File size: 10,506 Bytes
e628e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e877e4d
e628e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e877e4d
e628e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
"""Text-to-Speech service using ElevenLabs API for on-demand audio generation."""

import os
import logging
import tempfile
from typing import Optional, List, Dict, Any
from elevenlabs.client import AsyncElevenLabs
from elevenlabs import VoiceSettings

logger = logging.getLogger(__name__)


class TTSService:
    """Text-to-Speech service for generating audio narration on-demand."""

    def __init__(self, api_key: Optional[str] = None):
        """Initialise TTS service with ElevenLabs API.

        Args:
            api_key: ElevenLabs API key (uses env var if not provided)
        """
        self.api_key = api_key or os.getenv("ELEVENLABS_API_KEY")
        if not self.api_key:
            logger.warning("ELEVENLABS_API_KEY not set - audio generation will fail")
            self.client = None
        else:
            self.client = AsyncElevenLabs(api_key=self.api_key)

        # Default voice: George - professional, neutral male voice
        self.default_voice_id = "JBFqnCBsd6RMkjVDRZzb"

    def is_available(self) -> bool:
        """Check if TTS service is available."""
        return self.client is not None

    async def generate_audio(
        self,
        text: str,
        voice_id: Optional[str] = None,
        model: str = "eleven_multilingual_v2",
        voice_settings: Optional[VoiceSettings] = None
    ) -> bytes:
        """Generate audio from text.

        Args:
            text: Text to convert to speech
            voice_id: ElevenLabs voice ID (uses default if not provided)
            model: ElevenLabs model ID
            voice_settings: Optional voice customisation

        Returns:
            Audio data as bytes (MP3 format)

        Raises:
            RuntimeError: If TTS service not available
        """
        if not self.is_available():
            raise RuntimeError("TTS service not available - check ELEVENLABS_API_KEY")

        if not text or not text.strip():
            raise ValueError("Text cannot be empty")

        logger.info(f"Generating audio: {len(text)} characters")

        try:
            audio_generator = self.client.text_to_speech.convert(
                text=text,
                voice_id=voice_id or self.default_voice_id,
                model_id=model,
                voice_settings=voice_settings,
                output_format="mp3_44100_128"
            )

            # Collect audio chunks
            audio_chunks = []
            async for chunk in audio_generator:
                audio_chunks.append(chunk)

            audio_data = b"".join(audio_chunks)
            logger.info(f"Audio generated: {len(audio_data)} bytes")
            return audio_data

        except Exception as e:
            logger.error(f"Audio generation failed: {e}")
            raise

    async def generate_analysis_narration(
        self,
        analysis_text: str,
        recommendations: Optional[List[str]] = None
    ) -> str:
        """Generate audio narration for portfolio analysis.

        Args:
            analysis_text: Main analysis text/summary
            recommendations: Optional list of recommendations

        Returns:
            Path to generated MP3 file
        """
        if not self.is_available():
            raise RuntimeError("TTS service not available")

        # Build narrative script
        script = "Portfolio Analysis Summary.\n\n"
        script += analysis_text

        if recommendations:
            script += "\n\nRecommendations:\n"
            for i, rec in enumerate(recommendations, 1):
                script += f"\n{i}. {rec}\n"

        script += "\n\nThis analysis is for informational purposes only and does not constitute financial advice."

        # Generate audio
        audio_data = await self.generate_audio(script)

        # Save to temporary file
        temp_file = tempfile.NamedTemporaryFile(
            delete=False,
            suffix=".mp3",
            prefix="analysis_"
        )
        temp_file.write(audio_data)
        temp_file.close()

        logger.info(f"Analysis narration saved to: {temp_file.name}")
        return temp_file.name

    async def generate_portfolio_narration(
        self,
        portfolio_summary: str,
        holdings: Optional[List[Dict[str, Any]]] = None
    ) -> str:
        """Generate audio narration for built portfolio.

        Args:
            portfolio_summary: Portfolio summary text
            holdings: Optional list of holdings with ticker and allocation

        Returns:
            Path to generated MP3 file
        """
        if not self.is_available():
            raise RuntimeError("TTS service not available")

        script = "Portfolio Construction Complete.\n\n"
        script += portfolio_summary

        if holdings:
            script += "\n\nPortfolio Holdings:\n"
            for holding in holdings[:10]:  # Limit to top 10
                ticker = holding.get("ticker", "Unknown")
                weight = holding.get("weight", 0)
                script += f"{ticker}: {weight:.1f}% allocation. "

        script += "\n\nRemember to conduct your own research before making investment decisions."

        # Generate audio
        audio_data = await self.generate_audio(script)

        # Save to temporary file
        temp_file = tempfile.NamedTemporaryFile(
            delete=False,
            suffix=".mp3",
            prefix="portfolio_"
        )
        temp_file.write(audio_data)
        temp_file.close()

        logger.info(f"Portfolio narration saved to: {temp_file.name}")
        return temp_file.name


class DebateAudioGenerator:
    """Generate multi-speaker audio for debate simulation."""

    def __init__(self, api_key: Optional[str] = None):
        """Initialise debate audio generator.

        Args:
            api_key: ElevenLabs API key (uses env var if not provided)
        """
        self.api_key = api_key or os.getenv("ELEVENLABS_API_KEY")
        if not self.api_key:
            logger.warning("ELEVENLABS_API_KEY not set - audio generation will fail")
            self.client = None
        else:
            self.client = AsyncElevenLabs(api_key=self.api_key)

        # Voice assignments for debate roles
        self.voices = {
            "bull": "pNInz6obpgDQGcFmaJgB",     # Adam - optimistic, energetic
            "bear": "XB0fDUnXU5powFXDhCwa",     # Charlotte - cautious, analytical
            "consensus": "JBFqnCBsd6RMkjVDRZzb", # George - neutral, professional
            "moderator": "EXAVITQu4vr4xnSDxMaL"  # Bella - clear, articulate
        }

    def is_available(self) -> bool:
        """Check if debate audio generator is available."""
        return self.client is not None

    async def generate_debate_audio(
        self,
        bull_case: str,
        bear_case: str,
        consensus: str,
        bull_confidence: Optional[float] = None,
        bear_confidence: Optional[float] = None,
        stance: Optional[str] = None
    ) -> str:
        """Generate multi-speaker debate simulation audio.

        Args:
            bull_case: Bull perspective text
            bear_case: Bear perspective text
            consensus: Consensus recommendation text
            bull_confidence: Bull confidence percentage
            bear_confidence: Bear confidence percentage
            stance: Final stance (bullish/bearish/neutral)

        Returns:
            Path to generated MP3 file with complete debate
        """
        if not self.is_available():
            raise RuntimeError("Debate audio generator not available")

        logger.info("Generating debate simulation audio")

        audio_segments = []

        # Introduction
        intro_text = "Advisory Council Debate. We will hear from the Bull researcher, followed by the Bear researcher, and conclude with a consensus recommendation."
        intro_audio = await self._generate_segment(intro_text, self.voices["moderator"])
        audio_segments.append(intro_audio)
        audio_segments.append(self._generate_pause(1.0))

        # Bull case
        bull_intro = f"Bull Case. Confidence level: {bull_confidence:.0f} percent. " if bull_confidence else "Bull Case. "
        bull_audio = await self._generate_segment(bull_intro + bull_case, self.voices["bull"])
        audio_segments.append(bull_audio)
        audio_segments.append(self._generate_pause(1.5))

        # Bear case
        bear_intro = f"Bear Case. Confidence level: {bear_confidence:.0f} percent. " if bear_confidence else "Bear Case. "
        bear_audio = await self._generate_segment(bear_intro + bear_case, self.voices["bear"])
        audio_segments.append(bear_audio)
        audio_segments.append(self._generate_pause(1.5))

        # Consensus
        consensus_intro = f"Consensus Recommendation. Final stance: {stance}. " if stance else "Consensus Recommendation. "
        consensus_audio = await self._generate_segment(consensus_intro + consensus, self.voices["consensus"])
        audio_segments.append(consensus_audio)

        # Combine all segments
        final_audio = b"".join(audio_segments)

        # Save to temporary file
        temp_file = tempfile.NamedTemporaryFile(
            delete=False,
            suffix=".mp3",
            prefix="debate_"
        )
        temp_file.write(final_audio)
        temp_file.close()

        logger.info(f"Debate audio saved to: {temp_file.name}")
        return temp_file.name

    async def _generate_segment(self, text: str, voice_id: str) -> bytes:
        """Generate audio segment with specific voice.

        Args:
            text: Text to convert
            voice_id: ElevenLabs voice ID

        Returns:
            Audio data as bytes
        """
        audio_generator = self.client.text_to_speech.convert(
            text=text,
            voice_id=voice_id,
            model_id="eleven_multilingual_v2",
            output_format="mp3_44100_128"
        )

        chunks = []
        async for chunk in audio_generator:
            chunks.append(chunk)

        return b"".join(chunks)

    def _generate_pause(self, duration: float) -> bytes:
        """Generate silence pause between segments.

        Args:
            duration: Pause duration in seconds

        Returns:
            Silence audio data
        """
        # Simple silence: MP3 frame with minimal data
        # For production, use proper silent MP3 frames
        sample_rate = 44100
        silence_samples = int(sample_rate * duration * 0.1)  # Simplified
        return b'\x00' * silence_samples