 |
pr_latest_state AS (
|
|
@@ -368,72 +472,77 @@ def fetch_all_pr_metadata_single_query(client, identifiers, start_date, end_date
|
|
| 368 |
ORDER BY created_at DESC
|
| 369 |
"""
|
| 370 |
|
| 371 |
-
print(f" Scanning {(end_date - start_date).days} days of GitHub Archive data...")
|
| 372 |
-
print(f" Batch agents: {', '.join(identifiers[:5])}{'...' if len(identifiers) > 5 else ''}")
|
| 373 |
-
|
| 374 |
try:
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
# Group results by agent
|
| 381 |
metadata_by_agent = defaultdict(list)
|
| 382 |
|
| 383 |
for row in results:
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
closed_at = row.closed_at
|
| 394 |
-
if hasattr(closed_at, 'isoformat'):
|
| 395 |
-
closed_at = closed_at.isoformat()
|
| 396 |
-
|
| 397 |
-
pr_data = {
|
| 398 |
-
'html_url': row.url,
|
| 399 |
'created_at': created_at,
|
| 400 |
'merged_at': merged_at,
|
| 401 |
'closed_at': closed_at,
|
| 402 |
-
}
|
| 403 |
-
|
| 404 |
-
# Assign to agent based on author
|
| 405 |
-
pr_author = row.pr_author
|
| 406 |
-
if pr_author and pr_author in identifiers:
|
| 407 |
-
metadata_by_agent[pr_author].append(pr_data)
|
| 408 |
-
|
| 409 |
-
# Print breakdown by agent (only show agents with PRs)
|
| 410 |
-
print(f" 📊 Batch breakdown:")
|
| 411 |
-
for identifier in identifiers:
|
| 412 |
-
count = len(metadata_by_agent.get(identifier, []))
|
| 413 |
-
if count > 0:
|
| 414 |
-
metadata = metadata_by_agent[identifier]
|
| 415 |
-
merged_count = sum(1 for m in metadata if m['merged_at'] is not None)
|
| 416 |
-
closed_count = sum(1 for m in metadata if m['closed_at'] is not None and m['merged_at'] is None)
|
| 417 |
-
open_count = count - merged_count - closed_count
|
| 418 |
-
print(f" {identifier}: {count} PRs ({merged_count} merged, {closed_count} closed, {open_count} open)")
|
| 419 |
|
| 420 |
# Convert defaultdict to regular dict
|
| 421 |
return dict(metadata_by_agent)
|
| 422 |
|
| 423 |
except Exception as e:
|
| 424 |
-
print(f"
|
| 425 |
import traceback
|
| 426 |
traceback.print_exc()
|
| 427 |
return {}
|
| 428 |
|
| 429 |
|
| 430 |
# =============================================================================
|
| 431 |
-
# HUGGINGFACE STORAGE FUNCTIONS
|
| 432 |
# =============================================================================
|
| 433 |
|
| 434 |
def group_metadata_by_date(metadata_list):
|
| 435 |
"""
|
| 436 |
-
Group PR metadata by
|
| 437 |
Returns dict: {(year, month, day): [metadata_list]}
|
| 438 |
"""
|
| 439 |
grouped = defaultdict(list)
|
|
@@ -453,20 +562,56 @@ def group_metadata_by_date(metadata_list):
|
|
| 453 |
return dict(grouped)
|
| 454 |
|
| 455 |
|
| 456 |
-
def
|
| 457 |
"""
|
| 458 |
-
|
| 459 |
-
Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's PRs.
|
| 460 |
-
|
| 461 |
-
This function OVERWRITES existing files completely with fresh data from BigQuery.
|
| 462 |
-
Uses batch upload to avoid rate limit (uploads entire folder in single operation).
|
| 463 |
|
| 464 |
Args:
|
| 465 |
-
|
| 466 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 467 |
"""
|
| 468 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 469 |
|
|
|
|
|
|
|
|
|
|
| 470 |
try:
|
| 471 |
token = get_hf_token()
|
| 472 |
if not token:
|
|
@@ -474,56 +619,89 @@ def save_pr_metadata_to_hf(metadata_list, agent_identifier):
|
|
| 474 |
|
| 475 |
api = HfApi(token=token)
|
| 476 |
|
| 477 |
-
|
| 478 |
-
|
|
|
|
| 479 |
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
|
|
|
|
|
|
| 483 |
|
| 484 |
-
|
| 485 |
-
temp_dir = tempfile.mkdtemp()
|
| 486 |
-
agent_folder = os.path.join(temp_dir, agent_identifier)
|
| 487 |
-
os.makedirs(agent_folder, exist_ok=True)
|
| 488 |
|
| 489 |
-
|
| 490 |
-
print(f" 📦 Preparing batch upload for {len(grouped)} daily files...")
|
| 491 |
-
|
| 492 |
-
# Process each daily file
|
| 493 |
-
for (pr_year, month, day), day_metadata in grouped.items():
|
| 494 |
-
filename = f"{agent_identifier}/{pr_year}.{month:02d}.{day:02d}.jsonl"
|
| 495 |
-
local_filename = os.path.join(agent_folder, f"{pr_year}.{month:02d}.{day:02d}.jsonl")
|
| 496 |
-
|
| 497 |
-
# Sort by created_at for better organization
|
| 498 |
-
day_metadata.sort(key=lambda x: x.get('created_at', ''), reverse=True)
|
| 499 |
-
|
| 500 |
-
# Save to temp directory (complete overwrite, no merging)
|
| 501 |
-
save_jsonl(local_filename, day_metadata)
|
| 502 |
-
print(f" Prepared {len(day_metadata)} PRs for {filename}")
|
| 503 |
-
|
| 504 |
-
# Upload entire folder using upload_folder (single commit per agent)
|
| 505 |
-
print(f" 📤 Uploading {len(grouped)} files ({len(metadata_list)} total PRs)...")
|
| 506 |
-
upload_folder_with_backoff(
|
| 507 |
-
api,
|
| 508 |
-
folder_path=temp_dir,
|
| 509 |
-
repo_id=PR_METADATA_REPO,
|
| 510 |
-
repo_type="dataset",
|
| 511 |
-
commit_message=f"Update PR metadata for {agent_identifier}"
|
| 512 |
-
)
|
| 513 |
-
print(f" ✓ Batch upload complete for {agent_identifier}")
|
| 514 |
|
| 515 |
-
|
|
|
|
|
|
|
| 516 |
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 521 |
|
| 522 |
except Exception as e:
|
| 523 |
-
print(f"
|
| 524 |
import traceback
|
| 525 |
traceback.print_exc()
|
| 526 |
-
return
|
| 527 |
|
| 528 |
|
| 529 |
def load_agents_from_hf():
|
|
@@ -537,13 +715,11 @@ def load_agents_from_hf():
|
|
| 537 |
agents = []
|
| 538 |
|
| 539 |
# List all files in the repository
|
| 540 |
-
files = list_repo_files_with_backoff(api, repo_id=AGENTS_REPO, repo_type="dataset")
|
| 541 |
|
| 542 |
# Filter for JSON files only
|
| 543 |
json_files = [f for f in files if f.endswith('.json')]
|
| 544 |
|
| 545 |
-
print(f"Found {len(json_files)} agent files in {AGENTS_REPO}")
|
| 546 |
-
|
| 547 |
# Download and parse each JSON file
|
| 548 |
for json_file in json_files:
|
| 549 |
try:
|
|
@@ -567,10 +743,11 @@ def load_agents_from_hf():
|
|
| 567 |
agents.append(agent_data)
|
| 568 |
|
| 569 |
except Exception as e:
|
| 570 |
-
print(f"
|
| 571 |
continue
|
| 572 |
|
| 573 |
-
print(f"
|
|
|
|
| 574 |
return agents
|
| 575 |
|
| 576 |
except Exception as e:
|
|
@@ -609,46 +786,54 @@ def calculate_pr_stats_from_metadata(metadata_list):
|
|
| 609 |
}
|
| 610 |
|
| 611 |
|
| 612 |
-
def
|
| 613 |
"""
|
| 614 |
Calculate monthly metrics for all agents for visualization.
|
| 615 |
|
| 616 |
Args:
|
| 617 |
-
|
| 618 |
-
agents: List of agent
|
| 619 |
|
| 620 |
Returns:
|
| 621 |
-
dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 622 |
"""
|
| 623 |
-
from datetime import datetime, timezone
|
| 624 |
-
|
| 625 |
# Create mapping from agent_identifier to agent_name
|
| 626 |
-
identifier_to_name = {
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
}
|
| 631 |
|
| 632 |
# Group by agent and month
|
| 633 |
agent_month_data = defaultdict(lambda: defaultdict(list))
|
| 634 |
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
|
|
|
| 638 |
|
| 639 |
-
|
| 640 |
-
|
| 641 |
|
| 642 |
-
|
| 643 |
-
|
| 644 |
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
|
| 653 |
# Get all unique months and sort them
|
| 654 |
all_months = set()
|
|
@@ -660,8 +845,8 @@ def calculate_monthly_metrics(all_metadata, agents):
|
|
| 660 |
result_data = {}
|
| 661 |
for agent_name, month_dict in agent_month_data.items():
|
| 662 |
acceptance_rates = []
|
| 663 |
-
|
| 664 |
-
|
| 665 |
closed_not_merged_list = []
|
| 666 |
|
| 667 |
for month in months:
|
|
@@ -682,14 +867,14 @@ def calculate_monthly_metrics(all_metadata, agents):
|
|
| 682 |
acceptance_rate = (merged_count / total_decisions * 100) if total_decisions > 0 else None
|
| 683 |
|
| 684 |
acceptance_rates.append(acceptance_rate)
|
| 685 |
-
|
| 686 |
-
|
| 687 |
closed_not_merged_list.append(closed_not_merged_count)
|
| 688 |
|
| 689 |
result_data[agent_name] = {
|
| 690 |
'acceptance_rates': acceptance_rates,
|
| 691 |
-
'total_prs':
|
| 692 |
-
'merged_prs':
|
| 693 |
'closed_not_merged': closed_not_merged_list
|
| 694 |
}
|
| 695 |
|
|
@@ -702,113 +887,36 @@ def calculate_monthly_metrics(all_metadata, agents):
|
|
| 702 |
}
|
| 703 |
|
| 704 |
|
| 705 |
-
def
|
| 706 |
"""
|
| 707 |
-
|
| 708 |
|
| 709 |
Args:
|
| 710 |
-
|
|
|
|
| 711 |
|
| 712 |
Returns:
|
| 713 |
-
|
| 714 |
-
"""
|
| 715 |
-
try:
|
| 716 |
-
api = HfApi()
|
| 717 |
-
token = get_hf_token()
|
| 718 |
-
|
| 719 |
-
# Calculate cutoff date
|
| 720 |
-
cutoff_date = datetime.now(timezone.utc) - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 721 |
-
|
| 722 |
-
# List all files in the repository
|
| 723 |
-
files = list_repo_files_with_backoff(api, repo_id=PR_METADATA_REPO, repo_type="dataset")
|
| 724 |
-
|
| 725 |
-
# Filter for files within the time frame
|
| 726 |
-
relevant_files = []
|
| 727 |
-
for f in files:
|
| 728 |
-
if f.endswith('.jsonl'):
|
| 729 |
-
parts = f.split('/')
|
| 730 |
-
if len(parts) == 2:
|
| 731 |
-
filename = parts[1]
|
| 732 |
-
try:
|
| 733 |
-
date_part = filename.replace('.jsonl', '')
|
| 734 |
-
date_components = date_part.split('.')
|
| 735 |
-
if len(date_components) == 3:
|
| 736 |
-
file_year, file_month, file_day = map(int, date_components)
|
| 737 |
-
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc)
|
| 738 |
-
|
| 739 |
-
if file_date >= cutoff_date:
|
| 740 |
-
relevant_files.append(f)
|
| 741 |
-
except Exception:
|
| 742 |
-
continue
|
| 743 |
-
|
| 744 |
-
print(f"\n📥 Loading PR metadata from {len(relevant_files)} daily files...")
|
| 745 |
-
|
| 746 |
-
all_metadata = []
|
| 747 |
-
for filename in relevant_files:
|
| 748 |
-
try:
|
| 749 |
-
parts = filename.split('/')
|
| 750 |
-
if len(parts) != 2:
|
| 751 |
-
continue
|
| 752 |
-
|
| 753 |
-
agent_identifier = parts[0]
|
| 754 |
-
|
| 755 |
-
file_path = hf_hub_download_with_backoff(
|
| 756 |
-
repo_id=PR_METADATA_REPO,
|
| 757 |
-
filename=filename,
|
| 758 |
-
repo_type="dataset",
|
| 759 |
-
token=token
|
| 760 |
-
)
|
| 761 |
-
day_metadata = load_jsonl(file_path)
|
| 762 |
-
|
| 763 |
-
# Add agent_identifier to each PR
|
| 764 |
-
for pr_meta in day_metadata:
|
| 765 |
-
created_at = pr_meta.get('created_at')
|
| 766 |
-
if created_at:
|
| 767 |
-
try:
|
| 768 |
-
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 769 |
-
if dt >= cutoff_date:
|
| 770 |
-
pr_meta['agent_identifier'] = agent_identifier
|
| 771 |
-
all_metadata.append(pr_meta)
|
| 772 |
-
except Exception:
|
| 773 |
-
continue
|
| 774 |
-
|
| 775 |
-
except Exception as e:
|
| 776 |
-
print(f" Warning: Could not load {filename}: {str(e)}")
|
| 777 |
-
|
| 778 |
-
print(f"✓ Loaded {len(all_metadata)} total PRs")
|
| 779 |
-
return all_metadata
|
| 780 |
-
|
| 781 |
-
except Exception as e:
|
| 782 |
-
print(f"✗ Error loading PR metadata: {str(e)}")
|
| 783 |
-
return []
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
def construct_leaderboard_from_metadata(all_metadata, agents):
|
| 787 |
"""
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
all_metadata: List of PR metadata with agent_identifier field
|
| 792 |
-
agents: List of agent dictionaries
|
| 793 |
|
| 794 |
-
Returns:
|
| 795 |
-
Dictionary mapping agent identifier to stats
|
| 796 |
-
"""
|
| 797 |
cache_dict = {}
|
| 798 |
|
| 799 |
for agent in agents:
|
| 800 |
identifier = agent.get('github_identifier')
|
| 801 |
agent_name = agent.get('name', 'Unknown')
|
| 802 |
|
| 803 |
-
#
|
| 804 |
-
bot_metadata =
|
| 805 |
|
| 806 |
# Calculate stats
|
| 807 |
stats = calculate_pr_stats_from_metadata(bot_metadata)
|
| 808 |
|
| 809 |
cache_dict[identifier] = {
|
| 810 |
'name': agent_name,
|
| 811 |
-
'website': agent.get('website', '
|
| 812 |
'github_identifier': identifier,
|
| 813 |
**stats
|
| 814 |
}
|
|
@@ -816,16 +924,16 @@ def construct_leaderboard_from_metadata(all_metadata, agents):
|
|
| 816 |
return cache_dict
|
| 817 |
|
| 818 |
|
| 819 |
-
def save_leaderboard_data_to_hf(
|
| 820 |
"""
|
| 821 |
-
Save
|
| 822 |
|
| 823 |
Args:
|
| 824 |
-
|
| 825 |
-
monthly_metrics:
|
| 826 |
|
| 827 |
Returns:
|
| 828 |
-
True if successful, False otherwise
|
| 829 |
"""
|
| 830 |
try:
|
| 831 |
token = get_hf_token()
|
|
@@ -833,39 +941,39 @@ def save_leaderboard_data_to_hf(leaderboard_data, monthly_metrics):
|
|
| 833 |
raise Exception("No HuggingFace token found")
|
| 834 |
|
| 835 |
api = HfApi(token=token)
|
|
|
|
| 836 |
|
| 837 |
-
# Combine
|
| 838 |
combined_data = {
|
| 839 |
-
'
|
|
|
|
| 840 |
'monthly_metrics': monthly_metrics,
|
| 841 |
-
'
|
|
|
|
|
|
|
| 842 |
}
|
| 843 |
|
| 844 |
-
# Save
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
json.dump(combined_data, temp_file, indent=2)
|
| 848 |
-
temp_file.close()
|
| 849 |
|
| 850 |
-
|
| 851 |
-
|
| 852 |
upload_file_with_backoff(
|
| 853 |
-
api,
|
| 854 |
-
path_or_fileobj=
|
| 855 |
-
path_in_repo=
|
| 856 |
repo_id=LEADERBOARD_REPO,
|
| 857 |
repo_type="dataset"
|
| 858 |
)
|
| 859 |
-
print(f"✓ Leaderboard data uploaded successfully")
|
| 860 |
return True
|
| 861 |
-
|
| 862 |
finally:
|
| 863 |
-
#
|
| 864 |
-
if os.path.exists(
|
| 865 |
-
os.
|
| 866 |
|
| 867 |
except Exception as e:
|
| 868 |
-
print(f"
|
| 869 |
import traceback
|
| 870 |
traceback.print_exc()
|
| 871 |
return False
|
|
@@ -878,31 +986,35 @@ def save_leaderboard_data_to_hf(leaderboard_data, monthly_metrics):
|
|
| 878 |
def mine_all_agents():
|
| 879 |
"""
|
| 880 |
Mine PR metadata for all agents within LEADERBOARD_TIME_FRAME_DAYS and save to HuggingFace.
|
| 881 |
-
|
| 882 |
"""
|
| 883 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 884 |
agents = load_agents_from_hf()
|
| 885 |
if not agents:
|
| 886 |
-
print("No agents found
|
| 887 |
return
|
| 888 |
|
| 889 |
# Extract all identifiers
|
| 890 |
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
|
| 891 |
if not identifiers:
|
| 892 |
-
print("No valid agent identifiers found")
|
| 893 |
return
|
| 894 |
|
| 895 |
-
print(f"\n{
|
| 896 |
-
print(f"Starting PR metadata mining for {len(identifiers)} agents")
|
| 897 |
-
print(f"Time frame: Last {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 898 |
-
print(f"Data source: BigQuery + GitHub Archive (BATCHED QUERIES)")
|
| 899 |
-
print(f"{'='*80}\n")
|
| 900 |
|
| 901 |
-
# Initialize
|
| 902 |
try:
|
| 903 |
-
|
| 904 |
except Exception as e:
|
| 905 |
-
print(f"
|
| 906 |
return
|
| 907 |
|
| 908 |
# Define time range: past LEADERBOARD_TIME_FRAME_DAYS (excluding today)
|
|
@@ -911,68 +1023,116 @@ def mine_all_agents():
|
|
| 911 |
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 912 |
|
| 913 |
try:
|
| 914 |
-
# Use
|
| 915 |
-
|
| 916 |
-
|
| 917 |
-
client, identifiers, start_date, end_date, batch_size=100, upload_immediately=True
|
| 918 |
)
|
| 919 |
|
| 920 |
# Calculate summary statistics
|
| 921 |
total_prs = sum(len(metadata_list) for metadata_list in all_metadata.values())
|
| 922 |
agents_with_data = sum(1 for metadata_list in all_metadata.values() if metadata_list)
|
| 923 |
|
| 924 |
-
print(f"
|
| 925 |
-
print(f"✅ BigQuery mining and upload complete!")
|
| 926 |
-
print(f" Total agents: {len(agents)}")
|
| 927 |
-
print(f" Agents with data: {agents_with_data}")
|
| 928 |
-
print(f" Total PRs found: {total_prs}")
|
| 929 |
-
print(f"{'='*80}\n")
|
| 930 |
|
| 931 |
except Exception as e:
|
| 932 |
-
print(f"
|
| 933 |
import traceback
|
| 934 |
traceback.print_exc()
|
| 935 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 936 |
|
| 937 |
-
#
|
| 938 |
-
print(f"\n
|
| 939 |
-
print(f"📊 Computing leaderboard and monthly metrics...")
|
| 940 |
-
print(f"{'='*80}\n")
|
| 941 |
|
| 942 |
try:
|
| 943 |
-
#
|
| 944 |
-
|
| 945 |
-
|
| 946 |
-
|
| 947 |
-
|
| 948 |
-
|
| 949 |
-
|
| 950 |
-
|
| 951 |
-
|
| 952 |
-
|
| 953 |
-
print(f"✓ Computed monthly metrics for {len(monthly_metrics['agents'])} agents across {len(monthly_metrics['months'])} months")
|
| 954 |
-
|
| 955 |
-
# Save to HuggingFace
|
| 956 |
-
if save_leaderboard_data_to_hf(leaderboard_data, monthly_metrics):
|
| 957 |
-
print(f"\n{'='*80}")
|
| 958 |
-
print(f"✅ Leaderboard data saved successfully!")
|
| 959 |
-
print(f"{'='*80}\n")
|
| 960 |
-
else:
|
| 961 |
-
print(f"\n{'='*80}")
|
| 962 |
-
print(f"⚠️ Warning: Failed to save leaderboard data")
|
| 963 |
-
print(f"{'='*80}\n")
|
| 964 |
-
else:
|
| 965 |
-
print(f"⚠️ No PR metadata found to compute leaderboard")
|
| 966 |
|
| 967 |
except Exception as e:
|
| 968 |
-
print(f"
|
| 969 |
import traceback
|
| 970 |
traceback.print_exc()
|
| 971 |
|
| 972 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 973 |
# =============================================================================
|
| 974 |
# ENTRY POINT
|
| 975 |
# =============================================================================
|
| 976 |
|
| 977 |
if __name__ == "__main__":
|
| 978 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
Minimalist PR Metadata Mining Script
|
| 3 |
+
Mines PR metadata from locally downloaded GHArchive data via DuckDB and saves to HuggingFace dataset.
|
| 4 |
"""
|
| 5 |
|
| 6 |
import json
|
| 7 |
import os
|
| 8 |
+
import time
|
| 9 |
import tempfile
|
| 10 |
from datetime import datetime, timezone, timedelta
|
| 11 |
from collections import defaultdict
|
| 12 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 13 |
from huggingface_hub import HfApi, hf_hub_download
|
| 14 |
from huggingface_hub.errors import HfHubHTTPError
|
| 15 |
from dotenv import load_dotenv
|
| 16 |
+
import duckdb
|
| 17 |
import backoff
|
| 18 |
+
import requests
|
| 19 |
+
import requests.exceptions
|
| 20 |
+
from apscheduler.schedulers.blocking import BlockingScheduler
|
| 21 |
+
from apscheduler.triggers.cron import CronTrigger
|
| 22 |
+
import logging
|
| 23 |
|
| 24 |
# Load environment variables
|
| 25 |
load_dotenv()
|
|
|
|
| 30 |
|
| 31 |
AGENTS_REPO = "SWE-Arena/bot_metadata"
|
| 32 |
PR_METADATA_REPO = "SWE-Arena/pr_metadata"
|
| 33 |
+
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata" # HuggingFace dataset for leaderboard data
|
| 34 |
+
LEADERBOARD_TIME_FRAME_DAYS = 180 # Time frame for leaderboard
|
| 35 |
+
GHARCHIVE_DATA_DIR = "../gharchive/data" # Local GHArchive data directory
|
| 36 |
+
DUCKDB_CACHE_FILE = "../gharchive/gharchive_cache.duckdb" # Persistent DuckDB database for caching
|
| 37 |
+
|
| 38 |
+
# Download configuration
|
| 39 |
+
DOWNLOAD_WORKERS = 48 # Number of parallel download threads
|
| 40 |
+
DOWNLOAD_RETRY_DELAY = 2 # Initial retry delay in seconds
|
| 41 |
+
MAX_RETRIES = 5 # Maximum number of retries for each API call
|
| 42 |
+
|
| 43 |
+
# Upload configuration
|
| 44 |
+
UPLOAD_DELAY_SECONDS = 5 # Delay between individual file uploads to avoid rate limits
|
| 45 |
+
UPLOAD_INITIAL_BACKOFF = 60 # Initial backoff time in seconds (1 minute)
|
| 46 |
+
UPLOAD_MAX_BACKOFF = 3600 # Maximum backoff time in seconds (60 minutes)
|
| 47 |
+
|
| 48 |
+
# Scheduler configuration
|
| 49 |
+
SCHEDULE_ENABLED = False # Enable/disable scheduler
|
| 50 |
+
SCHEDULE_DAY_OF_MONTH = 8 # Day of month (1-31) - 8nd is in the second week
|
| 51 |
+
SCHEDULE_HOUR = 0 # Hour (0-23) - 12am midnight
|
| 52 |
+
SCHEDULE_MINUTE = 0 # Minute (0-59)
|
| 53 |
+
SCHEDULE_TIMEZONE = 'UTC' # Timezone for scheduling
|
| 54 |
|
| 55 |
# =============================================================================
|
| 56 |
# UTILITY FUNCTIONS
|
|
|
|
| 80 |
f.write(json.dumps(item) + '\n')
|
| 81 |
|
| 82 |
|
| 83 |
+
def normalize_date_format(date_string):
|
| 84 |
"""
|
| 85 |
+
Convert date strings to standardized ISO 8601 format with Z suffix.
|
| 86 |
+
Handles both 'T' and space-separated datetime formats (including newlines).
|
| 87 |
+
Examples:
|
| 88 |
+
- 2025-10-15T23:23:47.983068 -> 2025-10-15T23:23:47Z
|
| 89 |
+
- 2025-06-17 21:21:07+00 -> 2025-06-17T21:21:07Z
|
| 90 |
"""
|
| 91 |
+
if not date_string or date_string == 'N/A':
|
| 92 |
+
return 'N/A'
|
| 93 |
|
| 94 |
+
try:
|
| 95 |
+
import re
|
| 96 |
+
# Remove all whitespace (spaces, newlines, tabs) and replace with single space
|
| 97 |
+
date_string = re.sub(r'\s+', ' ', date_string.strip())
|
|
|
|
| 98 |
|
| 99 |
+
# Replace space with 'T' for ISO format compatibility
|
| 100 |
+
date_string = date_string.replace(' ', 'T')
|
| 101 |
|
| 102 |
+
# Fix incomplete timezone offset (+00 or -00 -> +00:00 or -00:00)
|
| 103 |
+
# Check if timezone offset exists and is incomplete
|
| 104 |
+
if len(date_string) >= 3:
|
| 105 |
+
if date_string[-3:-2] in ('+', '-') and ':' not in date_string[-3:]:
|
| 106 |
+
date_string = date_string + ':00'
|
| 107 |
|
| 108 |
+
# Parse the date string (handles both with and without microseconds)
|
| 109 |
+
dt = datetime.fromisoformat(date_string.replace('Z', '+00:00'))
|
| 110 |
+
|
| 111 |
+
# Convert to standardized format
|
| 112 |
+
return dt.strftime('%Y-%m-%dT%H:%M:%SZ')
|
| 113 |
+
except Exception as e:
|
| 114 |
+
print(f"Warning: Could not parse date '{date_string}': {e}")
|
| 115 |
+
return date_string
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def get_hf_token():
|
| 119 |
+
"""Get HuggingFace token from environment variables."""
|
| 120 |
+
token = os.getenv('HF_TOKEN')
|
| 121 |
+
if not token:
|
| 122 |
+
print("Warning: HF_TOKEN not found in environment variables")
|
| 123 |
+
return token
|
| 124 |
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
# =============================================================================
|
| 127 |
+
# GHARCHIVE DOWNLOAD FUNCTIONS
|
| 128 |
+
# =============================================================================
|
| 129 |
|
| 130 |
+
def download_file(url):
|
| 131 |
"""
|
| 132 |
+
Download a GHArchive file with retry logic.
|
| 133 |
|
| 134 |
Args:
|
| 135 |
+
url: URL to download
|
|
|
|
| 136 |
|
| 137 |
Returns:
|
| 138 |
+
bool: True if successful, False otherwise
|
| 139 |
"""
|
| 140 |
+
filename = url.split("/")[-1]
|
| 141 |
+
filepath = os.path.join(GHARCHIVE_DATA_DIR, filename)
|
| 142 |
|
| 143 |
+
# Skip if json.gz already exists
|
| 144 |
+
if os.path.exists(filepath):
|
| 145 |
+
return True
|
| 146 |
|
| 147 |
+
# Download with retry logic
|
| 148 |
+
for attempt in range(MAX_RETRIES):
|
| 149 |
+
try:
|
| 150 |
+
response = requests.get(url, timeout=30)
|
| 151 |
+
response.raise_for_status()
|
| 152 |
+
with open(filepath, "wb") as f:
|
| 153 |
+
f.write(response.content)
|
| 154 |
+
return True
|
| 155 |
|
| 156 |
+
except requests.exceptions.HTTPError as e:
|
| 157 |
+
if e.response.status_code == 404:
|
| 158 |
+
# File doesn't exist, don't retry
|
| 159 |
+
return False
|
| 160 |
+
else:
|
| 161 |
+
# Other HTTP errors, retry
|
| 162 |
+
if attempt < MAX_RETRIES - 1:
|
| 163 |
+
wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt) # Exponential backoff
|
| 164 |
+
print(f" ⚠ {filename}: HTTP error {e.response.status_code}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
|
| 165 |
+
time.sleep(wait_time)
|
| 166 |
+
else:
|
| 167 |
+
print(f" ✗ {filename}: Failed after {MAX_RETRIES} attempts - {e}")
|
| 168 |
+
|
| 169 |
+
except (requests.exceptions.Timeout,
|
| 170 |
+
requests.exceptions.ConnectionError,
|
| 171 |
+
requests.exceptions.ReadTimeout) as e:
|
| 172 |
+
# Timeout/connection errors, retry
|
| 173 |
+
if attempt < MAX_RETRIES - 1:
|
| 174 |
+
wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt) # Exponential backoff
|
| 175 |
+
print(f" ⚠ {filename}: {type(e).__name__}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
|
| 176 |
+
time.sleep(wait_time)
|
| 177 |
+
else:
|
| 178 |
+
print(f" ✗ {filename}: Failed after {MAX_RETRIES} attempts - {type(e).__name__}")
|
| 179 |
+
|
| 180 |
+
except Exception as e:
|
| 181 |
+
# Other errors, retry
|
| 182 |
+
if attempt < MAX_RETRIES - 1:
|
| 183 |
+
wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt)
|
| 184 |
+
print(f" ⚠ {filename}: {e}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
|
| 185 |
+
time.sleep(wait_time)
|
| 186 |
+
else:
|
| 187 |
+
print(f" ✗ {filename}: Failed after {MAX_RETRIES} attempts - {e}")
|
| 188 |
|
| 189 |
+
return False
|
|
|
|
|
|
|
| 190 |
|
| 191 |
|
| 192 |
+
def download_all_gharchive_data():
|
| 193 |
+
"""
|
| 194 |
+
Download all GHArchive data files for the last LEADERBOARD_TIME_FRAME_DAYS.
|
| 195 |
+
Uses parallel downloads with ThreadPoolExecutor.
|
| 196 |
+
|
| 197 |
+
Returns:
|
| 198 |
+
bool: True if all downloads completed (some may have failed), False if critical error
|
| 199 |
+
"""
|
| 200 |
+
# Create data directory if it doesn't exist
|
| 201 |
+
os.makedirs(GHARCHIVE_DATA_DIR, exist_ok=True)
|
| 202 |
+
|
| 203 |
+
# Generate URLs for last N days (hourly files: 0-23 for each day)
|
| 204 |
+
end_date = datetime.now()
|
| 205 |
+
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 206 |
+
|
| 207 |
+
urls = []
|
| 208 |
+
current_date = start_date
|
| 209 |
+
while current_date <= end_date:
|
| 210 |
+
date_str = current_date.strftime("%Y-%m-%d")
|
| 211 |
+
# Generate hourly URLs for this day (0-23)
|
| 212 |
+
for hour in range(24):
|
| 213 |
+
url = f"https://data.gharchive.org/{date_str}-{hour}.json.gz"
|
| 214 |
+
urls.append(url)
|
| 215 |
+
current_date += timedelta(days=1)
|
| 216 |
+
|
| 217 |
+
downloads_processed = 0
|
| 218 |
+
|
| 219 |
+
try:
|
| 220 |
+
with ThreadPoolExecutor(max_workers=DOWNLOAD_WORKERS) as executor:
|
| 221 |
+
# Submit all downloads
|
| 222 |
+
futures = [executor.submit(download_file, url) for url in urls]
|
| 223 |
+
|
| 224 |
+
# Wait for downloads to complete
|
| 225 |
+
for future in as_completed(futures):
|
| 226 |
+
downloads_processed += 1
|
| 227 |
+
|
| 228 |
+
print(f"Download complete: {downloads_processed} files")
|
| 229 |
+
return True
|
| 230 |
+
|
| 231 |
+
except Exception as e:
|
| 232 |
+
print(f"Error during download: {str(e)}")
|
| 233 |
+
import traceback
|
| 234 |
+
traceback.print_exc()
|
| 235 |
+
return False
|
| 236 |
|
| 237 |
|
| 238 |
# =============================================================================
|
| 239 |
+
# HUGGINGFACE API WRAPPERS WITH ENHANCED BACKOFF
|
| 240 |
# =============================================================================
|
| 241 |
|
| 242 |
+
def is_retryable_error(e):
|
| 243 |
+
"""
|
| 244 |
+
Check if exception is retryable (rate limit or timeout error).
|
| 245 |
+
"""
|
| 246 |
+
# Check for rate limit error (429)
|
| 247 |
if isinstance(e, HfHubHTTPError):
|
| 248 |
+
if e.response.status_code == 429:
|
| 249 |
+
return True
|
| 250 |
|
| 251 |
+
# Check for timeout errors
|
| 252 |
+
if isinstance(e, (requests.exceptions.Timeout,
|
| 253 |
+
requests.exceptions.ReadTimeout,
|
| 254 |
+
requests.exceptions.ConnectTimeout)):
|
| 255 |
+
return True
|
| 256 |
|
| 257 |
+
# Check if it's a timeout error wrapped in HfHubHTTPError
|
| 258 |
+
if isinstance(e, Exception):
|
| 259 |
+
error_str = str(e).lower()
|
| 260 |
+
if 'timeout' in error_str or 'timed out' in error_str:
|
| 261 |
+
return True
|
| 262 |
+
|
| 263 |
+
return False
|
| 264 |
|
| 265 |
|
| 266 |
@backoff.on_exception(
|
| 267 |
backoff.expo,
|
| 268 |
+
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
|
|
|
|
| 269 |
max_tries=8,
|
| 270 |
+
base=300,
|
| 271 |
+
max_value=3600,
|
| 272 |
+
giveup=lambda e: not is_retryable_error(e),
|
| 273 |
+
on_backoff=lambda details: print(
|
| 274 |
+
f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
|
| 275 |
+
)
|
| 276 |
)
|
| 277 |
def list_repo_files_with_backoff(api, **kwargs):
|
| 278 |
+
"""Wrapper for api.list_repo_files() with exponential backoff for retryable errors."""
|
| 279 |
return api.list_repo_files(**kwargs)
|
| 280 |
|
| 281 |
|
| 282 |
@backoff.on_exception(
|
| 283 |
backoff.expo,
|
| 284 |
+
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
|
|
|
|
| 285 |
max_tries=8,
|
| 286 |
+
base=300,
|
| 287 |
+
max_value=3600,
|
| 288 |
+
giveup=lambda e: not is_retryable_error(e),
|
| 289 |
+
on_backoff=lambda details: print(
|
| 290 |
+
f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
|
| 291 |
+
)
|
| 292 |
)
|
| 293 |
def hf_hub_download_with_backoff(**kwargs):
|
| 294 |
+
"""Wrapper for hf_hub_download() with exponential backoff for retryable errors."""
|
| 295 |
return hf_hub_download(**kwargs)
|
| 296 |
|
| 297 |
|
| 298 |
@backoff.on_exception(
|
| 299 |
backoff.expo,
|
| 300 |
+
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
|
|
|
|
| 301 |
max_tries=8,
|
| 302 |
+
base=300,
|
| 303 |
+
max_value=3600,
|
| 304 |
+
giveup=lambda e: not is_retryable_error(e),
|
| 305 |
+
on_backoff=lambda details: print(
|
| 306 |
+
f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
|
| 307 |
+
)
|
| 308 |
)
|
| 309 |
+
def upload_file_with_backoff(api, **kwargs):
|
| 310 |
+
"""Wrapper for api.upload_file() with exponential backoff for retryable errors."""
|
| 311 |
+
return api.upload_file(**kwargs)
|
| 312 |
|
| 313 |
|
| 314 |
@backoff.on_exception(
|
| 315 |
backoff.expo,
|
| 316 |
+
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
|
|
|
|
| 317 |
max_tries=8,
|
| 318 |
+
base=300,
|
| 319 |
+
max_value=3600,
|
| 320 |
+
giveup=lambda e: not is_retryable_error(e),
|
| 321 |
+
on_backoff=lambda details: print(
|
| 322 |
+
f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
|
| 323 |
+
)
|
| 324 |
)
|
| 325 |
+
def upload_folder_with_backoff(api, **kwargs):
|
| 326 |
+
"""Wrapper for api.upload_folder() with exponential backoff for retryable errors."""
|
| 327 |
+
return api.upload_folder(**kwargs)
|
|
|
|
| 328 |
|
|
|
|
|
|
|
|
|
|
| 329 |
|
| 330 |
+
def get_duckdb_connection():
|
| 331 |
"""
|
| 332 |
+
Initialize DuckDB connection with persistent database and optimized parallelization.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
|
| 334 |
Returns:
|
| 335 |
+
DuckDB connection object
|
| 336 |
"""
|
| 337 |
+
# Use persistent database for caching results
|
| 338 |
+
conn = duckdb.connect(DUCKDB_CACHE_FILE)
|
|
|
|
| 339 |
|
| 340 |
+
# Optimize for 96-core CPU parallelization with 754GB RAM
|
| 341 |
+
conn.execute("SET threads TO 8;") # Use all available cores
|
| 342 |
+
conn.execute("SET preserve_insertion_order = false;") # Better parallelization
|
| 343 |
+
conn.execute("SET enable_object_cache = true;") # Cache objects for reuse
|
| 344 |
+
conn.execute("SET temp_directory = '/tmp/duckdb_temp';") # Use fast temp storage if needed
|
|
|
|
|
|
|
| 345 |
|
| 346 |
+
return conn
|
|
|
|
| 347 |
|
|
|
|
|
|
|
| 348 |
|
| 349 |
+
def generate_file_path_patterns(start_date, end_date, data_dir=GHARCHIVE_DATA_DIR):
|
| 350 |
+
"""
|
| 351 |
+
Generate file path patterns for GHArchive data in date range.
|
| 352 |
+
Only includes files that actually exist on disk.
|
|
|
|
| 353 |
|
| 354 |
+
Args:
|
| 355 |
+
start_date: Start datetime
|
| 356 |
+
end_date: End datetime
|
| 357 |
+
data_dir: Directory containing GHArchive data files
|
|
|
|
|
|
|
| 358 |
|
| 359 |
+
Returns:
|
| 360 |
+
List of file path patterns (hourly JSON.gz files) that exist
|
| 361 |
+
"""
|
| 362 |
+
file_patterns = []
|
| 363 |
+
missing_dates = set()
|
| 364 |
|
| 365 |
+
current_date = start_date.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 366 |
+
end_day = end_date.replace(hour=0, minute=0, second=0, microsecond=0)
|
|
|
|
|
|
|
|
|
|
| 367 |
|
| 368 |
+
while current_date <= end_day:
|
| 369 |
+
# Pattern for hourly JSON.gz files: 2024-11-15-{0..23}.json.gz
|
| 370 |
+
date_has_files = False
|
| 371 |
+
for hour in range(24):
|
| 372 |
+
pattern = os.path.join(data_dir, f"{current_date.strftime('%Y-%m-%d')}-{hour}.json.gz")
|
| 373 |
+
# Only add pattern if file exists
|
| 374 |
+
if os.path.exists(pattern):
|
| 375 |
+
file_patterns.append(pattern)
|
| 376 |
+
date_has_files = True
|
| 377 |
|
| 378 |
+
# Track missing dates
|
| 379 |
+
if not date_has_files:
|
| 380 |
+
missing_dates.add(current_date.strftime('%Y-%m-%d'))
|
| 381 |
|
| 382 |
+
# Move to next day
|
| 383 |
+
current_date += timedelta(days=1)
|
|
|
|
|
|
|
| 384 |
|
| 385 |
+
# Print warning about missing dates
|
| 386 |
+
if missing_dates:
|
| 387 |
+
print(f" Warning: Skipping {len(missing_dates)} date(s) with no data files: {', '.join(sorted(missing_dates))}")
|
| 388 |
|
| 389 |
+
return file_patterns
|
| 390 |
|
| 391 |
|
| 392 |
+
# =============================================================================
|
| 393 |
+
# DUCKDB QUERY FUNCTIONS
|
| 394 |
+
# =============================================================================
|
| 395 |
|
| 396 |
+
def fetch_all_pr_metadata_single_query(conn, identifiers, start_date, end_date):
|
| 397 |
+
"""
|
| 398 |
+
Fetch PR metadata for ALL agents using ONE comprehensive DuckDB query.
|
| 399 |
|
| 400 |
This query fetches:
|
| 401 |
1. PRs authored by agents (user.login matches identifier)
|
| 402 |
+
2. PR status (opened, merged, closed)
|
| 403 |
|
| 404 |
Args:
|
| 405 |
+
conn: DuckDB connection instance
|
| 406 |
identifiers: List of GitHub usernames/bot identifiers
|
| 407 |
start_date: Start datetime (timezone-aware)
|
| 408 |
end_date: End datetime (timezone-aware)
|
|
|
|
| 412 |
{
|
| 413 |
'agent-identifier': [
|
| 414 |
{
|
| 415 |
+
'html_url': PR URL,
|
| 416 |
'created_at': Creation timestamp,
|
| 417 |
'merged_at': Merge timestamp (if merged, else None),
|
| 418 |
'closed_at': Close timestamp (if closed but not merged, else None)
|
|
|
|
| 422 |
...
|
| 423 |
}
|
| 424 |
"""
|
| 425 |
+
# Generate file path patterns for the time range
|
| 426 |
+
file_patterns = generate_file_path_patterns(start_date, end_date)
|
| 427 |
|
| 428 |
+
# Build identifier list for IN clause
|
| 429 |
+
identifier_list = ', '.join([f"'{id}'" for id in identifiers])
|
| 430 |
|
| 431 |
+
# Build comprehensive query with CTEs using parameterized file lists (JSON.gz format)
|
|
|
|
|
|
|
|
|
|
| 432 |
query = f"""
|
| 433 |
WITH pr_events AS (
|
| 434 |
-- Get all PR events (opened, closed) for all agents
|
| 435 |
SELECT
|
| 436 |
+
TRY_CAST(json_extract_string(payload, '$.pull_request.html_url') AS VARCHAR) as url,
|
| 437 |
+
TRY_CAST(json_extract_string(payload, '$.pull_request.user.login') AS VARCHAR) as pr_author,
|
| 438 |
+
TRY_CAST(json_extract_string(payload, '$.pull_request.created_at') AS VARCHAR) as created_at,
|
| 439 |
+
TRY_CAST(json_extract_string(payload, '$.pull_request.merged') AS BOOLEAN) as is_merged,
|
| 440 |
+
TRY_CAST(json_extract_string(payload, '$.pull_request.merged_at') AS VARCHAR) as merged_at,
|
| 441 |
+
TRY_CAST(json_extract_string(payload, '$.pull_request.closed_at') AS VARCHAR) as closed_at,
|
| 442 |
+
TRY_CAST(json_extract_string(payload, '$.action') AS VARCHAR) as action,
|
| 443 |
created_at as event_time
|
| 444 |
+
FROM read_json($file_patterns, union_by_name=true, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648)
|
|
|
|
|
|
|
| 445 |
WHERE
|
| 446 |
+
TRY_CAST(type AS VARCHAR) = 'PullRequestEvent'
|
| 447 |
+
AND json_extract_string(payload, '$.pull_request.html_url') IS NOT NULL
|
| 448 |
+
AND TRY_CAST(json_extract_string(payload, '$.pull_request.user.login') AS VARCHAR) IN ({identifier_list})
|
| 449 |
),
|
| 450 |
|
| 451 |
pr_latest_state AS (
|
|
|
|
| 472 |
ORDER BY created_at DESC
|
| 473 |
"""
|
| 474 |
|
|
|
|
|
|
|
|
|
|
| 475 |
try:
|
| 476 |
+
# Create cache table name based on date range
|
| 477 |
+
cache_table_name = f"pr_cache_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}"
|
| 478 |
+
|
| 479 |
+
# Check if cache exists and is valid
|
| 480 |
+
cache_exists = conn.execute(f"""
|
| 481 |
+
SELECT COUNT(*) FROM information_schema.tables
|
| 482 |
+
WHERE table_name = '{cache_table_name}'
|
| 483 |
+
""").fetchone()[0] > 0
|
| 484 |
+
|
| 485 |
+
if cache_exists:
|
| 486 |
+
results = conn.execute(f"""
|
| 487 |
+
SELECT url, pr_author, created_at, merged_at, closed_at
|
| 488 |
+
FROM {cache_table_name}
|
| 489 |
+
WHERE pr_author IN ({identifier_list})
|
| 490 |
+
""").fetchall()
|
| 491 |
+
else:
|
| 492 |
+
# Execute query with parameters
|
| 493 |
+
results = conn.execute(query, {'file_patterns': file_patterns}).fetchall()
|
| 494 |
+
|
| 495 |
+
# Cache the complete results for all future queries in this date range
|
| 496 |
+
if len(results) > 0:
|
| 497 |
+
conn.execute(f"""
|
| 498 |
+
CREATE TABLE {cache_table_name} AS
|
| 499 |
+
SELECT * FROM (
|
| 500 |
+
SELECT UNNEST($1) as url, UNNEST($2) as pr_author,
|
| 501 |
+
UNNEST($3) as created_at, UNNEST($4) as merged_at,
|
| 502 |
+
UNNEST($5) as closed_at
|
| 503 |
+
)
|
| 504 |
+
""", [
|
| 505 |
+
[r[0] for r in results],
|
| 506 |
+
[r[1] for r in results],
|
| 507 |
+
[r[2] for r in results],
|
| 508 |
+
[r[3] for r in results],
|
| 509 |
+
[r[4] for r in results]
|
| 510 |
+
])
|
| 511 |
|
| 512 |
# Group results by agent
|
| 513 |
metadata_by_agent = defaultdict(list)
|
| 514 |
|
| 515 |
for row in results:
|
| 516 |
+
url = row[0]
|
| 517 |
+
pr_author = row[1]
|
| 518 |
+
created_at = normalize_date_format(row[2]) if row[2] else None
|
| 519 |
+
merged_at = normalize_date_format(row[3]) if row[3] else None
|
| 520 |
+
closed_at = normalize_date_format(row[4]) if row[4] else None
|
| 521 |
+
|
| 522 |
+
metadata_by_agent[pr_author].append({
|
| 523 |
+
'html_url': url,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 524 |
'created_at': created_at,
|
| 525 |
'merged_at': merged_at,
|
| 526 |
'closed_at': closed_at,
|
| 527 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 528 |
|
| 529 |
# Convert defaultdict to regular dict
|
| 530 |
return dict(metadata_by_agent)
|
| 531 |
|
| 532 |
except Exception as e:
|
| 533 |
+
print(f"DuckDB error: {str(e)}")
|
| 534 |
import traceback
|
| 535 |
traceback.print_exc()
|
| 536 |
return {}
|
| 537 |
|
| 538 |
|
| 539 |
# =============================================================================
|
| 540 |
+
# HUGGINGFACE STORAGE FUNCTIONS WITH BATCH UPLOAD
|
| 541 |
# =============================================================================
|
| 542 |
|
| 543 |
def group_metadata_by_date(metadata_list):
|
| 544 |
"""
|
| 545 |
+
Group PR metadata by date (year.month.day) for daily storage.
|
| 546 |
Returns dict: {(year, month, day): [metadata_list]}
|
| 547 |
"""
|
| 548 |
grouped = defaultdict(list)
|
|
|
|
| 562 |
return dict(grouped)
|
| 563 |
|
| 564 |
|
| 565 |
+
def upload_single_file_with_retry(api, local_path, repo_path, repo_id, repo_type, commit_message, max_retries=MAX_RETRIES):
|
| 566 |
"""
|
| 567 |
+
Upload a single file with exponential backoff retry logic.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 568 |
|
| 569 |
Args:
|
| 570 |
+
api: HfApi instance
|
| 571 |
+
local_path: Local file path
|
| 572 |
+
repo_path: Path in repository
|
| 573 |
+
repo_id: Repository ID
|
| 574 |
+
repo_type: Repository type (e.g., "dataset")
|
| 575 |
+
commit_message: Commit message
|
| 576 |
+
max_retries: Maximum number of retries
|
| 577 |
+
|
| 578 |
+
Returns:
|
| 579 |
+
bool: True if successful, False otherwise
|
| 580 |
"""
|
| 581 |
+
for attempt in range(max_retries):
|
| 582 |
+
try:
|
| 583 |
+
upload_file_with_backoff(
|
| 584 |
+
api=api,
|
| 585 |
+
path_or_fileobj=local_path,
|
| 586 |
+
path_in_repo=repo_path,
|
| 587 |
+
repo_id=repo_id,
|
| 588 |
+
repo_type=repo_type,
|
| 589 |
+
commit_message=commit_message
|
| 590 |
+
)
|
| 591 |
+
return True
|
| 592 |
+
except Exception as e:
|
| 593 |
+
if attempt < max_retries - 1:
|
| 594 |
+
# Calculate exponential backoff
|
| 595 |
+
wait_time = min(UPLOAD_INITIAL_BACKOFF * (2 ** attempt), UPLOAD_MAX_BACKOFF)
|
| 596 |
+
print(f" {e} error on attempt {attempt + 1}/{max_retries}. Retrying in {wait_time}s...")
|
| 597 |
+
time.sleep(wait_time)
|
| 598 |
+
else:
|
| 599 |
+
print(f" Failed after {max_retries} attempts: {str(e)}")
|
| 600 |
+
return False
|
| 601 |
+
return False
|
| 602 |
+
|
| 603 |
+
|
| 604 |
+
def batch_upload_pr_metadata(all_metadata):
|
| 605 |
+
"""
|
| 606 |
+
Upload PR metadata for all agents with time gaps between uploads.
|
| 607 |
+
Each agent's data is uploaded as separate daily files with retry logic.
|
| 608 |
+
|
| 609 |
+
Args:
|
| 610 |
+
all_metadata: Dictionary mapping agent identifier to list of PR metadata
|
| 611 |
|
| 612 |
+
Returns:
|
| 613 |
+
tuple: (success_count, error_count)
|
| 614 |
+
"""
|
| 615 |
try:
|
| 616 |
token = get_hf_token()
|
| 617 |
if not token:
|
|
|
|
| 619 |
|
| 620 |
api = HfApi(token=token)
|
| 621 |
|
| 622 |
+
success_count = 0
|
| 623 |
+
error_count = 0
|
| 624 |
+
total_files = 0
|
| 625 |
|
| 626 |
+
# First, calculate total number of files to upload
|
| 627 |
+
for agent_identifier, metadata_list in all_metadata.items():
|
| 628 |
+
if metadata_list:
|
| 629 |
+
grouped = group_metadata_by_date(metadata_list)
|
| 630 |
+
total_files += len(grouped)
|
| 631 |
|
| 632 |
+
print(f"Uploading {total_files} files for {len(all_metadata)} agents...")
|
|
|
|
|
|
|
|
|
|
| 633 |
|
| 634 |
+
file_count = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 635 |
|
| 636 |
+
for agent_idx, (agent_identifier, metadata_list) in enumerate(all_metadata.items(), 1):
|
| 637 |
+
if not metadata_list:
|
| 638 |
+
continue
|
| 639 |
|
| 640 |
+
# Group by date
|
| 641 |
+
grouped = group_metadata_by_date(metadata_list)
|
| 642 |
+
|
| 643 |
+
# Create temporary files for this agent
|
| 644 |
+
agent_temp_dir = tempfile.mkdtemp()
|
| 645 |
+
|
| 646 |
+
try:
|
| 647 |
+
# Prepare all files locally
|
| 648 |
+
local_files = []
|
| 649 |
+
for (pr_year, month, day), day_metadata in grouped.items():
|
| 650 |
+
filename = f"{pr_year}.{month:02d}.{day:02d}.jsonl"
|
| 651 |
+
local_path = os.path.join(agent_temp_dir, filename)
|
| 652 |
+
repo_path = f"{agent_identifier}/{filename}"
|
| 653 |
+
|
| 654 |
+
# Sort by created_at for better organization
|
| 655 |
+
day_metadata.sort(key=lambda x: x.get('created_at', ''), reverse=True)
|
| 656 |
+
|
| 657 |
+
# Save to temp file
|
| 658 |
+
save_jsonl(local_path, day_metadata)
|
| 659 |
+
local_files.append((local_path, repo_path, len(day_metadata)))
|
| 660 |
+
|
| 661 |
+
# Upload each file with delay
|
| 662 |
+
agent_success = 0
|
| 663 |
+
agent_error = 0
|
| 664 |
+
|
| 665 |
+
for file_idx, (local_path, repo_path, pr_count) in enumerate(local_files, 1):
|
| 666 |
+
file_count += 1
|
| 667 |
+
|
| 668 |
+
if upload_single_file_with_retry(
|
| 669 |
+
api=api,
|
| 670 |
+
local_path=local_path,
|
| 671 |
+
repo_path=repo_path,
|
| 672 |
+
repo_id=PR_METADATA_REPO,
|
| 673 |
+
repo_type="dataset",
|
| 674 |
+
commit_message=f"Update {repo_path}",
|
| 675 |
+
max_retries=MAX_RETRIES
|
| 676 |
+
):
|
| 677 |
+
agent_success += 1
|
| 678 |
+
success_count += 1
|
| 679 |
+
else:
|
| 680 |
+
agent_error += 1
|
| 681 |
+
error_count += 1
|
| 682 |
+
|
| 683 |
+
# Add delay between uploads (except for last file)
|
| 684 |
+
if file_idx < len(local_files):
|
| 685 |
+
time.sleep(UPLOAD_DELAY_SECONDS)
|
| 686 |
+
|
| 687 |
+
finally:
|
| 688 |
+
# Clean up temp directory
|
| 689 |
+
if os.path.exists(agent_temp_dir):
|
| 690 |
+
import shutil
|
| 691 |
+
shutil.rmtree(agent_temp_dir)
|
| 692 |
+
|
| 693 |
+
if error_count > 0:
|
| 694 |
+
print(f"Upload complete: {success_count}/{total_files} succeeded, {error_count} errors")
|
| 695 |
+
else:
|
| 696 |
+
print(f"Upload complete: {success_count}/{total_files} files")
|
| 697 |
+
|
| 698 |
+
return success_count, error_count
|
| 699 |
|
| 700 |
except Exception as e:
|
| 701 |
+
print(f"Error during batch upload: {str(e)}")
|
| 702 |
import traceback
|
| 703 |
traceback.print_exc()
|
| 704 |
+
return 0, total_files if 'total_files' in locals() else 0
|
| 705 |
|
| 706 |
|
| 707 |
def load_agents_from_hf():
|
|
|
|
| 715 |
agents = []
|
| 716 |
|
| 717 |
# List all files in the repository
|
| 718 |
+
files = list_repo_files_with_backoff(api=api, repo_id=AGENTS_REPO, repo_type="dataset")
|
| 719 |
|
| 720 |
# Filter for JSON files only
|
| 721 |
json_files = [f for f in files if f.endswith('.json')]
|
| 722 |
|
|
|
|
|
|
|
| 723 |
# Download and parse each JSON file
|
| 724 |
for json_file in json_files:
|
| 725 |
try:
|
|
|
|
| 743 |
agents.append(agent_data)
|
| 744 |
|
| 745 |
except Exception as e:
|
| 746 |
+
print(f"Error loading {json_file}: {str(e)}")
|
| 747 |
continue
|
| 748 |
|
| 749 |
+
print(f"Download complete: {len(agents)} agents")
|
| 750 |
+
|
| 751 |
return agents
|
| 752 |
|
| 753 |
except Exception as e:
|
|
|
|
| 786 |
}
|
| 787 |
|
| 788 |
|
| 789 |
+
def calculate_monthly_metrics_by_agent(all_metadata_dict, agents):
|
| 790 |
"""
|
| 791 |
Calculate monthly metrics for all agents for visualization.
|
| 792 |
|
| 793 |
Args:
|
| 794 |
+
all_metadata_dict: Dictionary mapping agent identifier to list of PR metadata
|
| 795 |
+
agents: List of agent dictionaries with metadata
|
| 796 |
|
| 797 |
Returns:
|
| 798 |
+
dict: {
|
| 799 |
+
'agents': list of agent names,
|
| 800 |
+
'months': list of month labels (e.g., '2025-01'),
|
| 801 |
+
'data': {
|
| 802 |
+
agent_name: {
|
| 803 |
+
'acceptance_rates': list of acceptance rates by month,
|
| 804 |
+
'total_prs': list of PR counts by month,
|
| 805 |
+
'merged_prs': list of merged PR counts by month,
|
| 806 |
+
}
|
| 807 |
+
}
|
| 808 |
+
}
|
| 809 |
"""
|
|
|
|
|
|
|
| 810 |
# Create mapping from agent_identifier to agent_name
|
| 811 |
+
identifier_to_name = {agent.get('github_identifier'): agent.get('name') for agent in agents if agent.get('github_identifier')}
|
| 812 |
+
|
| 813 |
+
if not all_metadata_dict:
|
| 814 |
+
return {'agents': [], 'months': [], 'data': {}}
|
|
|
|
| 815 |
|
| 816 |
# Group by agent and month
|
| 817 |
agent_month_data = defaultdict(lambda: defaultdict(list))
|
| 818 |
|
| 819 |
+
# Flatten the dict of lists into a single list with agent_identifier added
|
| 820 |
+
for agent_identifier, metadata_list in all_metadata_dict.items():
|
| 821 |
+
for pr_meta in metadata_list:
|
| 822 |
+
created_at = pr_meta.get('created_at')
|
| 823 |
|
| 824 |
+
if not created_at:
|
| 825 |
+
continue
|
| 826 |
|
| 827 |
+
# Get agent_name from identifier
|
| 828 |
+
agent_name = identifier_to_name.get(agent_identifier, agent_identifier)
|
| 829 |
|
| 830 |
+
try:
|
| 831 |
+
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 832 |
+
month_key = f"{dt.year}-{dt.month:02d}"
|
| 833 |
+
agent_month_data[agent_name][month_key].append(pr_meta)
|
| 834 |
+
except Exception as e:
|
| 835 |
+
print(f"Warning: Could not parse date '{created_at}': {e}")
|
| 836 |
+
continue
|
| 837 |
|
| 838 |
# Get all unique months and sort them
|
| 839 |
all_months = set()
|
|
|
|
| 845 |
result_data = {}
|
| 846 |
for agent_name, month_dict in agent_month_data.items():
|
| 847 |
acceptance_rates = []
|
| 848 |
+
total_prs_list = []
|
| 849 |
+
merged_prs_list = []
|
| 850 |
closed_not_merged_list = []
|
| 851 |
|
| 852 |
for month in months:
|
|
|
|
| 867 |
acceptance_rate = (merged_count / total_decisions * 100) if total_decisions > 0 else None
|
| 868 |
|
| 869 |
acceptance_rates.append(acceptance_rate)
|
| 870 |
+
total_prs_list.append(total_count)
|
| 871 |
+
merged_prs_list.append(merged_count)
|
| 872 |
closed_not_merged_list.append(closed_not_merged_count)
|
| 873 |
|
| 874 |
result_data[agent_name] = {
|
| 875 |
'acceptance_rates': acceptance_rates,
|
| 876 |
+
'total_prs': total_prs_list,
|
| 877 |
+
'merged_prs': merged_prs_list,
|
| 878 |
'closed_not_merged': closed_not_merged_list
|
| 879 |
}
|
| 880 |
|
|
|
|
| 887 |
}
|
| 888 |
|
| 889 |
|
| 890 |
+
def construct_leaderboard_from_metadata(all_metadata_dict, agents):
|
| 891 |
"""
|
| 892 |
+
Construct leaderboard from in-memory PR metadata.
|
| 893 |
|
| 894 |
Args:
|
| 895 |
+
all_metadata_dict: Dictionary mapping agent identifier to list of PR metadata
|
| 896 |
+
agents: List of agent dictionaries with metadata
|
| 897 |
|
| 898 |
Returns:
|
| 899 |
+
Dictionary of agent stats.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 900 |
"""
|
| 901 |
+
if not agents:
|
| 902 |
+
print("Error: No agents found")
|
| 903 |
+
return {}
|
|
|
|
|
|
|
| 904 |
|
|
|
|
|
|
|
|
|
|
| 905 |
cache_dict = {}
|
| 906 |
|
| 907 |
for agent in agents:
|
| 908 |
identifier = agent.get('github_identifier')
|
| 909 |
agent_name = agent.get('name', 'Unknown')
|
| 910 |
|
| 911 |
+
# Get metadata for this agent from the dictionary
|
| 912 |
+
bot_metadata = all_metadata_dict.get(identifier, [])
|
| 913 |
|
| 914 |
# Calculate stats
|
| 915 |
stats = calculate_pr_stats_from_metadata(bot_metadata)
|
| 916 |
|
| 917 |
cache_dict[identifier] = {
|
| 918 |
'name': agent_name,
|
| 919 |
+
'website': agent.get('website', 'N/A'),
|
| 920 |
'github_identifier': identifier,
|
| 921 |
**stats
|
| 922 |
}
|
|
|
|
| 924 |
return cache_dict
|
| 925 |
|
| 926 |
|
| 927 |
+
def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
|
| 928 |
"""
|
| 929 |
+
Save leaderboard data and monthly metrics to HuggingFace dataset as swe-pr.json.
|
| 930 |
|
| 931 |
Args:
|
| 932 |
+
leaderboard_dict: Dictionary of agent stats from construct_leaderboard_from_metadata()
|
| 933 |
+
monthly_metrics: Monthly metrics data from calculate_monthly_metrics_by_agent()
|
| 934 |
|
| 935 |
Returns:
|
| 936 |
+
bool: True if successful, False otherwise
|
| 937 |
"""
|
| 938 |
try:
|
| 939 |
token = get_hf_token()
|
|
|
|
| 941 |
raise Exception("No HuggingFace token found")
|
| 942 |
|
| 943 |
api = HfApi(token=token)
|
| 944 |
+
filename = "swe-pr.json"
|
| 945 |
|
| 946 |
+
# Combine leaderboard and monthly metrics
|
| 947 |
combined_data = {
|
| 948 |
+
'last_updated': datetime.now(timezone.utc).isoformat(),
|
| 949 |
+
'leaderboard': leaderboard_dict,
|
| 950 |
'monthly_metrics': monthly_metrics,
|
| 951 |
+
'metadata': {
|
| 952 |
+
'leaderboard_time_frame_days': LEADERBOARD_TIME_FRAME_DAYS
|
| 953 |
+
}
|
| 954 |
}
|
| 955 |
|
| 956 |
+
# Save locally first
|
| 957 |
+
with open(filename, 'w') as f:
|
| 958 |
+
json.dump(combined_data, f, indent=2)
|
|
|
|
|
|
|
| 959 |
|
| 960 |
+
try:
|
| 961 |
+
# Upload to HuggingFace with retry logic
|
| 962 |
upload_file_with_backoff(
|
| 963 |
+
api=api,
|
| 964 |
+
path_or_fileobj=filename,
|
| 965 |
+
path_in_repo=filename,
|
| 966 |
repo_id=LEADERBOARD_REPO,
|
| 967 |
repo_type="dataset"
|
| 968 |
)
|
|
|
|
| 969 |
return True
|
|
|
|
| 970 |
finally:
|
| 971 |
+
# Always clean up local file
|
| 972 |
+
if os.path.exists(filename):
|
| 973 |
+
os.remove(filename)
|
| 974 |
|
| 975 |
except Exception as e:
|
| 976 |
+
print(f"Error saving leaderboard data: {str(e)}")
|
| 977 |
import traceback
|
| 978 |
traceback.print_exc()
|
| 979 |
return False
|
|
|
|
| 986 |
def mine_all_agents():
|
| 987 |
"""
|
| 988 |
Mine PR metadata for all agents within LEADERBOARD_TIME_FRAME_DAYS and save to HuggingFace.
|
| 989 |
+
Downloads GHArchive data first, then uses ONE DuckDB query for ALL agents, then batch uploads with time gaps.
|
| 990 |
"""
|
| 991 |
+
# Step 1: Download GHArchive data
|
| 992 |
+
print(f"\n[1/5] Downloading GHArchive data...")
|
| 993 |
+
|
| 994 |
+
if not download_all_gharchive_data():
|
| 995 |
+
print("Warning: Download had errors, continuing with available data...")
|
| 996 |
+
|
| 997 |
+
# Step 2: Load agent metadata from HuggingFace
|
| 998 |
+
print(f"\n[2/5] Loading agent metadata...")
|
| 999 |
+
|
| 1000 |
agents = load_agents_from_hf()
|
| 1001 |
if not agents:
|
| 1002 |
+
print("Error: No agents found")
|
| 1003 |
return
|
| 1004 |
|
| 1005 |
# Extract all identifiers
|
| 1006 |
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
|
| 1007 |
if not identifiers:
|
| 1008 |
+
print("Error: No valid agent identifiers found")
|
| 1009 |
return
|
| 1010 |
|
| 1011 |
+
print(f"\n[3/5] Mining PR metadata ({len(identifiers)} agents, {LEADERBOARD_TIME_FRAME_DAYS} days)...")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1012 |
|
| 1013 |
+
# Initialize DuckDB connection
|
| 1014 |
try:
|
| 1015 |
+
conn = get_duckdb_connection()
|
| 1016 |
except Exception as e:
|
| 1017 |
+
print(f"Failed to initialize DuckDB connection: {str(e)}")
|
| 1018 |
return
|
| 1019 |
|
| 1020 |
# Define time range: past LEADERBOARD_TIME_FRAME_DAYS (excluding today)
|
|
|
|
| 1023 |
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 1024 |
|
| 1025 |
try:
|
| 1026 |
+
# Use single query for all agents
|
| 1027 |
+
all_metadata = fetch_all_pr_metadata_single_query(
|
| 1028 |
+
conn, identifiers, start_date, end_date
|
|
|
|
| 1029 |
)
|
| 1030 |
|
| 1031 |
# Calculate summary statistics
|
| 1032 |
total_prs = sum(len(metadata_list) for metadata_list in all_metadata.values())
|
| 1033 |
agents_with_data = sum(1 for metadata_list in all_metadata.values() if metadata_list)
|
| 1034 |
|
| 1035 |
+
print(f"Query complete: {total_prs} PRs found for {agents_with_data}/{len(agents)} agents")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1036 |
|
| 1037 |
except Exception as e:
|
| 1038 |
+
print(f"Error during DuckDB fetch: {str(e)}")
|
| 1039 |
import traceback
|
| 1040 |
traceback.print_exc()
|
| 1041 |
return
|
| 1042 |
+
finally:
|
| 1043 |
+
# Close DuckDB connection
|
| 1044 |
+
conn.close()
|
| 1045 |
+
|
| 1046 |
+
# Step 4: Batch upload PR metadata with time gaps
|
| 1047 |
+
print(f"\n[4/5] Uploading PR metadata...")
|
| 1048 |
+
|
| 1049 |
+
success_count, error_count = batch_upload_pr_metadata(all_metadata)
|
| 1050 |
|
| 1051 |
+
# Step 5: Construct and save leaderboard data
|
| 1052 |
+
print(f"\n[5/5] Saving leaderboard...")
|
|
|
|
|
|
|
| 1053 |
|
| 1054 |
try:
|
| 1055 |
+
# Construct leaderboard from in-memory data
|
| 1056 |
+
leaderboard_dict = construct_leaderboard_from_metadata(all_metadata, agents)
|
| 1057 |
+
|
| 1058 |
+
# Calculate monthly metrics from in-memory data
|
| 1059 |
+
monthly_metrics = calculate_monthly_metrics_by_agent(all_metadata, agents)
|
| 1060 |
+
|
| 1061 |
+
# Save to HuggingFace
|
| 1062 |
+
save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics)
|
| 1063 |
+
|
| 1064 |
+
print(f"\nCOMPLETE: {success_count} files uploaded" + (f", {error_count} errors" if error_count > 0 else ""))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1065 |
|
| 1066 |
except Exception as e:
|
| 1067 |
+
print(f"Error saving leaderboard: {str(e)}")
|
| 1068 |
import traceback
|
| 1069 |
traceback.print_exc()
|
| 1070 |
|
| 1071 |
|
| 1072 |
+
# =============================================================================
|
| 1073 |
+
# SCHEDULER SETUP
|
| 1074 |
+
# =============================================================================
|
| 1075 |
+
|
| 1076 |
+
def setup_scheduler():
|
| 1077 |
+
"""
|
| 1078 |
+
Set up APScheduler to run mining jobs periodically.
|
| 1079 |
+
Schedule is configurable via environment variables.
|
| 1080 |
+
|
| 1081 |
+
Environment variables:
|
| 1082 |
+
- SCHEDULE_ENABLED: Enable/disable scheduler (default: true)
|
| 1083 |
+
- SCHEDULE_DAY_OF_MONTH: Day of month to run (default: 8, second week)
|
| 1084 |
+
- SCHEDULE_HOUR: Hour to run (0-23, default: 0)
|
| 1085 |
+
- SCHEDULE_MINUTE: Minute to run (0-59, default: 0)
|
| 1086 |
+
- SCHEDULE_TIMEZONE: Timezone for scheduling (default: UTC)
|
| 1087 |
+
"""
|
| 1088 |
+
# Configure logging for APScheduler
|
| 1089 |
+
logging.basicConfig(
|
| 1090 |
+
level=logging.INFO,
|
| 1091 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 1092 |
+
)
|
| 1093 |
+
|
| 1094 |
+
# Disable verbose HTTP request logging from httpx (used by huggingface_hub)
|
| 1095 |
+
logging.getLogger('httpx').setLevel(logging.WARNING)
|
| 1096 |
+
|
| 1097 |
+
# Create scheduler
|
| 1098 |
+
scheduler = BlockingScheduler(timezone=SCHEDULE_TIMEZONE)
|
| 1099 |
+
|
| 1100 |
+
# Create cron trigger with configured schedule (monthly on specific day)
|
| 1101 |
+
trigger = CronTrigger(
|
| 1102 |
+
day=SCHEDULE_DAY_OF_MONTH,
|
| 1103 |
+
hour=SCHEDULE_HOUR,
|
| 1104 |
+
minute=SCHEDULE_MINUTE,
|
| 1105 |
+
timezone=SCHEDULE_TIMEZONE
|
| 1106 |
+
)
|
| 1107 |
+
|
| 1108 |
+
# Add job to scheduler
|
| 1109 |
+
scheduler.add_job(
|
| 1110 |
+
mine_all_agents,
|
| 1111 |
+
trigger=trigger,
|
| 1112 |
+
id='mine_all_agents',
|
| 1113 |
+
name='Mine GHArchive data for all agents',
|
| 1114 |
+
replace_existing=True
|
| 1115 |
+
)
|
| 1116 |
+
|
| 1117 |
+
# Print schedule information
|
| 1118 |
+
from datetime import datetime
|
| 1119 |
+
next_run = trigger.get_next_fire_time(None, datetime.now(trigger.timezone))
|
| 1120 |
+
print(f"Scheduler: Monthly on day {SCHEDULE_DAY_OF_MONTH} at {SCHEDULE_HOUR:02d}:{SCHEDULE_MINUTE:02d} {SCHEDULE_TIMEZONE}")
|
| 1121 |
+
print(f"Next run: {next_run}\n")
|
| 1122 |
+
|
| 1123 |
+
# Start scheduler (blocking call)
|
| 1124 |
+
print(f"\nScheduler started")
|
| 1125 |
+
scheduler.start()
|
| 1126 |
+
|
| 1127 |
+
|
| 1128 |
# =============================================================================
|
| 1129 |
# ENTRY POINT
|
| 1130 |
# =============================================================================
|
| 1131 |
|
| 1132 |
if __name__ == "__main__":
|
| 1133 |
+
if SCHEDULE_ENABLED:
|
| 1134 |
+
# Run with scheduler
|
| 1135 |
+
setup_scheduler()
|
| 1136 |
+
else:
|
| 1137 |
+
# Run without scheduler, just mine once
|
| 1138 |
+
mine_all_agents()
|
requirements.txt
CHANGED
|
@@ -1,12 +1,10 @@
|
|
| 1 |
APScheduler
|
| 2 |
backoff
|
| 3 |
-
|
| 4 |
-
db-dtypes
|
| 5 |
-
google-cloud-bigquery
|
| 6 |
gradio
|
| 7 |
gradio_leaderboard
|
| 8 |
huggingface_hub
|
| 9 |
pandas
|
| 10 |
plotly
|
| 11 |
-
|
| 12 |
-
|
|
|
|
| 1 |
APScheduler
|
| 2 |
backoff
|
| 3 |
+
duckdb[all]
|
|
|
|
|
|
|
| 4 |
gradio
|
| 5 |
gradio_leaderboard
|
| 6 |
huggingface_hub
|
| 7 |
pandas
|
| 8 |
plotly
|
| 9 |
+
python-dotenv
|
| 10 |
+
requests
|