Update generate.py
Browse files- generate.py +20 -18
generate.py
CHANGED
|
@@ -1,29 +1,31 @@
|
|
| 1 |
import torch
|
|
|
|
|
|
|
| 2 |
from transformers import GPT2Tokenizer
|
| 3 |
-
from evo_model import EvoDecoderModel
|
| 4 |
|
| 5 |
# Load tokenizer
|
| 6 |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
| 7 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
-
model =
|
| 12 |
-
model.load_state_dict(torch.load("evo_decoder.pt", map_location=
|
| 13 |
model.eval()
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
|
| 29 |
-
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from evo_model import EvoDecoder
|
| 4 |
from transformers import GPT2Tokenizer
|
|
|
|
| 5 |
|
| 6 |
# Load tokenizer
|
| 7 |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
|
|
|
| 8 |
|
| 9 |
+
# Load trained model
|
| 10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
+
model = EvoDecoder(vocab_size=tokenizer.vocab_size, d_model=512, nhead=8, num_layers=6).to(device)
|
| 12 |
+
model.load_state_dict(torch.load("evo_decoder.pt", map_location=device))
|
| 13 |
model.eval()
|
| 14 |
|
| 15 |
+
@torch.no_grad()
|
| 16 |
+
def generate_response(prompt, max_length=50, temperature=1.0):
|
| 17 |
+
model.eval()
|
| 18 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
| 19 |
|
| 20 |
+
for _ in range(max_length):
|
| 21 |
+
logits = model(input_ids)
|
| 22 |
+
logits = logits[:, -1, :] / temperature
|
| 23 |
+
probs = F.softmax(logits, dim=-1)
|
| 24 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
| 25 |
+
input_ids = torch.cat((input_ids, next_token), dim=1)
|
| 26 |
|
| 27 |
+
if next_token.item() == tokenizer.eos_token_id:
|
| 28 |
+
break
|
| 29 |
|
| 30 |
+
output = tokenizer.decode(input_ids.squeeze(), skip_special_tokens=True)
|
| 31 |
+
return output[len(prompt):].strip()
|